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Financial Toolbox Product Description
Analyze financial data and develop financial models

Financial Toolbox provides functions for the mathematical modeling and statistical analysis of
financial data. You can analyze, backtest, and optimize investment portfolios taking into account
turnover, transaction costs, semi-continuous constraints, and minimum or maximum number of
assets. The toolbox enables you to estimate risk, model credit scorecards, analyze yield curves, price
fixed-income instruments and European options, and measure investment performance.

Stochastic differential equation (SDE) tools let you model and simulate a variety of stochastic
processes. Time series analysis functions let you perform transformations or regressions with missing
data and convert between different trading calendars and day-count conventions.
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Expected Users
In general, this guide assumes experience working with financial derivatives and some familiarity
with the underlying models.

In designing Financial Toolbox documentation, we assume that your title is like one of these:

• Analyst, quantitative analyst
• Risk manager
• Portfolio manager
• Asset allocator
• Financial engineer
• Trader
• Student, professor, or other academic

We also assume that your background, education, training, and responsibilities match some aspects
of this profile:

• Finance, economics, perhaps accounting
• Engineering, mathematics, physics, other quantitative sciences
• Focus on quantitative approaches to financial problems

 Expected Users
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Analyze Sets of Numbers Using Matrix Functions
In this section...
“Introduction” on page 1-4
“Key Definitions” on page 1-4
“Referencing Matrix Elements” on page 1-4
“Transposing Matrices” on page 1-5

Introduction
Many financial analysis procedures involve sets of numbers; for example, a portfolio of securities at
various prices and yields. Matrices, matrix functions, and matrix algebra are the most efficient ways
to analyze sets of numbers and their relationships. Spreadsheets focus on individual cells and the
relationships between cells. While you can think of a set of spreadsheet cells (a range of rows and
columns) as a matrix, a matrix-oriented tool like MATLAB® software manipulates sets of numbers
more quickly, easily, and naturally. For more information, see “Matrix Algebra Refresher” on page 1-
7.

Key Definitions
Matrix

A rectangular array of numeric or algebraic quantities subject to mathematical operations; the
regular formation of elements into rows and columns. Described as a “m-by-n” matrix, with m the
number of rows and n the number of columns. The description is always “row-by-column.” For
example, here is a 2-by-3 matrix of two bonds (the rows) with different par values, coupon rates, and
coupon payment frequencies per year (the columns) entered using MATLAB notation:

Bonds = [1000   0.06   2
          500   0.055  4]

Vector

A matrix with only one row or column. Described as a “1-by-n” or “m-by-1” matrix. The description is
always “row-by-column.” For example, here is a 1-by-4 vector of cash flows in MATLAB notation:

Cash = [1500   4470   5280   -1299]

Scalar

A 1-by-1 matrix; that is, a single number.

Referencing Matrix Elements
To reference specific matrix elements, use (row, column) notation. For example:

Bonds(1,2)

ans =

          0.06
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Cash(3)

ans =

       5280.00

You can enlarge matrices using small matrices or vectors as elements. For example,

AddBond = [1000   0.065   2];
Bonds = [Bonds; AddBond]

adds another row to the matrix and creates

Bonds =

       1000   0.06    2
        500   0.055   4
       1000   0.065   2

Likewise,

Prices = [987.50
          475.00
          995.00]

Bonds = [Prices, Bonds]

adds another column and creates

Bonds =

    987.50   1000   0.06    2
    475.00    500   0.055   4
    995.00   1000   0.065   2

Finally, the colon (:) is important in generating and referencing matrix elements. For example, to
reference the par value, coupon rate, and coupon frequency of the second bond:

BondItems = Bonds(2, 2:4)

BondItems =

    500.00   0.055   4

Transposing Matrices
Sometimes matrices are in the wrong configuration for an operation. In MATLAB, the apostrophe or
prime character (') transposes a matrix: columns become rows, rows become columns. For example,

Cash = [1500   4470   5280   -1299]'

produces

Cash =

        1500
        4470
        5280
       -1299
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See Also

More About
• “Matrix Algebra Refresher” on page 1-7
• “Using Input and Output Arguments with Functions” on page 1-15
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Matrix Algebra Refresher
In this section...
“Introduction” on page 1-7
“Adding and Subtracting Matrices” on page 1-7
“Multiplying Matrices” on page 1-8
“Dividing Matrices” on page 1-11
“Solving Simultaneous Linear Equations” on page 1-11
“Operating Element by Element” on page 1-13

Introduction
The explanations in the sections that follow should help refresh your skills for using matrix algebra
and using MATLAB functions.

In addition, Macro-Investment Analysis by William Sharpe also provides an excellent explanation of
matrix algebra operations using MATLAB. It is available on the web at:

https://www.stanford.edu/~wfsharpe/mia/mia.htm

Tip When you are setting up a problem, it helps to "talk through" the units and dimensions
associated with each input and output matrix. In the example under “Multiplying Matrices” on page
1-8, one input matrix has five days' closing prices for three stocks, the other input matrix has
shares of three stocks in two portfolios, and the output matrix therefore has five days' closing values
for two portfolios. It also helps to name variables using descriptive terms.

Adding and Subtracting Matrices
Matrix addition and subtraction operate element-by-element. The two input matrices must have the
same dimensions. The result is a new matrix of the same dimensions where each element is the sum
or difference of each corresponding input element. For example, consider combining portfolios of
different quantities of the same stocks (“shares of stocks A, B, and C [the rows] in portfolios P and Q
[the columns] plus shares of A, B, and C in portfolios R and S”).

Portfolios_PQ = [100   200
                 500   400
                 300   150];

Portfolios_RS = [175   125
                 200   200
                 100   500];

NewPortfolios = Portfolios_PQ + Portfolios_RS

NewPortfolios =

        275           325
        700           600
        400           650

 Matrix Algebra Refresher
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Adding or subtracting a scalar and a matrix is allowed and also operates element-by-element.

SmallerPortf = NewPortfolios-10

SmallerPortf =
        265.00        315.00
        690.00        590.00
        390.00        640.00

Multiplying Matrices
Matrix multiplication does not operate element-by-element. It operates according to the rules of
linear algebra. In multiplying matrices, it helps to remember this key rule: the inner dimensions must
be the same. That is, if the first matrix is m-by-3, the second must be 3-by-n. The resulting matrix is
m-by-n. It also helps to “talk through” the units of each matrix, as mentioned in “Analyze Sets of
Numbers Using Matrix Functions” on page 1-4.

Matrix multiplication also is not commutative; that is, it is not independent of order. A*B does not
equal B*A. The dimension rule illustrates this property. If A is 1-by-3 matrix and B is 3-by-1 matrix,
A*B yields a scalar (1-by-1) matrix but B*A yields a 3-by-3 matrix.

Multiplying Vectors

Vector multiplication follows the same rules and helps illustrate the principles. For example, a stock
portfolio has three different stocks and their closing prices today are:

ClosePrices = [42.5   15   78.875]

The portfolio contains these numbers of shares of each stock.

NumShares = [100
             500
             300]

To find the value of the portfolio, multiply the vectors

PortfValue = ClosePrices * NumShares

which yields:

PortfValue =

            3.5413e+004

The vectors are 1-by-3 and 3-by-1; the resulting vector is 1-by-1, a scalar. Multiplying these vectors
thus means multiplying each closing price by its respective number of shares and summing the result.

To illustrate order dependence, switch the order of the vectors

Values = NumShares * ClosePrices

Values =

  1.0e+004 *

    0.4250    0.1500    0.7887
    2.1250    0.7500    3.9438
    1.2750    0.4500    2.3663
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which shows the closing values of 100, 500, and 300 shares of each stock, not the portfolio value, and
this is meaningless for this example.

Computing Dot Products of Vectors

In matrix algebra, if X and Y are vectors of the same length

Y = y1, y2, …, yn
X = x1, x2, …, xn

then the dot product

X · Y = x1y1 + x2y2 + … + xnyn

is the scalar product of the two vectors. It is an exception to the commutative rule. To compute the
dot product in MATLAB, use sum(X .* Y) or sum(Y .* X). Be sure that the two vectors have the
same dimensions. To illustrate, use the previous vectors.

Value = sum(NumShares .* ClosePrices')

Value =

      3.5413e+004

Value = sum(ClosePrices .* NumShares')

Value =

      3.5413e+004

As expected, the value in these cases matches the PortfValue computed previously.

Multiplying Vectors and Matrices

Multiplying vectors and matrices follows the matrix multiplication rules and process. For example, a
portfolio matrix contains closing prices for a week. A second matrix (vector) contains the stock
quantities in the portfolio.

WeekClosePr = [42.5     15      78.875
               42.125   15.5    78.75
               42.125   15.125  79
               42.625   15.25   78.875
               43       15.25   78.625];
PortQuan = [100
            500
            300];

To see the closing portfolio value for each day, simply multiply

WeekPortValue = WeekClosePr * PortQuan

WeekPortValue =

1.0e+004 *

    3.5412
    3.5587
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    3.5475
    3.5550
    3.5513

The prices matrix is 5-by-3, the quantity matrix (vector) is 3-by-1, so the resulting matrix (vector) is 5-
by-1.

Multiplying Two Matrices

Matrix multiplication also follows the rules of matrix algebra. In matrix algebra notation, if A is an m-
by-n matrix and B is an n-by-p matrix

A =

a11 a12 ⋯ a1n

⋮ ⋮ ⋮
ai1 ai2 ⋯ ain

⋮ ⋮ ⋮
am1 am2 ⋯ amn

,   B =

b11 ⋯ b1 j ⋯ b1p

b21 ⋯ b2 j ⋯ b2p

⋮ ⋮ ⋮
bn1 ⋯ bn j ⋯ bnp

then C = A*B is an m-by-p matrix; and the element cij in the ith row and jth column of C is

ci j = ai1b1 j + ai2b12 + … + ainbn j .

To illustrate, assume that there are two portfolios of the same three stocks previously mentioned but
with different quantities.

Portfolios = [100   200
              500   400
              300   150];

Multiplying the 5-by-3 week's closing prices matrix by the 3-by-2 portfolios matrix yields a 5-by-2
matrix showing each day's closing value for both portfolios.

PortfolioValues = WeekClosePr * Portfolios

PortfolioValues =

1.0e+004 *

    3.5412    2.6331
    3.5587    2.6437
    3.5475    2.6325
    3.5550    2.6456
    3.5513    2.6494

Monday's values result from multiplying each Monday closing price by its respective number of
shares and summing the result for the first portfolio, then doing the same for the second portfolio.
Tuesday's values result from multiplying each Tuesday closing price by its respective number of
shares and summing the result for the first portfolio, then doing the same for the second portfolio.
And so on, through the rest of the week. With one simple command, MATLAB quickly performs many
calculations.

Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar is an exception to the dimension and commutative rules. It just
operates element-by-element.
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Portfolios = [100   200
              500   400
              300   150];

DoublePort = Portfolios * 2

DoublePort =
        200           400
       1000           800
        600           300

Dividing Matrices
Matrix division is useful primarily for solving equations, and especially for solving simultaneous linear
equations (see “Solving Simultaneous Linear Equations” on page 1-11). For example, you want to
solve for X in A*X = B.

In ordinary algebra, you would divide both sides of the equation by A, and X would equal B/A.
However, since matrix algebra is not commutative (A*X ≠ X*A), different processes apply. In formal
matrix algebra, the solution involves matrix inversion. MATLAB, however, simplifies the process by
providing two matrix division symbols, left and right (\ and /). In general,

X = A\B solves for X in A*X = B and

X = B/A solves for X in X*A = B.

In general, matrix A must be a nonsingular square matrix; that is, it must be invertible and it must
have the same number of rows and columns. (Generally, a matrix is invertible if the matrix times its
inverse equals the identity matrix. To understand the theory and proofs, consult a textbook on linear
algebra such as Elementary Linear Algebra by Hill listed in “Bibliography” on page A-2.) MATLAB
gives a warning message if the matrix is singular or nearly so.

Solving Simultaneous Linear Equations
Matrix division is especially useful in solving simultaneous linear equations. Consider this problem:
Given two portfolios of mortgage-based instruments, each with certain yields depending on the prime
rate, how do you weight the portfolios to achieve certain annual cash flows? The answer involves
solving two linear equations.

A linear equation is any equation of the form

a1x + a2y = b,

where a1, a2, and b are constants (with a1 and a2 not both 0), and x and y are variables. (It is a linear
equation because it describes a line in the xy-plane. For example, the equation 2x + y = 8 describes a
line such that if x = 2, then y = 4.)

A system of linear equations is a set of linear equations that you usually want to solve at the same
time; that is, simultaneously. A basic principle for exact answers in solving simultaneous linear
equations requires that there be as many equations as there are unknowns. To get exact answers for
x and y, there must be two equations. For example, to solve for x and y in the system of linear
equations

2x + y = 13
x− 3y = − 18,
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there must be two equations, which there are. Matrix algebra represents this system as an equation
involving three matrices: A for the left-side constants, X for the variables, and B for the right-side
constants

A =
2 1
1 −3

,     X =
x
y

,     B =
13
−18

,

where A*X = B.

Solving the system simultaneously means solving for X. Using MATLAB,

A = [2  1
     1 -3];

B = [13
    -18];

X = A \ B

solves for X in A * X = B.

X = [3 7]

So x = 3 and y = 7 in this example. In general, you can use matrix algebra to solve any system of
linear equations such as

a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2

⋮
am1x1 + am2x2 + … + amnxn = bm

by representing them as matrices

A =

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋮
am1 am2 ⋯ amn

,      X =

x1
x2

⋮
xn

,      B =

b1
b2

⋮
bm

and solving for X in A*X = B.

To illustrate, consider this situation. There are two portfolios of mortgage-based instruments, M1 and
M2. They have current annual cash payments of $100 and $70 per unit, respectively, based on today's
prime rate. If the prime rate moves down one percentage point, their payments would be $80 and
$40. An investor holds 10 units of M1 and 20 units of M2. The investor's receipts equal cash
payments times units, or R = C * U, for each prime-rate scenario. As word equations:

 M1 M2
Prime flat: $100 * 10 units + $70 * 20 units = $2400

receipts
Prime down: $80 * 10 units + $40 * 20 units = $1600

receipts

As MATLAB matrices:
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Cash = [100  70
         80  40];

Units = [10
        20];

Receipts = Cash * Units

Receipts =

       2400
       1600

Now the investor asks this question: Given these two portfolios and their characteristics, how many
units of each should they hold to receive $7000 if the prime rate stays flat and $5000 if the prime
drops one percentage point? Find the answer by solving two linear equations.

 M1 M2
Prime flat: $100 * x units + $70 * y units = $7000

receipts
Prime down: $80 * x units + $40 * y units = $5000

receipts

In other words, solve for U (units) in the equation R (receipts) = C (cash) * U (units). Using MATLAB
left division

Cash = [100  70
         80  40];

Receipts = [7000
            5000];

Units = Cash \ Receipts

Units =

         43.7500
         37.5000

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio M2 to achieve the
annual receipts desired.

Operating Element by Element
Finally, element-by-element arithmetic operations are called operations. To indicate a MATLAB array
operation, precede the operator with a period (.). Addition and subtraction, and matrix multiplication
and division by a scalar, are already array operations so no period is necessary. When using array
operations on two matrices, the dimensions of the matrices must be the same. For example, given
vectors of stock dividends and closing prices

Dividends = [1.90  0.40  1.56  4.50];
Prices = [25.625  17.75  26.125  60.50];

Yields = Dividends ./ Prices
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Yields =

    0.0741    0.0225    0.0597    0.0744

See Also

More About
• “Analyze Sets of Numbers Using Matrix Functions” on page 1-4
• “Using Input and Output Arguments with Functions” on page 1-15
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Using Input and Output Arguments with Functions
In this section...
“Input Arguments” on page 1-15
“Output Arguments” on page 1-16

Input Arguments
Vector and Matrix Input

By design, MATLABsoftware can efficiently perform repeated operations on collections of data stored
in vectors and matrices. MATLAB code that is written to operate simultaneously on different arrays is
said to be vectorized. Vectorized code is not only clean and concise, but is also efficiently processed
by MATLAB.

Because MATLAB is optimized for processing vectorized code, many Financial Toolbox functions
accept either vector or matrix input arguments, rather than single (scalar) values.

One example of such a function is the irr function, which computes the internal rate of return of a
cash flow stream. If you input a vector of cash flows from a single cash flow stream, then irr returns
a scalar rate of return. If you input a matrix of cash flows from multiple cash flow streams, where
each matrix column represents a different stream, then irr returns a vector of internal rates of
return, where the columns correspond to the columns of the input matrix. Many other Financial
Toolbox functions work similarly.

As an example, suppose that you make an initial investment of $100, from which you then receive by
a series of annual cash receipts of $10, $20, $30, $40, and $50. This cash flow stream is stored in a
vector

CashFlows = [-100 10 20 30 40 50]'

CashFlows =
  -100
    10
    20
    30
    40
    50

Use the irr function to compute the internal rate of return of the cash flow stream.

Rate = irr(CashFlows)

Rate =

    0.1201

For the single cash flow stream CashFlows, the function returns a scalar rate of return of 0.1201, or
12.01%.

Now, use the irr function to compute internal rates of return for multiple cash flow streams.

Rate = irr([CashFlows CashFlows CashFlows])
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Rate =

    0.1201    0.1201    0.1201

MATLAB performs the same computation on all the assets at once. For the three cash flow streams,
the irr function returns a vector of three internal rates of return.

In the Financial Toolbox context, vectorized programming is useful in portfolio management. You can
organize multiple assets into a single collection by placing data for each asset in a different matrix
column or row, then pass the matrix to a Financial Toolbox function.

Character Vector Input

Enter MATLAB character vectors surrounded by single quotes ('character vector').

A character vector is stored as a character array, one ASCII character per element. Thus, the date
character vector is

DateCharacterVector = '9/16/2017'

This date character vector is actually a 1-by-9 vector. If you create a vector or matrix of character
vectors, each character vector must have the same length. Using a column vector to create a vector
of character vectors can allow you to visually check that all character vectors are the same length. If
your character vectors are not the same length, use spaces or zeros to make them the same length, as
in the following code.

DateFields = ['01/12/2017'
              '02/14/2017'
              '03/03/2017'
              '06/14/2017'
              '12/01/2017'];

DateFields is a 5-by-10 array of character vectors.

You cannot mix numbers and character vectors in a vector or matrix. If you input a vector or matrix
that contains a mix of numbers and character vectors, MATLAB treats every entry as a character. As
an example, input the following code

Item = [83  90  99 '14-Sep-1999']

Item =

SZc14-Sep-1999

The software understands the input not as a 1-by-4 vector, but as a 1-by-14 character array with the
value SZc14-Sep-1999.

Output Arguments
Some functions return no arguments, some return just one, and some return multiple arguments.
Functions that return multiple arguments use the syntax

[A, B, C] = function(input_arguments...)

to return arguments A, B, and C. If you omit all but one, the function returns the first argument. Thus,
for this example if you use the syntax
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X = function(input_arguments...)

the function returns a value for A, but not for B or C.

Some functions that return vectors accept only scalars as arguments. Such functions cannot accept
vectors as arguments and return matrices, where each column in the output matrix corresponds to an
entry in the input. Output vectors can be variable length.

For example, most functions that require asset life as an input, and return values corresponding to
different periods over the asset life, cannot handle vectors or matrices as input arguments. These
functions include amortize, depfixdb, depgendb, and depsoyd. For example, consider a car for
which you want to compute the depreciation schedule. Use the depfixdb function to compute a
stream of declining-balance depreciation values for the asset. Set the initial value of the asset and the
lifetime of the asset. Note that in the returned vector, the asset lifetime determines the number of
rows. Now consider a collection of cars with different lifetimes. Because depfixdb cannot output a
matrix with an unequal number of rows in each column, depfixdb cannot accept a single input
vector with values for each asset in the collection.

See Also

Related Examples
• “Matrices and Arrays”

More About
• “Analyze Sets of Numbers Using Matrix Functions” on page 1-4
• “Matrix Algebra Refresher” on page 1-7
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Performing Common Financial Tasks

• “Handle and Convert Dates” on page 2-2
• “Charting Financial Data” on page 2-11
• “Bollinger Chart” on page 2-12
• “Analyzing and Computing Cash Flows” on page 2-14
• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-18
• “Treasury Bills Defined” on page 2-28
• “Computing Treasury Bill Price and Yield” on page 2-29
• “Term Structure of Interest Rates” on page 2-32
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “About Life Tables” on page 2-40
• “Case Study for Life Tables Analysis” on page 2-42
• “Machine Learning for Statistical Arbitrage: Introduction” on page 2-44
• “Machine Learning for Statistical Arbitrage I: Data Management and Visualization” on page 2-46
• “Machine Learning for Statistical Arbitrage II: Feature Engineering and Model Development”

on page 2-56
• “Machine Learning for Statistical Arbitrage III: Training, Tuning, and Prediction” on page 2-67
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Handle and Convert Dates
In this section...
“Date Formats” on page 2-2
“Date Conversions” on page 2-3
“Current Date and Time” on page 2-7
“Determining Specific Dates” on page 2-8
“Determining Holidays” on page 2-8
“Determining Cash-Flow Dates” on page 2-9

Date Formats
Virtually all financial data derives from a time series, functions in Financial Toolbox have extensive
date-handling capabilities. The toolbox functions support date or date-and-time formats as character
vectors, datetime arrays, or serial date numbers.

• Date character vectors are text that represent date and time, which you can use with multiple
formats. For example, 'dd-mmm-yyyy HH:MM:SS', 'dd-mmm-yyyy', and 'mm/dd/yyyy' are all
supported text formats for a date character vector. Most often, you work with date character
vectors (such as 14-Sep-1999) when dealing with dates.

• Datetime arrays, created using datetime, are the best data type for representing points in time.
datetime values have flexible display formats and up to nanosecond precision, and can account
for time zones, daylight saving time, and leap seconds. When datetime objects are used as inputs
to other Financial Toolbox functions, the format of the input datetime object is preserved. For
example:

originalDate = datetime('now','Format','yyyy-MM-dd HH:mm:ss'); 
  % Find the next business day 
  b = busdate(originalDate)
  

b = 

  datetime

   2021-05-04 15:59:34
• Serial date numbers represent a calendar date as the number of days that have passed since a
fixed base date. In MATLAB software, serial date number 1 is January 1,0000 A.D. Financial
Toolbox works internally with serial date numbers (such as, 730377). MATLAB also uses serial
time to represent fractions of days beginning at midnight. For example, 6 p.m. equals 0.75 serial
days, so 6:00 p.m. on 14-Sep-1999, in MATLAB, is serial date number 730377.75

Note If you specify a two-digit year, MATLAB assumes that the year lies within the 100-year period
centered on the current year. See the function datenum for specific information. MATLAB internal
date handling and calculations generate no ambiguous values. However, whenever possible, use
serial date numbers or date character vectors containing four-digit years.

Many Financial Toolbox functions that require dates as input arguments accept date character
vectors, datetime arrays, or serial date numbers. If you are dealing with a few dates at the MATLAB
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command-line level, date character vectors are more convenient. If you are using Financial Toolbox
functions on large numbers of dates, as in analyzing large portfolios or cash flows, performance
improves if you use datetime arrays or serial date numbers. For more information, see “Represent
Dates and Times in MATLAB”.

Date Conversions
Financial Toolbox provides functions that convert date character vectors to or from serial date
numbers. In addition, you can convert character vectors or serial date numbers to datetime arrays.

Functions that convert between date formats are:

datedisp Displays a numeric matrix with date entries formatted as date character
vectors.

datenum Converts a date character vector to a serial date number.
datestr Converts a serial date number to a date character vector.
datetime Converts from date character vectors or serial date numbers to create a

datetime array.
datevec Converts a serial date number or date character vector to a date vector

whose elements are [Year Month Day Hour Minute Second].
m2xdate Converts MATLAB serial date number to Excel® serial date number.
x2mdate Converts Microsoft® Excel serial date number to MATLAB serial date

number.

For more information, see “Convert Between Datetime Arrays, Numbers, and Text”.

Convert Between Datetime Arrays and Character Vectors

A date can be a character vector composed of fields related to a specific date and time. There are
several ways to represent dates and times in several text formats. For example, all the following are
character vectors represent August 23, 2010 at 04:35:42 PM:

'23-Aug-2010 04:35:06 PM'
'Wednesday, August 23'
'08/23/10 16:35'
'Aug 23 16:35:42.946'

A date character vector includes characters that separate the fields, such as the hyphen, space, and
colon used here:

d = '23-Aug-2010 16:35:42'    

Convert one or more date character vectors to a datetime array using the datetime function. For
the best performance, specify the format of the input character vectors as an input to datetime.

Note The specifiers that datetime uses to describe date and time formats differ from the specifiers
that the datestr, datevec, and datenum functions accept.

t = datetime(d,'InputFormat','dd-MMM-yyyy HH:mm:ss')
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t = 

   23-Aug-2010 16:35:42

Although the date string, d, and the datetime scalar, t, look similar, they are not equal. View the
size and data type of each variable.

whos d t

    Name      Size            Bytes  Class       Attributes

  d         1x20               40  char                  
  t         1x1               121  datetime              

Convert a datetime array to a character vector that uses char or cellstr. For example, convert
the current date and time to a timestamp to append to a file name.

t = datetime('now','Format','yyyy-MM-dd''T''HHmmss')

t = 

  datetime

   2016-12-11T125628

S = char(t);
filename = ['myTest_',S]

filename =

    'myTest_2016-12-11T125628'

Convert Serial Date Numbers to Datetime Arrays

Serial time can represent fractions of days beginning at midnight. For example, 6 p.m. equals 0.75
serial days, so the character vector '31-Oct-2003, 6:00 PM' in MATLAB is date number
731885.75.

Convert one or more serial date numbers to a datetime array using the datetime function. Specify
the type of date number that is being converted:

t = datetime(731885.75,'ConvertFrom','datenum')

t = 

  datetime

   31-Oct-2003 18:00:00

Convert Datetime Arrays to Numeric Values

Some MATLAB functions accept numeric data types but not datetime values as inputs. To apply these
functions to your date and time data, first, convert datetime values to meaningful numeric values, and
then call the function. For example, the log function accepts double inputs but not datetime
inputs. Suppose that you have a datetime array of dates spanning the course of a research study or
experiment.

t = datetime(2014,6,18) + calmonths(1:4)
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t = 

  1×4 datetime array

   18-Jul-2014   18-Aug-2014   18-Sep-2014   18-Oct-2014

Subtract the origin value. For example, the origin value can be the starting day of an experiment.

dt = t - datetime(2014,7,1)

dt = 

  1×4 duration array

    408:00:00   1152:00:00   1896:00:00   2616:00:00

dt is a duration array. Convert dt to a double array of values in units of years, days, hours,
minutes, or seconds by using the years, days, hours, minutes, or seconds function, respectively.

x = hours(dt)

x =

         408        1152        1896        2616

Pass the double array as the input to the log function.

y = log(x)

y =

    6.0113    7.0493    7.5475    7.8694

Input Conversions with datenum

The datenum function is important for using Financial Toolbox software efficiently. datenum takes an
input date character vector in any of several formats, with 'dd-mmm-yyyy', 'mm/dd/yyyy', or
'dd-mmm-yyyy, hh:mm:ss.ss' formats being the most common. The input date character vector
can have up to six fields formed by letters and numbers separated by any other characters, such that:

• The day field is an integer from 1 through 31.
• The month field is either an integer from 1 through 12 or an alphabetical character vector with at

least three characters.
• The year field is a nonnegative integer. If only two numbers are specified, then the year is

assumed to lie within the 100-year period centered on the current year. If the year is omitted, the
current year is the default.

• The hours, minutes, and seconds fields are optional. They are integers separated by colons or
followed by 'am' or 'pm'.

For example, if the current year is 1999, then all these dates are equivalent:

'17-May-1999'
'17-May-99'
'17-may'
'May 17, 1999'
'5/17/99'
'5/17'
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Also, both of these formats represent the same time.

'17-May-1999, 18:30'
'5/17/99/6:30 pm'

The default format for numbers-only input follows the US convention. Therefore, 3/6 is March 6, not
June 3.

With datenum, you can convert dates into serial date format, store them in a matrix variable, and
then later pass the variable to a function. Alternatively, you can use datenum directly in a function
input argument list.

For example, consider the function bndprice that computes the price of a bond given the yield to
maturity. First set up variables for the yield to maturity, coupon rate, and the necessary dates.

Yield       = 0.07;
CouponRate  = 0.08;
Settle      = datenum('17-May-2000');
Maturity    = datenum('01-Oct-2000');

Then call the function with the variables.

bndprice(Yield,CouponRate,Settle,Maturity)

ans =

  100.3503

Alternatively, convert date character vectors to serial date numbers directly in the function input
argument list.

bndprice(0.07,0.08,datenum('17-May-2000'),... 
datenum('01-Oct-2000'))

ans =

  100.3503

bndprice is an example of a function designed to detect the presence of date character vectors and
make the conversion automatically. For functions like bndprice, date character vectors can be
passed directly.

bndprice(0.07,0.08,'17-May-2000','01-Oct-2000')

ans =

  100.3503

The decision to represent dates as either date character vectors or serial date numbers is often a
matter of convenience. For example, when formatting data for visual display or for debugging date-
handling code, you can view dates more easily as date character vectors because serial date numbers
are difficult to interpret. Alternately, serial date numbers are just another type of numeric data, which
you can place in a matrix along with any other numeric data for convenient manipulation.

Remember that if you create a vector of input date character vectors, use a column vector, and be
sure that all character vectors are the same length. To ensure that the character vectors are the same
length, fill the character vectors with spaces or zeros. For more information, see “Character Vector
Input” on page 1-16.
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Output Conversions with datestr

The datestr function converts a serial date number to one of 19 different date character vector
output formats showing date, time, or both. The default output for dates is a day-month-year
character vector, for example, 24-Aug-2000. The datestr function is useful for preparing output
reports.

datestr Format Description
01-Mar-2000 15:45:17 day-month-year hour:minute:second
01-Mar-2000 day-month-year
03/01/00 month/day/year
Mar month, three letters
M month, single letter
3 month number
03/01 month/day
1 day of month
Wed day of week, three letters
W day of week, single letter
2000 year, four numbers
99 year, two numbers
Mar01 month year
15:45:17 hour:minute:second
03:45:17 PM hour:minute:second AM or PM
15:45 hour:minute
03:45 PM hour:minute AM or PM
Q1-99 calendar quarter-year
Q1 calendar quarter

Current Date and Time
The today and now functions return serial date numbers for the current date, and the current date
and time, respectively.

today

ans =

      736675

now

ans =

   7.3668e+05

The MATLAB function date returns a character vector for the current date.

date
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ans =

    '11-Dec-2016'

Determining Specific Dates
Financial Toolbox provides many functions for determining specific dates. For example, assume that
you schedule an accounting procedure for the last Friday of every month. Use the lweekdate
function to return those dates for the year 2000. The input argument 6 specifies Friday.

Fridates = lweekdate(6,2000,1:12);
Fridays = datestr(Fridates)

Fridays =

  12×11 char array

    '28-Jan-2000'
    '25-Feb-2000'
    '31-Mar-2000'
    '28-Apr-2000'
    '26-May-2000'
    '30-Jun-2000'
    '28-Jul-2000'
    '25-Aug-2000'
    '29-Sep-2000'
    '27-Oct-2000'
    '24-Nov-2000'
    '29-Dec-2000'

Another example of needing specific dates could be that your company closes on Martin Luther King
Jr. Day, which is the third Monday in January. You can use thenweekdate function to determine those
specific dates for 2011 through 2014.

MLKDates = nweekdate(3,2,2011:2014,1);
MLKDays = datestr(MLKDates)

MLKDays =

  4×11 char array

    '17-Jan-2011'
    '16-Jan-2012'
    '21-Jan-2013'
    '20-Jan-2014'

Determining Holidays
Accounting for holidays and other nontrading days is important when you examine financial dates.
Financial Toolbox provides the holidays function, which contains holidays and special nontrading
days for the New York Stock Exchange from 1950 through 2030, inclusive. In addition, you can use
nyseclosures to evaluate all known or anticipated closures of the New York Stock Exchange from
January 1, 1885, to December 31, 2050. nyseclosures returns a vector of serial date numbers
corresponding to market closures between the dates StartDate and EndDate, inclusive.

In this example, use holidays to determine the standard holidays in the last half of 2012.
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LHHDates = holidays('1-Jul-2012','31-Dec-2012');
LHHDays = datestr(LHHDates)

LHHDays =

  6×11 char array

    '04-Jul-2012'
    '03-Sep-2012'
    '29-Oct-2012'
    '30-Oct-2012'
    '22-Nov-2012'
    '25-Dec-2012'

You can then use the busdate function to determine the next business day in 2012 after these
holidays.

LHNextDates = busdate(LHHDates);
LHNextDays = datestr(LHNextDates)

LHNextDays =

  6×11 char array

    '05-Jul-2012'
    '04-Sep-2012'
    '31-Oct-2012'
    '31-Oct-2012'
    '23-Nov-2012'
    '26-Dec-2012'

Determining Cash-Flow Dates
To determine cash-flow dates for securities with periodic payments, use cfdates. This function
accounts for the coupons per year, the day-count basis, and the end-of-month rule. For example, you
can determine the cash-flow dates for a security that pays four coupons per year on the last day of
the month using an actual/365 day-count basis. To do so, enter the settlement date, the maturity
date, and the parameters for Period, Basis, and EndMonthRule.

PayDates = cfdates('14-Mar-2000','30-Nov-2001',4,3,1);
PayDays = datestr(PayDates)

PayDays =

  7×11 char array

    '31-May-2000'
    '31-Aug-2000'
    '30-Nov-2000'
    '28-Feb-2001'
    '31-May-2001'
    '31-Aug-2001'
    '30-Nov-2001'
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See Also
datedisp | datenum | datestr | m2xdate | x2mdate | datetime | datevec | format | date |
lweekdate | nweekdate | holidays | nyseclosures | busdate | cfdates |
addBusinessCalendar

Related Examples
• “Convert Between Datetime Arrays, Numbers, and Text”
• “Read Collection or Sequence of Spreadsheet Files”
• “Trading Calendars User Interface” on page 16-2
• “UICalendar User Interface” on page 16-4

More About
• “Convert Dates Between Microsoft Excel and MATLAB” (Spreadsheet Link)

External Websites
• Automated Data Cleaning and Preparation in MATLAB (43 min)
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Charting Financial Data

Introduction
The following toolbox financial charting functions plot financial data and produce presentation-quality
figures quickly and easily.

bolling Bollinger band chart
candle Candlestick chart
candle Time series candle plot
pointfig Point and figure chart
highlow High, low, open, close chart
highlow Time series High-Low plot
movavg Leading and lagging moving averages chart

These functions work with standard MATLAB functions that draw axes, control appearance, and add
labels and titles. The toolbox also provides a comprehensive set of charting functions that work with
timetable objects, see “Chart Technical Indicators”.

Here is a Bollinger band on page 2-12 chart. This example loads data from an external file
(ibm.dat) and then calls the function using subsets of the data. The MATLAB variable ibm, which is
created by loading ibm.dat, is a six-column matrix where each row is a trading day's data and where
columns 2, 3, and 4 contain the high, low, and closing prices, respectively. The data in ibm.dat is
fictional and for illustrative use only.

See Also
datedisp | datenum | datestr | m2xdate | x2mdate | datevec | date | lweekdate | nweekdate |
holidays | nyseclosures | busdate | cfdates | cur2frac | cur2str | frac2cur | bolling |
bollinger | candle | candle | pointfig | highlow | highlow | movavg | dateaxis | load |
size | addBusinessCalendar | periodicreturns | rollingreturns

Related Examples
• “Bollinger Chart” on page 2-12
• “Handle and Convert Dates” on page 2-2
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Bollinger Chart
The bolling function in Financial Toolbox™ software produces a Bollinger band chart using all the
closing prices in an IBM® stock price matrix. A Bollinger band chart plots actual data along with
three other bands of data. The upper band is two standard deviations above a moving average; the
lower band is two standard deviations below that moving average; and the middle band is the moving
average itself. This example uses a 15-day moving average. First, load the data using the ibm.dat data
file and then execute the bolling function to plot the Bollinger bands.

load ibm.dat;
[ro, co] = size(ibm);
bolling(ibm(:,4), 15, 0);     

Warning: BOLLING will be removed in a future release. Use BOLLINGER instead.

axis([0 ro min(ibm(:,4)) max(ibm(:,4))]);
ylabel('Price ($)');
title(['International Business Machines']);
dateaxis('x', 6,'31-Dec-1994')

Specify the axes, labels, and titles. Use dateaxis to add the x-axis dates.

For help using MATLAB® plotting functions, see “Create 2-D Line Plot” in the MATLAB
documentation. See the MATLAB documentation for details on the axis, title, xlabel, and 
ylabel functions.
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See Also
datedisp | datenum | datestr | m2xdate | x2mdate | datevec | date | lweekdate | nweekdate |
holidays | nyseclosures | busdate | cfdates | cur2frac | cur2str | frac2cur | bolling |
bollinger | candle | candle | pointfig | highlow | highlow | movavg | dateaxis | load |
size

Related Examples
• “Handle and Convert Dates” on page 2-2
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Analyzing and Computing Cash Flows
In this section...
“Introduction” on page 2-14
“Interest Rates/Rates of Return” on page 2-14
“Present or Future Values” on page 2-15
“Depreciation” on page 2-15
“Annuities” on page 2-16

Introduction
Financial Toolbox cash-flow functions compute interest rates and rates of return, present or future
values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment of $20,000 followed by
three annual return payments, a second investment of $5,000, then four more returns. Investments
are negative cash flows, return payments are positive cash flows.

Stream = [-20000,  2000,  2500,  3500, -5000,  6500,...
            9500,  9500,  9500];

Interest Rates/Rates of Return
Several functions calculate interest rates involved with cash flows. To compute the internal rate of
return of the cash stream, execute the toolbox function irr

ROR = irr(Stream)

ROR =

    0.1172

The rate of return is 11.72%.

The internal rate of return of a cash flow may not have a unique value. Every time the sign changes in
a cash flow, the equation defining irr can give up to two additional answers. An irr computation
requires solving a polynomial equation, and the number of real roots of such an equation can depend
on the number of sign changes in the coefficients. The equation for internal rate of return is

cf1
1 + r +

cf2

1 + r 2 + … +
cfn

1 + r n + Investment = 0,

where Investment is a (negative) initial cash outlay at time 0, cfn is the cash flow in the nth period,
and n is the number of periods. irr finds the rate r such that the present value of the cash flow
equals the initial investment. If all the cfns are positive there is only one solution. Every time there is
a change of sign between coefficients, up to two additional real roots are possible.

Another toolbox rate function, effrr, calculates the effective rate of return given an annual interest
rate (also known as nominal rate or annual percentage rate, APR) and number of compounding
periods per year. To find the effective rate of a 9% APR compounded monthly, enter

2 Performing Common Financial Tasks

2-14



Rate = effrr(0.09, 12)

Rate =

    0.0938

The Rate is 9.38%.

A companion function nomrr computes the nominal rate of return given the effective annual rate and
the number of compounding periods.

Present or Future Values
The toolbox includes functions to compute the present or future value of cash flows at regular or
irregular time intervals with equal or unequal payments: fvfix, fvvar, pvfix, and pvvar. The -
fix functions assume equal cash flows at regular intervals, while the -var functions allow irregular
cash flows at irregular periods.

Now compute the net present value of the sample income stream for which you computed the internal
rate of return. This exercise also serves as a check on that calculation because the net present value
of a cash stream at its internal rate of return should be zero. Enter

NPV = pvvar(Stream, ROR)

NPV =

   5.9117e-12

The NPV is very close to zero. The answer usually is not exactly zero due to rounding errors and the
computational precision of the computer.

Note Other toolbox functions behave similarly. The functions that compute a bond's yield, for
example, often must solve a nonlinear equation. If you then use that yield to compute the net present
value of the bond's income stream, it usually does not exactly equal the purchase price, but the
difference is negligible for practical applications.

Depreciation
The toolbox includes functions to compute standard depreciation schedules: straight line, general
declining-balance, fixed declining-balance, and sum of years' digits. Functions also compute a
complete amortization schedule for an asset, and return the remaining depreciable value after a
depreciation schedule has been applied.

This example depreciates an automobile worth $15,000 over five years with a salvage value of
$1,500. It computes the general declining balance using two different depreciation rates: 50% (or
1.5), and 100% (or 2.0, also known as double declining balance). Enter

Decline1 = depgendb(15000, 1500, 5, 1.5)
Decline2 = depgendb(15000, 1500, 5, 2.0)

which returns
Decline1 =
       4500.00       3150.00       2205.00       1543.50       2101.50
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Decline2 =
       6000.00       3600.00       2160.00       1296.00        444.00

These functions return the actual depreciation amount for the first four years and the remaining
depreciable value as the entry for the fifth year.

Annuities
Several toolbox functions deal with annuities. This first example shows how to compute the interest
rate associated with a series of loan payments when only the payment amounts and principal are
known. For a loan whose original value was $5000.00 and which was paid back monthly over four
years at $130.00/month:

Rate = annurate(4*12, 130, 5000, 0, 0)

Rate =

    0.0094

The function returns a rate of 0.0094 monthly, or about 11.28% annually.

The next example uses a present-value function to show how to compute the initial principal when the
payment and rate are known. For a loan paid at $300.00/month over four years at 11% annual
interest

Principal = pvfix(0.11/12, 4*12, 300, 0, 0)

Principal =

   1.1607e+04

The function returns the original principal value of $11,607.43.

The final example computes an amortization schedule for a loan or annuity. The original value was
$5000.00 and was paid back over 12 months at an annual rate of 9%.

[Prpmt, Intpmt, Balance, Payment] = ...
        amortize(0.09/12, 12, 5000, 0, 0);

This function returns vectors containing the amount of principal paid,

Prpmt = [399.76 402.76  405.78  408.82  411.89  414.97  
         418.09 421.22  424.38  427.56  430.77  434.00]

the amount of interest paid,

Intpmt = [37.50 34.50  31.48  28.44  25.37  22.28  
          19.17 16.03  12.88   9.69   6.49   3.26]

the remaining balance for each period of the loan,

Balance = [4600.24  4197.49  3791.71  3382.89  2971.01 
           2556.03  2137.94  1716.72  1292.34   864.77 
            434.00    0.00]

and a scalar for the monthly payment.

Payment = 437.26
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See Also
irr | effrr | nomrr | fvfix | fvvar | pvfix | pvvar

Related Examples
• “Handle and Convert Dates” on page 2-2
• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-18
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Pricing and Computing Yields for Fixed-Income Securities
In this section...
“Introduction” on page 2-18
“Fixed-Income Terminology” on page 2-18
“Framework” on page 2-21
“Default Parameter Values” on page 2-21
“Coupon Date Calculations” on page 2-23
“Yield Conventions” on page 2-24
“Pricing Functions” on page 2-24
“Yield Functions” on page 2-25
“Fixed-Income Sensitivities” on page 2-25

Introduction
The Financial Toolbox product provides functions for computing accrued interest, price, yield,
convexity, and duration of fixed-income securities. Various conventions exist for determining the
details of these computations. The Financial Toolbox software supports conventions specified by the
Securities Industry and Financial Markets Association (SIFMA), used in the US markets, the
International Capital Market Association (ICMA), used mainly in the European markets, and the
International Swaps and Derivatives Association (ISDA). For historical reasons, SIFMA is referred to
in Financial Toolbox documentation as SIA and ISMA is referred to as International Capital Market
Association (ICMA). Financial Instruments Toolbox™supports additional functionality for pricing
fixed-income securities. For more information, see “Price Interest-Rate Instruments” (Financial
Instruments Toolbox).

Fixed-Income Terminology
Since terminology varies among texts on this subject, here are some basic definitions that apply to
these Financial Toolbox functions.

The settlement date of a bond is the date when money first changes hands; that is, when a buyer pays
for a bond. It need not coincide with the issue date, which is the date a bond is first offered for sale.

The first coupon date and last coupon date are the dates when the first and last coupons are paid,
respectively. Although bonds typically pay periodic annual or semiannual coupons, the length of the
first and last coupon periods may differ from the standard coupon period. The toolbox includes price
and yield functions that handle these odd first and/or last periods.

Successive quasi-coupon dates determine the length of the standard coupon period for the fixed
income security of interest, and do not necessarily coincide with actual coupon payment dates. The
toolbox includes functions that calculate both actual and quasi-coupon dates for bonds with odd first
and/or last periods.

Fixed-income securities can be purchased on dates that do not coincide with coupon payment dates.
In this case, the bond owner is not entitled to the full value of the coupon for that period. When a
bond is purchased between coupon dates, the buyer must compensate the seller for the pro-rata
share of the coupon interest earned from the previous coupon payment date. This pro-rata share of
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the coupon payment is called accrued interest. The purchase price, the price paid for a bond, is the
quoted market price plus accrued interest.

The maturity date of a bond is the date when the issuer returns the final face value, also known as the
redemption value or par value, to the buyer. The yield-to-maturity of a bond is the nominal compound
rate of return that equates the present value of all future cash flows (coupons and principal) to the
current market price of the bond.

Period

The period of a bond refers to the frequency with which the issuer of a bond makes coupon payments
to the holder.

Period of a Bond 

Period Value Payment Schedule
0 No coupons (Zero coupon bond)
1 Annual
2 Semiannual
3 Tri-annual
4 Quarterly
6 Bi-monthly
12 Monthly

Basis

The basis of a bond refers to the basis or day-count convention for a bond. Day count basis
determines how interest accrues over time for various instruments and the amount transferred on
interest payment dates. Basis is normally expressed as a fraction in which the numerator determines
the number of days between two dates, and the denominator determines the number of days in the
year.

For example, the numerator of actual/actual means that when determining the number of days
between two dates, count the actual number of days; the denominator means that you use the actual
number of days in the given year in any calculations (either 365 or 366 days depending on whether
the given year is a leap year). The calculation of accrued interest for dates between payments also
uses day count basis. Day count basis is a fraction of Number of interest accrual days / Days
in the relevant coupon period.

Supported day count conventions and basis values are:

Basis
Value

Day Count Convention

0 actual/actual (default) — Number of days in both a period and a year is the actual
number of days. Also, another common actual/actual basis is basis 12.
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Basis
Value

Day Count Convention

1 30/360 SIA — Year fraction is calculated based on a 360 day year with 30-day months,
after applying the following rules: If the first date and the second date are the last day
of February, the second date is changed to the 30th. If the first date falls on the 31st or
is the last day of February, it is changed to the 30th. If after the preceding test, the first
day is the 30th and the second day is the 31st, then the second day is changed to the
30th.

2 actual/360 — Number of days in a period is equal to the actual number of days, however
the number of days in a year is 360.

3 actual/365 — Number of days in a period is equal to the actual number of days, however
the number of days in a year is 365 (even in a leap year).

4 30/360 PSA — Number of days in every month is set to 30 (including February). If the
start date of the period is either the 31st of a month or the last day of February, the start
date is set to the 30th, while if the start date is the 30th of a month and the end date is
the 31st, the end date is set to the 30th. The number of days in a year is 360.

5 30/360 ISDA — Number of days in every month is set to 30, except for February where it
is the actual number of days. If the start date of the period is the 31st of a month, the
start date is set to the 30th while if the start date is the 30th of a month and the end
date is the 31st, the end date is set to the 30th. The number of days in a year is 360.

6 30E /360 — Number of days in every month is set to 30 except for February where it is
equal to the actual number of days. If the start date or the end date of the period is the
31st of a month, that date is set to the 30th. The number of days in a year is 360.

7 actual/365 Japanese — Number of days in a period is equal to the actual number of days,
except for leap days (29th February) which are ignored. The number of days in a year is
365 (even in a leap year).

8 actual/actual ICMA — Number of days in both a period and a year is the actual number
of days and the compounding frequency is annual.

9 actual/360 ICMA — Number of days in a period is equal to the actual number of days,
however the number of days in a year is 360 and the compounding frequency is annual.

10 actual/365 ICMA — Number of days in a period is equal to the actual number of days,
however the number of days in a year is 365 (even in a leap year) and the compounding
frequency is annual.

11 30/360 ICMA — Number of days in every month is set to 30, except for February where
it is equal to the actual number of days. If the start date or the end date of the period is
the 31st of a month, that date is set to the 30th. The number of days in a year is 360 and
the compounding frequency is annual.

12 actual/365 ISDA — The day count fraction is calculated using the following formula:
(Actual number of days in period that fall in a leap year / 366) +
(Actual number of days in period that fall in a normal year / 365).
Basis 12 is also referred to as actual/actual ISDA.

13 bus/252 — The number of days in a period is equal to the actual number of business
days. The number of business days in a year is 252.

Note Although the concept of day count sounds deceptively simple, the actual calculation of day
counts can be complex. You can find a good discussion of day counts and the formulas for calculating
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them in Chapter 5 of Stigum and Robinson, Money Market and Bond Calculations in “Bibliography”
on page A-2.

End-of-Month Rule

The end-of-month rule affects a bond's coupon payment structure. When the rule is in effect, a
security that pays a coupon on the last actual day of a month will always pay coupons on the last day
of the month. This means, for example, that a semiannual bond that pays a coupon on February 28 in
nonleap years will pay coupons on August 31 in all years and on February 29 in leap years.

End-of-Month Rule

End-of-Month Rule Value Meaning
1 (default) Rule in effect.
0 Rule not in effect.

Framework
Although not all Financial Toolbox functions require the same input arguments, they all accept the
following common set of input arguments.

Common Input Arguments

Input Meaning
Settle Settlement date
Maturity Maturity date
Period Coupon payment period
Basis Day-count basis
EndMonthRule End-of-month payment rule
IssueDate Bond issue date
FirstCouponDate First coupon payment date
LastCouponDate Last coupon payment date

Of the common input arguments, only Settle and Maturity are required. All others are optional.
They are set to the default values if you do not explicitly set them. By default, the FirstCouponDate
and LastCouponDate are nonapplicable. In other words, if you do not specify FirstCouponDate
and LastCouponDate, the bond is assumed to have no odd first or last coupon periods. In this case,
the bond is a standard bond with a coupon payment structure based solely on the maturity date.

Default Parameter Values
To illustrate the use of default values in Financial Toolbox functions, consider the cfdates function,
which computes actual cash flow payment dates for a portfolio of fixed income securities regardless
of whether the first and/or last coupon periods are normal, long, or short.

The complete calling syntax with the full input argument list is

CFlowDates = cfdates(Settle, Maturity, Period, Basis, ... 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
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while the minimal calling syntax requires only settlement and maturity dates

CFlowDates = cfdates(Settle, Maturity)

Single Bond Example

As an example, suppose that you have a bond with these characteristics:

Settle          = '20-Sep-1999'
Maturity        = '15-Oct-2007'
Period          = 2
Basis           = 0
EndMonthRule    = 1
IssueDate       = NaN
FirstCouponDate = NaN
LastCouponDate  = NaN

Period, Basis, and EndMonthRule are set to their default values, and IssueDate,
FirstCouponDate, and LastCouponDate are set to NaN.

Formally, a NaN is an IEEE® arithmetic standard for Not-a-Number and is used to indicate the result
of an undefined operation (for example, zero divided by zero). However, NaN is also a convenient
placeholder. In the SIA functions of Financial Toolbox software, NaN indicates the presence of a
nonapplicable value. It tells the Financial Toolbox functions to ignore the input value and apply the
default. Setting IssueDate, FirstCouponDate, and LastCouponDate to NaN in this example tells
cfdates to assume that the bond has been issued before settlement and that no odd first or last
coupon periods exist.

Having set these values, all these calls to cfdates produce the same result.

cfdates(Settle, Maturity)
cfdates(Settle, Maturity, Period)
cfdates(Settle, Maturity, Period, [])
cfdates(Settle, Maturity, [], Basis)
cfdates(Settle, Maturity, [], [])
cfdates(Settle, Maturity, Period, [], EndMonthRule)
cfdates(Settle, Maturity, Period, [], NaN)
cfdates(Settle, Maturity, Period, [], [], IssueDate)
cfdates(Settle, Maturity, Period, [], [], IssueDate, [], [])
cfdates(Settle, Maturity, Period, [], [], [], [],LastCouponDate)
cfdates(Settle, Maturity, Period, Basis, EndMonthRule, ... 
IssueDate, FirstCouponDate, LastCouponDate)

Thus, leaving a particular input unspecified has the same effect as passing an empty matrix ([]) or
passing a NaN – all three tell cfdates (and other Financial Toolbox functions) to use the default value
for a particular input parameter.

Bond Portfolio Example

Since the previous example included only a single bond, there was no difference between passing an
empty matrix or passing a NaN for an optional input argument. For a portfolio of bonds, however,
using NaN as a placeholder is the only way to specify default acceptance for some bonds while
explicitly setting nondefault values for the remaining bonds in the portfolio.

Now suppose that you have a portfolio of two bonds.
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Settle   = '20-Sep-1999'
Maturity = ['15-Oct-2007'; '15-Oct-2010']

These calls to cfdates all set the coupon period to its default value (Period = 2) for both bonds.

cfdates(Settle, Maturity, 2)
cfdates(Settle, Maturity, [2 2])
cfdates(Settle, Maturity, [])
cfdates(Settle, Maturity, NaN)
cfdates(Settle, Maturity, [NaN NaN])
cfdates(Settle, Maturity)

The first two calls explicitly set Period = 2. Since Maturity is a 2-by-1 vector of maturity dates,
cfdates knows that you have a two-bond portfolio.

The first call specifies a single (that is, scalar) 2 for Period. Passing a scalar tells cfdates to apply
the scalar-valued input to all bonds in the portfolio. This is an example of implicit scalar-expansion.
The settlement date has been implicit scalar-expanded as well.

The second call also applies the default coupon period by explicitly passing a two-element vector of
2's. The third call passes an empty matrix, which cfdates interprets as an invalid period, for which
the default value is used. The fourth call is similar, except that a NaN has been passed. The fifth call
passes two NaN's, and has the same effect as the third. The last call passes the minimal input set.

Finally, consider the following calls to cfdates for the same two-bond portfolio.

cfdates(Settle, Maturity, [4 NaN])
cfdates(Settle, Maturity, [4 2])

The first call explicitly sets Period = 4 for the first bond and implicitly sets the default Period = 2
for the second bond. The second call has the same effect as the first but explicitly sets the periodicity
for both bonds.

The optional input Period has been used for illustrative purpose only. The default-handling process
illustrated in the examples applies to any of the optional input arguments.

Coupon Date Calculations
Calculating coupon dates, either actual or quasi dates, is notoriously complicated. Financial Toolbox
software follows the SIA conventions in coupon date calculations.

The first step in finding the coupon dates associated with a bond is to determine the reference, or
synchronization date (the sync date). Within the SIA framework, the order of precedence for
determining the sync date is:

1 The first coupon date
2 The last coupon date
3 The maturity date

In other words, a Financial Toolbox function first examines the FirstCouponDate input. If
FirstCouponDate is specified, coupon payment dates and quasi-coupon dates are computed with
respect to FirstCouponDate; if FirstCouponDate is unspecified, empty ([]), or NaN, then the
LastCouponDate is examined. If LastCouponDate is specified, coupon payment dates and quasi-
coupon dates are computed with respect to LastCouponDate. If both FirstCouponDate and
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LastCouponDate are unspecified, empty ([]), or NaN, the Maturity (a required input argument)
serves as the synchronization date.

Yield Conventions
There are two yield and time factor conventions that are used in the Financial Toolbox software –
these are determined by the input basis. Specifically, bases 0 to 7 are assumed to have semiannual
compounding, while bases 8 to 12 are assumed to have annual compounding regardless of the period
of the bond's coupon payments (including zero-coupon bonds). In addition, any yield-related
sensitivity (that is, duration and convexity), when quoted on a periodic basis, follows this same
convention. (See bndconvp, bndconvy, bnddurp, bnddury, and bndkrdur.)

Pricing Functions
This example shows how easily you can compute the price of a bond with an odd first period using the
function bndprice. Assume that you have a bond with these characteristics:

Settle          = '11-Nov-1992';
Maturity        = '01-Mar-2005';
IssueDate       = '15-Oct-1992';
FirstCouponDate = '01-Mar-1993';
CouponRate      = 0.0785;
Yield           = 0.0625;

Allow coupon payment period (Period = 2), day-count basis (Basis = 0), and end-of-month rule
(EndMonthRule = 1) to assume the default values. Also, assume that there is no odd last coupon
date and that the face value of the bond is $100. Calling the function

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, ... 
Maturity, [], [], [], IssueDate, FirstCouponDate)

Price =

  113.5977

AccruedInt =

    0.5855

bndprice returns a price of $113.60 and accrued interest of $0.59.

Similar functions compute prices with regular payments, odd first and last periods, and prices of
Treasury bills and discounted securities such as zero-coupon bonds.

Note bndprice and other functions use nonlinear formulas to compute the price of a security. For
this reason, Financial Toolbox software uses Newton's method when solving for an independent
variable within a formula. See any elementary numerical methods textbook for the mathematics
underlying Newton's method.
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Yield Functions
To illustrate toolbox yield functions, compute the yield of a bond that has odd first and last periods
and settlement in the first period. First set up variables for settlement, maturity date, issue, first
coupon, and a last coupon date.

Settle          = '12-Jan-2000';
Maturity        = '01-Oct-2001';
IssueDate       = '01-Jan-2000';
FirstCouponDate = '15-Jan-2000';
LastCouponDate  = '15-Apr-2000';

Assume a face value of $100. Specify a purchase price of $95.70, a coupon rate of 4%, quarterly
coupon payments, and a 30/360 day-count convention (Basis = 1).

Price        = 95.7;
CouponRate   = 0.04;
Period       = 4;
Basis        = 1;
EndMonthRule = 1;

Calling the bndyield function
Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,... 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Yield =

    0.0659

The function returns a Yield = 0.0659 (6.60%).

Fixed-Income Sensitivities
Financial Toolbox software supports the following options for managing interest-rate risk for one or
more bonds:

• bnddurp and bnddury support duration and convexity analysis based on market quotes and
assume parallel shifts in the bond yield curve.

• bndkrdur supports key rate duration based on a market yield curve and can model nonparallel
shifts in the bond yield curve.

Calculating Duration and Convexity for Bonds

The toolbox includes functions to perform sensitivity analysis such as convexity and the Macaulay and
modified durations for fixed-income securities. The Macaulay duration of an income stream, such as a
coupon bond, measures how long, on average, the owner waits before receiving a payment. It is the
weighted average of the times payments are made, with the weights at time T equal to the present
value of the money received at time T. The modified duration is the Macaulay duration discounted by
the per-period interest rate; that is, divided by (1+rate/frequency). The Macaulay duration is a
measure of price sensitivity to yield changes. This duration is measured in years and is a weighted
average-time-to-maturity of an instrument.

To illustrate, the following example computes the annualized Macaulay and modified durations, and
the periodic Macaulay duration for a bond with settlement (12-Jan-2000) and maturity (01-Oct-2001)
dates as above, a 5% coupon rate, and a 4.5% yield to maturity. For simplicity, any optional input
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arguments assume default values (that is, semiannual coupons, and day-count basis = 0 (actual/
actual), coupon payment structure synchronized to the maturity date, and end-of-month payment rule
in effect).

CouponRate = 0.05;
Yield = 0.045;
Settle  = '12-Jan-2000';
Maturity = '01-Oct-2001';

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,... 
CouponRate, Settle, Maturity)

ModDuration =

    1.6107

YearDuration =

    1.6470

PerDuration =

    3.2940

The durations are

ModDuration  = 1.6107 (years)
YearDuration = 1.6470 (years)
PerDuration  = 3.2940 (semiannual periods)

Note that the semiannual periodic Macaulay duration (PerDuration) is twice the annualized
Macaulay duration (YearDuration).

Calculating Key Rate Durations for Bonds

Key rate duration enables you to evaluate the sensitivity and price of a bond to nonparallel changes in
the spot or zero curve by decomposing the interest rate risk along the spot or zero curve. Key rate
duration refers to the process of choosing a set of key rates and computing a duration for each rate.
Specifically, for each key rate, while the other rates are held constant, the key rate is shifted up and
down (and intermediate cash flow dates are interpolated), and then the present value of the security
given the shifted curves is computed.

The calculation of bndkrdur supports:

krduri  =  
(PVdown −  PVup)

(PV  ×  Shif tValue  ×  2)

Where PV is the current value of the instrument, PV_up and PV_down are the new values after the
discount curve has been shocked, and ShiftValue is the change in interest rate. For example, if key
rates of 3 months, 1, 2, 3, 5, 7, 10, 15, 20, 25, 30 years were chosen, then a 30-year bond might have
corresponding key rate durations of:

3M 1Y 2Y 3Y 5Y 7Y 10Y 15Y 20Y 25Y 30Y
.01 .04 .09 .21 .4 .65 1.27 1.71 1.68 1.83 7.03
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The key rate durations add up to approximately equal the duration of the bond.

For example, compute the key rate duration of the US Treasury Bond with maturity date of August
15, 2028 and coupon rate of 5.5%.

Settle = datenum('18-Nov-2008'); 
CouponRate = 5.500/100;
Maturity = datenum('15-Aug-2028'); 
Price = 114.83;

For the ZeroData information on the current spot curve for this bond, refer to https://
www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield:
ZeroDates = daysadd(Settle ,[30 90 180 360 360*2 360*3 360*5 ...
360*7 360*10 360*20 360*30]);
ZeroRates = ([0.06 0.12 0.81 1.08 1.22 1.53 2.32 2.92 3.68 4.42 4.20]/100)';

Compute the key rate duration for a specific set of rates (choose this based on the maturities of the
available hedging instruments):
krd = bndkrdur([ZeroDates ZeroRates],CouponRate,Settle,Maturity,'keyrates',[2 5 10 20])

krd =

    0.2865    0.8729    2.6451    8.5778

Note, the sum of the key rate durations approximately equals the duration of the bond:

[sum(krd) bnddurp(Price,CouponRate,Settle,Maturity)]

ans =

   12.3823   12.3919

See Also
bndconvp | bndconvy | bnddurp | bnddury | bndkrdur

Related Examples
• “Handle and Convert Dates” on page 2-2
• “Term Structure of Interest Rates” on page 2-32
• “Computing Treasury Bill Price and Yield” on page 2-29

More About
• “Treasury Bills Defined” on page 2-28
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Treasury Bills Defined
Treasury bills are short-term securities (issued with maturities of one year or less) sold by the United
States Treasury. Sales of these securities are frequent, usually weekly. From time to time, the
Treasury also offers longer duration securities called Treasury notes and Treasury bonds.

A Treasury bill is a discount security. The holder of the Treasury bill does not receive periodic interest
payments. Instead, at the time of sale, a percentage discount is applied to the face value. At maturity,
the holder redeems the bill for full face value.

The basis for Treasury bill interest calculation is actual/360. Under this system, interest accrues on
the actual number of elapsed days between purchase and maturity, and each year contains 360 days.

See Also
tbilldisc2yield | tbillprice | tbillrepo | tbillyield | tbillyield2disc | tbillval01 |
tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples
• “Handle and Convert Dates” on page 2-2
• “Term Structure of Interest Rates” on page 2-32
• “Computing Treasury Bill Price and Yield” on page 2-29
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Computing Treasury Bill Price and Yield
In this section...
“Introduction” on page 2-29
“Treasury Bill Repurchase Agreements” on page 2-29
“Treasury Bill Yields” on page 2-30

Introduction
Financial Toolbox software provides the following suite of functions for computing price and yield on
Treasury bills.

Treasury Bill Functions
Function Purpose
tbilldisc2yield Convert discount rate to yield.
tbillprice Price Treasury bill given its yield or discount rate.
tbillrepo Break-even discount of repurchase agreement.
tbillyield Yield and discount of Treasury bill given its price.
tbillyield2disc Convert yield to discount rate.
tbillval01 The value of 1 basis point (one hundredth of one percentage point,

or 0.0001) given the characteristics of the Treasury bill, as
represented by its settlement and maturity dates. You can relate
the basis point to discount, money-market, or bond-equivalent
yield.

For all functions with yield in the computation, you can specify yield as money-market or bond-
equivalent yield. The functions all assume a face value of $100 for each Treasury bill.

Treasury Bill Repurchase Agreements
The following example shows how to compute the break-even discount rate. This is the rate that
correctly prices the Treasury bill such that the profit from selling the tail equals 0.

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;

BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ... 
PurchaseDate, SaleDate, Maturity)

BreakevenDiscount =

    0.0167

You can check the result of this computation by examining the cash flows in and out from the
repurchase transaction. First compute the price of the Treasury bill on the purchase date (September
26).
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PriceOnPurchaseDate = tbillprice(InitialDiscount, ... 
PurchaseDate, Maturity, 3)

PriceOnPurchaseDate =

   99.5930

Next compute the interest due on the repurchase agreement.

RepoInterest = ... 
RepoRate*PriceOnPurchaseDate*days360(PurchaseDate,SaleDate)/360

RepoInterest =

    0.1237

RepoInterest for a 1.49% 30-day term repurchase agreement (30/360 basis) is 0.1237.

Finally, compute the price of the Treasury bill on the sale date (October 26).

PriceOnSaleDate = tbillprice(BreakevenDiscount, SaleDate, ... 
Maturity, 3)

PriceOnSaleDate =

   99.7167

Examining the cash flows, observe that the break-even discount causes the sum of the price on the
purchase date plus the accrued 30-day interest to be equal to the price on sale date. The next table
shows the cash flows.

Cash Flows from Repurchase Agreement
Date Cash Out Flow Cash In Flow  
9/26/2002 Purchase T-bill 99.593 Repo money 99.593
10/26/2002 Payment of repo 99.593 Sell T-bill 99.7168
 Repo interest 0.1238   
                     Total 199.3098  199.3098

Treasury Bill Yields
Using the same data as before, you can examine the money-market and bond-equivalent yields of the
Treasury bill at the time of purchase and sale. The function tbilldisc2yield can perform both
computations at one time.

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;
BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ... 
PurchaseDate, SaleDate, Maturity)

[BEYield, MMYield] = ...
tbilldisc2yield([InitialDiscount; BreakevenDiscount], ... 
[PurchaseDate; SaleDate], Maturity)
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BreakevenDiscount =

    0.0167

BEYield =

    0.0164
    0.0170

MMYield =

    0.0162
    0.0168

For the short Treasury bill (fewer than 182 days to maturity), the money-market yield is 360/365 of
the bond-equivalent yield, as this example shows.

See Also
tbilldisc2yield | tbillprice | tbillrepo | tbillyield | tbillyield2disc | tbillval01 |
tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples
• “Handle and Convert Dates” on page 2-2
• “Term Structure of Interest Rates” on page 2-32

More About
• “Treasury Bills Defined” on page 2-28
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Term Structure of Interest Rates
In this section...
“Introduction” on page 2-32
“Deriving an Implied Zero Curve” on page 2-33

Introduction
The Financial Toolbox product contains several functions to derive and analyze interest rate curves,
including data conversion and extrapolation, bootstrapping, and interest-rate curve conversion
functions.

One of the first problems in analyzing the term structure of interest rates is dealing with market data
reported in different formats. Treasury bills, for example, are quoted with bid and asked bank-
discount rates. Treasury notes and bonds, on the other hand, are quoted with bid and asked prices
based on $100 face value. To examine the full spectrum of Treasury securities, analysts must convert
data to a single format. Financial Toolbox functions ease this conversion. This brief example uses only
one security each; analysts often use 30, 100, or more of each.

First, capture Treasury bill quotes in their reported format

%        Maturity               Days  Bid     Ask     AskYield
TBill = [datenum('12/26/2000')  53    0.0503  0.0499  0.0510];

then capture Treasury bond quotes in their reported format
%        Coupon   Maturity           Bid       Ask       AskYield
TBond = [0.08875  datenum(2001,11,5) 103+4/32  103+6/32  0.0564];

and note that these quotes are based on a November 3, 2000 settlement date.

Settle = datenum('3-Nov-2000');

Next use the toolbox tbl2bond function to convert the Treasury bill data to Treasury bond format.

TBTBond = tbl2bond(TBill)

TBTBond =

   1.0e+05 *

         0    7.3085    0.0010    0.0010    0.0000

(The second element of TBTBond is the serial date number for December 26, 2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data to set up the overall
term structure.

TBondsAll = [TBTBond; TBond]

TBondsAll =

   1.0e+05 *

         0    7.3085    0.0010    0.0010    0.0000
    0.0000    7.3116    0.0010    0.0010    0.0000
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The Financial Toolbox software provides a second data-preparation function,tr2bonds, to convert
the bond data into a form ready for the bootstrapping functions. tr2bonds generates a matrix of
bond information sorted by maturity date, plus vectors of prices and yields.

[Bonds, Prices, Yields] = tr2bonds(TBondsAll)

Bonds =

   1.0e+05 *

    7.3085         0    0.0010         0         0    0.0000
    7.3116    0.0000    0.0010    0.0000         0    0.0000

Prices =

   99.2654
  103.1875

Yields =

    0.0510
    0.0564

Deriving an Implied Zero Curve
Using this market data, you can use one of the Financial Toolbox bootstrapping functions to derive an
implied zero curve. Bootstrapping is a process whereby you begin with known data points and solve
for unknown data points using an underlying arbitrage theory. Every coupon bond can be valued as a
package of zero-coupon bonds which mimic its cash flow and risk characteristics. By mapping yields-
to-maturity for each theoretical zero-coupon bond, to the dates spanning the investment horizon, you
can create a theoretical zero-rate curve. The Financial Toolbox software provides two bootstrapping
functions: zbtprice derives a zero curve from bond data and prices, and zbtyield derives a zero
curve from bond data and yields. Using zbtprice

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)

ZeroRates =

     0.05
     0.06

CurveDates =

      730846
      731160

CurveDates gives the investment horizon.

datestr(CurveDates)

ans =

26-Dec-2000
05-Nov-2001
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Use additional Financial Toolbox functions zero2disc, zero2fwd, and zero2pyld to construct
discount, forward, and par yield curves from the zero curve, and vice versa.
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle);
[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);
[PYldRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle);

See Also
tbilldisc2yield | tbillprice | tbillrepo | tbillyield | tbillyield2disc | tbillval01 |
tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples
• “Handle and Convert Dates” on page 2-2
• “Computing Treasury Bill Price and Yield” on page 2-29

More About
• “Treasury Bills Defined” on page 2-28
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Pricing and Analyzing Equity Derivatives
In this section...
“Introduction” on page 2-35
“Sensitivity Measures” on page 2-35
“Analysis Models” on page 2-36

Introduction
These toolbox functions compute prices, sensitivities, and profits for portfolios of options or other
equity derivatives. They use the Black-Scholes model for European options and the binomial model
for American options. Such measures are useful for managing portfolios and for executing collars,
hedges, and straddles:

• A collar is an interest-rate option that guarantees that the rate on a floating-rate loan will not
exceed a certain upper level nor fall below a lower level. It is designed to protect an investor
against wide fluctuations in interest rates.

• A hedge is a securities transaction that reduces or offsets the risk on an existing investment
position.

• A straddle is a strategy used in trading options or futures. It involves simultaneously purchasing
put and call options with the same exercise price and expiration date, and it is most profitable
when the price of the underlying security is very volatile.

Sensitivity Measures
There are six basic sensitivity measures associated with option pricing: delta, gamma, lambda, rho,
theta, and vega — the “greeks.” The toolbox provides functions for calculating each sensitivity and for
implied volatility.

Delta

Delta of a derivative security is the rate of change of its price relative to the price of the underlying
asset. It is the first derivative of the curve that relates the price of the derivative to the price of the
underlying security. When delta is large, the price of the derivative is sensitive to small changes in
the price of the underlying security.

Gamma

Gamma of a derivative security is the rate of change of delta relative to the price of the underlying
asset; that is, the second derivative of the option price relative to the security price. When gamma is
small, the change in delta is small. This sensitivity measure is important for deciding how much to
adjust a hedge position.

Lambda

Lambda, also known as the elasticity of an option, represents the percentage change in the price of
an option relative to a 1% change in the price of the underlying security.

Rho

Rho is the rate of change in option price relative to the risk-free interest rate.
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Theta

Theta is the rate of change in the price of a derivative security relative to time. Theta is usually small
or negative since the value of an option tends to drop as it approaches maturity.

Vega

Vega is the rate of change in the price of a derivative security relative to the volatility of the
underlying security. When vega is large the security is sensitive to small changes in volatility. For
example, options traders often must decide whether to buy an option to hedge against vega or
gamma. The hedge selected usually depends upon how frequently one rebalances a hedge position
and also upon the standard deviation of the price of the underlying asset (the volatility). If the
standard deviation is changing rapidly, balancing against vega is preferable.

Implied Volatility

The implied volatility of an option is the standard deviation that makes an option price equal to the
market price. It helps determine a market estimate for the future volatility of a stock and provides the
input volatility (when needed) to the other Black-Scholes functions.

Analysis Models
Toolbox functions for analyzing equity derivatives use the Black-Scholes model for European options
and the binomial model for American options. The Black-Scholes model makes several assumptions
about the underlying securities and their behavior. The Black-Scholes model was the first complete
mathematical model for pricing options, developed by Fischer Black and Myron Scholes. It examines
market price, strike price, volatility, time to expiration, and interest rates. It is limited to only certain
kinds of options.

The binomial model, on the other hand, makes far fewer assumptions about the processes underlying
an option. A binomial model is a method of pricing options or other equity derivatives in which the
probability over time of each possible price follows a binomial distribution. The basic assumption is
that prices can move to only two values (one higher and one lower) over any short time period. For
further explanation, see Options, Futures, and Other Derivatives by John Hull in “Bibliography” on
page A-2.

Black-Scholes Model

Using the Black-Scholes model entails several assumptions:

• The prices of the underlying asset follow an Ito process. (See Hull on page A-3, page 222.)
• The option can be exercised only on its expiration date (European option).
• Short selling is permitted.
• There are no transaction costs.
• All securities are divisible.
• There is no riskless arbitrage (where arbitrage is the purchase of securities on one market for

immediate resale on another market to profit from a price or currency discrepancy).
• Trading is a continuous process.
• The risk-free interest rate is constant and remains the same for all maturities.

If any of these assumptions is untrue, Black-Scholes may not be an appropriate model.
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To illustrate toolbox Black-Scholes functions, this example computes the call and put prices of a
European option and its delta, gamma, lambda, and implied volatility. The asset price is $100.00, the
exercise price is $95.00, the risk-free interest rate is 10%, the time to maturity is 0.25 years, the
volatility is 0.50, and the dividend rate is 0. Simply executing the toolbox functions

[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0)
[CallVal, PutVal] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0)
GammaVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0)
VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0)
[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0)

OptCall =

   13.6953

OptPut =

    6.3497

CallVal =

    0.6665

PutVal =

   -0.3335

GammaVal =

    0.0145

VegaVal =

   18.1843

LamCall =

    4.8664

LamPut =

   -5.2528

To summarize:

• The option call price OptCall = $13.70
• The option put price OptPut = $6.35
• delta for a call CallVal = 0.6665 and delta for a put PutVal = -0.3335
• gamma GammaVal = 0.0145
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• vega VegaVal = 18.1843
• lambda for a call LamCall = 4.8664 and lambda for a put LamPut = –5.2528

Now as a computation check, find the implied volatility of the option using the call option price from
blsprice.

Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall)

Volatility =

    0.5000

The function returns an implied volatility of 0.500, the original blsprice input.

Binomial Model

The binomial model for pricing options or other equity derivatives assumes that the probability over
time of each possible price follows a binomial distribution. The basic assumption is that prices can
move to only two values, one up and one down, over any short time period. Plotting the two values,
and then the subsequent two values each, and then the subsequent two values each, and so on over
time, is known as “building a binomial tree.”. This model applies to American options, which can be
exercised any time up to and including their expiration date.

This example prices an American call option using a binomial model. Again, the asset price is
$100.00, the exercise price is $95.00, the risk-free interest rate is 10%, and the time to maturity is
0.25 years. It computes the tree in increments of 0.05 years, so there are 0.25/0.05 = 5 periods in the
example. The volatility is 0.50, this is a call (flag = 1), the dividend rate is 0, and it pays a dividend
of $5.00 after three periods (an ex-dividend date). Executing the toolbox function

[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,... 
0.05,  0.50, 1, 0, 5.0, 3)

returns the tree of prices of the underlying asset

StockPrice =

  100.0000  111.2713  123.8732  137.9629  148.6915  166.2807
         0   89.9677  100.0495  111.3211  118.8981  132.9629
         0         0   80.9994   90.0175   95.0744  106.3211
         0         0         0   72.9825   76.0243   85.0175
         0         0         0         0   60.7913   67.9825
         0         0         0         0         0   54.3608

and the tree of option values.

OptionPrice =

   12.1011   19.1708   29.3470   42.9629   54.1653   71.2807
         0    5.3068    9.4081   16.3211   24.3719   37.9629
         0         0    1.3481    2.7402    5.5698   11.3211
         0         0         0         0         0         0
         0         0         0         0         0         0
         0         0         0         0         0         0

The output from the binomial function is a binary tree. Read the StockPrice matrix this way:
column 1 shows the price for period 0, column 2 shows the up and down prices for period 1, column 3
shows the up-up, up-down, and down-down prices for period 2, and so on. Ignore the zeros. The
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OptionPrice matrix gives the associated option value for each node in the price tree. Ignore the
zeros that correspond to a zero in the price tree.

See Also
blsprice | binprice | blkimpv | blkprice | blsdelta | blsgamma | blsimpv | blslambda |
blsrho | blstheta | blsvega | opprofit

Related Examples
• “Handle and Convert Dates” on page 2-2
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
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About Life Tables
Life tables are used for life insurance and work with the probability distribution of human mortality.
This distribution, which is age-dependent, has several characteristic features that are consequences
of biological, cultural, and behavioral factors. Usually, the practitioners of life studies use life tables
that contain age-dependent series for specific demographics. The tables are in a standard format with
standard notation that is specific to the life studies field. An example of a life table is shown in Table 1
from CDC life tables for the United States.

Often, these life tables can have numerous variations such as abridged tables (which pose challenges
due to the granularity of the data) and different termination criteria (that can make it difficult to
compare tables or to compute life expectancies).

Most raw life tables have one or more of the first three series in this table (qx, lx, and dx) and the
notation for these three series is standard in the field.

• The qx series is basically the discrete hazard function for human mortality.
• The lx series is the survival function multiplied by a radix of 100,000.
• The dx series is the discrete probability density for the distribution as a function of age.

Financial Toolbox can handle arbitrary life table data supporting several standard models of mortality
and provides various interpolation methods to calibrate and analyze the life table data.

Although primarily designed for life insurance applications, the life tables functions
(lifetableconv, lifetablefit, and lifetablegen can also be used by social scientists,
behavioral psychologists, public health officials, and medical researchers.

Life Tables Theory
Life tables are based on hazard functions and survival functions which are, in turn, derived from
probability distributions. Specifically, given a continuous probability distribution, its cumulative
distribution function is F(x) and its probability density function is f(x) = d F(x)/dx.

For the analysis of mortality, the random variable of interest X is the distribution of ages at which
individuals die within a population. So, the probability that someone dies by age x is

Pr[X ≤ x] = F(x)

The survival function, (s(x)), which characterizes the probability that an individual lives beyond a
specified age x > 0, is
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s(x) = Pr[X > x]
= 1− F(x)

For a continuous probability distribution, the hazard function is a function of the survival function
with

h(x) = lim
Δx 0

Pr[x ≤ X < x + Δx X ≥ x]
Δx

= − 1
s(x)

d(s(x))
dx

and the survival functions is a function of the hazard function with

s(x) = exp −∫
0

x
h(ξ)dξ

Life table models generally specify either the hazard function or the survival function. However, life
tables are discrete and work with discrete versions of the hazard and survival functions. Three series
are used for life tables and the notation is the convention. The discrete hazard function is denoted as

qx ≈ h(x)

= 1− s(x + 1)
s(x)

which is the probability a person at age x dies by age x + 1 (where x is in years). The discrete survival
function is presented in terms of an initial number of survivors at birth called the life table radix
(which is usually 100,000 individuals) and is denoted as

lx = l0s(x)

with radix l0 = 100000. This number, lx, represents the number of individuals out of 100,000 at birth
who are still alive at age x.

A third series is related to the probability density function which is the number of "standardized"
deaths in a given year denoted as

dx = lx− lx + 1

Based on a few additional rules about how to initialize and terminate these series, any one series can
be derived from any of the other series.

See Also
lifetableconv | lifetablefit | lifetablegen

Related Examples
• “Case Study for Life Tables Analysis” on page 2-42
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Case Study for Life Tables Analysis
This example shows how to use the basic workflow for life tables.

Load the life table data file.

load us_lifetable_2009

Calibrate life table from survival data with the default heligman-pollard parametric model.

a = lifetablefit(x, lx);

Generate life table series from the calibrated mortality model.

qx = lifetablegen((0:100), a);
display(qx(1:40,:))

    0.0063    0.0069    0.0057
    0.0005    0.0006    0.0004
    0.0002    0.0003    0.0002
    0.0002    0.0002    0.0002
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0002    0.0002    0.0001
    0.0002    0.0002    0.0002
    0.0002    0.0003    0.0002
    0.0003    0.0004    0.0002
    0.0004    0.0005    0.0002
    0.0005    0.0006    0.0003
    0.0006    0.0008    0.0003
    0.0007    0.0009    0.0003
    0.0008    0.0011    0.0003
    0.0008    0.0012    0.0004
    0.0009    0.0013    0.0004
    0.0009    0.0014    0.0005
    0.0010    0.0014    0.0005
    0.0010    0.0015    0.0005
    0.0010    0.0015    0.0006
    0.0010    0.0015    0.0006
    0.0010    0.0015    0.0007
    0.0010    0.0014    0.0007
    0.0011    0.0014    0.0007
    0.0011    0.0014    0.0008
    0.0011    0.0014    0.0008
    0.0011    0.0014    0.0009
    0.0011    0.0014    0.0009
    0.0012    0.0015    0.0010
    0.0012    0.0015    0.0011
    0.0013    0.0016    0.0011
    0.0014    0.0017    0.0012
    0.0015    0.0018    0.0013
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Plot the qx series and display the legend. The series qx is the conditional probability that a person at
age x will die between age x and the next age in the series

plot((0:100), log(qx));
legend(series, 'location', 'southeast');
title('Conditional Probability of Dying within One Year of Current Age');
xlabel('Age');
ylabel('Log Probability');

See Also
lifetableconv | lifetablefit | lifetablegen

More About
• “About Life Tables” on page 2-40
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Machine Learning for Statistical Arbitrage: Introduction

Machine learning techniques for processing large amounts of data are broadly applicable in
computational finance. The series of examples introduced in this topic provides a general workflow,
illustrating how capabilities in MATLAB apply to a specific problem in financial engineering. The
workflow is problem-oriented, exploratory, and guided by the data and the resulting analysis. The
overall approach, however, is useful for constructing applications in many areas.

The workflow consists of these actions:

• Formulate a simple approach to algorithmic trading, through an analysis of market
microstructure, with the goal of identifying real-time arbitrage opportunities.

• Use a large sample of exchange data to track order dynamics of a single security on a single day,
selectively processing the data to develop relevant statistical measures.

• Create a model of intraday dynamics conditioned on a selection of hyperparameters introduced
during feature engineering and development.

• Evaluate hyperparameter tunings using a supervising objective that computes cash returned on a
model-based trading strategy.

• Optimize the trading strategy using different machine learning algorithms.
• Suggest modifications for further development.

The workflow is separated into three examples:
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1 “Machine Learning for Statistical Arbitrage I: Data Management and Visualization” on page 2-
46

2 “Machine Learning for Statistical Arbitrage II: Feature Engineering and Model Development” on
page 2-56

3 “Machine Learning for Statistical Arbitrage III: Training, Tuning, and Prediction” on page 2-67

For more information about general workflows for machine learning, see:

• “Machine Learning in MATLAB”
• “Supervised Learning Workflow and Algorithms”

 Machine Learning for Statistical Arbitrage: Introduction

2-45



Machine Learning for Statistical Arbitrage I: Data Management
and Visualization

This example shows techniques for managing, processing, and visualizing large amounts of financial
data in MATLAB®. It is part of a series of related examples on machine learning for statistical
arbitrage (see “Machine Learning Applications”).

Working with Big Data

Financial markets, with electronic exchanges such as NASDAQ executing orders on a timescale of
milliseconds, generate vast amounts of data. Data streams can be mined for statistical arbitrage
opportunities, but traditional methods for processing and storing dynamic analytic information can be
overwhelmed by big data. Fortunately, new computational approaches have emerged, and MATLAB
has an array of tools for implementing them.

Main computer memory provides high-speed access but limited capacity, whereas external storage
offers low-speed access but potentially unlimited capacity. Computation takes place in memory. The
computer recalls data and results from external storage.

Data Files

This example uses one trading day of NASDAQ exchange data [2] on one security (INTC) in a sample
provided by LOBSTER [1] and included with Financial Toolbox™ in the zip file
LOBSTER_SampleFile_INTC_2012-06-21_5.zip. Extract the contents of the zip file into your
current folder. The expanded files, including two CSV files of data and the text file
LOBSTER_SampleFiles_ReadMe.txt, consume 93.7 MB of memory.

unzip("LOBSTER_SampleFile_INTC_2012-06-21_5.zip");

The data describes the intraday evolution of the limit order book (LOB), which is the record of market
orders (best price), limit orders (designated price), and resulting buys and sells. The data includes
the precise time of these events, with orders tracked from arrival until cancellation or execution. At
each moment in the trading day, orders on both the buy and sell side of the LOB exist at various levels
away from the midprice between the lowest ask (order to sell) and the highest bid (order to buy).

Level 5 data (five levels away from the midprice on either side) is contained in two CSV files. Extract
the trading date from the message file name.

MSGFileName = "INTC_2012-06-21_34200000_57600000_message_5.csv";   % Message file (description of data)
LOBFileName = "INTC_2012-06-21_34200000_57600000_orderbook_5.csv"; % Data file

[ticker,rem] = strtok(MSGFileName,'_');
date = strtok(rem,'_'); 

Data Storage

Daily data streams accumulate and need to be stored. A datastore is a repository for collections of
data that are too big to fit in memory.

Use tabularTextDatastore to create datastores for the message and data files. Because the files
contain data with different formats, create the datastores separately. Ignore generic column headers
(for example, VarName1) by setting the 'ReadVariableNames' name-value pair argument to
false. Replace the headers with descriptive variable names obtained from
LOBSTER_SampleFiles_ReadMe.txt. Set the 'ReadSize' name-value pair argument to 'file'
to allow similarly formatted files to be appended to existing datastores at the end of each trading day.
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DSMSG = tabularTextDatastore(MSGFileName,'ReadVariableNames',false,'ReadSize','file');
DSMSG.VariableNames = ["Time","Type","OrderID","Size","Price","Direction"];

DSLOB = tabularTextDatastore(LOBFileName,'ReadVariableNames',false,'ReadSize','file');
DSLOB.VariableNames = ["AskPrice1","AskSize1","BidPrice1","BidSize1",...
                       "AskPrice2","AskSize2","BidPrice2","BidSize2",...
                       "AskPrice3","AskSize3","BidPrice3","BidSize3",...
                       "AskPrice4","AskSize4","BidPrice4","BidSize4",...
                       "AskPrice5","AskSize5","BidPrice5","BidSize5"];

Create a combined datastore by selecting Time and the level 3 data.

TimeVariable = "Time";
DSMSG.SelectedVariableNames = TimeVariable;

LOB3Variables = ["AskPrice1","AskSize1","BidPrice1","BidSize1",...
                 "AskPrice2","AskSize2","BidPrice2","BidSize2",...
                 "AskPrice3","AskSize3","BidPrice3","BidSize3"];
DSLOB.SelectedVariableNames = LOB3Variables;
                               
DS = combine(DSMSG,DSLOB);         

You can preview the first few rows in the combined datastore without loading data into memory.

DSPreview = preview(DS);
LOBPreview = DSPreview(:,1:5)

LOBPreview=8×5 table
    Time     AskPrice1    AskSize1    BidPrice1    BidSize1
    _____    _________    ________    _________    ________

    34200    2.752e+05       66       2.751e+05      400   
    34200    2.752e+05      166       2.751e+05      400   
    34200    2.752e+05      166       2.751e+05      400   
    34200    2.752e+05      166       2.751e+05      400   
    34200    2.752e+05      166       2.751e+05      300   
    34200    2.752e+05      166       2.751e+05      300   
    34200    2.752e+05      166       2.751e+05      300   
    34200    2.752e+05      166       2.751e+05      300   

The preview shows asks and bids at the touch, meaning the level 1 data, which is closest to the
midprice. Time units are seconds after midnight, price units are dollar amounts times 10,000, and
size units are the number of shares (see LOBSTER_SampleFiles_ReadMe.txt).

Tall Arrays and Timetables

Tall arrays work with out-of-memory data backed by a datastore using the MapReduce technique (see
“Tall Arrays for Out-of-Memory Data”). When you use MapReduce, tall arrays remain unevaluated
until you execute specific computations that use the data.

Set the execution environment for MapReduce to the local MATLAB session, instead of using Parallel
Computing Toolbox™, by calling mapreducer(0). Then, create a tall array from the datastore DS by
using tall. Preview the data in the tall array.

mapreducer(0)
DT = tall(DS);
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DTPreview = DT(:,1:5)

DTPreview =

  Mx5 tall table

    Time     AskPrice1    AskSize1    BidPrice1    BidSize1
    _____    _________    ________    _________    ________

    34200    2.752e+05       66       2.751e+05      400   
    34200    2.752e+05      166       2.751e+05      400   
    34200    2.752e+05      166       2.751e+05      400   
    34200    2.752e+05      166       2.751e+05      400   
    34200    2.752e+05      166       2.751e+05      300   
    34200    2.752e+05      166       2.751e+05      300   
    34200    2.752e+05      166       2.751e+05      300   
    34200    2.752e+05      166       2.751e+05      300   
      :          :           :            :           :
      :          :           :            :           :

Timetables allow you to perform operations specific to time series (see “Create Timetables”). Because
the LOB data consists of concurrent time series, convert DT to a tall timetable.

DT.Time = seconds(DT.Time); % Cast time as a duration from midnight.
DTT = table2timetable(DT);

DTTPreview = DTT(:,1:4)

DTTPreview =

  Mx4 tall timetable

      Time       AskPrice1    AskSize1    BidPrice1    BidSize1
    _________    _________    ________    _________    ________

    34200 sec    2.752e+05       66       2.751e+05      400   
    34200 sec    2.752e+05      166       2.751e+05      400   
    34200 sec    2.752e+05      166       2.751e+05      400   
    34200 sec    2.752e+05      166       2.751e+05      400   
    34200 sec    2.752e+05      166       2.751e+05      300   
    34200 sec    2.752e+05      166       2.751e+05      300   
    34200 sec    2.752e+05      166       2.751e+05      300   
    34200 sec    2.752e+05      166       2.751e+05      300   
        :            :           :            :           :
        :            :           :            :           :

Display all variables in the MATLAB workspace.

whos

  Name               Size            Bytes  Class                                       Attributes

  DS                 1x1                 8  matlab.io.datastore.CombinedDatastore                 
  DSLOB              1x1                 8  matlab.io.datastore.TabularTextDatastore              
  DSMSG              1x1                 8  matlab.io.datastore.TabularTextDatastore              
  DSPreview          8x13             4515  table                                                 
  DT                 Mx13             4950  tall                                                  
  DTPreview          Mx5              2840  tall                                                  

2 Performing Common Financial Tasks

2-48



  DTT                Mx12             4746  tall                                                  
  DTTPreview         Mx4              2650  tall                                                  
  LOB3Variables      1x12              936  string                                                
  LOBFileName        1x1               246  string                                                
  LOBPreview         8x5              2203  table                                                 
  MSGFileName        1x1               230  string                                                
  TimeVariable       1x1               150  string                                                
  date               1x1               166  string                                                
  rem                1x1               230  string                                                
  ticker             1x1               150  string                                                

Because all the data is in the datastore, the workspace uses little memory.

Preprocess and Evaluate Data

Tall arrays allow preprocessing, or queuing, of computations before they are evaluated, which
improves memory management in the workspace.

Midprice S and imbalance index I are used to model LOB dynamics. To queue their computations,
define them, and the time base, in terms of DTT.

timeBase = DTT.Time;
MidPrice = (DTT.BidPrice1 + DTT.AskPrice1)/2;

% LOB level 3 imbalance index:

lambda  = 0.5; % Hyperparameter
weights = exp(-(lambda)*[0 1 2]);
VAsk = weights(1)*DTT.AskSize1 + weights(2)*DTT.AskSize2 + weights(3)*DTT.AskSize3;
VBid = weights(1)*DTT.BidSize1 + weights(2)*DTT.BidSize2 + weights(3)*DTT.BidSize3;
ImbalanceIndex = (VBid-VAsk)./(VBid+VAsk);

The imbalance index is a weighted average of ask and bid volumes on either side of the midprice [3].
The imbalance index is a potential indicator of future price movements. The variable lambda is a
hyperparameter, which is a parameter specified before training rather than estimated by the machine
learning algorithm. A hyperparameter can influence the performance of the model. Feature
engineering is the process of choosing domain-specific hyperparameters to use in machine learning
algorithms. You can tune hyperparameters to optimize a trading strategy.

To bring preprocessed expressions into memory and evaluate them, use the gather function. This
process is called deferred evaluation.

[t,S,I] = gather(timeBase,MidPrice,ImbalanceIndex);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4.3 sec
Evaluation completed in 4.7 sec

A single call to gather evaluates multiple preprocessed expressions with a single pass through the
datastore.

Determine the sample size, which is the number of ticks, or updates, in the data.

numTicks = length(t)

numTicks = 581030

The daily LOB data contains 581,030 ticks.
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Checkpoint Data

You can save both unevaluated and evaluated data to external storage for later use.

Prepend the time base with the date, and cast the result as a datetime array. Save the resulting
datetime array, MidPrice, and ImbalanceIndex to a MAT-file in a specified location.

dateTimeBase = datetime(date) + timeBase; 
Today = timetable(dateTimeBase,MidPrice,ImbalanceIndex)

Today =

  581,030x2 tall timetable

        dateTimeBase         MidPrice     ImbalanceIndex
    ____________________    __________    ______________

    21-Jun-2012 09:30:00    2.7515e+05         -0.205   
    21-Jun-2012 09:30:00    2.7515e+05       -0.26006   
    21-Jun-2012 09:30:00    2.7515e+05       -0.26006   
    21-Jun-2012 09:30:00    2.7515e+05      -0.086772   
    21-Jun-2012 09:30:00    2.7515e+05       -0.15581   
    21-Jun-2012 09:30:00    2.7515e+05       -0.35382   
    21-Jun-2012 09:30:00    2.7515e+05       -0.19084   
    21-Jun-2012 09:30:00    2.7515e+05       -0.19084   
             :                  :               :
             :                  :               :

location = fullfile(pwd,"ExchangeData",ticker,date);
write(location,Today,'FileType','mat')

Writing tall data to folder C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\17\tp96dd1969\finance-ex97702880\ExchangeData\INTC\2012-06-21
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 5.4 sec
Evaluation completed in 5.8 sec

The file is written once, at the end of each trading day. The code saves the data to a file in a date-
stamped folder. The series of ExchangeData subfolders serves as a historical data repository.

Alternatively, you can save workspace variables evaluated with gather directly to a MAT-file in the
current folder.

save("LOBVars.mat","t","S","I")

In preparation for model validation later on, evaluate and add market order prices to the same file.

[MOBid,MOAsk] = gather(DTT.BidPrice1,DTT.AskPrice1);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4.2 sec
Evaluation completed in 4.3 sec

save("LOBVars.mat","MOBid","MOAsk","-append")

The remainder of this example uses only the unevaluated tall timetable DTT. Clear other variables
from the workspace.

clearvars -except DTT 
whos
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  Name            Size            Bytes  Class    Attributes

  DTT       581,030x12             4746  tall               

Data Visualization

To visualize large amounts of data, you must summarize, bin, or sample the data in some way to
reduce the number of points plotted on the screen.

LOB Snapshot

One method of visualization is to evaluate only a selected subsample of the data. Create a snapshot of
the LOB at a specific time of day (11 AM).

sampleTimeTarget = seconds(11*60*60);               % Seconds after midnight
sampleTimes = withtol(sampleTimeTarget,seconds(1)); % 1 second tolerance
sampleLOB = DTT(sampleTimes,:);

numTimes = gather(size(sampleLOB,1))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4.5 sec
Evaluation completed in 4.7 sec

numTimes = 23

There are 23 ticks within one second of 11 AM. For the snapshot, use the tick closest to the midtime.

sampleLOB = sampleLOB(round(numTimes/2),:);
sampleTime = sampleLOB.Time;

sampleBidPrices = [sampleLOB.BidPrice1,sampleLOB.BidPrice2,sampleLOB.BidPrice3];
sampleBidSizes  = [sampleLOB.BidSize1,sampleLOB.BidSize2,sampleLOB.BidSize3];
sampleAskPrices = [sampleLOB.AskPrice1,sampleLOB.AskPrice2,sampleLOB.AskPrice3];
sampleAskSizes  = [sampleLOB.AskSize1,sampleLOB.AskSize2,sampleLOB.AskSize3];

[sampleTime,sampleBidPrices,sampleBidSizes,sampleAskPrices,sampleAskSizes] = ...
    gather(sampleTime,sampleBidPrices,sampleBidSizes,sampleAskPrices,sampleAskSizes);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 3.9 sec
- Pass 2 of 2: Completed in 4.1 sec
Evaluation completed in 8.8 sec

Visualize the limited data sample returned by gather by using bar.

figure
hold on

bar((sampleBidPrices/10000),sampleBidSizes,'r')
bar((sampleAskPrices/10000),sampleAskSizes,'g')
hold off

xlabel("Price (Dollars)")
ylabel("Number of Shares")
legend(["Bid","Ask"],'Location','North')
title(strcat("Level 3 Limit Order Book: ",datestr(sampleTime,"HH:MM:SS")))
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Depth of Market

Some visualization functions work directly with tall arrays and do not require the use of gather (see
“Visualization of Tall Arrays”). The functions automatically sample data to decrease pixel density.
Visualize the level 3 intraday depth of market, which shows the time evolution of liquidity, by using
plot with the tall timetable DTT.

figure
hold on

plot(DTT.Time,-DTT.BidSize1,'Color',[1.0 0 0],'LineWidth',2)
plot(DTT.Time,-DTT.BidSize2,'Color',[0.8 0 0],'LineWidth',2)
plot(DTT.Time,-DTT.BidSize3,'Color',[0.6 0 0],'LineWidth',2)

plot(DTT.Time,DTT.AskSize1,'Color',[0 1.0 0],'LineWidth',2)
plot(DTT.Time,DTT.AskSize2,'Color',[0 0.8 0],'LineWidth',2)
plot(DTT.Time,DTT.AskSize3,'Color',[0 0.6 0],'LineWidth',2)

hold off

xlabel("Time")
ylabel("Number of Shares")
title("Depth of Market: Intraday Evolution")
legend(["Bid1","Bid2","Bid3","Ask1","Ask2","Ask3"],'Location','NorthOutside','Orientation','Horizontal');
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To display details, limit the time interval.

xlim(seconds([45000 45060]))
ylim([-35000 35000])
title("Depth of Market: One Minute")
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Summary

This example introduces the basics of working with big data, both in and out of memory. It shows how
to set up, combine, and update external datastores, then create tall arrays for preprocessing data
without allocating variables in the MATLAB workspace. The gather function transfers data into the
workspace for computation and further analysis. The example shows how to visualize the data
through data sampling or by MATLAB plotting functions that work directly with out-of-memory data.
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Machine Learning for Statistical Arbitrage II: Feature
Engineering and Model Development

This example creates a continuous-time Markov model of limit order book (LOB) dynamics, and
develops a strategy for algorithmic trading based on patterns observed in the data. It is part of a
series of related examples on machine learning for statistical arbitrage (see “Machine Learning
Applications”).

Exploratory Data Analysis

To predict the future behavior of a system, you need to discover patterns in historical data. The vast
amount of data available from exchanges, such as NASDAQ, poses computational challenges while
offering statistical opportunities. This example explores LOB data by looking for indicators of price
momentum, following the approach in [4].

Raw Data

Load LOBVars.mat, the preprocessed LOB data set of the NASDAQ security INTC.

load LOBVars

The data set contains the following information for each order: the arrival time t (seconds from
midnight), level 1 asking price MOAsk, level 1 bidding price MOBid, midprice S, and imbalance index
I.

Create a plot that shows the intraday evolution of the LOB imbalance index I and midprice S.

figure

t.Format = "hh:mm:ss";

yyaxis left
plot(t,I)
ylabel("Imbalance Index")

yyaxis right
plot(t,S/10000,'LineWidth',2)
ylabel("Midprice (Dollars)")

xlabel("Time")

title('Exchange Data: One Day')
legend(["Imbalance","Midprice"],'Location','NE')
grid on
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At this scale, the imbalance index gives no indication of future changes in the midprice.

To see more detail, limit the time scale to one minute.

timeRange = seconds([36000 36060]); % One minute after 10 AM, when prices were climbing
xlim(timeRange)
legend('Location','SE')
title("Exchange Data: One Minute")
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At this scale, sharp departures in the imbalance index align with corresponding departures in the
midprice. If the relationship is predictive, meaning imbalances of a certain size forecast future price
movements, then quantifying the relationship can provide statistical arbitrage opportunities.

Plot a histogram of the interarrival times in the LOB.

DT = diff(t); % Interarrival Times
DT.Format = "s";

figure
binEdges = seconds(0.01:0.01:1);
histogram(DT,binEdges)
xlabel("Seconds")
ylabel("Number of Orders")
title("LOB Interarrival Times")
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Interarrival times follow the characteristic pattern of a Poisson process.

Compute the average wait time between orders by fitting an exponential distribution to the
interarrival times.

DTAvg = expfit(DT)

DTAvg = duration
   0.040273 sec

Smoothed Data

The raw imbalance series I is erratic. To identify the most significant dynamic shifts, introduce a
degree of smoothing dI, which is the number of backward ticks used to average the raw imbalance
series.

dI = 10; % Hyperparameter
dTI = dI*DTAvg

dTI = duration
   0.40273 sec

The setting corresponds to an interval of 10 ticks, or about 0.4 seconds on average. Smooth the
imbalance indices over a trailing window.

sI = smoothdata(I,'movmean',[dI 0]);
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Visualize the degree of smoothing to assess the volatility lost or retained.

figure
hold on
plot(t,I)
plot(t,sI,'c','LineWidth',2)
hold off

xlabel("Time")
xlim(timeRange)
ylabel("Imbalance Index")
title("Imbalance Data: One Minute")
legend(["Raw","Smoothed"],'Location','SE')
grid on

Discretized Data

To create a Markov model of the dynamics, collect the smoothed imbalance index sI into bins,
discretizing it into a finite collection of states rho (ρ). The number of bins numBins is a
hyperparameter.

numBins = 3; % Hyperparameter
binEdges = linspace(-1,1,numBins+1);
rho = discretize(sI,binEdges);

To model forecast performance, aggregate prices over a leading window. The number of ticks in a
window dS is a hyperparameter.
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dS = 20; % Hyperparameter
dTS = dS*DTAvg

dTS = duration
   0.80547 sec

The setting corresponds to an interval of 20 ticks, or about 0.8 seconds on average. Discretize price
movements into three states DS (ΔS) given by the sign of the forward price change.

DS = NaN(size(S));
shiftS = S(dS+1:end);
DS(1:end-dS) = sign(shiftS-S(1:end-dS));

Visualize the discretized data.

figure

subplot(3,1,1)
hold on
plot(t,sI,'c','LineWidth',2)
for i = 2:numBins
    yline(binEdges(i),'b--');
end
hold off
xlim(timeRange)
ylim([-1 1])
yticks(binEdges)
title("Imbalance Index (Smoothed)")
grid on

subplot(3,1,2)
plot(t,rho,'co','MarkerSize',3)
xlim(timeRange)
ylim([1 numBins])
yticks(1:numBins)
ylabel("\rho")
title("Imbalance Index (Discretized)")
grid on

subplot(3,1,3)
plot(t,DS,'ro','MarkerSize',3)
xlim(timeRange)
ylim([-1 1])
yticks([-1 0 1])
ylabel("\DeltaS")
title("Price Movement")
grid on
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Continuous Time Markov Process

Together, the state of the LOB imbalance index rho (ρ) and the state of the forward price movement
DS (ΔS) describe a two-dimensional continuous-time Markov chain (CTMC). The chain is modulated
by the Poisson process of order arrivals, which signals any transition among the states.

To simplify the description, give the two-dimensional CTMC a one-dimensional encoding into states
phi (φ = ρ, ΔS ).

numStates = 3*numBins; % numStates(DS)*numStates(rho)

phi = NaN(size(t));
for i = 1:length(t)
    switch DS(i)
        case -1
            phi(i) = rho(i);
        case 0
            phi(i) = rho(i) + numBins;
        case 1
            phi(i) = rho(i) + 2*numBins;
    end
end

Successive states of φ, and the component states ρ and ΔS, proceed as follows.
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Hyperparameters dI (ΔtI) and dS (ΔtS) determine the size of a rolling state characterizing the
dynamics. At time t, the process transitions from φ = ρprevious, ΔScurrent = i to
φ = ρcurrent, ΔSfuture = j (or holds in the same state if i = j).

Estimate Process Parameters

Execution of the trading strategy at any time t is based on the probability of ΔSfuture being in a
particular state, conditional on the current and previous values of the other states. Following [3] and
[4], determine empirical transition probabilities, and then assess them for predictive power.

% Transition counts

C = zeros(numStates);
for i = 1:length(phi)-dS-1  
    C(phi(i),phi(i+1)) = C(phi(i),phi(i+1))+1;
end

% Holding times

H = diag(C);

% Transition rate matrix (infinitesimal generator)

G = C./H;
v = sum(G,2);
G = G + diag(-v);

% Transition probability matrix (stochastic for all dI)

P = expm(G*dI); % Matrix exponential

To obtain a trading matrix Q containing Prob ΔSfuture ρprevious, ρcurrent, ΔScurrent  as in [4], apply
Bayes’ rule,
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Prob ΔSfuture ρprevious, ρcurrent, ΔScurrent =
Prob ρcurrent, ΔSfuture ρprevious, ΔScurrent

Prob ρcurrent ρprevious, ΔScurrent
.

The numerator is the transition probability matrix P. Compute the denominator PCond.

PCond = zeros(size(P));
phiNums = 1:numStates;
modNums = mod(phiNums,numBins);
for i = phiNums
    for j = phiNums
        idx = (modNums == modNums(j));
        PCond(i,j) = sum(P(i,idx));        
    end    
end

Q = P./PCond;

Display Q in a table. Label the rows and columns with composite states φ = ρ, ΔS .

binNames = string(1:numBins);
stateNames = ["("+binNames+",-1)","("+binNames+",0)","("+binNames+",1)"];
QTable = array2table(Q,'RowNames',stateNames,'VariableNames',stateNames)

QTable=9×9 table
               (1,-1)      (2,-1)       (3,-1)       (1,0)      (2,0)      (3,0)       (1,1)        (2,1)       (3,1)  
              ________    _________    _________    _______    _______    _______    _________    _________    ________

    (1,-1)     0.59952      0.30458      0.19165    0.39343    0.67723     0.7099    0.0070457     0.018196    0.098447
    (2,-1)     0.74092      0.58445      0.40023    0.25506    0.41003    0.56386    0.0040178    0.0055189    0.035914
    (3,-1)     0.79895      0.60866      0.55443    0.19814      0.385    0.42501    0.0029096    0.0063377    0.020554
    (1,0)     0.094173     0.036014     0.019107    0.88963    0.91688    0.75192     0.016195     0.047101     0.22897
    (2,0)      0.12325     0.017282     0.015453    0.86523    0.96939     0.9059     0.011525     0.013328    0.078648
    (3,0)       0.1773      0.02616     0.018494    0.81155    0.95359    0.92513     0.011154     0.020252    0.056377
    (1,1)     0.041132    0.0065127    0.0021313    0.59869    0.39374    0.21787      0.36017      0.59975        0.78
    (2,1)     0.059151    0.0053554    0.0027769    0.65672    0.42325    0.26478      0.28413       0.5714     0.73244
    (3,1)     0.095832     0.010519    0.0051565     0.7768     0.6944     0.3906      0.12736      0.29508     0.60424

Rows are indexed by (ρprevious, ΔScurrent). Conditional probabilities for each of the three possible
states of ΔSfuture are read from the corresponding column, conditional on ρcurrent.

Represent Q with a heatmap.

figure
imagesc(Q)
axis equal tight
hCB = colorbar;
hCB.Label.String = "Prob(\DeltaS_{future} | \rho_{previous},\rho_{current},\DeltaS_{current})";
xticks(phiNums)
xticklabels(stateNames)
xlabel("(\rho_{current},\DeltaS_{future})")
yticks(phiNums)
yticklabels(stateNames)
ylabel("(\rho_{previous},\DeltaS_{current})")
title("Trading Matrix")
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The bright, central 3 x 3 square shows that in most transitions, tick to tick, no price change is
expected (ΔSfuture = 0). Bright areas in the upper-left 3 x 3 square (downward price movements
ΔSfuture = − 1) and lower-right 3 x 3 square (upward price movements ΔSfuture = + 1) show evidence
of momentum, which can be leveraged in a trading strategy.

You can find arbitrage opportunities by thresholding Q above a specified trigger probability. For
example:

trigger = 0.5;
QPattern = (Q > trigger)

QPattern = 9x9 logical array

   1   0   0   0   1   1   0   0   0
   1   1   0   0   0   1   0   0   0
   1   1   1   0   0   0   0   0   0
   0   0   0   1   1   1   0   0   0
   0   0   0   1   1   1   0   0   0
   0   0   0   1   1   1   0   0   0
   0   0   0   1   0   0   0   1   1
   0   0   0   1   0   0   0   1   1
   0   0   0   1   1   0   0   0   1

The entry in the (1,1) position shows a chance of more than 50% that a downward price movement
(ΔScurrent = − 1) will be followed by another downward price movement (ΔSfuture = − 1), provided
that the previous and current imbalance states ρ are both 1.
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A Trading Strategy?

Q is constructed on the basis of both the available exchange data and the hyperparameter settings.
Using Q to inform future trading decisions depends on the market continuing in the same statistical
pattern. Whether the market exhibits momentum in certain states is a test of the weak-form Efficient
Market Hypothesis (EMH). For heavily traded assets, such as the one used in this example (INTC),
the EMH is likely to hold over extended periods, and arbitrage opportunities quickly disappear.
However, failure of EMH can occur in some assets over short time intervals. A working trading
strategy divides a portion of the trading day, short enough to exhibit a degree of statistical
equilibrium, into a training period for estimating Q, using optimal hyperparameter settings and a
validation period on which to trade. For an implementation of such a strategy, see “Machine Learning
for Statistical Arbitrage III: Training, Tuning, and Prediction” on page 2-67.

Summary

This example begins with raw data on the LOB and transforms it into a summary (the Q matrix) of
statistical arbitrage opportunities. The analysis uses the mathematics of continuous-time Markov
chain models, first in recognizing the Poisson process of LOB interarrival times, then by discretizing
data into two-dimensional states representing the instantaneous position of the market. A description
of state transitions, derived empirically, leads to the possibility of an algorithmic trading strategy.
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Machine Learning for Statistical Arbitrage III: Training, Tuning,
and Prediction

This example uses Bayesian optimization to tune hyperparameters in the algorithmic trading model,
supervised by the end-of-day return. It is part of a series of related examples on machine learning for
statistical arbitrage (see “Machine Learning Applications”).

Load LOBVars.mat, the preprocessed LOB data set of the NASDAQ security INTC.

load LOBVars

The data set contains the following information for each order: the arrival time t (seconds from
midnight), level 1 asking price MOAsk, level 1 bidding price MOBid, midprice S, and imbalance index
I.

This example includes several supporting functions, which are stored in matlabroot/examples/
finance/data/LOBSupportingFiles. To view them, change your working folder.

cd(fullfile(matlabroot,'examples','finance','data','LOBSupportingFiles'));

Trading Strategy

The trading matrix Q contains probabilities of future price movements, given current and previous
states rho of the limit order book (LOB) imbalance index I and the latest observed direction in prices
DS.

View the supporting function tradeOnQ.m, which implements a simple trading strategy based on the
pattern in Q.

function cash = tradeOnQ(Data,Q,n,N)

% Reference: Machine Learning for Statistical Arbitrage
%            Part II: Feature Engineering and Model Development
   
% Data

t = Data.t;
MOBid = Data.MOBid;
MOAsk = Data.MOAsk;

% States

[rho,DS] = getStates(Data,n,N);

% Start of trading

cash = 0;
assets = 0;

% Active trading

T = length(t);

for tt = 2:T-N  % Trading ticks

    % Get Q row, column indices of current state
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    row = rho(tt-1)+n*(DS(tt-1)+1);
    downColumn = rho(tt);
    upColumn = rho(tt) + 2*n;

    % If predicting downward price move
    
    if Q(row,downColumn) > 0.5

        cash = cash + MOBid(tt); % Sell
        assets = assets - 1;
            
    % If predicting upward price move

    elseif Q(row,upColumn) > 0.5

        cash = cash - MOAsk(tt); % Buy
        assets = assets + 1; 

    end

end

% End of trading (liquidate position)

if assets > 0

    cash = cash + assets*MOBid(T); % Sell off

elseif assets < 0

    cash = cash + assets*MOAsk(T); % Buy back

end

The algorithm uses predictions from Q to make decisions about trading at each tick. It illustrates the
general mechanism of any optimized machine learning algorithm.

This strategy seeks to profit from expected price changes using market orders (best offer at the
touch) of a single share at each tick, if an arbitrage opportunity arises. The strategy can be scaled up
to larger trading volumes. Using the conditional probabilities obtained from Q, the tradeOnQ
function takes one of these actions:

• Executes a buy if the probability of an upward forward price change is greater than 0.5.
• Executes a sell if the probability of an downward forward price change is greater than 0.5.

At the end of the trading day, the function liquidates the position at the touch.

The strategy requires Data with tick times t and the corresponding market order bid and ask prices
MOBid and MOAsk, respectively. In real-time trading, data is provided by the exchange. This example
evaluates the strategy by dividing the historical sample into training (calibration) and validation
subsamples. The validation subsample serves as a proxy for real-time trading data. The strategy
depends on Q, the trading matrix itself, which you estimate after you make a number of
hyperparameter choices. The inputs n and N are hyperparameters to tune when you optimize the
strategy.
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Hyperparameters

The continuous-time Markov model and the resulting trading matrix Q depend on the values of four
hyperparameters:

• lambda — The weighting parameter used to compute the imbalance index I
• dI — The number of backward ticks used to average I during smoothing
• numBins — The number of bins used to partition smoothed I for discretization
• dS — The number of forward ticks used to convert the prices S to discrete DS

In general, all four hyperparameters are tunable. However, to facilitate visualization, the example
reduces the number of dimensions by tuning only numBins and N. The example:

• Fixes lambda
• Leaves numBins = n, where n is free to vary
• Equalizes the window lengths dI = dS = N, where N is free to vary

The restrictions do not significantly affect optimization outcomes. The optimization algorithm
searches over the two-dimensional parameter space (n,N) for the configuration yielding the maximum
return on trading.

Training and Validation Data

Machine learning requires a subsample on which to estimate Q and another subsample on which to
evaluate the hyperparameter selections.

Specify a breakpoint to separate the data into training and validation subsamples. The breakpoint
affects evaluation of the objective function, and is essentially another hyperparameter. However,
because you do not tune the breakpoint, it is external to the optimization process.

bp = round((0.80)*length(t)); % Use 80% of data for training

Collect data in a timetable to pass to tradeOnQ.

Data = timetable(t,S,I,MOBid,MOAsk);
TData = Data(1:bp,:);       % Training data
VData = Data(bp+1:end,:);   % Validation data

Cross-Validation

Cross-validation describes a variety of techniques to assess how training results (here, computation of
Q) generalize, with predictive reliability, to independent validation data (here, profitable trading). The
goal of cross-validation is to flag problems in training results, like bias and overfitting. In the context
of the trading strategy, overfitting refers to the time dependence, or nonstationarity, of Q. As Q
changes over time, it becomes less effective in predicting future price movements. The key diagnostic
issue is the degree to which Q changes, and at what rate, over a limited trading horizon.

With training and validation data in place, specify the hyperparameters and compare Q in the two
subsamples. The supporting function makeQ.m provides the steps for making Q.

% Set specific hyperparameters

n = 3;  % Number of bins for I
N = 20; % Window lengths
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% Compare Qs

QT = makeQ(TData,n,N);
QV = makeQ(VData,n,N);
QTVDiff = QT - QV

QTVDiff = 9×9

    0.0070    0.0182    0.1198   -0.0103   -0.0175   -0.0348    0.0034   -0.0007   -0.0851
   -0.0009    0.0176    0.2535   -0.0010   -0.0233   -0.2430    0.0019    0.0058   -0.0106
    0.0184    0.0948    0.0835   -0.0195   -0.1021   -0.1004    0.0011    0.0073    0.0168
    0.0462    0.0180    0.0254   -0.0512   -0.0172    0.0417    0.0050   -0.0009   -0.0671
    0.0543    0.0089    0.0219   -0.0556   -0.0169   -0.0331    0.0013    0.0080    0.0112
    0.1037    0.0221    0.0184   -0.1043   -0.0401   -0.0479    0.0006    0.0180    0.0295
    0.0266    0.0066    0.0054   -0.0821   -0.0143   -0.0116    0.0555    0.0077    0.0062
    0.0615    0.0050    0.0060   -0.0189   -0.0207   -0.0262   -0.0426    0.0157    0.0203
    0.0735    0.0103    0.0090   -0.0788   -0.1216   -0.0453    0.0053    0.1113    0.0362

Differences between QT and QV appear minor, although they vary based on their position in the
matrix. Identify trading inefficiencies, which result from indices (market states) where one matrix
gives a trading cue (probability value > 0.5) and the other does not.

Inhomogeneity = (QT > 0.5 & QV < 0.5 ) | (QT < 0.5 & QV > 0.5 )

Inhomogeneity = 9x9 logical array

   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0
   0   0   0   0   0   0   0   0   0

No significant inhomogeneities appear in the data with the given hyperparameter settings.

The severity of proceeding with a homogeneity assumption is not known a priori, and can emerge
only from more comprehensive backtesting. Statistical tests are available, as described in [4] and [5],
for example. During real-time trading, a rolling computation of Q over trailing training data of
suitable size can provide the most reliable cues. Such an approach acknowledges inherent
nonstationarity in the market.

Machine Learning

Machine learning refers to the general approach of effectively performing a task (for example,
trading) in an automated fashion by detecting patterns (for example, computing Q) and making
inferences based on available data. Often, data is dynamic and big enough to require specialized
computational techniques. The evaluation process—tuning hyperparameters to describe the data and
direct performance of the task—is ongoing.

In addition to the challenges of working with big data, the process of evaluating complex, sometimes
black-box, objective functions is also challenging. Objective functions supervise hyperparameter
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evaluation. The trading strategy evaluates hyperparameter tunings by first computing Q on a training
subsample, and then trading during an evaluation (real-time) subsample. The objective is to maximize
profit, or minimize negative cash returned, over a space of suitably constrained configurations (n,N).
This objective is a prototypical "expensive" objective function. Bayesian optimization is a type of
machine learning suited to such objective functions. One of its principle advantages is the absence of
costly derivative evaluations. To implement Bayesian optimization, use the Statistics and Machine
Learning Toolbox™ function bayesopt.

The supporting function optimizeTrading.m uses bayesopt to optimize the trading strategy in
tradeOnQ.

function results = optimizeTrading(TData,VData)

% Optimization variables

n = optimizableVariable('numBins',[1 10],'Type','integer');
N = optimizableVariable('numTicks',[1 50],'Type','integer');

% Objective function handle

f = @(x)negativeCash(x,TData,VData);

% Optimize

results = bayesopt(f,[n,N],...
                   'IsObjectiveDeterministic',true,...
                   'AcquisitionFunctionName','expected-improvement-plus',...
                   'MaxObjectiveEvaluations',25,...
                   'ExplorationRatio',2,...
                   'Verbose',0);

end % optimizeTrading

% Objective (local)
function loss = negativeCash(x,TData,VData)

n = x.numBins;
N = x.numTicks;

% Make trading matrix Q

Q = makeQ(TData,n,N);

% Trade on Q

cash = tradeOnQ(VData,Q,n,N);

% Objective value

loss = -cash;

end % negativeCash

Optimize the trading strategy by passing the training and validation data to optimizeTrading.

rng(0) % For reproducibility
results = optimizeTrading(TData,VData); 
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The estimated minimum objective coincides with the minimum observed objective (the search is
monotonic). Unlike derivative-based algorithms, bayesopt does not converge. As it tries to find the
global minimum, bayesopt continues exploring until it reaches the specified number of iterations
(25).

Obtain the best configuration by passing the results to bestPoint.

[Calibration,negReturn] = bestPoint(results,'Criterion','min-observed')

Calibration=1×2 table
    numBins    numTicks
    _______    ________

       3          24   

negReturn = -7100

Trading one share per tick, as directed by Q, the optimal strategy using (n,N) = (3,24) returns $0.71
over the final 20% of the trading day. Modifying the trading volume scales the return.

Another optimizer designed for expensive objectives is surrogateopt (Global Optimization Toolbox).
It uses a different search strategy and can locate optima more quickly, depending on the objective.
The supporting function optimizeTrading2.m uses surrogateopt instead of bayesopt to
optimize the trading strategy in tradeOnQ.

rng(0) % For reproducibility
results2 = optimizeTrading2(TData,VData)
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results2 = 1×2

     3    24

The results obtained with surrogateopt are the same as the bayesopt results. The plot contains
information about the progress of the search that is specific to the surrogateopt algorithm.

Compute Q by passing the optimal hyperparameters and the entire data set to makeQ.

bestQ = makeQ(Data,3,24)

bestQ = 9×9

    0.3933    0.1868    0.1268    0.5887    0.7722    0.6665    0.0180    0.0410    0.2068
    0.5430    0.3490    0.2716    0.4447    0.6379    0.6518    0.0123    0.0131    0.0766
    0.6197    0.3897    0.3090    0.3705    0.5954    0.6363    0.0098    0.0150    0.0547
    0.1509    0.0440    0.0261    0.8217    0.8960    0.6908    0.0273    0.0601    0.2831
    0.1900    0.0328    0.0280    0.7862    0.9415    0.8316    0.0238    0.0257    0.1404
    0.2370    0.0441    0.0329    0.7391    0.9221    0.8745    0.0239    0.0338    0.0925
    0.1306    0.0234    0.0101    0.7861    0.6566    0.4168    0.0833    0.3200    0.5731
    0.1276    0.0169    0.0118    0.7242    0.6505    0.4712    0.1482    0.3326    0.5171
    0.1766    0.0282    0.0186    0.7216    0.7696    0.6185    0.1018    0.2023    0.3629

The trading matrix bestQ can be used as a starting point for the next trading day.
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Summary

This example implements the optimized trading strategy developed in the first two related examples.
Available data is split into training and validation subsamples and used, respectively, to compute the
trading matrix Q and execute the resulting trading algorithm. The process is repeated over a space of
hyperparameter settings using the global optimizers bayesopt and surrogateopt, both of which
identify an optimal strategy yielding a positive return. The approach has many options for further
customization.
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Analyzing Portfolios
Portfolio managers concentrate their efforts on achieving the best possible trade-off between risk and
return. For portfolios constructed from a fixed set of assets, the risk/return profile varies with the
portfolio composition. Portfolios that maximize the return, given the risk, or, conversely, minimize the
risk for the given return, are called optimal. Optimal portfolios define a line in the risk/return plane
called the efficient frontier.

A portfolio may also have to meet additional requirements to be considered. Different investors have
different levels of risk tolerance. Selecting the adequate portfolio for a particular investor is a difficult
process. The portfolio manager can hedge the risk related to a particular portfolio along the efficient
frontier with partial investment in risk-free assets. The definition of the capital allocation line, and
finding where the final portfolio falls on this line, if at all, is a function of:

• The risk/return profile of each asset
• The risk-free rate
• The borrowing rate
• The degree of risk aversion characterizing an investor

Financial Toolbox software includes a set of portfolio optimization functions designed to find the
portfolio that best meets investor requirements.

Warning frontcon has been removed. Use Portfolio instead.

portopt has been partially removed and will no longer accept ConSet or varargin arguments.
portopt will only solve the portfolio problem for long-only fully invested portfolios. Use Portfolio
instead.

See Also
portalloc | frontier | portopt | Portfolio | portcons | portvrisk | pcalims | pcgcomp |
pcglims | pcpval | abs2active | active2abs

Related Examples
• “Portfolio Optimization Functions” on page 3-3
• “Portfolio Construction Examples” on page 3-5
• “Portfolio Selection and Risk Aversion” on page 3-7
• “Active Returns and Tracking Error Efficient Frontier” on page 3-32
• “Plotting an Efficient Frontier Using portopt” on page 10-22

More About
• “Portfolio Object Workflow” on page 4-17
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Portfolio Optimization Functions
The portfolio optimization functions assist portfolio managers in constructing portfolios that optimize
risk and return.

Capital Allocation Description
portalloc Computes the optimal risky portfolio on the efficient frontier, based on the

risk-free rate, the borrowing rate, and the investor's degree of risk aversion.
Also generates the capital allocation line, which provides the optimal
allocation of funds between the risky portfolio and the risk-free asset.

Efficient Frontier
Computation

Description

frontcon Computes portfolios along the efficient frontier for a given group of assets.
The computation is based on sets of constraints representing the maximum
and minimum weights for each asset, and the maximum and minimum total
weight for specified groups of assets.

Warning frontcon has been removed. Use Portfolio instead. For more
information on migrating frontcon code to Portfolio, see “frontcon
Migration to Portfolio Object” on page 3-19.

frontier Computes portfolios along the efficient frontier for a given group of assets.
Generates a surface of efficient frontiers showing how asset allocation
influences risk and return over time.

portopt Computes portfolios along the efficient frontier for a given group of assets.
The computation is based on a set of user-specified linear constraints.
Typically, these constraints are generated using the constraint specification
functions described below.

Warning portopt has been partially removed and will no longer accept
ConSet or varargin arguments. portopt will only solve the portfolio
problem for long-only fully invested portfolios. Use Portfolio instead. For
more information on migrating portopt code to Portfolio, see “portopt
Migration to Portfolio Object” on page 3-11.

Constraint
Specification

Description

portcons Generates the portfolio constraints matrix for a portfolio of asset investments
using linear inequalities. The inequalities are of the type A*Wts' <= b,
where Wts is a row vector of weights.

portvrisk Portfolio value at risk (VaR) returns the maximum potential loss in the value
of a portfolio over one period of time, given the loss probability level
RiskThreshold.

pcalims Asset minimum and maximum allocation. Generates a constraint set to fix the
minimum and maximum weight for each individual asset.
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Constraint
Specification

Description

pcgcomp Group-to-group ratio constraint. Generates a constraint set specifying the
maximum and minimum ratios between pairs of groups.

pcglims Asset group minimum and maximum allocation. Generates a constraint set to
fix the minimum and maximum total weight for each defined group of assets.

pcpval Total portfolio value. Generates a constraint set to fix the total value of the
portfolio.

Constraint
Conversion

Description

abs2active Transforms a constraint matrix expressed in absolute weight format to an
equivalent matrix expressed in active weight format.

active2abs Transforms a constraint matrix expressed in active weight format to an
equivalent matrix expressed in absolute weight format.

Note An alternative to using these portfolio optimization functions is to use the Portfolio object
(Portfolio) for mean-variance portfolio optimization. This object supports gross or net portfolio
returns as the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that
is any combination of the specified constraints to form a portfolio set. For information on the
workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

See Also
portalloc | frontier | portopt | Portfolio | portcons | portvrisk | pcalims | pcgcomp |
pcglims | pcpval | abs2active | active2abs

Related Examples
• “Portfolio Construction Examples” on page 3-5
• “Portfolio Selection and Risk Aversion” on page 3-7
• “Active Returns and Tracking Error Efficient Frontier” on page 3-32
• “Plotting an Efficient Frontier Using portopt” on page 10-22
• “portopt Migration to Portfolio Object” on page 3-11
• “frontcon Migration to Portfolio Object” on page 3-19

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Object Workflow” on page 4-17
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Portfolio Construction Examples
In this section...
“Introduction” on page 3-5
“Efficient Frontier Example” on page 3-5

Introduction
The efficient frontier computation functions require information about each asset in the portfolio.
This data is entered into the function via two matrices: an expected return vector and a covariance
matrix. The expected return vector contains the average expected return for each asset in the
portfolio. The covariance matrix is a square matrix representing the interrelationships between pairs
of assets. This information can be directly specified or can be estimated from an asset return time
series with the function ewstats.

Note An alternative to using these portfolio optimization functions is to use the Portfolio object
(Portfolio) for mean-variance portfolio optimization. This object supports gross or net portfolio
returns as the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that
is any combination of the specified constraints to form a portfolio set. For information on the
workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

Efficient Frontier Example
frontcon has been removed. To model the efficient frontier, use the Portfolio object instead. For
example, using the Portfolio object, you can model an efficient frontier:

• “Obtaining Portfolios Along the Entire Efficient Frontier” on page 4-94
• “Obtaining Endpoints of the Efficient Frontier” on page 4-97
• “Obtaining Efficient Portfolios for Target Returns” on page 4-100
• “Obtaining Efficient Portfolios for Target Risks” on page 4-103
• “Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-106
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-119

See Also
portalloc | frontier | portopt | Portfolio | portcons | portvrisk | pcalims | pcgcomp |
pcglims | pcpval | abs2active | active2abs

Related Examples
• “Portfolio Optimization Functions” on page 3-3
• “Portfolio Selection and Risk Aversion” on page 3-7
• “Active Returns and Tracking Error Efficient Frontier” on page 3-32
• “Plotting an Efficient Frontier Using portopt” on page 10-22
• “portopt Migration to Portfolio Object” on page 3-11
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• “frontcon Migration to Portfolio Object” on page 3-19

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Object Workflow” on page 4-17
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Portfolio Selection and Risk Aversion
In this section...
“Introduction” on page 3-7
“Optimal Risky Portfolio” on page 3-8

Introduction
One of the factors to consider when selecting the optimal portfolio for a particular investor is the
degree of risk aversion. This level of aversion to risk can be characterized by defining the investor's
indifference curve. This curve consists of the family of risk/return pairs defining the trade-off between
the expected return and the risk. It establishes the increment in return that a particular investor
requires to make an increment in risk worthwhile. Typical risk aversion coefficients range from 2.0
through 4.0, with the higher number representing lesser tolerance to risk. The equation used to
represent risk aversion in Financial Toolbox software is

U = E(r) - 0.005*A*sig^2

where:

U is the utility value.

E(r) is the expected return.

A is the index of investor's aversion.

sig is the standard deviation.

Note An alternative to using these portfolio optimization functions is to use the Portfolio object
(Portfolio) for mean-variance portfolio optimization. This object supports gross or net portfolio
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returns as the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that
is any combination of the specified constraints to form a portfolio set. For information on the
workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

Optimal Risky Portfolio
This example computes the optimal risky portfolio on the efficient frontier based on the risk-free rate,
the borrowing rate, and the investor's degree of risk aversion. You do this with the function
portalloc.

First generate the efficient frontier data using portopt.

ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance  = [ 0.005   -0.010    0.004;
                  -0.010    0.040   -0.002;
                   0.004   -0.002    0.023];

Consider 20 different points along the efficient frontier.

NumPorts = 20;

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... 
ExpCovariance, NumPorts);

Calling portopt, while specifying output arguments, returns the corresponding vectors and arrays
representing the risk, return, and weights for each of the portfolios along the efficient frontier. Use
these as the first three input arguments to the function portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds between the risky portfolio
and the risk-free asset, using these values for the risk-free rate, borrowing rate, and investor's degree
of risk aversion.

RisklessRate  =  0.08
BorrowRate    =  0.12
RiskAversion  =  3

Calling portalloc without specifying any output arguments gives a graph displaying the critical
points.

portalloc(PortRisk, PortReturn, PortWts, RisklessRate,... 
BorrowRate, RiskAversion);
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Calling portalloc while specifying the output arguments returns the variance (RiskyRisk), the
expected return (RiskyReturn), and the weights (RiskyWts) allocated to the optimal risky portfolio.
It also returns the fraction (RiskyFraction) of the complete portfolio allocated to the risky
portfolio, and the variance (OverallRisk) and expected return (OverallReturn) of the optimal
overall portfolio. The overall portfolio combines investments in the risk-free asset and in the risky
portfolio. The actual proportion assigned to each of these two investments is determined by the
degree of risk aversion characterizing the investor.
[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,... 
OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,... 
RisklessRate, BorrowRate, RiskAversion)

RiskyRisk =

    0.1288

RiskyReturn =

    0.1791

RiskyWts =

    0.0057    0.5879    0.4064

RiskyFraction =

    1.1869

OverallRisk =

    0.1529
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OverallReturn =

    0.1902

The value of RiskyFraction exceeds 1 (100%), implying that the risk tolerance specified allows
borrowing money to invest in the risky portfolio, and that no money is invested in the risk-free asset.
This borrowed capital is added to the original capital available for investment. In this example, the
customer tolerates borrowing 18.69% of the original capital amount.

See Also
portalloc | frontier | portopt | Portfolio | portcons | portvrisk | pcalims | pcgcomp |
pcglims | pcpval | abs2active | active2abs

Related Examples
• “Portfolio Optimization Functions” on page 3-3
• “Portfolio Selection and Risk Aversion” on page 3-7
• “Active Returns and Tracking Error Efficient Frontier” on page 3-32
• “Plotting an Efficient Frontier Using portopt” on page 10-22
• “portopt Migration to Portfolio Object” on page 3-11
• “frontcon Migration to Portfolio Object” on page 3-19

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Object Workflow” on page 4-17
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portopt Migration to Portfolio Object
In this section...
“Migrate portopt Without Output Arguments” on page 3-11
“Migrate portopt with Output Arguments” on page 3-12
“Migrate portopt for Target Returns Within Range of Efficient Portfolio Returns” on page 3-13
“Migrate portopt for Target Return Outside Range of Efficient Portfolio Returns” on page 3-14
“Migrate portopt Using portcons Output for ConSet” on page 3-15
“Integrate Output from portcons, pcalims, pcglims, and pcgcomp with a Portfolio Object” on page 3-
17

Migrate portopt Without Output Arguments
This example shows how to migrate portopt without output arguments to a Portfolio object.

The basic portopt functionality is represented as:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

portopt(ExpReturn, ExpCovariance, NumPorts);

To migrate a portopt syntax without output arguments to a Portfolio object:
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ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

plotFrontier(p, NumPorts);

Without output arguments, portopt plots the efficient frontier. The Portfolio object has similar
behavior although the Portfolio object writes to the current figure window rather than create a new
window each time a plot is generated.

Migrate portopt with Output Arguments
This example shows how to migrate portopt with output arguments to a Portfolio object.

With output arguments, the basic functionality of portopt returns portfolio moments and weights.
Once the Portfolio object is set up, moments and weights are obtained in separate steps.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
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    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts);

display(PortWts);

PortWts =

    0.2103    0.2746    0.1157    0.1594    0.2400
    0.1744    0.2657    0.1296    0.2193    0.2110
    0.1386    0.2567    0.1436    0.2791    0.1821
    0.1027    0.2477    0.1575    0.3390    0.1532
    0.0668    0.2387    0.1714    0.3988    0.1242
    0.0309    0.2298    0.1854    0.4587    0.0953
         0    0.2168    0.1993    0.5209    0.0629
         0    0.1791    0.2133    0.5985    0.0091
         0    0.0557    0.2183    0.7260         0
         0         0         0    1.0000         0

To migrate a portopt syntax with output arguments:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

display(PortWts);

PortWts =

    0.2103    0.1744    0.1386    0.1027    0.0668    0.0309         0         0         0         0
    0.2746    0.2657    0.2567    0.2477    0.2387    0.2298    0.2168    0.1791    0.0557         0
    0.1157    0.1296    0.1436    0.1575    0.1714    0.1854    0.1993    0.2133    0.2183         0
    0.1594    0.2193    0.2791    0.3390    0.3988    0.4587    0.5209    0.5985    0.7260    1.0000
    0.2400    0.2110    0.1821    0.1532    0.1242    0.0953    0.0629    0.0091         0         0

The Portfolio object returns PortWts with portfolios going down columns, not across rows. Portfolio
risks and returns are still in column format.

Migrate portopt for Target Returns Within Range of Efficient Portfolio
Returns
This example shows how to migrate portopt target returns within range of efficient portfolio returns
to a Portfolio object.

portopt can obtain portfolios with specific targeted levels of return but requires that the targeted
returns fall within the range of efficient returns. The Portfolio object handles this by selecting
portfolios at the ends of the efficient frontier.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
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ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, [], TargetReturn);

disp(' Efficient    Target');
disp([PortReturn, TargetReturn]);

 Efficient    Target
    0.0500    0.0500
    0.0600    0.0600
    0.0700    0.0700
    0.0800    0.0800
    0.0900    0.0900

To migrate a portopt syntax for target returns within range of efficient portfolio returns to a
Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(' Efficient    Target');
disp([PortReturn, TargetReturn]);

 Efficient    Target
    0.0500    0.0500
    0.0600    0.0600
    0.0700    0.0700
    0.0800    0.0800
    0.0900    0.0900

Migrate portopt for Target Return Outside Range of Efficient Portfolio
Returns
This example shows how to migrate portopt target returns outside of range of efficient portfolio
returns to a Portfolio object.

When the target return is outside of the range of efficient portfolio returns, portopt generates an
error. The Portfolio object handles this effectively by selecting portfolios at the ends of the efficient
frontier.
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ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, [], TargetReturn);

disp(' Efficient    Target');
disp([PortReturn, TargetReturn]);

> In portopt at 85 
Error using portopt (line 297)
One or more requested returns are greater than the maximum achievable return of 0.093400.

To migrate a portopt syntax for target returns outside of the range of efficient portfolio returns to a
Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(' Efficient    Target');
disp([PortReturn, TargetReturn]);

Warning: One or more target return values are outside the feasible range [
0.0427391, 0.0934 ].
    Will return portfolios associated with endpoints of the range for these
    values. 
> In Portfolio/estimateFrontierByReturn (line 106) 
 Efficient    Target
    0.0500    0.0500
    0.0600    0.0600
    0.0700    0.0700
    0.0800    0.0800
    0.0900    0.0900
    0.0934    0.1000

Migrate portopt Using portcons Output for ConSet
This example shows how to migrate portopt when the ConSet output from portcons is used with
portopt.

portopt accepts as input the outputs from portcons, pcalims, pcglims, and pcgcomp. This
example focuses on portcons. portcons sets up linear constraints for portopt in the form A*Port
<= b. In a matrix ConSet = [ A, b ] and break into separate A and b arrays with A =
ConSet(:,1:end-1); and b = ConSet(:,end);. In addition, to illustrate default problem with
additional group constraints, consider three groups. Assets 2, 3, and 4 can constitute up to 80% of
portfolio, Assets 1 and 2 can constitute up to 70% of portfolio, and Assets 3, 4, and 5 can constitute
up to 90% of portfolio.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
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ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);
UpperGroup = GroupBounds(:,2);

ConSet = portcons('default', 5, 'grouplims', Groups, LowerGroup, UpperGroup);

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts, [], ConSet);

disp([PortRisk, PortReturn]);

Error using portopt (line 83)
In the current and future releases, portopt will no longer accept ConSet or varargin arguments.
'It will only solve the portfolio problem for long-only fully-invested portfolios.    
To solve more general problems, use the Portfolio object.
See the release notes for details, including examples to make the conversion.

To migrate portopt to a Portfolio object when the ConSet output from portcons is used with
portopt:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);
UpperGroup = GroupBounds(:,2);

ConSet = portcons('default', 5, 'grouplims', Groups, LowerGroup, UpperGroup);

A = ConSet(:,1:end-1);
b = ConSet(:,end);

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setInequality(p, A, b);                    % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288    0.0427
0.1292    0.0465
0.1306    0.0503
0.1328    0.0540
0.1358    0.0578
0.1395    0.0615
0.1440    0.0653
0.1504    0.0690
0.1590    0.0728
0.1806    0.0766
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The constraints are entered directly into the Portfolio object with the setInequality or
addInequality functions.

Integrate Output from portcons, pcalims, pcglims, and pcgcomp with
a Portfolio Object
This example shows how to integrate output from pcalims, pcalims, pcglims, or pcgcomp with a
Portfolio object implementation.

portcons, pcalims, pcglims, and pcgcomp setup linear constraints for portopt in the form
A*Port <= b. Although some functions permit two outputs, assume that the output is a single
matrix ConSet. Break into separate A and b arrays with:

• A = ConSet(:,1:end-1);
• b = ConSet(:,end);

In addition, to illustrate default problem with additional group constraints, consider three groups:

• Assets 2, 3, and 4 can constitute up to 80% of portfolio.
• Assets 1 and 2 can constitute up to 70% of portfolio.
• Assets 3, 4, and 5 can constitute up to 90% of portfolio.

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

To integrate the ConSet output of portcons with a Portfolio object implementation:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);
UpperGroup = GroupBounds(:,2);

ConSet = portcons('default', 5, 'grouplims', Groups, LowerGroup, UpperGroup);

A = ConSet(:,1:end-1);
b = ConSet(:,end);

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);                % implement default constraints here
p = setInequality(p, A, b);                    % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

    0.1288    0.0427
    0.1292    0.0465
    0.1306    0.0503
    0.1328    0.0540
    0.1358    0.0578
    0.1395    0.0615
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    0.1440    0.0653
    0.1504    0.0690
    0.1590    0.0728
    0.1806    0.0766

To integrate the output of pcalims and pcglims with a Portfolio object implementation:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);
UpperGroup = GroupBounds(:,2);

AssetMin = [ 0; 0; 0; 0; 0 ];
AssetMax = [ 0.8; 0.8; 0.8; 0.8; 0.8 ];

[Aa, ba] = pcalims(AssetMin, AssetMax);
[Ag, bg] = pcglims(Groups, LowerGroup, UpperGroup);

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);                % implement default constraints first
p = addInequality(p, Aa, ba);                % implement bound constraints here
p = addInequality(p, Ag, bg);                % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288    0.0427
0.1292    0.0465
0.1306    0.0503
0.1328    0.0540
0.1358    0.0578
0.1395    0.0615
0.1440    0.0653
0.1504    0.0690
0.1590    0.0728
0.1806    0.0766

See Also
Portfolio | portopt | portcons | pcalims | pcglims | pcgcomp | estimatePortMoments |
setInequality | setDefaultConstraints | addInequality | setAssetMoments |
estimateFrontier | estimateFrontierByReturn

Related Examples
• “frontcon Migration to Portfolio Object” on page 3-19

More About
• “Portfolio Object Workflow” on page 4-17
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frontcon Migration to Portfolio Object
In this section...
“Migrate frontcon Without Output Arguments” on page 3-19
“Migrate frontcon with Output Arguments” on page 3-20
“Migrate frontcon for Target Returns Within Range of Efficient Portfolio Returns” on page 3-21
“Migrate frontcon for Target Returns Outside Range of Efficient Portfolio Returns” on page 3-22
“Migrate frontcon Syntax When Using Bounds” on page 3-23
“Migrate frontcon Syntax When Using Groups” on page 3-24

Migrate frontcon Without Output Arguments
This example shows how to migrate frontcon without output arguments to a Portfolio object.

The basic frontcon functionality is represented as:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

frontcon(ExpReturn, ExpCovariance, NumPorts);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax without output arguments to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

plotFrontier(p, NumPorts);
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The Portfolio object writes to the current figure window rather than create a new window each time a
plot is generated.

Migrate frontcon with Output Arguments
This example shows how to migrate frontcon with output arguments to a Portfolio object.

The basic frontcon functionality is represented as:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts);

display(PortWts);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax with output arguments:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;
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p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

display(PortWts);

PortWts =

    0.2103    0.1744    0.1386    0.1027    0.0668    0.0309         0         0         0         0
    0.2746    0.2657    0.2567    0.2477    0.2387    0.2298    0.2168    0.1791    0.0557         0
    0.1157    0.1296    0.1436    0.1575    0.1714    0.1854    0.1993    0.2133    0.2183         0
    0.1594    0.2193    0.2791    0.3390    0.3988    0.4587    0.5209    0.5985    0.7260    1.0000
    0.2400    0.2110    0.1821    0.1532    0.1242    0.0953    0.0629    0.0091         0         0

The Portfolio object returns PortWts with portfolios going down columns, not across rows. Portfolio
risks and returns are still in column format.

Migrate frontcon for Target Returns Within Range of Efficient Portfolio
Returns
This example shows how to migrate frontcon target returns within range of efficient portfolio
returns to a Portfolio object.

frontcon can obtain portfolios with specific targeted levels of return but requires that the targeted
returns fall within the range of efficient returns. The Portfolio object handles this by selecting
portfolios at the ends of the efficient frontier.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, [], TargetReturn);

disp(' Efficient    Target');
disp([PortReturn, TargetReturn]);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax for target returns within range of efficient portfolio returns to a
Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;
TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(' Efficient    Target');
disp([PortReturn, TargetReturn]);
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Efficient    Target
    0.0500    0.0500
    0.0600    0.0600
    0.0700    0.0700
    0.0800    0.0800
    0.0900    0.0900

Migrate frontcon for Target Returns Outside Range of Efficient
Portfolio Returns
This example shows how to migrate frontcon target returns outside of range of efficient portfolio
returns to a Portfolio object.

When the target return is outside of the range of efficient portfolio returns, frontcon generates an
error. The Portfolio object handles this effectively by selecting portfolios at the ends of the efficient
frontier.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, [], TargetReturn);

disp(' Efficient    Target');
disp([PortReturn, TargetReturn]);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax for target returns outside of the range of efficient portfolio returns to
a Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(' Efficient    Target');
disp([PortReturn, TargetReturn]);

Warning: One or more target return values are outside the feasible range [
0.0427391, 0.0934 ].
    Will return portfolios associated with endpoints of the range for these
    values. 
> In Portfolio/estimateFrontierByReturn (line 106) 
 Efficient    Target
    0.0500    0.0500
    0.0600    0.0600
    0.0700    0.0700
    0.0800    0.0800
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    0.0900    0.0900
    0.0934    0.1000

Migrate frontcon Syntax When Using Bounds
This example shows how to migrate frontcon syntax for AssetBounds to a Portfolio object.

Use frontcon with an input specification for AssetBounds that contains the lower and upper
bounds on the weight allocated to each asset in the portfolio:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

AssetBounds = [ 0.1, 0.1, 0.1, 0.1, 0.1; 0.5, 0.5, 0.5, 0.5, 0.5 ];

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts, [], AssetBounds);

disp([PortRisk, PortReturn]);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax using AssetBounds to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;
AssetBounds = [ 0.1, 0.1, 0.1, 0.1, 0.1; 0.5, 0.5, 0.5, 0.5, 0.5 ];

LowerBound = AssetBounds(1,:);
UpperBound = AssetBounds(2,:);

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);
p = setBounds(p, LowerBound, UpperBound);

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288    0.0427
0.1291    0.0457
0.1299    0.0487
0.1313    0.0516
0.1332    0.0546
0.1356    0.0576
0.1385    0.0605
0.1419    0.0635
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0.1461    0.0665
0.1519    0.0694

Migrate frontcon Syntax When Using Groups
This example shows how to migrate frontcon syntax for Groups and GroupBounds to a Portfolio
object.

Use frontcon with an input specification for Groups (asset groups or classes.) and GroupBounds
(the lower and upper bounds of the total weights of all assets in a group). Consider three groups:
Assets 2, 3, and 4 can constitute up to 80% of a portfolio, Assets 1 and 2 can constitute up to 70% of a
portfolio, and Assets 3, 4, and 5 can constitute up to 90% of a portfolio.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

[PortRisk, PortReturn, PortWgts] = frontcon(ExpReturn, ExpCovariance, NumPorts, [], [], ...
    Groups, GroupBounds);

disp([PortRisk, PortReturn]);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax using Groups and GroupBounds to a Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;
    0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
    0.0039,  0.0035,  0.0997,  0.0100,  0.0070;
    0.0070,  0.0197,  0.0100,  0.0461,  0.0050;
    0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);
UpperGroup = GroupBounds(:,2);

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);
p = setGroups(p, Groups, LowerGroup, UpperGroup);

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288    0.0427
0.1292    0.0465
0.1306    0.0503
0.1328    0.0540
0.1358    0.0578
0.1395    0.0615
0.1440    0.0653
0.1504    0.0690
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0.1590    0.0728
0.1806    0.0766

See Also
Portfolio | portopt | portcons | pcalims | pcglims | pcgcomp | estimatePortMoments |
setInequality | setDefaultConstraints | addInequality | setAssetMoments |
estimateFrontier | estimateFrontierByReturn | setGroups | setBounds

Related Examples
• “portopt Migration to Portfolio Object” on page 3-11

More About
• “Portfolio Object Workflow” on page 4-17
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Constraint Specification Using a Portfolio Object
In this section...
“Constraints for Efficient Frontier” on page 3-26
“Linear Constraint Equations” on page 3-28
“Specifying Group Constraints” on page 3-30

Constraints for Efficient Frontier
This example computes the efficient frontier of portfolios consisting of three different assets, INTC,
XON, and RD, given a list of constraints. The expected returns for INTC, XON, and RD are
respectively as follows:

ExpReturn = [0.1 0.2 0.15]; 

The covariance matrix is

ExpCovariance  =  [ 0.005   -0.010    0.004;
                   -0.010    0.040   -0.002;
                    0.004   -0.002    0.023];

• Constraint 1

• Allow short selling up to 10% of the portfolio value in any asset, but limit the investment in any
one asset to 110% of the portfolio value.

• Constraint 2

• Consider two different sectors, technology and energy, with the following table indicating the
sector each asset belongs to.

Asset INTC XON RD
Sector Technology Energy Energy

Constrain the investment in the Energy sector to 80% of the portfolio value, and the
investment in the Technology sector to 70%.

To solve this problem, use Portfolio, passing in a list of asset constraints. Consider eight
different portfolios along the efficient frontier:

NumPorts = 8;

To introduce the asset bounds constraints specified in Constraint 1, create the matrix
AssetBounds, where each column represents an asset. The upper row represents the lower
bounds, and the lower row represents the upper bounds. Since the bounds are the same for
each asset, only one pair of bounds is needed because of scalar expansion.

AssetBounds = [-0.1, 1.1];

Constraint 2 must be entered in two parts, the first part defining the groups, and the second
part defining the constraints for each group. Given the information above, you can build a
matrix of 1s and 0s indicating whether a specific asset belongs to a group. Each column
represents an asset, and each row represents a group. This example has two groups: the
technology group, and the energy group. Create the matrix Groups as follows.
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Groups =  [0   1   1; 
           1   0   0];

The GroupBounds matrix allows you to specify an upper and lower bound for each group.
Each row in this matrix represents a group. The first column represents the minimum
allocation, and the second column represents the maximum allocation to each group. Since the
investment in the Energy sector is capped at 80% of the portfolio value, and the investment in
the Technology sector is capped at 70%, create the GroupBounds matrix using this
information.

GroupBounds = [0   0.80;
               0   0.70];

Now use Portfolio to obtain the vectors and arrays representing the risk, return, and
weights for each of the eight portfolios computed along the efficient frontier. A budget
constraint is added to ensure that the portfolio weights sum to 1.
p = Portfolio('AssetMean', ExpReturn, 'AssetCovar', ExpCovariance);
p = setBounds(p, AssetBounds(1), AssetBounds(2));
p = setBudget(p, 1, 1);
p = setGroups(p, Groups, GroupBounds(:,1), GroupBounds(:,2));

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

PortRisk
PortReturn
PortWts

PortRisk =

    0.0416
    0.0499
    0.0624
    0.0767
    0.0920
    0.1100
    0.1378
    0.1716

PortReturn =

    0.1279
    0.1361
    0.1442
    0.1524
    0.1605
    0.1687
    0.1768
    0.1850

PortWts =

    0.7000    0.6031    0.4864    0.3696    0.2529    0.2000    0.2000    0.2000
    0.2582    0.3244    0.3708    0.4172    0.4636    0.5738    0.7369    0.9000
    0.0418    0.0725    0.1428    0.2132    0.2835    0.2262    0.0631   -0.1000

The outputs are represented as columns for the portfolio’s risk and return. Portfolio weights
are identified as corresponding column vectors in a matrix.
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Linear Constraint Equations
While the Portfolio object allows you to enter a fixed set of constraints related to minimum and
maximum values for groups and individual assets, you often need to specify a larger and more
general set of constraints when finding the optimal risky portfolio. Portfolio also addresses this
need, by accepting an arbitrary set of constraints.

This example requires specifying the minimum and maximum investment in various groups.

Maximum and Minimum Group Exposure

Group Minimum Exposure Maximum Exposure
North America 0.30 0.75
Europe 0.10 0.55
Latin America 0.20 0.50
Asia 0.50 0.50

The minimum and maximum exposure in Asia is the same. This means that you require a fixed
exposure for this group.

Also assume that the portfolio consists of three different funds. The correspondence between funds
and groups is shown in the table below.

Group Membership

Group Fund 1 Fund 2 Fund 3
North America X X  
Europe   X
Latin America X   
Asia  X X

Using the information in these two tables, build a mathematical representation of the constraints
represented. Assume that the vector of weights representing the exposure of each asset in a portfolio
is called Wts = [W1 W2 W3].

Specifically

1. W1 + W2 ≥ 0.30
2. W1 + W2 ≤ 0.75
3. W3 ≥ 0.10
4. W3 ≤ 0.55
5. W1 ≥ 0.20
6. W1 ≤ 0.50
7. W2 + W3 = 0.50

Since you must represent the information in the form A*Wts <= b, multiply equations 1, 3 and 5 by –
1. Also turn equation 7 into a set of two inequalities: W2 + W3 ≥ 0.50 and W2 + W3 ≤ 0.50. (The
intersection of these two inequalities is the equality itself.) Thus

3 Portfolio Analysis

3-28



1. -W1 - W2 ≤ -0.30
2. W1 + W2 ≤ 0.75
3. -W3 ≤ -0.10
4. W3 ≤ 0.55
5. -W1 ≤ -0.20
6. W1 ≤ 0.50
7. -W2 - W3 ≤ -0.50
8. W2 + W3 ≤ 0.50

Bringing these equations into matrix notation gives

A = [-1    -1     0;
      1     1     0;
      0     0    -1;
      0     0     1;
     -1     0     0;
      1     0     0;
      0    -1    -1;
      0     1     1]

b = [-0.30;
      0.75;
     -0.10;
      0.55;
     -0.20;
      0.50;
     -0.50;
      0.50]

One approach to solving this portfolio problem is to explicitly use the setInequality function:

p = Portfolio('AssetMean', ExpReturn, 'AssetCovar', ExpCovariance);
p = setBounds(p, AssetBounds(1), AssetBounds(2));
p = setBudget(p, 1, 1);
p = setInequality(p, A, b);
PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

PortRisk
PortReturn
PortWts

PortRisk =

    0.0586
    0.0586
    0.0586
    0.0586
    0.0586
    0.0586
    0.0586
    0.0586

PortReturn =

    0.1375
    0.1375
    0.1375
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    0.1375
    0.1375
    0.1375
    0.1375
    0.1375

PortWts =

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500
    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500

In this case, the constraints allow only one optimum portfolio. Since eight portfolios were requested,
all eight portfolios are the same. Note that the solution to this portfolio problem using the
setInequality function is the same as using the setGroups function in the next example
(“Specifying Group Constraints” on page 3-30).

Specifying Group Constraints
The example above (“Linear Constraint Equations” on page 3-28) defines a constraint matrix that
specifies a set of typical scenarios. It defines groups of assets, specifies upper and lower bounds for
total allocation in each of these groups, and it sets the total allocation of one group to a fixed value.
Constraints like these are common occurrences. Portfolio object enables you to simplify the
creation of the constraint matrix for these and other common portfolio requirements.

An alternative approach for solving the portfolio problem is to use the Portfolio object to define:

• A Group matrix, indicating the assets that belong to each group.
• A GroupMin vector, indicating the minimum bounds for each group.
• A GroupMax vector, indicating the maximum bounds for each group.

Based on the table Group Membership, build the Group matrix, with each row representing a group,
and each column representing an asset.

Group = [1    1    0;
         0    0    1;
         1    0    0;
         0    1    1];

The table Maximum and Minimum Group Exposure has the information to build GroupMin and
GroupMax.

GroupMin = [0.30  0.10  0.20  0.50];
GroupMax = [0.75  0.55  0.50  0.50];

Now use Portfolio and the setInequality function to obtain the vectors and arrays representing
the risk, return, and weights for the portfolios computed along the efficient frontier.

p = Portfolio('AssetMean', ExpReturn, 'AssetCovar', ExpCovariance);
p = setBounds(p, AssetBounds(1), AssetBounds(2));
p = setBudget(p, 1, 1);
p = setGroups(p, Group, GroupMin, GroupMax);
PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

PortRisk
PortReturn
PortWts
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PortRisk =

    0.0586
    0.0586
    0.0586
    0.0586
    0.0586
    0.0586
    0.0586
    0.0586

PortReturn =

    0.1375
    0.1375
    0.1375
    0.1375
    0.1375
    0.1375
    0.1375
    0.1375

PortWts =

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500
    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500

In this case, the constraints allow only one optimum portfolio. Since eight portfolios were requested,
all eight portfolios are the same. Note that the solution to this portfolio problem using the
setGroups function is the same as using the setInequality function in the previous example
(“Linear Constraint Equations” on page 3-28).

See Also
Portfolio | estimateFrontier | estimatePortMoments | setInequality | setGroups

Related Examples
• “Setting Default Constraints for Portfolio Weights Using Portfolio Object” on page 4-57
• “Working with 'Simple' Bound Constraints Using Portfolio Object” on page 4-61
• “Working with Budget Constraints Using Portfolio Object” on page 4-64
• “Working with Group Constraints Using Portfolio Object” on page 4-66
• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-69
• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-72
• “Working with Linear Inequality Constraints Using Portfolio Object” on page 4-75
• “Working with Average Turnover Constraints Using Portfolio Object” on page 4-81
• “Working with One-Way Turnover Constraints Using Portfolio Object” on page 4-84
• “Working with Tracking Error Constraints Using Portfolio Object” on page 4-87
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141

More About
• “Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39
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Active Returns and Tracking Error Efficient Frontier
Suppose that you want to identify an efficient set of portfolios that minimize the variance of the
difference in returns with respect to a given target portfolio, subject to a given expected excess
return. The mean and standard deviation of this excess return are often called the active return and
active risk, respectively. Active risk is sometimes referred to as the tracking error. Since the objective
is to track a given target portfolio as closely as possible, the resulting set of portfolios is sometimes
referred to as the tracking error efficient frontier.

Specifically, assume that the target portfolio is expressed as an index weight vector, such that the
index return series may be expressed as a linear combination of the available assets. This example
illustrates how to construct a frontier that minimizes the active risk (tracking error) subject to
attaining a given level of return. That is, it computes the tracking error efficient frontier.

One way to construct the tracking error efficient frontier is to explicitly form the target return series
and subtract it from the return series of the individual assets. In this manner, you specify the
expected mean and covariance of the active returns, and compute the efficient frontier subject to the
usual portfolio constraints.

This example works directly with the mean and covariance of the absolute (unadjusted) returns but
converts the constraints from the usual absolute weight format to active weight format.

Consider a portfolio of five assets with the following expected returns, standard deviations, and
correlation matrix based on absolute weekly asset returns.

NumAssets    =  5;

ExpReturn    = [0.2074  0.1971  0.2669  0.1323  0.2535]/100;

Sigmas       = [2.6570  3.6297  3.9916  2.7145  2.6133]/100;

Correlations = [1.0000  0.6092  0.6321  0.5833  0.7304
                0.6092  1.0000  0.8504  0.8038  0.7176
                0.6321  0.8504  1.0000  0.7723  0.7236
                0.5833  0.8038  0.7723  1.0000  0.7225
                0.7304  0.7176  0.7236  0.7225  1.0000];

Convert the correlations and standard deviations to a covariance matrix using corr2cov.

ExpCovariance = corr2cov(Sigmas, Correlations);

Next, assume that the target index portfolio is an equally weighted portfolio formed from the five
assets. The sum of index weights equals 1, satisfying the standard full investment budget equality
constraint.

Index = ones(NumAssets, 1)/NumAssets;

Generate an asset constraint matrix using portcons. The constraint matrix AbsConSet is expressed
in absolute format (unadjusted for the index), and is formatted as [A b], corresponding to
constraints of the form A*w <= b. Each row of AbsConSet corresponds to a constraint, and each
column corresponds to an asset. Allow no short-selling and full investment in each asset (lower and
upper bounds of each asset are 0 and 1, respectively). In particular, note that the first two rows
correspond to the budget equality constraint; the remaining rows correspond to the upper/lower
investment bounds.
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AbsConSet = portcons('PortValue', 1, NumAssets, ... 
'AssetLims', zeros(NumAssets,1), ones(NumAssets,1));

Now transform the absolute constraints to active constraints with abs2active.

ActiveConSet = abs2active(AbsConSet, Index);

An examination of the absolute and active constraint matrices reveals that they differ only in the last
column (the columns corresponding to the b in A*w <= b).

[AbsConSet(:,end)  ActiveConSet(:,end)]

ans =

    1.0000         0
   -1.0000         0
    1.0000    0.8000
    1.0000    0.8000
    1.0000    0.8000
    1.0000    0.8000
    1.0000    0.8000
         0    0.2000
         0    0.2000
         0    0.2000
         0    0.2000
         0    0.2000

In particular, note that the sum-to-one absolute budget constraint becomes a sum-to-zero active
budget constraint. The general transformation is as follows:

bactive = babsolute− A × Index .

Now construct the Portfolio object and plot the tracking error efficient frontier with 21 portfolios.
p = Portfolio('AssetMean', ExpReturn, 'AssetCovar', ExpCovariance);
p = p.setInequality(ActiveConSet(:,1:end-1), ActiveConSet(:,end));
[ActiveRisk, ActiveReturn] = p.plotFrontier(21);

plot(ActiveRisk*100, ActiveReturn*100, 'blue')
grid('on')
xlabel('Active Risk (Standard Deviation in Percent)')
ylabel('Active Return (Percent)')
title('Tracking Error Efficient Frontier')
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Of particular interest is the lower-left portfolio along the frontier. This zero-risk/zero-return portfolio
has a practical economic significance. It represents a full investment in the index portfolio itself. Each
tracking error efficient portfolio (each row in the array ActiveWeights) satisfies the active budget
constraint, and thus represents portfolio investment allocations with respect to the index portfolio. To
convert these allocations to absolute investment allocations, add the index to each efficient portfolio.

ActiveWeights = p.estimateFrontier(21);
AbsoluteWeights = ActiveWeights + repmat(Index, 1, 21);

See Also
portalloc | frontier | Portfolio | portcons | portvrisk | pcalims | pcgcomp | pcglims |
pcpval | abs2active | active2abs | plotFrontier | setInequality | estimateFrontier

Related Examples
• “Portfolio Optimization Functions” on page 3-3
• “Portfolio Selection and Risk Aversion” on page 3-7
• “Plotting an Efficient Frontier Using portopt” on page 10-22

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Object Workflow” on page 4-17
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Mean-Variance Portfolio Optimization
Tools

• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
• “Default Portfolio Problem” on page 4-16
• “Portfolio Object Workflow” on page 4-17
• “Portfolio Object” on page 4-19
• “Creating the Portfolio Object” on page 4-24
• “Common Operations on the Portfolio Object” on page 4-32
• “Setting Up an Initial or Current Portfolio” on page 4-36
• “Setting Up a Tracking Portfolio” on page 4-39
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-41
• “Working with a Riskless Asset” on page 4-51
• “Working with Transaction Costs” on page 4-53
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Working with 'Simple' Bound Constraints Using Portfolio Object” on page 4-61
• “Working with Budget Constraints Using Portfolio Object” on page 4-64
• “Working with Group Constraints Using Portfolio Object” on page 4-66
• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-69
• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-72
• “Working with Linear Inequality Constraints Using Portfolio Object” on page 4-75
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

Portfolio Objects” on page 4-78
• “Working with Average Turnover Constraints Using Portfolio Object” on page 4-81
• “Working with One-Way Turnover Constraints Using Portfolio Object” on page 4-84
• “Working with Tracking Error Constraints Using Portfolio Object” on page 4-87
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Obtaining Endpoints of the Efficient Frontier” on page 4-97
• “Obtaining Efficient Portfolios for Target Returns” on page 4-100
• “Obtaining Efficient Portfolios for Target Risks” on page 4-103
• “Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-106
• “Choosing and Controlling the Solver for Mean-Variance Portfolio Optimization” on page 4-109
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-119
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• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “When to Use Portfolio Objects Over Optimization Toolbox” on page 4-126
• “Troubleshooting Portfolio Optimization Results” on page 4-130
• “Portfolio Optimization Examples” on page 4-141
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Portfolio Optimization Against a Benchmark” on page 4-184
• “Portfolio Analysis with Turnover Constraints” on page 4-193
• “Leverage in Portfolio Optimization with a Risk-Free Asset” on page 4-199
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Backtest Investment Strategies” on page 4-220
• “Backtest Investment Strategies with Trading Signals” on page 4-233
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254
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Portfolio Optimization Theory
In this section...
“Portfolio Optimization Problems” on page 4-3
“Portfolio Problem Specification” on page 4-3
“Return Proxy” on page 4-4
“Risk Proxy” on page 4-5

Portfolio Optimization Problems
Portfolio optimization problems involve identifying portfolios that satisfy three criteria:

• Minimize a proxy for risk.
• Match or exceed a proxy for return.
• Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe. A portfolio
specifies either holdings or weights in each individual asset in the asset universe. The convention is
to specify portfolios in terms of weights, although the portfolio optimization tools work with holdings
as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The proxy for risk is
a function that characterizes either the variability or losses associated with portfolio choices. The
proxy for return is a function that characterizes either the gross or net benefits associated with
portfolio choices. The terms “risk” and “risk proxy” and “return” and “return proxy” are
interchangeable. The fundamental insight of Markowitz (see “Portfolio Optimization” on page A-5)
is that the goal of the portfolio choice problem is to seek minimum risk for a given level of return and
to seek maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called the efficient
frontier.

Portfolio Problem Specification
To specify a portfolio optimization problem, you need the following:

• Proxy for portfolio return (μ)
• Proxy for portfolio risk (σ)
• Set of feasible portfolios (X), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization problems:

• The Portfolio object supports mean-variance portfolio optimization (see Markowitz [46], [47] at
“Portfolio Optimization” on page A-5). This object has either gross or net portfolio returns as
the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any
combination of the specified constraints to form a portfolio set.

• The PortfolioCVaR object implements what is known as conditional value-at-risk portfolio
optimization (see Rockafellar and Uryasev [48], [49] at “Portfolio Optimization” on page A-5),
which is referred to as CVaR portfolio optimization. CVaR portfolio optimization works with the
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same return proxies and portfolio sets as mean-variance portfolio optimization but uses
conditional value-at-risk of portfolio returns as the risk proxy.

• The PortfolioMAD object implements what is known as mean-absolute deviation portfolio
optimization (see Konno and Yamazaki [50] at “Portfolio Optimization” on page A-5), which is
referred to as MAD portfolio optimization. MAD portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses mean-absolute
deviation portfolio returns as the risk proxy.

Return Proxy

The proxy for portfolio return is a function μ: X R on a portfolio set X ⊂ Rn that characterizes the
rewards associated with portfolio choices. Usually, the proxy for portfolio return has two general
forms, gross and net portfolio returns. Both portfolio return forms separate the risk-free rate r0 so
that the portfolio x ∈ X contains only risky assets.

Regardless of the underlying distribution of asset returns, a collection of S asset returns y1,...,yS has a
mean of asset returns

m = 1
S ∑s = 1

S
ys,

and (sample) covariance of asset returns

C = 1
S− 1 ∑s = 1

S
(ys−m)(ys−m)T .

These moments (or alternative estimators that characterize these moments) are used directly in
mean-variance portfolio optimization to form proxies for portfolio risk and return.

Gross Portfolio Returns

The gross portfolio return for a portfolio x ∈ X is

μ(x) = r0 + (m− r01)Tx,

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The properties in the Portfolio
object to specify gross portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m

Net Portfolio Returns

The net portfolio return for a portfolio x ∈ X is

μ(x) = r0 + (m− r01)Tx− bTmax 0, x− x0 − sTmax 0, x0− x ,
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where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

b is the proportional cost to purchase assets (n vector).

s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also. Though in this case, it is necessary to
incorporate prices into such costs. The properties in the Portfolio object to specify net portfolio
returns are:

• RiskFreeRate for r0

• AssetMean for m
• InitPort for x0

• BuyCost for b
• SellCost for s

Risk Proxy

The proxy for portfolio risk is a function σ: X R on a portfolio set X ⊂ Rn that characterizes the risks
associated with portfolio choices.

Variance

The variance of portfolio returns for a portfolio x ∈ X is

Variance x = xTCx

where C is the covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is AssetCovar for
C.

Although the risk proxy in mean-variance portfolio optimization is the variance of portfolio returns,
the square root, which is the standard deviation of portfolio returns, is often reported and displayed.
Moreover, this quantity is often called the “risk” of the portfolio. For details, see Markowitz (“Portfolio
Optimization” on page A-5).

Conditional Value-at-Risk

The conditional value-at-risk for a portfolio x ∈ X, which is also known as expected shortfall, is
defined as

CVaRα x = 1
1− α ∫

f (x, y) ≥ VaRα(x)
f (x, y)p(y)dy,

where:

α is the probability level such that 0 < α < 1.
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f(x,y) is the loss function for a portfolio x and asset return y.

p(y) is the probability density function for asset return y.

VaRα is the value-at-risk of portfolio x at probability level α.

The value-at-risk is defined as

VaRα x = min γ:Pr f (x, Y) ≤ γ ≥ α .

An alternative formulation for CVaR has the form:

CVaRα(x) = VaRα x + 1
1− α ∫

Rn
max 0, (f (x, y)− VaRα(x)) p(y)dy

The choice for the probability level α is typically 0.9 or 0.95. Choosing α implies that the value-at-risk
VaRα(x) for portfolio x is the portfolio return such that the probability of portfolio returns falling
below this level is (1 –α). Given VaRα(x) for a portfolio x, the conditional value-at-risk of the portfolio
is the expected loss of portfolio returns above the value-at-risk return.

Note Value-at-risk is a positive value for losses so that the probability level α indicates the
probability that portfolio returns are below the negative of the value-at-risk.

To describe the probability distribution of returns, the PortfolioCVaR object takes a finite sample
of return scenarios ys, with s = 1,...,S. Each ys is an n vector that contains the returns for each of the
n assets under the scenario s. This sample of S scenarios is stored as a scenario matrix of size S-by-n.
Then, the risk proxy for CVaR portfolio optimization, for a given portfolio x ∈ X and α ∈ (0, 1), is
computed as

CVaRα(x) = VaRα(x) + 1
(1− α)S ∑s = 1

S
max 0, − ys

Tx− VaRα(x)

The value-at-risk, VaRα(x), is estimated whenever the CVaR is estimated. The loss function is
f (x, ys) = − ys

Tx, which is the portfolio loss under scenario s.

Under this definition, VaR and CVaR are sample estimators for VaR and CVaR based on the given
scenarios. Better scenario samples yield more reliable estimates of VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49], and Cornuejols and Tütüncü, [51], at
“Portfolio Optimization” on page A-5.

Mean Absolute-Deviation

The mean-absolute-deviation (MAD) for a portfolio x ∈ X is defined as

MAD(x) = 1
S ∑s = 1

S
(ys−m)Tx

where:

ys are asset returns with scenarios s = 1,...S (S collection of n vectors).
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f(x,y) is the loss function for a portfolio x and asset return y.

m is the mean of asset returns (n vector).

such that

m = 1
S ∑s = 1

S
ys

For more information, see Konno and Yamazaki [50] at “Portfolio Optimization” on page A-5.

See Also
Portfolio

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141

More About
• Portfolio
• “Portfolio Object Workflow” on page 4-17
• “Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
• “Default Portfolio Problem” on page 4-16

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Portfolio Set for Optimization Using Portfolio Objects
The final element for a complete specification of a portfolio optimization problem is the set of feasible
portfolios, which is called a portfolio set. A portfolio set X ⊂ Rn is specified by construction as the
intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set
necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most
basic or “default” portfolio set requires portfolio weights to be nonnegative (using the lower-bound
constraint) and to sum to 1 (using the budget constraint). The most general portfolio set handled by
the portfolio optimization tools (Portfolio, PortfolioCVaR, and PortfolioMAD objects) can have
any of these constraints:

• Linear inequality constraints
• Linear equality constraints
• 'Simple' Bound constraints
• 'Conditional' Bond constraints
• Budget constraints
• Group constraints
• Group ratio constraints
• Average turnover constraints
• One-way turnover constraints
• Tracking error constraints (only for Portfolio object)
• Cardinality constraints

Linear Inequality Constraints
Linear inequality constraints are general linear constraints that model relationships among portfolio
weights that satisfy a system of inequalities. Use setInequality to set linear inequality constraints.
Linear inequality constraints take the form

AIx ≤ bI

where:

x is the portfolio (n vector).

AI is the linear inequality constraint matrix (nI-by-n matrix).

bI is the linear inequality constraint vector (nI vector).

n is the number of assets in the universe and nI is the number of constraints.

Portfolio, PortfolioCVaR, and PortfolioMAD object properties to specify linear inequality
constraints are:

• AInequality for AI

• bInequality for bI
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• NumAssets for n

The default is to ignore these constraints.

Linear Equality Constraints
Linear equality constraints are general linear constraints that model relationships among portfolio
weights that satisfy a system of equalities. Use setEquality to set linear equality constraints.
Linear equality constraints take the form

AEx = bE

where:

x is the portfolio (n vector).

AE is the linear equality constraint matrix (nE-by-n matrix).

bE is the linear equality constraint vector (nE vector).

n is the number of assets in the universe and nE is the number of constraints.

Portfolio, PortfolioCVaR, and PortfolioMAD object properties to specify linear equality
constraints are:

• AEquality for AE

• bEquality for bE

• NumAssets for n

The default is to ignore these constraints.

'Simple' Bound Constraints
'Simple' Bound constraints are specialized linear constraints that confine portfolio weights to fall
either above or below specific bounds. Use setBounds to specify bound constraints with a 'Simple'
BoundType. Since every portfolio set must be bounded, it is often a good practice, albeit not
necessary, to set explicit bounds for the portfolio problem. To obtain explicit 'Simple' bounds for a
given portfolio set, use the estimateBounds function. Bound constraints take the form

lB ≤ x ≤ uB

where:

x is the portfolio (n vector).

lB is the lower-bound constraint (n vector).

uB is the upper-bound constraint (n vector).

n is the number of assets in the universe.

Portfolio, PortfolioCVaR, and PortfolioMAD object properties to specify bound constraints
are:
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• LowerBound for lB
• UpperBound for uB

• NumAssets for n

The default is to ignore these constraints.

The default portfolio optimization problem (see “Default Portfolio Problem” on page 4-16) has lB = 0
with uB set implicitly through a budget constraint.

'Conditional' Bound Constraints
'Conditional' Bound constraints, also called semicontinuous constraints, are mixed-integer linear
constraints that confine portfolio weights to fall either above or below specific bounds if the asset is
selected; otherwise, the value of the asset is zero. Use setBounds to specify bound constraints with
a 'Conditional' BoundType. To mathematically formulate this type of constraints, a binary
variable vi is needed. vi = 0 indicates that asset i is not selected and vi indicates that the asset was
selected. Thus

livi ≤ xi ≤ uivi

where

x is the portfolio (n vector).

l is the conditional lower-bound constraint (n vector).

u is the conditional upper-bound constraint (n vector).

n is the number of assets in the universe.

Portfolio, PortfolioCVaR, and PortfolioMAD object properties to specify the bound constraint
are:

• LowerBound for lB
• UpperBound for uB

• NumAssets for n

The default is to ignore this constraint.

Budget Constraints
Budget constraints are specialized linear constraints that confine the sum of portfolio weights to fall
either above or below specific bounds. Use setBudget to set budget constraints. The constraints
take the form

lS ≤ 1Tx ≤ uS

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).
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lS is the lower-bound budget constraint (scalar).

uS is the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

Portfolio, PortfolioCVaR, and PortfolioMAD object properties to specify budget constraints
are:

• LowerBudget for lS
• UpperBudget for uS

• NumAssets for n

The default is to ignore this constraint.

The default portfolio optimization problem (see “Default Portfolio Problem” on page 4-16) has lS = uS
= 1, which means that the portfolio weights sum to 1. If the portfolio optimization problem includes
possible movements in and out of cash, the budget constraint specifies how far portfolios can go into
cash. For example, if lS = 0 and uS = 1, then the portfolio can have 0–100% invested in cash. If cash is
to be a portfolio choice, set RiskFreeRate (r0) to a suitable value (see “Return Proxy” on page 4-4
and “Working with a Riskless Asset” on page 4-51).

Group Constraints
Group constraints are specialized linear constraints that enforce “membership” among groups of
assets. Use setGroups to set group constraints. The constraints take the form

lG ≤ Gx ≤ uG

where:

x is the portfolio (n vector).

lG is the lower-bound group constraint (nG vector).

uG is the upper-bound group constraint (nG vector).

G is the matrix of group membership indexes (nG-by-n matrix).

Each row of G identifies which assets belong to a group associated with that row. Each row contains
either 0s or 1s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not
part of the group.

Portfolio, PortfolioCVaR, and PortfolioMAD object properties to specify group constraints
are:

• GroupMatrix for G
• LowerGroup for lG
• UpperGroup for uG

• NumAssets for n

The default is to ignore these constraints.
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Group Ratio Constraints
Group ratio constraints are specialized linear constraints that enforce relationships among groups of
assets. Use setGroupRatio to set group ratio constraints. The constraints take the form

lRi(GBx)i ≤ (GAx)i ≤ uRi(GBx)i

for i = 1,..., nR where:

x is the portfolio (n vector).

lR is the vector of lower-bound group ratio constraints (nR vector).

uR is the vector matrix of upper-bound group ratio constraints (nR vector).

GA is the matrix of base group membership indexes (nR-by-n matrix).

GB is the matrix of comparison group membership indexes (nR-by-n matrix).

n is the number of assets in the universe and nR is the number of constraints.

Each row of GA and GB identifies which assets belong to a base and comparison group associated with
that row.

Each row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0 indicating
that the asset is not part of the group.

Portfolio, PortfolioCVaR, and PortfolioMAD object properties to specify group ratio
constraints are:

• GroupA for GA

• GroupB for GB

• LowerRatio for lR
• UpperRatio for uR

• NumAssets for n

The default is to ignore these constraints.

Average Turnover Constraints
Turnover constraint is a linear absolute value constraint that ensures estimated optimal portfolios
differ from an initial portfolio by no more than a specified amount. Although portfolio turnover is
defined in many ways, the turnover constraints implemented in Financial Toolbox compute portfolio
turnover as the average of purchases and sales. Use setTurnover to set average turnover
constraints. Average turnover constraints take the form

1
21T x− x0 ≤ τ

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).
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x0 is the initial portfolio (n vector).

τ is the upper bound for turnover (scalar).

n is the number of assets in the universe.

Portfolio, PortfolioCVaR, and PortfolioMAD object properties to specify the average turnover
constraint are:

• Turnover for τ
• InitPort for x0

• NumAssets for n

The default is to ignore this constraint.

One-Way Turnover Constraints
One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio
by no more than specified amounts according to whether the differences are purchases or sales. Use
setOneWayTurnover to set one-way turnover constraints. The constraints take the forms

1Tmax 0, x− x0 ≤ τB

1Tmax 0, x0− x ≤ τS

where:

x is the portfolio (n vector)

1 is the vector of ones (n vector).

x0 is the Initial portfolio (n vector).

τB is the upper bound for turnover constraint on purchases (scalar).

τS is the upper bound for turnover constraint on sales (scalar).

To specify one-way turnover constraints, use the following properties in the Portfolio,
PortfolioCVaR, or PortfolioMAD object:

• BuyTurnover for τB

• SellTurnover for τS

• InitPort for x0

The default is to ignore this constraint.

Note The average turnover constraint (see “Working with Average Turnover Constraints Using
Portfolio Object” on page 4-81) with τ is not a combination of the one-way turnover constraints with
τ = τB = τS.
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Tracking Error Constraints
Tracking error constraint, within a portfolio optimization framework, is an additional constraint to
specify the set of feasible portfolios known as a portfolio set. Use setTrackingError to set tracking
error constraints. The tracking-error constraint has the form

(x− xT)TC(x− xT) ≤ τT2

where:

x is the portfolio (n vector).

xT is the tracking portfolio against which risk is to be measured (n vector).

C is the covariance of asset returns.

τT is the upper bound for tracking error (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify the average turnover constraint are:

• TrackingPort for xT

• TrackingError for τT

The default is to ignore this constraint.

Note The tracking error constraints can be used with any of the other supported constraints in the
Portfolio object without restrictions. However, since the portfolio set necessarily and sufficiently
must be a non-empty compact set, the application of a tracking error constraint may result in an
empty portfolio set. Use estimateBounds to confirm that the portfolio set is non-empty and
compact.

Cardinality Constraints
Cardinality constraint limits the number of assets in the optimal allocation for an Portfolio,
PortfolioCVaR, or PortfolioMAD object . Use setMinMaxNumAssets to specify the
'MinNumAssets' and 'MaxNumAssets' constraints. To mathematically formulate this type of
constraints, a binary variable vi is needed. vi = 0 indicates that asset i is not selected and vi = 1
indicates that the asset was selected. Thus

MinNumAssets ≤ ∑
i = 1

NumAssets
vi ≤ MaxNumAssets

The default is to ignore this constraint.

See Also
Portfolio | PortfolioCVaR | PortfolioMAD
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Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213

More About
• Portfolio
• “Portfolio Object Workflow” on page 4-17
• “Default Portfolio Problem” on page 4-16

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Default Portfolio Problem
The default portfolio optimization problem has a risk and return proxy associated with a given
problem, and a portfolio set that specifies portfolio weights to be nonnegative and to sum to 1. The
lower bound combined with the budget constraint is sufficient to ensure that the portfolio set is
nonempty, closed, and bounded. The default portfolio optimization problem characterizes a long-only
investor who is fully invested in a collection of assets.

• For mean-variance portfolio optimization, it is sufficient to set up the default problem. After
setting up the problem, data in the form of a mean and covariance of asset returns are then used
to solve portfolio optimization problems.

• For conditional value-at-risk portfolio optimization, the default problem requires the additional
specification of a probability level that must be set explicitly. Generally, “typical” values for this
level are 0.90 or 0.95. After setting up the problem, data in the form of scenarios of asset returns
are then used to solve portfolio optimization problems.

• For MAD portfolio optimization, it is sufficient to set up the default problem. After setting up the
problem, data in the form of scenarios of asset returns are then used to solve portfolio
optimization problems.

See Also
Portfolio | PortfolioCVaR | PortfolioMAD

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254
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• “Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
• “Portfolio Object Workflow” on page 4-17

External Websites
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• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Portfolio Object Workflow
The Portfolio object workflow for creating and modeling a mean-variance portfolio is:

1 Create a Portfolio.

Create a Portfolio object for mean-variance portfolio optimization. For more information, see
“Creating the Portfolio Object” on page 4-24.

2 Estimate the mean and covariance for returns.

Evaluate the mean and covariance for portfolio asset returns, including assets with missing data
and financial time series data. For more information, see “Asset Returns and Moments of Asset
Returns Using Portfolio Object” on page 4-41.

3 Specify the Portfolio Constraints.

Define the constraints for portfolio assets such as linear equality and inequality, bound, budget,
group, group ratio, turnover, tracking error, 'Conditional' BoundType, and MinNumAssets,
MaxNumAssets constraints. For more information, see “Working with Portfolio Constraints Using
Defaults” on page 4-57 and “Working with 'Conditional' BoundType, MinNumAssets, and
MaxNumAssets Constraints Using Portfolio Objects” on page 4-78.

4 Validate the Portfolio.

Identify errors for the portfolio specification. For more information, see “Validate the Portfolio
Problem for Portfolio Object” on page 4-90.

5 Estimate the efficient portfolios and frontiers.

Analyze the efficient portfolios and efficient frontiers for a portfolio. For more information, see
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94 and
“Estimate Efficient Frontiers for Portfolio Object” on page 4-116.

6 Postprocess the results.

Use the efficient portfolios and efficient frontiers results to set up trades. For more information,
see “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124.

For an example of this workflow, see “Asset Allocation Case Study” on page 4-161 and “Portfolio
Optimization Examples” on page 4-141.

See Also

Related Examples
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254
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More About
• “Portfolio Optimization Theory” on page 4-3

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Portfolio Object
In this section...
“Portfolio Object Properties and Functions” on page 4-19
“Working with Portfolio Objects” on page 4-19
“Setting and Getting Properties” on page 4-19
“Displaying Portfolio Objects” on page 4-20
“Saving and Loading Portfolio Objects” on page 4-20
“Estimating Efficient Portfolios and Frontiers” on page 4-20
“Arrays of Portfolio Objects” on page 4-21
“Subclassing Portfolio Objects” on page 4-22
“Conventions for Representation of Data” on page 4-22

Portfolio Object Properties and Functions
The Portfolio object implements mean-variance portfolio optimization. Every property and function
of the Portfolio object is public, although some properties and functions are hidden. See
Portfolio for the properties and functions of the Portfolio object. The Portfolio object is a
value object where every instance of the object is a distinct version of the object. Since the
Portfolio object is also a MATLAB object, it inherits the default functions associated with MATLAB
objects.

Working with Portfolio Objects
The Portfolio object and its functions are an interface for mean-variance portfolio optimization. So,
almost everything you do with the Portfolio object can be done using the associated functions. The
basic workflow is:

1 Design your portfolio problem.
2 Use Portfolio to create the Portfolio object or use the various set functions to set up your

portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose your
computations. Since MATLAB features are part of a Portfolio object, you can save and load objects
from your workspace and create and manipulate arrays of objects. After settling on a problem, which,
in the case of mean-variance portfolio optimization, means that you have either data or moments for
asset returns and a collection of constraints on your portfolios, use Portfolio to set the properties
for the Portfolio object. Portfolio lets you create an object from scratch or update an existing
object. Since the Portfolio object is a value object, it is easy to create a basic object, then use
functions to build upon the basic object to create new versions of the basic object. This is useful to
compare a basic problem with alternatives derived from the basic problem. For details, see “Creating
the Portfolio Object” on page 4-24.

Setting and Getting Properties
You can set properties of a Portfolio object using either Portfolio or various set functions.
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Note Although you can also set properties directly, it is not recommended since error-checking is not
performed when you set a property directly.

The Portfolio object supports setting properties with name-value pair arguments such that each
argument name is a property and each value is the value to assign to that property. For example, to
set the AssetMean and AssetCovar properties in an existing Portfolio object p with the values m
and C, use the syntax:

p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);

In addition to Portfolio, which lets you set individual properties one at a time, groups of properties
are set in a Portfolio object with various “set” and “add” functions. For example, to set up an
average turnover constraint, use the setTurnover function to specify the bound on portfolio average
turnover and the initial portfolio. To get individual properties from a Portfolio object, obtain
properties directly or use an assortment of “get” functions that obtain groups of properties from a
Portfolio object. The Portfolio object and the set functions have several useful features:

• Portfolio and the set functions try to determine the dimensions of your problem with either
explicit or implicit inputs.

• Portfolio and the set functions try to resolve ambiguities with default choices.
• Portfolio and the set functions perform scalar expansion on arrays when possible.
• The associated Portfolio object functions try to diagnose and warn about problems.

Displaying Portfolio Objects
The Portfolio object uses the default display functions provided by MATLAB, where display and
disp display a Portfolio object and its properties with or without the object variable name.

Saving and Loading Portfolio Objects
Save and load Portfolio objects using the MATLAB save and load commands.

Estimating Efficient Portfolios and Frontiers
Estimating efficient portfolios and efficient frontiers is the primary purpose of the portfolio
optimization tools. Anefficient portfolio is the portfolios that satisfy the criteria of minimum risk for a
given level of return and maximum return for a given level of risk. A collection of “estimate” and
“plot” functions provide ways to explore the efficient frontier. The “estimate” functions obtain either
efficient portfolios or risk and return proxies to form efficient frontiers. At the portfolio level, a
collection of functions estimates efficient portfolios on the efficient frontier with functions to obtain
efficient portfolios:

• At the endpoints of the efficient frontier
• That attains targeted values for return proxies
• That attains targeted values for risk proxies
• Along the entire efficient frontier

These functions also provide purchases and sales needed to shift from an initial or current portfolio to
each efficient portfolio. At the efficient frontier level, a collection of functions plot the efficient
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frontier and estimate either risk or return proxies for efficient portfolios on the efficient frontier. You
can use the resultant efficient portfolios or risk and return proxies in subsequent analyses.

Arrays of Portfolio Objects
Although all functions associated with a Portfolio object are designed to work on a scalar
Portfolio object, the array capabilities of MATLAB enable you to set up and work with arrays of
Portfolio objects. The easiest way to do this is with the repmat function. For example, to create a
3-by-2 array of Portfolio objects:

p = repmat(Portfolio, 3, 2);
disp(p)

disp(p)
  3×2 Portfolio array with properties:

    BuyCost
    SellCost
    RiskFreeRate
    AssetMean
    AssetCovar
    TrackingError
    TrackingPort
    Turnover
    BuyTurnover
    SellTurnover
    Name
    NumAssets
    AssetList
    InitPort
    AInequality
    bInequality
    AEquality
    bEquality
    LowerBound
    UpperBound
    LowerBudget
    UpperBudget
    GroupMatrix
    LowerGroup
    UpperGroup
    GroupA
    GroupB
    LowerRatio
    UpperRatio
    MinNumAssets
    MaxNumAssets
    BoundType

After setting up an array of Portfolio objects, you can work on individual Portfolio objects in the
array by indexing. For example:

p(i,j) = Portfolio(p(i,j), ... );

This example calls Portfolio for the (i,j) element of a matrix of Portfolio objects in the variable
p.
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If you set up an array of Portfolio objects, you can access properties of a particular Portfolio
object in the array by indexing so that you can set the lower and upper bounds lb and ub for the
(i,j,k) element of a 3-D array of Portfolio objects with

p(i,j,k) = setBounds(p(i,j,k),lb, ub);

and, once set, you can access these bounds with

[lb, ub] = getBounds(p(i,j,k));

Portfolio object functions work on only one Portfolio object at a time.

Subclassing Portfolio Objects
You can subclass the Portfolio object to override existing functions or to add new properties or
functions. To do so, create a derived class from the Portfolio class. This gives you all the properties
and functions of the Portfolio class along with any new features that you choose to add to your
subclassed object. The Portfolio class is derived from an abstract class called
AbstractPortfolio. Because of this, you can also create a derived class from
AbstractPortfolio that implements an entirely different form of portfolio optimization using
properties and functions of the AbstractPortfolio class.

Conventions for Representation of Data
The portfolio optimization tools follow these conventions regarding the representation of different
quantities associated with portfolio optimization:

• Asset returns or prices are in matrix form with samples for a given asset going down the rows and
assets going across the columns. In the case of prices, the earliest dates must be at the top of the
matrix, with increasing dates going down.

• The mean and covariance of asset returns are stored in a vector and a matrix and the tools have
no requirement that the mean must be either a column or row vector.

• Portfolios are in vector or matrix form with weights for a given portfolio going down the rows and
distinct portfolios going across the columns.

• Constraints on portfolios are formed in such a way that a portfolio is a column vector.
• Portfolio risks and returns are either scalars or column vectors (for multiple portfolio risks and

returns).

See Also
Portfolio

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
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• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
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Creating the Portfolio Object
In this section...
“Syntax” on page 4-24
“Portfolio Problem Sufficiency” on page 4-24
“Portfolio Function Examples” on page 4-25

To create a fully specified mean-variance portfolio optimization problem, instantiate the Portfolio
object using Portfolio. For information on the workflow when using Portfolio objects, see
“Portfolio Object Workflow” on page 4-17.

Syntax
Use Portfolio to create an instance of an object of the Portfolio class. You can use Portfolio
in several ways. To set up a portfolio optimization problem in a Portfolio object, the simplest
syntax is:

p = Portfolio;

This syntax creates a Portfolio object, p, such that all object properties are empty.

The Portfolio object also accepts collections of argument name-value pair arguments for
properties and their values. The Portfolio object accepts inputs for public properties with the
general syntax:

    p = Portfolio('property1', value1, 'property2', value2, ... );

If a Portfolio object already exists, the syntax permits the first (and only the first argument) of
Portfolio to be an existing object with subsequent argument name-value pair arguments for
properties to be added or modified. For example, given an existing Portfolio object in p, the
general syntax is:

p = Portfolio(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In addition, several
properties can be specified with alternative argument names (see “Shortcuts for Property Names” on
page 4-29). The Portfolio object detects problem dimensions from the inputs and, once set,
subsequent inputs can undergo various scalar or matrix expansion operations that simplify the overall
process to formulate a problem. In addition, a Portfolio object is a value object so that, given
portfolio p, the following code creates two objects, p and q, that are distinct:

q = Portfolio(p, ...)

Portfolio Problem Sufficiency
A mean-variance portfolio optimization is completely specified with the Portfolio object if these
two conditions are met:

• The moments of asset returns must be specified such that the property AssetMean contains a
valid finite mean vector of asset returns and the property AssetCovar contains a valid symmetric
positive-semidefinite matrix for the covariance of asset returns.
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The first condition is satisfied by setting the properties associated with the moments of asset
returns.

• The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and
bounded.

The second condition is satisfied by an extensive collection of properties that define different types
of constraints to form a set of feasible portfolios. Since such sets must be bounded, either explicit
or implicit constraints can be imposed, and several functions, such as estimateBounds, provide
ways to ensure that your problem is properly formulated.

Although the general sufficiency conditions for mean-variance portfolio optimization go beyond these
two conditions, the Portfolio object implemented in Financial Toolbox implicitly handles all these
additional conditions. For more information on the Markowitz model for mean-variance portfolio
optimization, see “Portfolio Optimization” on page A-5.

Portfolio Function Examples
If you create a Portfolio object, p, with no input arguments, you can display it using disp:

p = Portfolio;
disp(p) 

 Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: []
       AssetCovar: []
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: []
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: []
       UpperBound: []
      LowerBudget: []
      UpperBudget: []
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: [] 
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The approaches listed provide a way to set up a portfolio optimization problem with the Portfolio
object. The set functions offer additional ways to set and modify collections of properties in the
Portfolio object.

Using the Portfolio Function for a Single-Step Setup

You can use the Portfolio object to directly set up a “standard” portfolio optimization problem,
given a mean and covariance of asset returns in the variables m and C:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio('assetmean', m, 'assetcovar', C, ...
'lowerbudget', 1, 'upperbudget', 1, 'lowerbound', 0)

p = 

  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [4×1 double]
       AssetCovar: [4×4 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 4
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [4×1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: []

The LowerBound property value undergoes scalar expansion since AssetMean and AssetCovar
provide the dimensions of the problem.
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You can use dot notation with the function plotFrontier.

p.plotFrontier

Using the Portfolio Function with a Sequence of Steps

An alternative way to accomplish the same task of setting up a “standard” portfolio optimization
problem, given a mean and covariance of asset returns in the variables m and C (which also illustrates
that argument names are not case-sensitive):

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p = Portfolio(p, 'assetmean', m, 'assetcovar', C);
p = Portfolio(p, 'lowerbudget', 1, 'upperbudget', 1);
p = Portfolio(p, 'lowerbound', 0);
 
plotFrontier(p)
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This way works because the calls to Portfolio are in this particular order. In this case, the call to
initialize AssetMean and AssetCovar provides the dimensions for the problem. If you were to do
this step last, you would have to explicitly dimension the LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p = Portfolio(p, 'LowerBound', zeros(size(m)));
p = Portfolio(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);
 
plotFrontier(p)
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If you did not specify the size of LowerBound but, instead, input a scalar argument, the Portfolio
object assumes that you are defining a single-asset problem and produces an error at the call to set
asset moments with four assets.

Shortcuts for Property Names

The Portfolio object has shorter argument names that replace longer argument names associated
with specific properties of the Portfolio object. For example, rather than enter 'assetcovar', the
Portfolio object accepts the case-insensitive name 'covar' to set the AssetCovar property in a
Portfolio object. Every shorter argument name corresponds with a single property in the
Portfolio object. The one exception is the alternative argument name 'budget', which signifies
both the LowerBudget and UpperBudget properties. When 'budget' is used, then the
LowerBudget and UpperBudget properties are set to the same value to form an equality budget
constraint.
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Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name
ae AEquality
ai AInequality
covar AssetCovar
assetnames or assets AssetList
mean AssetMean
be bEquality
bi bInequality
group GroupMatrix
lb LowerBound
n or num NumAssets
rfr RiskFreeRate
ub UpperBound
budget UpperBudget and LowerBudget

For example, this call Portfolio uses these shortcuts for properties and is equivalent to the
previous examples:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio('mean', m, 'covar', C, 'budget', 1, 'lb', 0);
plotFrontier(p)

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly, however no error-checking is done on
your inputs:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p.NumAssets = numel(m);
p.AssetMean = m;
p.AssetCovar = C;
p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));

plotFrontier(p)
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See Also
Portfolio | estimateBounds

Related Examples
• “Common Operations on the Portfolio Object” on page 4-32
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Diversification of Portfolios” on page 4-254
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Common Operations on the Portfolio Object
In this section...
“Naming a Portfolio Object” on page 4-32
“Configuring the Assets in the Asset Universe” on page 4-32
“Setting Up a List of Asset Identifiers” on page 4-32
“Truncating and Padding Asset Lists” on page 4-34

Naming a Portfolio Object
To name a Portfolio object, use the Name property. Name is informational and has no effect on any
portfolio calculations. If the Name property is nonempty, Name is the title for the efficient frontier plot
generated by plotFrontier. For example, if you set up an asset allocation fund, you could name the
Portfolio object Asset Allocation Fund:

p = Portfolio('Name','Asset Allocation Fund');
disp(p.Name)

Asset Allocation Fund

Configuring the Assets in the Asset Universe
The fundamental quantity in the Portfolio object is the number of assets in the asset universe. This
quantity is maintained in the NumAssets property. Although you can set this property directly, it is
derived from other properties such as the mean of asset returns and the initial portfolio. In some
instances, the number of assets may need to be set directly. This example shows how to set up a
Portfolio object that has four assets:

p = Portfolio('NumAssets', 4);
disp(p.NumAssets)

4

After setting the NumAssets property, you cannot modify it (unless no other properties are set that
depend on NumAssets). The only way to change the number of assets in an existing Portfolio
object with a known number of assets is to create a new Portfolio object.

Setting Up a List of Asset Identifiers
When working with portfolios, you must specify a universe of assets. Although you can perform a
complete analysis without naming the assets in your universe, it is helpful to have an identifier
associated with each asset as you create and work with portfolios. You can create a list of asset
identifiers as a cell vector of character vectors in the property AssetList. You can set up the list
using the next two functions.

Setting Up Asset Lists Using the Portfolio Function

Suppose that you have a Portfolio object, p, with assets with symbols 'AA'', 'BA', 'CAT', 'DD',
and 'ETR'. You can create a list of these asset symbols in the object using the Portfolio object:
p = Portfolio('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList)
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'AA'    'BA'    'CAT'    'DD'    'ETR'

Notice that the property AssetList is maintained as a cell array that contains character vectors,
and that it is necessary to pass a cell array into the Portfolio object to set AssetList. In addition,
notice that the property NumAssets is set to 5 based on the number of symbols used to create the
asset list:

disp(p.NumAssets)

5

Setting Up Asset Lists Using the setAssetList Function

You can also specify a list of assets using the setAssetList function. Given the list of asset symbols
'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:

p = Portfolio;
p = setAssetList(p, { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList)

 'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList also enables you to enter symbols directly as a comma-separated list without creating
a cell array of character vectors. For example, given the list of assets symbols 'AA', 'BA', 'CAT',
'DD', and 'ETR', use setAssetList:

p = Portfolio;
p = setAssetList(p,'AA', 'BA', 'CAT', 'DD', 'ETR');
disp(p.AssetList)

'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList has many additional features to create lists of asset identifiers. If you use
setAssetList with just a Portfolio object, it creates a default asset list according to the name
specified in the hidden public property defaultforAssetList (which is 'Asset' by default). The
number of asset names created depends on the number of assets in the property NumAssets. If
NumAssets is not set, then NumAssets is assumed to be 1.

For example, if a Portfolio object p is created with NumAssets = 5, then this code fragment shows
the default naming behavior:

p = Portfolio('numassets',5);
p = setAssetList(p);
disp(p.AssetList)

'Asset1'    'Asset2'    'Asset3'    'Asset4'    'Asset5'

Suppose that your assets are, for example, ETFs and you change the hidden property
defaultforAssetList to 'ETF', you can then create a default list for ETFs:

p = Portfolio('numassets',5);
p.defaultforAssetList = 'ETF'; 
p = setAssetList(p);
disp(p.AssetList)

'ETF1'    'ETF2'    'ETF3'    'ETF4'    'ETF5'
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Truncating and Padding Asset Lists
If the NumAssets property is already set and you pass in too many or too few identifiers, the
Portfolio object, and the setAssetList function truncate or pad the list with numbered default
asset names that use the name specified in the hidden public property defaultforAssetList. If
the list is truncated or padded, a warning message indicates the discrepancy. For example, assume
that you have a Portfolio object with five ETFs and you only know the first three CUSIPs
'921937835', '922908769', and '922042775'. Use this syntax to create an asset list that pads
the remaining asset identifiers with numbered 'UnknownCUSIP' placeholders:
p = Portfolio('numassets',5);
p.defaultforAssetList = 'UnknownCUSIP';
p = setAssetList(p,'921937835', '922908769', '922042775');
disp(p.AssetList)

Warning: Input list of assets has 2 too few identifiers. Padding with numbered assets. 
> In Portfolio.setAssetList at 121 
    '921937835'    '922908769'    '922042775'    'UnknownCUSIP4'    'UnknownCUSIP5'

Alternatively, suppose that you have too many identifiers and need only the first four assets. This
example illustrates truncation of the asset list using the Portfolio object:
p = Portfolio('numassets',4);
p = Portfolio(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });
disp(p.AssetList)

Warning: AssetList has 1 too many identifiers. Using first 4 assets. 
> In Portfolio.checkarguments at 434
  In Portfolio.Portfolio>Portfolio.Portfolio at 171 
    'AGG'    'EEM'    'MDY'    'SPY'

The hidden public property uppercaseAssetList is a Boolean flag to specify whether to convert
asset names to uppercase letters. The default value for uppercaseAssetList is false. This
example shows how to use the uppercaseAssetList flag to force identifiers to be uppercase
letters:

p = Portfolio;
p.uppercaseAssetList = true;
p = setAssetList(p,{ 'aa', 'ba', 'cat', 'dd', 'etr' });
disp(p.AssetList)

'AA'    'BA'    'CAT'    'DD'    'ETR'

See Also
Portfolio | setAssetList | setInitPort | setTrackingPort | estimateBounds |
checkFeasibility

Related Examples
• “Setting Up an Initial or Current Portfolio” on page 4-36
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-41
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
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• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Setting Up an Initial or Current Portfolio
In many applications, creating a new optimal portfolio requires comparing the new portfolio with an
initial or current portfolio to form lists of purchases and sales. The Portfolio object property
InitPort lets you identify an initial or current portfolio. The initial portfolio also plays an essential
role if you have either transaction costs or turnover constraints. The initial portfolio need not be
feasible within the constraints of the problem. This can happen if the weights in a portfolio have
shifted such that some constraints become violated. To check if your initial portfolio is feasible, use
the checkFeasibility function described in “Validating Portfolios” on page 4-91. Suppose that
you have an initial portfolio in x0, then use the Portfolio object to set up an initial portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = Portfolio('InitPort', x0);
disp(p.InitPort)

 0.3000
 0.2000
 0.2000
      0

As with all array properties, you can set InitPort with scalar expansion. This is helpful to set up an
equally weighted initial portfolio of, for example, 10 assets:

p = Portfolio('NumAssets', 10, 'InitPort', 1/10);
disp(p.InitPort)

 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000

To clear an initial portfolio from your Portfolio object, use either the Portfolio object or the
setInitPort function with an empty input for the InitPort property. If transaction costs or
turnover constraints are set, it is not possible to clear the InitPort property in this way. In this
case, to clear InitPort, first clear the dependent properties and then clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the number of
assets if you want to use scalar expansion. For example, given an initial portfolio in x0, use
setInitPort to set the InitPort property:

p = Portfolio;
x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setInitPort(p, x0);
disp(p.InitPort)

 0.3000
 0.2000
 0.2000
      0

To create an equally weighted portfolio of four assets, use setInitPort:
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p = Portfolio;
p = setInitPort(p, 1/4, 4);
disp(p.InitPort)

 0.2500
 0.2500
 0.2500
 0.2500

Portfolio object functions that work with either transaction costs or turnover constraints also depend
on the InitPort property. So, the set functions for transaction costs or turnover constraints permit
the assignment of a value for the InitPort property as part of their implementation. For details, see
“Working with Average Turnover Constraints Using Portfolio Object” on page 4-81, “Working with
One-Way Turnover Constraints Using Portfolio Object” on page 4-84, and “Working with Transaction
Costs” on page 4-53 for details. If either transaction costs or turnover constraints are used, then the
InitPort property must have a nonempty value. Absent a specific value assigned through the
Portfolio object or various set functions, the Portfolio object sets InitPort to 0 and warns if
BuyCost, SellCost, or Turnover properties are set. The following example illustrates what
happens if an average turnover constraint is specified with an initial portfolio:

p = Portfolio('Turnover', 0.3, 'InitPort', [ 0.3; 0.2; 0.2; 0.0 ]);
disp(p.InitPort)

 0.3000
 0.2000
 0.2000
      0

In contrast, this example shows what happens if an average turnover constraint is specified without
an initial portfolio:
p = Portfolio('Turnover', 0.3);
disp(p.InitPort)

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints specified.
Will set NumAssets = 1 and InitPort = 0. 
> In Portfolio.checkarguments at 367
  In Portfolio.Portfolio>Portfolio.Portfolio at 171 
     0

See Also
Portfolio | setAssetList | setInitPort | estimateBounds | checkFeasibility

Related Examples
• “Setting Up a Tracking Portfolio” on page 4-39
• “Common Operations on the Portfolio Object” on page 4-32
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-41
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
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• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
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Setting Up a Tracking Portfolio
Given a benchmark or tracking portfolio, you can ensure that the risk of a portfolio relative to the
benchmark portfolio is no greater than a specified amount. The Portfolio object property
TrackingPort lets you identify a tracking portfolio. For more information on using a tracking
portfolio with tracking error constraints, see “Working with Tracking Error Constraints Using
Portfolio Object” on page 4-87.

The tracking error constraints can be used with any of the other supported constraints in the
Portfolio object without restrictions. However, since the portfolio set necessarily and sufficiently
must be a non-empty compact set, the application of a tracking error constraint can result in an
empty portfolio set. Use estimateBounds to confirm that the portfolio set is non-empty and
compact.

Suppose that you have an initial portfolio in x0, then use the Portfolio object to set up a tracking
portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = Portfolio('TrackingPort', x0);
disp(p.TrackingPort)

    0.3000
    0.2000
    0.2000
         0

As with all array properties, you can set TrackingPort with scalar expansion. This is helpful to set
up an equally weighted tracking portfolio of, for example, 10 assets:

p = Portfolio('NumAssets', 10, 'TrackingPort', 1/10);
disp(p.TrackingPort)

    0.1000
    0.1000
    0.1000
    0.1000
    0.1000
    0.1000
    0.1000
    0.1000
    0.1000
    0.1000

To clear a tracking portfolio from your Portfolio object, use either the Portfolio object or the
setTrackingPort function with an empty input for the TrackingPort property. If transaction
costs or turnover constraints are set, it is not possible to clear the TrackingPort property in this
way. In this case, to clear TrackingPort, first clear the dependent properties and then clear
theTrackingPort property.

The TrackingPort property can also be set with setTrackingPort which lets you specify the
number of assets if you want to use scalar expansion. For example, given an initial portfolio in x0, use
setTrackingPort to set the TrackingPort property:

p = Portfolio;
x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setTrackingPort(p, x0);
disp(p.TrackingPort)
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 0.3000
 0.2000
 0.2000
      0

To create an equally weighted portfolio of four assets, use setTrackingPort:

p = Portfolio;
p = setTrackingPort(p, 1/4, 4);
disp(p.TrackingPort)

 0.2500
 0.2500
 0.2500
 0.2500

See Also
Portfolio | setAssetList | setInitPort | setTrackingPort | setTrackingError |
estimateBounds | checkFeasibility

Related Examples
• “Setting Up an Initial or Current Portfolio” on page 4-36
• “Common Operations on the Portfolio Object” on page 4-32
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-41
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
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Asset Returns and Moments of Asset Returns Using Portfolio
Object

In this section...
“Assignment Using the Portfolio Function” on page 4-41
“Assignment Using the setAssetMoments Function” on page 4-42
“Scalar Expansion of Arguments” on page 4-43
“Estimating Asset Moments from Prices or Returns” on page 4-44
“Estimating Asset Moments with Missing Data” on page 4-46
“Estimating Asset Moments from Time Series Data” on page 4-47

Since mean-variance portfolio optimization problems require estimates for the mean and covariance
of asset returns, the Portfolio object has several ways to set and get the properties AssetMean
(for the mean) and AssetCovar (for the covariance). In addition, the return for a riskless asset is
kept in the property RiskFreeRate so that all assets in AssetMean and AssetCovar are risky
assets. For information on the workflow when using Portfolio objects, see “Portfolio Object
Workflow” on page 4-17.

Assignment Using the Portfolio Function
Suppose that you have a mean and covariance of asset returns in variables m and C. The properties
for the moments of asset returns are set using the Portfolio object:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
p = Portfolio('AssetMean', m, 'AssetCovar', C);
disp(p.NumAssets)
disp(p.AssetMean)
disp(p.AssetCovar)

      4

    0.0042
    0.0083
    0.0100
    0.0150

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

Notice that the Portfolio object determines the number of assets in NumAssets from the moments.
The Portfolio object enables separate initialization of the moments, for example:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
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      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
p = Portfolio;
p = Portfolio(p, 'AssetMean', m);
p = Portfolio(p, 'AssetCovar', C);
[assetmean, assetcovar] = p.getAssetMoments

assetmean =

    0.0042
    0.0083
    0.0100
    0.0150

assetcovar =

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

The getAssetMoments function lets you get the values for AssetMean and AssetCovar properties
at the same time.

Assignment Using the setAssetMoments Function
You can also set asset moment properties using the setAssetMoments function. For example, given
the mean and covariance of asset returns in the variables m and C, the asset moment properties can
be set:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
p = Portfolio;
p = setAssetMoments(p, m, C);
[assetmean, assetcovar] = getAssetMoments(p)

assetmean =

    0.0042
    0.0083
    0.0100
    0.0150

assetcovar =

    0.0005    0.0003    0.0002         0
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    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

Scalar Expansion of Arguments
Both the Portfolio object and the setAssetMoments function perform scalar expansion on
arguments for the moments of asset returns. When using the Portfolio object, the number of
assets must be already specified in the variable NumAssets. If NumAssets has not already been set,
a scalar argument is interpreted as a scalar with NumAssets set to 1. setAssetMoments provides
an additional optional argument to specify the number of assets so that scalar expansion works with
the correct number of assets. In addition, if either a scalar or vector is input for the covariance of
asset returns, a diagonal matrix is formed such that a scalar expands along the diagonal and a vector
becomes the diagonal. This example demonstrates scalar expansion for four jointly independent
assets with a common mean 0.1 and common variance 0.03:

p = Portfolio;
p = setAssetMoments(p, 0.1, 0.03, 4);
[assetmean, assetcovar] = getAssetMoments(p)

assetmean =

    0.1000
    0.1000
    0.1000
    0.1000

assetcovar =

    0.0300         0         0         0
         0    0.0300         0         0
         0         0    0.0300         0
         0         0         0    0.0300

If at least one argument is properly dimensioned, you do not need to include the additional
NumAssets argument. This example illustrates a constant-diagonal covariance matrix and a mean of
asset returns for four assets:

p = Portfolio;
p = setAssetMoments(p, [ 0.05; 0.06; 0.04; 0.03 ], 0.03);
[assetmean, assetcovar] = getAssetMoments(p)

assetmean =

    0.0500
    0.0600
    0.0400
    0.0300

assetcovar =

    0.0300         0         0         0
         0    0.0300         0         0
         0         0    0.0300         0
         0         0         0    0.0300
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In addition, scalar expansion works with the Portfolio object if NumAssets is known, or is deduced
from the inputs.

Estimating Asset Moments from Prices or Returns
Another way to set the moments of asset returns is to use the estimateAssetMoments function
which accepts either prices or returns and estimates the mean and covariance of asset returns. Either
prices or returns are stored as matrices with samples going down the rows and assets going across
the columns. In addition, prices or returns can be stored in a table or timetable (see “Estimating
Asset Moments from Time Series Data” on page 4-47). To illustrate using estimateAssetMoments,
generate random samples of 120 observations of asset returns for four assets from the mean and
covariance of asset returns in the variables m and C with portsim. The default behavior of portsim
creates simulated data with estimated mean and covariance identical to the input moments m and C.
In addition to a return series created by portsim in the variable X, a price series is created in the
variable Y:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);

Note Portfolio optimization requires that you use total returns and not just price returns. So,
"returns" should be total returns and "prices" should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence of examples
demonstrates equivalent ways to estimate asset moments for the Portfolio object. A Portfolio
object is created in p with the moments of asset returns set directly in the Portfolio object, and a
second Portfolio object is created in q to obtain the mean and covariance of asset returns from
asset return data in X using estimateAssetMoments:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
X = portsim(m', C, 120);
p = Portfolio('mean', m, 'covar', C);
q = Portfolio;
q = estimateAssetMoments(q, X);
 
[passetmean, passetcovar] = getAssetMoments(p)
[qassetmean, qassetcovar] = getAssetMoments(q)

passetmean =

    0.0042
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    0.0083
    0.0100
    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

qassetmean =

    0.0042
    0.0083
    0.0100
    0.0150

qassetcovar =

    0.0005    0.0003    0.0002    0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
    0.0000    0.0010    0.0028    0.0102

Notice how either approach has the same moments. The default behavior of
estimateAssetMoments is to work with asset returns. If, instead, you have asset prices in the
variable Y, estimateAssetMoments accepts a name-value pair argument name 'DataFormat' with
a corresponding value set to 'prices' to indicate that the input to the function is in the form of
asset prices and not returns (the default value for the 'DataFormat' argument is 'returns'). This
example compares direct assignment of moments in the Portfolio object p with estimated moments
from asset price data in Y in the Portfolio object q:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
X = portsim(m', C, 120);
Y = ret2tick(X);

p = Portfolio('mean',m,'covar',C);
        
q = Portfolio;
q = estimateAssetMoments(q, Y, 'dataformat', 'prices');
 
[passetmean, passetcovar] = getAssetMoments(p)
[qassetmean, qassetcovar] = getAssetMoments(q)

passetmean =

    0.0042
    0.0083
    0.0100
    0.0150
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passetcovar =

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

qassetmean =

    0.0042
    0.0083
    0.0100
    0.0150

qassetcovar =

    0.0005    0.0003    0.0002    0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
    0.0000    0.0010    0.0028    0.0102

Estimating Asset Moments with Missing Data
Often when working with multiple assets, you have missing data indicated by NaN values in your
return or price data. Although “Multivariate Normal Regression” on page 9-2 goes into detail about
regression with missing data, the estimateAssetMoments function has a name-value pair argument
name 'MissingData' that indicates with a Boolean value whether to use the missing data
capabilities of Financial Toolbox software. The default value for 'MissingData' is false which
removes all samples with NaN values. If, however, 'MissingData' is set to true,
estimateAssetMoments uses the ECM algorithm to estimate asset moments. This example
illustrates how this works on price data with missing values:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
X = portsim(m', C, 120);
Y = ret2tick(X);
Y(1:20,1) = NaN;
Y(1:12,4) = NaN;

p = Portfolio('mean',m,'covar',C);
        
q = Portfolio;
q = estimateAssetMoments(q, Y, 'dataformat', 'prices');
 
r = Portfolio;
r = estimateAssetMoments(r, Y, 'dataformat', 'prices', 'missingdata', true);

[passetmean, passetcovar] = getAssetMoments(p)
[qassetmean, qassetcovar] = getAssetMoments(q)
[rassetmean, rassetcovar] = getAssetMoments(r)

passetmean =

    0.0042
    0.0083
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    0.0100
    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

qassetmean =

    0.0045
    0.0082
    0.0101
    0.0091

qassetcovar =

    0.0006    0.0003    0.0001   -0.0000
    0.0003    0.0023    0.0017    0.0011
    0.0001    0.0017    0.0048    0.0029
   -0.0000    0.0011    0.0029    0.0112

rassetmean =

    0.0045
    0.0083
    0.0100
    0.0113

rassetcovar =

    0.0008    0.0005    0.0001   -0.0001
    0.0005    0.0032    0.0022    0.0015
    0.0001    0.0022    0.0063    0.0040
   -0.0001    0.0015    0.0040    0.0144

The Portfolio object p contains raw moments, the object q contains estimated moments in which
NaN values are discarded, and the object r contains raw moments that accommodate missing values.
Each time you run this example, you will get different estimates for the moments in q and r, and
these will also differ from the moments in p.

Estimating Asset Moments from Time Series Data
The estimateAssetMoments function also accepts asset returns or prices stored in a table or
timetable. estimateAssetMoments implicitly works with matrices of data or data in a table or
timetable object using the same rules for whether the data are returns or prices.

To illustrate the use of a table and timetable, use array2table and array2timetable to create a
table and a timetable that contain asset returns generated with portsim (see “Estimating Asset
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Moments from Prices or Returns” on page 4-44). Two portfolio objects are then created with the
AssetReturns based on a table and a timetable object.
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
assetRetnScenarios = portsim(m', C, 120);
dates = datetime(datenum(2001,1:120,31), 'ConvertFrom', 'datenum');
assetsName = {'Bonds', 'LargeCap', 'SmallCap', 'Emerging'};
assetRetnTimeTable = array2timetable(assetRetnScenarios,'RowTimes',dates, 'VariableNames', assetsName);      
assetRetnTable = array2table(assetRetnScenarios, 'VariableNames', assetsName);

% Create two Portfolio objects:
% p with predefined mean and covar: q with asset return scenarios to estimate mean and covar.
p = Portfolio('mean', m, 'covar', C);
q = Portfolio;

% estimate asset moments with timetable
q = estimateAssetMoments(q, assetRetnTimeTable);
[passetmean, passetcovar] = getAssetMoments(p)
[qassetmean, qassetcovar] = getAssetMoments(q)

% estimate asset moments with table
q = estimateAssetMoments(q, assetRetnTable);
[passetmean, passetcovar] = getAssetMoments(p)
[qassetmean, qassetcovar] = getAssetMoments(q)

passetmean =

    0.0042
    0.0083
    0.0100
    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

qassetmean =

    0.0042
    0.0083
    0.0100
    0.0150

qassetcovar =

    0.0005    0.0003    0.0002   -0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
   -0.0000    0.0010    0.0028    0.0102

passetmean =
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    0.0042
    0.0083
    0.0100
    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

qassetmean =

    0.0042
    0.0083
    0.0100
    0.0150

qassetcovar =

    0.0005    0.0003    0.0002   -0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
   -0.0000    0.0010    0.0028    0.0102

As you can see, the moments match between th two portfolios. In addition, estimateAssetMoments
also extracts asset names or identifiers from a table or timetable when the argument name
'GetAssetList' set to true (its default value is false). If the 'GetAssetList' value is true,
the identifiers are used to set the AssetList property of the object. To show this, the formation of
the Portfolio object q is repeated from the previous example with the 'GetAssetList' flag set to
true extracts the column labels from a table or timetable object:

q = estimateAssetMoments(q,assetRetnTable,'GetAssetList',true);
disp(q.AssetList)

'Bonds'    'LargeCap'    'SmallCap'    'Emerging'

Note if you set the 'GetAssetList' flag set to true and your input data is in a matrix,
estimateAssetMoments uses the default labeling scheme from setAssetList described in
“Setting Up a List of Asset Identifiers” on page 4-32.

See Also
Portfolio | setAssetMoments | estimateAssetMoments | getAssetMoments | setCosts

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
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• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with a Riskless Asset
You can specify a riskless asset with the mean and covariance of asset returns in the AssetMean and
AssetCovar properties such that the riskless asset has variance of 0 and is completely uncorrelated
with all other assets. In this case, the Portfolio object uses a separate RiskFreeRate property
that stores the rate of return of a riskless asset. Thus, you can separate your universe into a riskless
asset and a collection of risky assets. For example, assume that your riskless asset has a return in the
scalar variable r0, then the property for the RiskFreeRate is set using the Portfolio object:

r0 = 0.01/12;
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];

p = Portfolio('RiskFreeRate', r0, 'AssetMean', m, 'AssetCovar', C);
disp(p.RiskFreeRate)

 8.3333e-004

Note If your problem has a budget constraint such that your portfolio weights must sum to 1, then
the riskless asset is irrelevant.

See Also
Portfolio | setAssetMoments | estimateAssetMoments | getAssetMoments

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
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External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)

4 Mean-Variance Portfolio Optimization Tools

4-52

https://www.mathworks.com/videos/using-matlab-to-optimize-portfolios-with-financial-toolbox-81806.html


Working with Transaction Costs
The difference between net and gross portfolio returns is transaction costs. The net portfolio return
proxy has distinct proportional costs to purchase and to sell assets which are maintained in the
Portfolio object properties BuyCost and SellCost. Transaction costs are in units of total return
and, as such, are proportional to the price of an asset so that they enter the model for net portfolio
returns in return form. For example, suppose that you have a stock currently priced $40 and your
usual transaction costs are five cents per share. Then the transaction cost for the stock is 0.05/40 =
0.00125 (as defined in “Net Portfolio Returns” on page 4-4). Costs are entered as positive values and
credits are entered as negative values.

Setting Transaction Costs Using the Portfolio Function
To set up transaction costs, you must specify an initial or current portfolio in the InitPort property.
If the initial portfolio is not set when you set up the transaction cost properties, InitPort is 0. The
properties for transaction costs can be set using thePortfolio object. For example, assume that
purchase and sale transaction costs are in the variables bc and sc and an initial portfolio is in the
variable x0, then transaction costs are set:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = Portfolio('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort)

    5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

Setting Transaction Costs Using the setCosts Function
You can also set the properties for transaction costs using setCosts. Assume that you have the same
costs and initial portfolio as in the previous example. Given a Portfolio object p with an initial
portfolio already set, use setCosts to set up transaction costs:
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bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio('InitPort', x0);
p = setCosts(p, bc, sc);
        
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort) 

    5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

You can also set up the initial portfolio's InitPort value as an optional argument to setCosts so
that the following is an equivalent way to set up transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio;
p = setCosts(p, bc, sc, x0);
        
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort) 

    5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
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    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

For an example of setting costs, see “Portfolio Analysis with Turnover Constraints” on page 4-193.

Setting Transaction Costs with Scalar Expansion
Both the Portfolio object and the setCosts function implement scalar expansion on the
arguments for transaction costs and the initial portfolio. If the NumAssets property is already set in
the Portfolio object, scalar arguments for these properties are expanded to have the same value
across all dimensions. In addition, setCosts lets you specify NumAssets as an optional final
argument. For example, assume that you have an initial portfolio x0 and you want to set common
transaction costs on all assets in your universe. You can set these costs in any of these equivalent
ways:
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = Portfolio('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = Portfolio('InitPort', x0);
p = setCosts(p, 0.002, 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = Portfolio;
p = setCosts(p, 0.002, 0.002, x0);

To clear costs from your Portfolio object, use either the Portfolio object or setCosts with
empty inputs for the properties to be cleared. For example, you can clear sales costs from the
Portfolio object p in the previous example:

p = Portfolio(p, 'SellCost', []);

See Also
Portfolio | setAssetMoments | estimateAssetMoments | getAssetMoments | setCosts

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Portfolio Analysis with Turnover Constraints” on page 4-193
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• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with Portfolio Constraints Using Defaults
The final element for a complete specification of a portfolio optimization problem is the set of feasible
portfolios, which is called a portfolio set. A portfolio set X ⊂ Rn is specified by construction as the
intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set
necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most
basic or “default” portfolio set requires portfolio weights to be nonnegative (using the lower-bound
constraint) and to sum to 1 (using the budget constraint). For information on the workflow when
using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

Setting Default Constraints for Portfolio Weights Using Portfolio
Object
The “default” portfolio problem has two constraints on portfolio weights:

• Portfolio weights must be nonnegative.
• Portfolio weights must sum to 1.

Implicitly, these constraints imply that portfolio weights are no greater than 1, although this is a
superfluous constraint to impose on the problem.

Setting Default Constraints Using the Portfolio Function

Given a portfolio optimization problem with NumAssets = 20 assets, use the Portfolio object to
set up a default problem and explicitly set bounds and budget constraints:

p = Portfolio('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);
disp(p)

  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: []
       AssetCovar: []
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 20
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [20×1 double]
       UpperBound: []
      LowerBudget: 1
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      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
        BoundType: []
     MinNumAssets: []
     MaxNumAssets: []

Setting Default Constraints Using the setDefaultConstraints Function

An alternative approach is to use the setDefaultConstraints function. If the number of assets is
already known in a Portfolio object, use setDefaultConstraints with no arguments to set up
the necessary bound and budget constraints. Suppose that you have 20 assets to set up the portfolio
set for a default problem:

p = Portfolio('NumAssets', 20);
p = setDefaultConstraints(p);
disp(p)

  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: []
       AssetCovar: []
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 20
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [20×1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
        BoundType: [0×0 categorical]
     MinNumAssets: []
     MaxNumAssets: []
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If the number of assets is unknown, setDefaultConstraints accepts NumAssets as an optional
argument to form a portfolio set for a default problem. Suppose that you have 20 assets:

p = Portfolio;
p = setDefaultConstraints(p, 20);
disp(p)

Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: []
       AssetCovar: []
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 20
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [20×1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
        BoundType: [0×0 categorical]
     MinNumAssets: []
     MaxNumAssets: []

See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Working with 'Simple' Bound Constraints Using Portfolio Object” on page 4-61
• “Working with Budget Constraints Using Portfolio Object” on page 4-64
• “Working with Group Constraints Using Portfolio Object” on page 4-66
• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-69
• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-72
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• “Working with Linear Inequality Constraints Using Portfolio Object” on page 4-75
• “Working with Average Turnover Constraints Using Portfolio Object” on page 4-81
• “Working with One-Way Turnover Constraints Using Portfolio Object” on page 4-84
• “Working with Tracking Error Constraints Using Portfolio Object” on page 4-87
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

Portfolio Objects” on page 4-78
• “Creating the Portfolio Object” on page 4-24
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with 'Simple' Bound Constraints Using Portfolio Object
'Simple' bound constraints are optional linear constraints that maintain upper and lower bounds on
portfolio weights (see “'Simple' Bound Constraints” on page 4-9). Although every portfolio set must
be bounded, it is not necessary to specify a portfolio set with explicit bound constraints. For example,
you can create a portfolio set with an implicit upper bound constraint or a portfolio set with average
turnover constraints. The bound constraints have properties LowerBound for the lower-bound
constraint and UpperBound for the upper-bound constraint. Set default values for these constraints
using the setDefaultConstraints function (see “Setting Default Constraints for Portfolio Weights
Using Portfolio Object” on page 4-57).

Setting 'Simple' Bounds Using the Portfolio Function
The properties for bound constraints are set through the Portfolio object. Suppose that you have a
balanced fund with stocks that can range from 50% to 75% of your portfolio and bonds that can range
from 25% to 50% of your portfolio. The bound constraints for a balanced fund are set with:

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];
p = Portfolio('LowerBound', lb, 'UpperBound', ub, 'BoundType', 'Simple');
disp(p.NumAssets)
disp(p.LowerBound)
disp(p.UpperBound)

 2

 0.5000
 0.2500

 0.7500
 0.5000

To continue with this example, you must set up a budget constraint. For details, see “Working with
Budget Constraints Using Portfolio Object” on page 4-64.

Setting 'Simple' Bounds Using the setBounds Function
You can also set the properties for bound constraints using setBounds. Suppose that you have a
balanced fund with stocks that can range from 50% to 75% of your portfolio and bonds that can range
from 25% to 50% of your portfolio. Given a Portfolio object p, use setBounds to set the bound
constraints:

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];
p = Portfolio;
p = setBounds(p, lb, ub,'BoundType', 'Simple');
disp(p.NumAssets)
disp(p.LowerBound)
disp(p.UpperBound)

  2

  0.5000
  0.2500

 Working with 'Simple' Bound Constraints Using Portfolio Object

4-61



  0.7500
  0.5000

Setting 'Simple' Bounds Using the Portfolio Function or setBounds
Function
Both the Portfolio object and setBounds function implement scalar expansion on either the
LowerBound or UpperBound properties. If the NumAssets property is already set in the Portfolio
object, scalar arguments for either property expand to have the same value across all dimensions. In
addition, setBounds lets you specify NumAssets as an optional argument. Suppose that you have a
universe of 500 assets and you want to set common bound constraints on all assets in your universe.
Specifically, you are a long-only investor and want to hold no more than 5% of your portfolio in any
single asset. You can set these bound constraints in any of these equivalent ways:
p = Portfolio('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05,'BoundType', 'Simple');

or

p = Portfolio('NumAssets', 500);
p = setBounds(p, 0, 0.05,'BoundType','Simple');

or

p = Portfolio;
p = setBounds(p, 0, 0.05, 500,'BoundType','Simple');

To clear bound constraints from your Portfolio object, use either the Portfolio object or
setBounds with empty inputs for the properties to be cleared. For example, to clear the upper-bound
constraint from the Portfolio object p in the previous example:

p = Portfolio(p, 'UpperBound', []);

See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

Portfolio Objects” on page 4-78
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
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• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with Budget Constraints Using Portfolio Object
The budget constraint is an optional linear constraint that maintains upper and lower bounds on the
sum of portfolio weights (see “Budget Constraints” on page 4-10). Budget constraints have properties
LowerBudget for the lower budget constraint and UpperBudget for the upper budget constraint. If
you set up a portfolio optimization problem that requires portfolios to be fully invested in your
universe of assets, you can set LowerBudget to be equal to UpperBudget. These budget constraints
can be set with default values equal to 1 using setDefaultConstraints (see “Setting Default
Constraints for Portfolio Weights Using Portfolio Object” on page 4-57).

Setting Budget Constraints Using the Portfolio Function
The properties for the budget constraint can also be set using the Portfolio object. Suppose that
you have an asset universe with many risky assets and a riskless asset and you want to ensure that
your portfolio never holds more than 1% cash, that is, you want to ensure that you are 99–100%
invested in risky assets. The budget constraint for this portfolio can be set with:

p = Portfolio('LowerBudget', 0.99, 'UpperBudget', 1);
disp(p.LowerBudget)
disp(p.UpperBudget)

 0.9900

 1

Setting Budget Constraints Using the setBudget Function
You can also set the properties for a budget constraint using setBudget. Suppose that you have a
fund that permits up to 10% leverage which means that your portfolio can be from 100% to 110%
invested in risky assets. Given a Portfolio object p, use setBudget to set the budget constraints:

p = Portfolio;
p = setBudget(p, 1, 1.1);
disp(p.LowerBudget)
disp(p.UpperBudget)

 1

 1.1000

If you were to continue with this example, then set the RiskFreeRate property to the borrowing
rate to finance possible leveraged positions. For details on the RiskFreeRate property, see “Working
with a Riskless Asset” on page 4-51. To clear either bound for the budget constraint from your
Portfolio object, use either the Portfolio object or setBudget with empty inputs for the properties
to be cleared. For example, clear the upper-budget constraint from the Portfolio object p in the
previous example with:

p = Portfolio(p, 'UpperBudget', []);

See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

4 Mean-Variance Portfolio Optimization Tools

4-64



Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with Group Constraints Using Portfolio Object
Group constraints are optional linear constraints that group assets together and enforce bounds on
the group weights (see “Group Constraints” on page 4-11). Although the constraints are implemented
as general constraints, the usual convention is to form a group matrix that identifies membership of
each asset within a specific group with Boolean indicators (either true or false or with 1 or 0) for
each element in the group matrix. Group constraints have properties GroupMatrix for the group
membership matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for
the upper-bound constraint on groups.

Setting Group Constraints Using the Portfolio Function
The properties for group constraints are set through the Portfolio object. Suppose that you have a
portfolio of five assets and want to ensure that the first three assets constitute no more than 30% of
your portfolio, then you can set group constraints:

G = [ 1 1 1 0 0 ];
p = Portfolio('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.UpperGroup)

5

1     1     1     0     0

0.3000

The group matrix G can also be a logical matrix so that the following code achieves the same result.

G = [ true true true false false ];
p = Portfolio('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.UpperGroup)

5

1     1     1     0     0

0.3000

Setting Group Constraints Using the setGroups and addGroups
Functions
You can also set the properties for group constraints using setGroups. Suppose that you have a
portfolio of five assets and want to ensure that the first three assets constitute no more than 30% of
your portfolio. Given a Portfolio object p, use setGroups to set the group constraints:

G = [ true true true false false ];
p = Portfolio;
p = setGroups(p, G, [], 0.3);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.UpperGroup)
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5

1     1     1     0     0

0.3000

In this example, you would set the LowerGroup property to be empty ([]).

Suppose that you want to add another group constraint to make odd-numbered assets constitute at
least 20% of your portfolio. Set up an augmented group matrix and introduce infinite bounds for
unconstrained group bounds or use the addGroups function to build up group constraints. For this
example, create another group matrix for the second group constraint:
p = Portfolio;
G = [ true true true false false ];    % group matrix for first group constraint
p = setGroups(p, G, [], 0.3);
G = [ true false true false true ];    % group matrix for second group constraint
p = addGroups(p, G, 0.2);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.LowerGroup)
disp(p.UpperGroup)

 5

1     1     1     0     0
1     0     1     0     1

  -Inf
0.2000

0.3000
  Inf

addGroups determines which bounds are unbounded so you only need to focus on the constraints
that you want to set.

The Portfolio object and setGroups and addGroups implement scalar expansion on either the
LowerGroup or UpperGroup properties based on the dimension of the group matrix in the property
GroupMatrix. Suppose that you have a universe of 30 assets with six asset classes such that assets
1–5, assets 6–12, assets 13–18, assets 19–22, assets 23–27, and assets 28–30 constitute each of your
six asset classes and you want each asset class to fall from 0% to 25% of your portfolio. Let the
following group matrix define your groups and scalar expansion define the common bounds on each
group:
p = Portfolio;
G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));
p = setGroups(p, G, 0, 0.25);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.LowerGroup)
disp(p.UpperGroup)

  30

  Columns 1 through 16

     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     1     1     1     1     1     1     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     1     1     1     1
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 17 through 30

     0     0     0     0     0     0     0     0     0     0     0     0     0     0
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     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     1     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     1     1     1     1     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     1     1     1     1     1     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     1     1     1

     0
     0
     0
     0
     0
     0

    0.2500
    0.2500
    0.2500
    0.2500
    0.2500
    0.2500

See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with Group Ratio Constraints Using Portfolio Object
Group ratio constraints are optional linear constraints that maintain bounds on proportional
relationships among groups of assets (see “Group Ratio Constraints” on page 4-12). Although the
constraints are implemented as general constraints, the usual convention is to specify a pair of group
matrices that identify membership of each asset within specific groups with Boolean indicators
(either true or false or with 1 or 0) for each element in each of the group matrices. The goal is to
ensure that the ratio of a base group compared to a comparison group fall within specified bounds.
Group ratio constraints have properties:

• GroupA for the base membership matrix
• GroupB for the comparison membership matrix
• LowerRatio for the lower-bound constraint on the ratio of groups
• UpperRatio for the upper-bound constraint on the ratio of groups

Setting Group Ratio Constraints Using the Portfolio Function
The properties for group ratio constraints are set using the Portfolio object. For example, assume
that you want the ratio of financial to nonfinancial companies in your portfolios to never go above
50%. Suppose that you have six assets with three financial companies (assets 1–3) and three
nonfinancial companies (assets 4–6). To set group ratio constraints:
GA = [ 1 1 1 0 0 0 ];    % financial companies
GB = [ 0 0 0 1 1 1 ];    % nonfinancial companies
p = Portfolio('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Group matrices GA and GB in this example can be logical matrices with true and false elements
that yield the same result:
GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = Portfolio('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000
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Setting Group Ratio Constraints Using the setGroupRatio and
addGroupRatio Functions
You can also set the properties for group ratio constraints using setGroupRatio. For example,
assume that you want the ratio of financial to nonfinancial companies in your portfolios to never go
above 50%. Suppose that you have six assets with three financial companies (assets 1–3) and three
nonfinancial companies (assets 4–6). Given a Portfolio object p, use setGroupRatio to set the
group constraints:
GA = [ true true true false false false ];   % financial companies
GB = [ false false false true true true ];   % nonfinancial companies
p = Portfolio;
p = setGroupRatio(p, GA, GB, [], 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

In this example, you would set the LowerRatio property to be empty ([]).

Suppose that you want to add another group ratio constraint to ensure that the weights in odd-
numbered assets constitute at least 20% of the weights in nonfinancial assets your portfolio. You can
set up augmented group ratio matrices and introduce infinite bounds for unconstrained group ratio
bounds, or you can use the addGroupRatio function to build up group ratio constraints. For this
example, create another group matrix for the second group constraint:
p = Portfolio;
GA = [ true true true false false false ];   % financial companies
GB = [ false false false true true true ];   % nonfinancial companies
p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];   % odd-numbered companies
GB = [ false false false true true true ];   % nonfinancial companies
p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.LowerRatio)
disp(p.UpperRatio)

 6

1     1     1     0     0     0
1     0     1     0     1     0

0     0     0     1     1     1
0     0     0     1     1     1

  -Inf
0.2000

0.5000
  Inf
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Notice that addGroupRatio determines which bounds are unbounded so you only need to focus on
the constraints you want to set.

The Portfolio object, setGroupRatio, and addGroupRatio implement scalar expansion on either
the LowerRatio or UpperRatio properties based on the dimension of the group matrices in GroupA
and GroupB properties.

See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with Linear Equality Constraints Using Portfolio
Object

Linear equality constraints are optional linear constraints that impose systems of equalities on
portfolio weights (see “Linear Equality Constraints” on page 4-9). Linear equality constraints have
properties AEquality, for the equality constraint matrix, and bEquality, for the equality constraint
vector.

Setting Linear Equality Constraints Using the Portfolio Function
The properties for linear equality constraints are set using the Portfolio object. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets are 50% of your portfolio.
To set this constraint:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = Portfolio('AEquality', A, 'bEquality', b);
disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0

0.5000

Setting Linear Equality Constraints Using the setEquality and
addEquality Functions
You can also set the properties for linear equality constraints using setEquality. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets are 50% of your portfolio.
Given a Portfolio object p, use setEquality to set the linear equality constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = Portfolio;
p = setEquality(p, A, b);
disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear equality constraint to ensure that the last three assets
also constitute 50% of your portfolio. You can set up an augmented system of linear equalities or use
addEquality to build up linear equality constraints. For this example, create another system of
equalities:

p = Portfolio;
A = [ 1 1 1 0 0 ];    % first equality constraint
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b = 0.5;
p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % second equality constraint
b = 0.5;
p = addEquality(p, A, b);

disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0
0     0     1     1     1

0.5000
0.5000

The Portfolio object, setEquality, and addEquality implement scalar expansion on the
bEquality property based on the dimension of the matrix in the AEquality property.

See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
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• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)

4 Mean-Variance Portfolio Optimization Tools

4-74

https://www.mathworks.com/videos/using-matlab-to-optimize-portfolios-with-financial-toolbox-81806.html
https://www.mathworks.com/videos/matlab-for-advanced-portfolio-construction-and-stock-selection-models-120626.html


Working with Linear Inequality Constraints Using Portfolio
Object

Linear inequality constraints are optional linear constraints that impose systems of inequalities on
portfolio weights (see “Linear Inequality Constraints” on page 4-8). Linear inequality constraints have
properties AInequality for the inequality constraint matrix, and bInequality for the inequality
constraint vector.

Setting Linear Inequality Constraints Using the Portfolio Function
The properties for linear inequality constraints are set using the Portfolio object. Suppose that you
have a portfolio of five assets and you want to ensure that the first three assets are no more than 50%
of your portfolio. To set up these constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = Portfolio('AInequality', A, 'bInequality', b);
disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0

0.5000

Setting Linear Inequality Constraints Using the setInequality and
addInequality Functions
You can also set the properties for linear inequality constraints using setInequality. Suppose that
you have a portfolio of five assets and you want to ensure that the first three assets constitute no
more than 50% of your portfolio. Given a Portfolio object p, use setInequality to set the linear
inequality constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = Portfolio;
p = setInequality(p, A, b);
disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear inequality constraint to ensure that the last three assets
constitute at least 50% of your portfolio. You can set up an augmented system of linear inequalities or
use the addInequality function to build up linear inequality constraints. For this example, create
another system of inequalities:
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p = Portfolio;
A = [ 1 1 1 0 0 ];    % first inequality constraint
b = 0.5;
p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint
b = -0.5;
p = addInequality(p, A, b);

disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0
0     0    -1    -1    -1

0.5000
-0.5000

The Portfolio object, setInequality, and addInequality implement scalar expansion on the
bInequality property based on the dimension of the matrix in the AInequality property.

See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3

4 Mean-Variance Portfolio Optimization Tools

4-76



• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with 'Conditional' BoundType, MinNumAssets, and
MaxNumAssets Constraints Using Portfolio Objects

When any one, or any combination of 'Conditional' BoundType, MinNumAssets, or
MaxNumAssets constraints are active, the portfolio problem is formulated by adding NumAssets
binary variables, where 0 indicates not invested, and 1 is invested. For example, to explain the
'Conditional' BoundType and MinNumAssets and MaxNumAssets constraints, assume that your
portfolio has a universe of 100 assets that you want to invest:

• 'Conditional' BoundType (also known as semicontinuous constraints), set by setBounds, is
often used in situations where you do not want to invest small values. A standard example is a
portfolio optimization problem where many small allocations are not attractive because of
transaction costs. Instead, you prefer fewer instruments in the portfolio with larger allocations.
This situation can be handled using'Conditional' BoundType constraints for a Portfolio,
PortfolioCVaR, or PortfolioMAD object.

For example, the weight you invest in each asset is either 0 or between [0.01, 0.5]. Generally,
a semicontinuous variable x is a continuous variable between bounds [lb, ub] that also can
assume the value 0, where lb > 0, lb ≤ ub. Applying this to portfolio optimization requires that
very small or large positions should be avoided, that is values that fall in (0, lb) or are more than
ub.

• MinNumAssets and MaxNumAssets (also known as cardinality constraints), set by
setMinMaxNumAssets, limit the number of assets in a Portfolio, PortfolioCVaR, or
PortfolioMAD object. For example, if you have 100 assets in your portfolio and you want the
number of assets allocated in the portfolio to be from 40 through 60. Using MinNumAssets and
MaxNumAssets you can limit the number of assets in the optimized portfolio, which allows you to
limit transaction and operational costs or to create an index tracking portfolio.

Setting 'Conditional' BoundType Constraints Using the setBounds
Function
Use setBounds with a 'conditional' BoundType to set xi = 0 or 0.02 <= xi <= 0.5 for all
i=1,...NumAssets:

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3)  

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [3×1 double]
       AssetCovar: [3×3 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 3
        AssetList: []
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         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [3×1 double]
       UpperBound: [3×1 double]
      LowerBudget: []
      UpperBudget: []
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
        BoundType: [3×1 categorical]
     MinNumAssets: []
     MaxNumAssets: []

Setting the Limits on the Number of Assets Invested Using the
setMinMaxNumAssets Function
You can also set the MinNumAssets and MaxNumAssets properties to define a limit on the number of
assets invested using setMinMaxNumAssets. For example, by setting
MinNumAssets=MaxNumAssets=2, only two of the three assets are invested in the portfolio.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ]; 

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setMinMaxNumAssets(p, 2, 2) 

 Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [3×1 double]
       AssetCovar: [3×3 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 3
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: []
       UpperBound: []
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      LowerBudget: []
      UpperBudget: []
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
        BoundType: []
     MinNumAssets: 2
     MaxNumAssets: 2

See Also
Portfolio | setBounds | setMinMaxNumAssets | setDefaultConstraints | setBounds |
setBudget | setGroups | setGroupRatio | setEquality | setInequality | setTurnover |
setOneWayTurnover | setTrackingPort | setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets

Constraints” on page 4-133
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with Average Turnover Constraints Using Portfolio
Object

The turnover constraint is an optional linear absolute value constraint (see “Average Turnover
Constraints” on page 4-12) that enforces an upper bound on the average of purchases and sales. The
turnover constraint can be set using the Portfolio object or the setTurnover function. The
turnover constraint depends on an initial or current portfolio, which is assumed to be zero if not set
when the turnover constraint is set. The turnover constraint has properties Turnover, for the upper
bound on average turnover, and InitPort, for the portfolio against which turnover is computed.

Setting Average Turnover Constraints Using the Portfolio Function
The properties for the turnover constraints are set using the Portfolio object. Suppose that you
have an initial portfolio of 10 assets in a variable x0 and you want to ensure that average turnover is
no more than 30%. To set this turnover constraint:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = Portfolio('Turnover', 0.3, 'InitPort', x0);
disp(p.NumAssets)
disp(p.Turnover)
disp(p.InitPort)

10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

Note if the NumAssets or InitPort properties are not set before or when the turnover constraint is
set, various rules are applied to assign default values to these properties (see “Setting Up an Initial or
Current Portfolio” on page 4-36).

Setting Average Turnover Constraints Using the setTurnover Function
You can also set properties for portfolio turnover using setTurnover to specify both the upper
bound for average turnover and an initial portfolio. Suppose that you have an initial portfolio of 10
assets in a variable x0 and want to ensure that average turnover is no more than 30%. Given a
Portfolio object p, use setTurnover to set the turnover constraint with and without the initial
portfolio being set previously:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio('InitPort', x0);
p = setTurnover(p, 0.3);

disp(p.NumAssets)
disp(p.Turnover)
disp(p.InitPort)
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10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio;
p = setTurnover(p, 0.3, x0);
disp(p.NumAssets)
disp(p.Turnover)
disp(p.InitPort)

10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

For an example of setting turnover, see “Portfolio Analysis with Turnover Constraints” on page 4-193.

setTurnover implements scalar expansion on the argument for the initial portfolio. If the
NumAssets property is already set in the Portfolio object, a scalar argument for InitPort
expands to have the same value across all dimensions. In addition, setTurnover lets you specify
NumAssets as an optional argument. To clear turnover from your Portfolio object, use the
Portfolio object or setTurnover with empty inputs for the properties to be cleared.

See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
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• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Portfolio Analysis with Turnover Constraints” on page 4-193
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Analysis with Turnover Constraints” on page 4-193
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with One-Way Turnover Constraints Using Portfolio
Object

One-way turnover constraints are optional constraints (see “One-Way Turnover Constraints” on page
4-13) that enforce upper bounds on net purchases or net sales. One-way turnover constraints can be
set using the Portfolio object or the setOneWayTurnover function. One-way turnover constraints
depend upon an initial or current portfolio, which is assumed to be zero if not set when the turnover
constraints are set. One-way turnover constraints have properties BuyTurnover, for the upper
bound on net purchases, SellTurnover, for the upper bound on net sales, and InitPort, for the
portfolio against which turnover is computed.

Setting One-Way Turnover Constraints Using the Portfolio Function
The Properties for the one-way turnover constraints are set using the Portfolio object. Suppose
that you have an initial portfolio with 10 assets in a variable x0 and you want to ensure that turnover
on purchases is no more than 30% and turnover on sales is no more than 20% of the initial portfolio.
To set these turnover constraints:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = Portfolio('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);
disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort)

    10

    0.3000

    0.2000

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

If the NumAssets or InitPort properties are not set before or when the turnover constraint is set,
various rules are applied to assign default values to these properties (see “Setting Up an Initial or
Current Portfolio” on page 4-36).

Setting Turnover Constraints Using the setOneWayTurnover Function
You can also set properties for portfolio turnover using setOneWayTurnover to specify the upper
bounds for turnover on purchases (BuyTurnover) and sales (SellTurnover) and an initial portfolio.
Suppose that you have an initial portfolio of 10 assets in a variable x0 and want to ensure that
turnover on purchases is no more than 30% and that turnover on sales is no more than 20% of the
initial portfolio. Given a Portfolio object p, use setOneWayTurnover to set the turnover
constraints with and without the initial portfolio being set previously:

4 Mean-Variance Portfolio Optimization Tools

4-84



x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio('InitPort', x0);
p = setOneWayTurnover(p, 0.3, 0.2);

disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort) 

    10

    0.3000

    0.2000

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio;
p = setOneWayTurnover(p, 0.3, 0.2, x0);
disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort)

    10

    0.3000

    0.2000

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

setOneWayTurnover implements scalar expansion on the argument for the initial portfolio. If the
NumAssets property is already set in the Portfolio object, a scalar argument for InitPort
expands to have the same value across all dimensions. In addition, setOneWayTurnover lets you
specify NumAssets as an optional argument. To remove one-way turnover from your Portfolio
object, use the Portfolio object or setOneWayTurnover with empty inputs for the properties to be
cleared.
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See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Working with Tracking Error Constraints Using Portfolio Object
Tracking error constraints are optional constraints (see “Tracking Error Constraints” on page 4-14)
that measure the risk relative to a portfolio called a tracking portfolio. Tracking error constraints can
be set using the Portfolio object or the setTrackingError function.

The tracking error constraint is an optional quadratic constraint that enforces an upper bound on
tracking error, which is the relative risk between a portfolio and a designated tracking portfolio. For
more information, see “Tracking Error Constraints” on page 4-14.

The tracking error constraint can be set using the Portfolio object or the setTrackingPort and
setTrackingError functions. The tracking error constraint depends on a tracking portfolio, which
is assumed to be zero if not set when the tracking error constraint is set. The tracking error
constraint has properties TrackingError, for the upper bound on tracking error, and
TrackingPort, for the portfolio against which tracking error is computed.

Note The initial portfolio in the Portfolio object property InitPort is distinct from the tracking
portfolio in the Portfolio object property TrackingPort.

Setting Tracking Error Constraints Using the Portfolio Function
The properties for the tracking error constraints are set using the Portfolio object. Suppose that
you have a tracking portfolio of 10 assets in a variable x0 and you want to ensure that the tracking
error of any portfolio on the efficient frontier is no more than 8% relative to this portfolio. To set this
constraint:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = Portfolio('TrackingError', 0.08, 'TrackingPort', x0);
disp(p.NumAssets)
disp(p.TrackingError)
disp(p.TrackingPort)

    10

    0.0800

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

If the NumAssets or TrackingPort properties are not set before or when the tracking error
constraint is set, various rules are applied to assign default values to these properties (see “Setting
Up a Tracking Portfolio” on page 4-39).

Setting Tracking Error Constraints Using the setTrackingError Function
You can also set properties for portfolio tracking error using the setTrackingError function to
specify both the upper bound for tracking error and a designated tracking portfolio. Suppose that you
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have a tracking portfolio of 10 assets in a variable x0 and want to ensure that tracking error is no
more than 8%. Given a Portfolio object p, use setTrackingError to set the tracking error
constraint with and without the initial portfolio being set previously:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio('TrackingPort', x0);
p = setTrackingError(p, 0.08);

disp(p.NumAssets)
disp(p.TrackingError)
disp(p.TrackingPort) 

    10

    0.0800

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio('TrackingPort', x0);
p = setTrackingError(p, 0.08, x0);

disp(p.NumAssets)
disp(p.TrackingError)
disp(p.TrackingPort) 

    10

    0.0800

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

If the NumAssets or TrackingPort properties are not set before or when the tracking error
constraint is set, various rules are applied to assign default values to these properties (see “Setting
Up a Tracking Portfolio” on page 4-39).

setTrackingError implements scalar expansion on the argument for the tracking portfolio. If the
NumAssets property is already set in the Portfolio object, a scalar argument for TrackingPort
expands to have the same value across all dimensions. In addition, setTrackingError lets you
specify NumAssets as an optional argument. To clear tracking error from your Portfolio object,
use the Portfolio object or setTrackingError with empty inputs for the properties to be cleared.
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See Also
Portfolio | setDefaultConstraints | setBounds | setBudget | setGroups | setGroupRatio
| setEquality | setInequality | setTurnover | setOneWayTurnover | setTrackingPort |
setTrackingError

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Constraint Specification Using a Portfolio Object” on page 3-26
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Setting Up a Tracking Portfolio” on page 4-39

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Validate the Portfolio Problem for Portfolio Object
In this section...
“Validating a Portfolio Set” on page 4-90
“Validating Portfolios” on page 4-91

Sometimes, you may want to validate either your inputs to, or outputs from, a portfolio optimization
problem. Although most error checking that occurs during the problem setup phase catches most
difficulties with a portfolio optimization problem, the processes to validate portfolio sets and
portfolios are time consuming and are best done offline. So, the portfolio optimization tools have
specialized functions to validate portfolio sets and portfolios. For information on the workflow when
using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

Validating a Portfolio Set
Since it is necessary and sufficient that your portfolio set must be a nonempty, closed, and bounded
set to have a valid portfolio optimization problem, the estimateBounds function lets you examine
your portfolio set to determine if it is nonempty and, if nonempty, whether it is bounded. Suppose that
you have the following portfolio set which is an empty set because the initial portfolio at 0 is too far
from a portfolio that satisfies the budget and turnover constraint:

p = Portfolio('NumAssets', 3, 'Budget', 1);
p = setTurnover(p, 0.3, 0);

If a portfolio set is empty, estimateBounds returns NaN bounds and sets the isbounded flag to []:

[lb, ub, isbounded] = estimateBounds(p)

lb =

   NaN
   NaN
   NaN

ub =

   NaN
   NaN
   NaN

isbounded =

     []

Suppose that you create an unbounded portfolio set as follows:

p = Portfolio('AInequality', [1 -1; 1 1 ], 'bInequality', 0);
[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf
  -Inf
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ub =

   1.0e-08 *

   -0.3712
       Inf

isbounded =

  logical

   0

In this case, estimateBounds returns (possibly infinite) bounds and sets the isbounded flag to
false. The result shows which assets are unbounded so that you can apply bound constraints as
necessary.

Finally, suppose that you created a portfolio set that is both nonempty and bounded.
estimateBounds not only validates the set, but also obtains tighter bounds which are useful if you
are concerned with the actual range of portfolio choices for individual assets in your portfolio set:
p = Portfolio;
p = setBudget(p, 1,1);
p = setBounds(p, [ -0.1; 0.2; 0.3; 0.2 ], [ 0.5; 0.3; 0.9; 0.8 ]);
        
[lb, ub, isbounded] = estimateBounds(p)

lb =

   -0.1000
    0.2000
    0.3000
    0.2000

ub =

    0.3000
    0.3000
    0.7000
    0.6000

isbounded =

  logical

   1

In this example, all but the second asset has tighter upper bounds than the input upper bound
implies.

Validating Portfolios
Given a portfolio set specified in a Portfolio object, you often want to check if specific portfolios
are feasible with respect to the portfolio set. This can occur with, for example, initial portfolios and
with portfolios obtained from other procedures. The checkFeasibility function determines

 Validate the Portfolio Problem for Portfolio Object

4-91



whether a collection of portfolios is feasible. Suppose that you perform the following portfolio
optimization and want to determine if the resultant efficient portfolios are feasible relative to a
modified problem.

First, set up a problem in the Portfolio object p, estimate efficient portfolios in pwgt, and then
confirm that these portfolios are feasible relative to the initial problem:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

Next, set up a different portfolio problem that starts with the initial problem with an additional a
turnover constraint and an equally weighted initial portfolio:

q = setTurnover(p, 0.3, 0.25);
checkFeasibility(q, pwgt)

ans =

     0     0     0     1     1     0     0     0     0     0

In this case, only two of the 10 efficient portfolios from the initial problem are feasible relative to the
new problem in Portfolio object q. Solving the second problem using checkFeasibility
demonstrates that the efficient portfolio for Portfolio object q is feasible relative to the initial
problem:

qwgt = estimateFrontier(q);
checkFeasibility(p, qwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

See Also
Portfolio | estimateBounds | checkFeasibility

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
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• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Estimate Efficient Portfolios for Entire Efficient Frontier for
Portfolio Object

There are two ways to look at a portfolio optimization problem that depends on what you are trying to
do. One goal is to estimate efficient portfolios and the other is to estimate efficient frontiers. This
section focuses on the former goal and “Estimate Efficient Frontiers for Portfolio Object” on page 4-
116 focuses on the latter goal. For information on the workflow when using Portfolio objects, see
“Portfolio Object Workflow” on page 4-17.

Obtaining Portfolios Along the Entire Efficient Frontier
The most basic way to obtain optimal portfolios is to obtain points over the entire range of the
efficient frontier. Given a portfolio optimization problem in a Portfolio object, the
estimateFrontier function computes efficient portfolios spaced evenly according to the return
proxy from the minimum to maximum return efficient portfolios. The number of portfolios estimated
is controlled by the hidden property defaultNumPorts which is set to 10. A different value for the
number of portfolios estimated is specified as input to estimateFrontier. This example shows the
default number of efficient portfolios over the entire range of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontier(p);

disp(pwgt)

0.8891    0.7215    0.5540    0.3865    0.2190    0.0515         0         0         0         0
0.0369    0.1289    0.2209    0.3129    0.4049    0.4969    0.4049    0.2314    0.0579         0
0.0404    0.0567    0.0730    0.0893    0.1056    0.1219    0.1320    0.1394    0.1468         0
0.0336    0.0929    0.1521    0.2113    0.2705    0.3297    0.4630    0.6292    0.7953    1.0000

If you want only four portfolios in the previous example:

pwgt = estimateFrontier(p, 4);
disp(pwgt)

    0.8891    0.3865         0         0
    0.0369    0.3129    0.4049         0
    0.0404    0.0893    0.1320         0
    0.0336    0.2113    0.4630    1.0000

Starting from the initial portfolio, estimateFrontier also returns purchases and sales to get from
your initial portfolio to each efficient portfolio on the efficient frontier. For example, given an initial
portfolio in pwgt0, you can obtain purchases and sales:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

0.8891    0.7215    0.5540    0.3865    0.2190    0.0515         0         0         0         0

4 Mean-Variance Portfolio Optimization Tools

4-94



0.0369    0.1289    0.2209    0.3129    0.4049    0.4969    0.4049    0.2314    0.0579         0
0.0404    0.0567    0.0730    0.0893    0.1056    0.1219    0.1320    0.1394    0.1468         0
0.0336    0.0929    0.1521    0.2113    0.2705    0.3297    0.4630    0.6292    0.7953    1.0000

pbuy =

0.5891    0.4215    0.2540    0.0865         0         0         0         0         0         0
     0         0         0    0.0129    0.1049    0.1969    0.1049         0         0         0
     0         0         0         0         0         0         0         0         0         0
     0         0    0.0521    0.1113    0.1705    0.2297    0.3630    0.5292    0.6953    0.9000

psell =

0         0         0         0    0.0810    0.2485    0.3000    0.3000    0.3000    0.3000
0.2631    0.1711    0.0791         0         0         0         0    0.0686    0.2421    0.3000
0.1596    0.1433    0.1270    0.1107    0.0944    0.0781    0.0680    0.0606    0.0532    0.2000
0.0664    0.0071         0         0         0         0         0         0         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
Portfolio | estimateFrontier | estimateFrontierLimits | estimatePortMoments |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | estimateMaxSharpeRatio | setSolver

Related Examples
• “Obtaining Endpoints of the Efficient Frontier” on page 4-97
• “Obtaining Efficient Portfolios for Target Returns” on page 4-100
• “Obtaining Efficient Portfolios for Target Risks” on page 4-103
• “Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-106
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-119
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
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External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Obtaining Endpoints of the Efficient Frontier
Often, you might be interested in the endpoint portfolios for the efficient frontier. Suppose that you
want to determine the range of returns from minimum to maximum to refine a search for a portfolio
with a specific target return. Use the estimateFrontierLimits function to obtain the endpoint
portfolios:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);

disp(pwgt)

    0.8891         0
    0.0369         0
    0.0404         0
    0.0336    1.0000

The estimatePortMoments function shows the range of risks and returns for efficient portfolios:

[prsk, pret] = estimatePortMoments(p, pwgt);
disp([prsk, pret])

 0.0769    0.0590
 0.3500    0.1800

Starting from an initial portfolio, estimateFrontierLimits also returns purchases and sales to get
from the initial portfolio to the endpoint portfolios on the efficient frontier. For example, given an
initial portfolio in pwgt0, you can obtain purchases and sales:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierLimits(p);
    
display(pwgt)
display(pbuy)
display(psell)

pwgt =

    0.8891         0
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    0.0369         0
    0.0404         0
    0.0336    1.0000

pbuy =

    0.5891         0
         0         0
         0         0
         0    0.9000

psell =

         0    0.3000
    0.2631    0.3000
    0.1596    0.2000
    0.0664         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
Portfolio | estimateFrontier | estimateFrontierLimits | estimatePortMoments |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | estimateMaxSharpeRatio | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
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• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Obtaining Efficient Portfolios for Target Returns
To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn
function accepts one or more target portfolios returns and obtains efficient portfolios with the
specified returns. For example, assume that you have a universe of four assets where you want to
obtain efficient portfolios with target portfolio returns of 6%, 9%, and 12%:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt)

pwgt =

    0.8772    0.5032    0.1293
    0.0434    0.2488    0.4541
    0.0416    0.0780    0.1143
    0.0378    0.1700    0.3022

Sometimes, you can request a return for which no efficient portfolio exists. Based on the previous
example, suppose that you want a portfolio with a 5% return (which is the return of the first asset). A
portfolio that is fully invested in the first asset, however, is inefficient. estimateFrontierByReturn
warns if your target returns are outside the range of efficient portfolio returns and replaces it with
the endpoint portfolio of the efficient frontier closest to your target return:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierByReturn(p, [0.05, 0.09, 0.12]);

display(pwgt)

Warning: One or more target return values are outside the feasible range [ 0.0590468, 0.18 ].
    Will return portfolios associated with endpoints of the range for these values. 
> In Portfolio.estimateFrontierByReturn at 70 

pwgt =

    0.8891    0.5032    0.1293
    0.0369    0.2488    0.4541
    0.0404    0.0780    0.1143
    0.0336    0.1700    0.3022

The best way to avoid this situation is to bracket your target portfolio returns with
estimateFrontierLimits and estimatePortReturn (see “Obtaining Endpoints of the Efficient
Frontier” on page 4-97 and “Obtaining Portfolio Risks and Returns” on page 4-116).

4 Mean-Variance Portfolio Optimization Tools

4-100



pret = estimatePortReturn(p, p.estimateFrontierLimits);

display(pret)

pret =

    0.0590
    0.1800

This result indicates that efficient portfolios have returns that range between 5.9% and 18%.

If you have an initial portfolio, estimateFrontierByReturn also returns purchases and sales to get
from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial
portfolio in pwgt0, to obtain purchases and sales with target returns of 6%, 9%, and 12%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

    0.8772    0.5032    0.1293
    0.0434    0.2488    0.4541
    0.0416    0.0780    0.1143
    0.0378    0.1700    0.3022

pbuy =

    0.5772    0.2032         0
         0         0    0.1541
         0         0         0
         0    0.0700    0.2022

psell =

         0         0    0.1707
    0.2566    0.0512         0
    0.1584    0.1220    0.0857
    0.0622         0         0

If you do not have an initial portfolio, the purchase and sale weights assume that your initial portfolio
is 0.

See Also
Portfolio | estimateFrontier | estimateFrontierLimits | estimatePortMoments |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | estimateMaxSharpeRatio | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
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• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Obtaining Efficient Portfolios for Target Risks
To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio risks and obtains efficient portfolios with the specified
risks. Suppose that you have a universe of four assets where you want to obtain efficient portfolios
with target portfolio risks of 12%, 14%, and 16%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
 p = Portfolio;
 p = setAssetMoments(p, m, C);
 p = setDefaultConstraints(p);
 pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

 display(pwgt)

pwgt =

    0.3984    0.2659    0.1416
    0.3064    0.3791    0.4474
    0.0882    0.1010    0.1131
    0.2071    0.2540    0.2979

Sometimes, you can request a risk for which no efficient portfolio exists. Based on the previous
example, suppose that you want a portfolio with 7% risk (individual assets in this universe have risks
ranging from 8% to 35%). It turns out that a portfolio with 7% risk cannot be formed with these four
assets. estimateFrontierByRisk warns if your target risks are outside the range of efficient
portfolio risks and replaces it with the endpoint of the efficient frontier closest to your target risk:

pwgt = estimateFrontierByRisk(p, 0.07)

Warning: One or more target risk values are outside the feasible range [ 0.0769288, 0.35 ].
    Will return portfolios associated with endpoints of the range for these values. 
> In Portfolio.estimateFrontierByRisk at 82 

pwgt =

    0.8891
    0.0369
    0.0404
    0.0336

The best way to avoid this situation is to bracket your target portfolio risks with
estimateFrontierLimits and estimatePortRisk (see “Obtaining Endpoints of the Efficient
Frontier” on page 4-97 and “Obtaining Portfolio Risks and Returns” on page 4-116).

prsk = estimatePortRisk(p, p.estimateFrontierLimits);

display(prsk)

prsk =

    0.0769
    0.3500

This result indicates that efficient portfolios have risks that range from 7.7% to 35%.
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Starting with an initial portfolio, estimateFrontierByRisk also returns purchases and sales to get
from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial
portfolio in pwgt0, you can obtain purchases and sales from the example with target risks of 12%,
14%, and 16%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

    0.3984    0.2659    0.1416
    0.3064    0.3791    0.4474
    0.0882    0.1010    0.1131
    0.2071    0.2540    0.2979

pbuy =

    0.0984         0         0
    0.0064    0.0791    0.1474
         0         0         0
    0.1071    0.1540    0.1979

psell =

         0    0.0341    0.1584
         0         0         0
    0.1118    0.0990    0.0869
         0         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
Portfolio | estimateFrontier | estimateFrontierLimits | estimatePortMoments |
estimateFrontierByReturn | estimatePortReturn | estimatePortRisk |
estimateFrontierByRisk | estimateMaxSharpeRatio | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
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• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Efficient Portfolio That Maximizes Sharpe Ratio
The Sharpe ratio is defined as the ratio

μ(x)− r0

∑ (x)

where x ∈ Rn and r0 is the risk-free rate (μ and Σ proxies for portfolio return and risk). For more
information, see “Portfolio Optimization Theory” on page 4-3.

Portfolios that maximize the Sharpe ratio are portfolios on the efficient frontier that satisfy several
theoretical conditions in finance. For example, such portfolios are called tangency portfolios since the
tangent line from the risk-free rate to the efficient frontier taps the efficient frontier at portfolios that
maximize the Sharpe ratio.

To obtain efficient portfolios that maximizes the Sharpe ratio, the estimateMaxSharpeRatio
function accepts a Portfolio object and obtains efficient portfolios that maximize the Sharpe Ratio.

Suppose that you have a universe with four risky assets and a riskless asset and you want to obtain a
portfolio that maximizes the Sharpe ratio, where, in this example, r0 is the return for the riskless
asset.

r0 = 0.03;
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio('RiskFreeRate', r0);
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateMaxSharpeRatio(p);

display(pwgt)

pwgt =

    0.4251
    0.2917
    0.0856
    0.1977

If you start with an initial portfolio, estimateMaxSharpeRatio also returns purchases and sales to
get from your initial portfolio to the portfolio that maximizes the Sharpe ratio. For example, given an
initial portfolio in pwgt0, you can obtain purchases and sales from the previous example:

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateMaxSharpeRatio(p);

display(pwgt)
display(pbuy)
display(psell)

pwgt =
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    0.4251
    0.2917
    0.0856
    0.1977

pbuy =

    0.1251
         0
         0
    0.0977

psell =

         0
    0.0083
    0.1144
         0

If you do not specify an initial portfolio, the purchase and sale weights assume that you initial
portfolio is 0.

See Also
Portfolio | estimateFrontier | estimateFrontierLimits | estimatePortMoments |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | estimateMaxSharpeRatio | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
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External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Choosing and Controlling the Solver for Mean-Variance
Portfolio Optimization

The default solver for mean-variance portfolio optimization is lcprog, which implements a linear
complementarity programming (LCP) algorithm. Although lcprog works for most problems, you can
adjust arguments to control the algorithm. Alternatively, the mean-variance portfolio optimization
tools let you use any of the variations of quadprog from Optimization Toolbox™ software. Like
Optimization Toolbox which uses the interior-point-convex algorithm as the default algorithm
for quadprog, the portfolio optimization tools also use the interior-point-convex algorithm as
the default. For details about quadprog and quadratic programming algorithms and options, see
“Quadratic Programming Algorithms”.

Using 'lcprog' and 'quadprog'
To modify either lcprog or to specify quadprog as your solver, use the setSolver function to set
the hidden properties solverType and solverOptions that specify and control the solver. Since
the solver properties are hidden, you cannot set these using the Portfolio object. The default
solver is lcprog so you do not need to use setSolver to specify this solver. To use quadprog, you
can set the default interior-point-convex algorithm of quadprog using:

p = Portfolio;
p = setSolver(p, 'quadprog');
display(p.solverType)
display(p.solverOptions)

quadprog options:

   Options used by current Algorithm ('interior-point-convex'):
   (Other available algorithms: 'active-set', 'trust-region-reflective')

   Set properties:
              Algorithm: 'interior-point-convex'
                Display: 'off'
    OptimalityTolerance: 1.0000e-12

   Default properties:
    ConstraintTolerance: 1.0000e-08
           LinearSolver: 'auto'
          MaxIterations: 200
          StepTolerance: 1.0000e-12

and you can switch back tolcprog with:

p = setSolver(p, 'lcprog');
display(p.solverType);
display(p.solverOptions)

lcprog
     MaxIter: []
    TieBreak: []
      TolPiv: 5.0000e-08

In both cases, setSolver sets up default options associated with either solver. If you want to specify
additional options associated with a given solver, setSolver accepts these options with argument
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name-value pair arguments in the function call. For example, if you intend to use quadprog and want
to use the 'trust-region-reflective' algorithm, call setSolver with:

p = Portfolio;
p = setSolver(p, 'quadprog', 'Algorithm', 'trust-region-reflective');
display(p.solverOptions)

  quadprog options:

   Options used by current Algorithm ('trust-region-reflective'):
   (Other available algorithms: 'active-set', 'interior-point-convex')

   Set properties:
              Algorithm: 'trust-region-reflective'

   Default properties:
                Display: 'final'
      FunctionTolerance: 'default dependent on problem'
     HessianMultiplyFcn: []
          MaxIterations: 'default dependent on problem'
    OptimalityTolerance: 'default dependent on problem'
          StepTolerance: 2.2204e-14
    SubproblemAlgorithm: 'cg'
               TypicalX: 'ones(numberOfVariables,1)'

In addition, if you want to specify any of the options for quadprog that are normally set through
optimoptions from Optimization Toolbox, setSolver accepts an optimoptions object as the
second argument. For example, you can start with the default options for quadprog set by
setSolver and then change the algorithm to 'trust-region-reflective' with no displayed
output:
p = Portfolio;
options = optimoptions('quadprog', 'Algorithm', 'trust-region-reflective', 'Display', 'off');
p = setSolver(p, 'quadprog', options);
display(p.solverOptions.Algorithm)
display(p.solverOptions.Display)

trust-region-reflective
off

Using the Mixed Integer Nonlinear Programming (MINLP) Solver
The mixed integer nonlinear programming (MINLP) solver, configured using setSolverMINLP,
enables you to specify associated solver options for portfolio optimization for a Portfolio object.
The MINLP solver is used when any one, or any combination of 'Conditional' BoundType,
MinNumAssets, or MaxNumAssets constraints are active. In this case, the portfolio problem is
formulated by adding NumAssets binary variables, where 0 indicates not invested, and 1 is invested.
For more information on using 'Conditional' BoundType, see setBounds. For more information
on specifying MinNumAssets and MaxNumAssets, see setMinMaxNumAssets.

When using the estimate functions with a Portfolio object where 'Conditional' BoundType,
MinNumAssets, or MaxNumAssets constraints are active, the mixed integer nonlinear programming
(MINLP) solver is automatically used.

Solver Guidelines for Portfolio Objects
The following table provides guidelines for using setSolver and setSolverMINLP.
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Portfolio
Problem

Portfolio
Function

Type of
Optimization
Problem

Main Solver Helper Solver

Portfolio without
tracking error
constraints

estimateFronti
erByRisk

Optimizing a
portfolio for a
certain risk level
introduces a
nonlinear
constraint.
Therefore, this
problem has a
linear objective
with linear and
nonlinear
constraints.

'fmincon' using
setSolver

For ‘min’:
quadratic
objective,
'quadprog' or
'lcprog' using
setSolver

For ‘max’: linear
objective,
'linprog' or
'lcprog' using
setSolver

Portfolio without
tracking error
constraints

estimateFronti
erByReturn

Quadratic
objective with
linear constraints

'quadprog' or
'lcprog' using
setSolver

For ‘min’:
quadratic
objective,
'quadprog' or
'lcprog' using
setSolver

For ‘max’: linear
objective,
'linprog' or
'lcprog' using
setSolver

Portfolio without
tracking error
constraints

estimateFronti
erLimits

Quadratic or linear
objective with
linear constraints

For ‘min’:
quadratic
objective,
'quadprog' or
'lcprog' using
setSolver

For ‘max’: linear
objective,
'linprog' or
'lcprog' using
setSolver

Not applicable

Portfolio without
tracking error
constraints

estimateMaxSha
rpeRatio

Quadratic
objective with
linear constraints

'quadprog' using
setSolver

Because
estimateMaxSha
rpeRatio
internally calls
estimateFronti
erLimits, all
solvers needed by
estimateFronti
erLimits will be
the helper solvers
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Portfolio
Problem

Portfolio
Function

Type of
Optimization
Problem

Main Solver Helper Solver

Portfolio with
tracking error
constraints

estimateFronti
erByRisk

Linear objective
with linear and
nonlinear
constraints

'fmincon' using
setSolver

Not applicable

Portfolio with
tracking error
constraints

estimateFronti
erByReturn

Linear objective
with linear and
nonlinear
constraints

'fmincon' using
setSolver

Not applicable

Portfolio with
tracking error
constraints

estimateFronti
erLimits

Quadratic (min
risk problem) or
linear (max return
problem) objective
with linear and
nonlinear
constraints

'fmincon' using
setSolver

Not applicable

Portfolio with
tracking error
constraints

estimateMaxSha
rpeRatio

Quadratic
objective with
linear and
nonlinear
constraints

'fmincon' using
setSolver

Not applicable

Portfolio with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByRisk

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'quadprog' or
'fmincon' are
used when the
estimate
functions reduce
the problem into
NLP. These two
solvers can be
configured through
setSolver.
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Portfolio
Problem

Portfolio
Function

Type of
Optimization
Problem

Main Solver Helper Solver

Portfolio with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByReturn

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'quadprog' or
'fmincon' are
used when the
estimate
functions reduce
the problem into
NLP. These two
solvers can be
configured through
setSolver

Portfolio with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erLimits

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'quadprog' or
'fmincon' are
used when the
estimate
functions reduce
the problem into
NLP. These two
solvers can be
configured through
setSolver
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Portfolio
Problem

Portfolio
Function

Type of
Optimization
Problem

Main Solver Helper Solver

Portfolio with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateMaxSha
rpeRatio

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'quadprog' or
'fmincon' are
used, when the
estimate
functions reduce
the problem into
NLP. These two
solvers can be
configured through
setSolver

See Also
Portfolio | estimatePortReturn | estimatePortMoments | plotFrontier

Related Examples
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-119
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
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External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Estimate Efficient Frontiers for Portfolio Object
Whereas “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
focused on estimation of efficient portfolios, this section focuses on the estimation of efficient
frontiers. For information on the workflow when using Portfolio objects, see “Portfolio Object
Workflow” on page 4-17.

Obtaining Portfolio Risks and Returns
Given any portfolio and, in particular, efficient portfolios, the functions estimatePortReturn,
estimatePortRisk, and estimatePortMoments provide estimates for the return (or return
proxy), risk (or the risk proxy), and, in the case of mean-variance portfolio optimization, the moments
of expected portfolio returns. Each function has the same input syntax but with different
combinations of outputs. Suppose that you have this following portfolio optimization problem that
gave you a collection of portfolios along the efficient frontier in pwgt:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = Portfolio('AssetMean', m, 'AssetCovar', C, 'InitPort', pwgt0);
p = setDefaultConstraints(p);
pwgt = estimateFrontier(p);

Given pwgt0 and pwgt, use the portfolio risk and return estimation functions to obtain risks and
returns for your initial portfolio and the portfolios on the efficient frontier:

[prsk0, pret0] = estimatePortMoments(p, pwgt0);
[prsk, pret] = estimatePortMoments(p, pwgt);

or

prsk0 = estimatePortRisk(p, pwgt0);
pret0 = estimatePortReturn(p, pwgt0);
prsk = estimatePortRisk(p, pwgt);
pret = estimatePortReturn(p, pwgt);

In either case, you obtain these risks and returns:

display(prsk0)
display(pret0)
display(prsk)
display(pret)

prsk0 =

    0.1103

pret0 =

    0.0870

prsk =
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    0.0769
    0.0831
    0.0994
    0.1217
    0.1474
    0.1750
    0.2068
    0.2487
    0.2968
    0.3500

pret =

    0.0590
    0.0725
    0.0859
    0.0994
    0.1128
    0.1262
    0.1397
    0.1531
    0.1666
    0.1800

The returns and risks are at the periodicity of the moments of asset returns so that, if you have values
for AssetMean and AssetCovar in terms of monthly returns, the estimates for portfolio risk and
return are in terms of monthly returns as well. In addition, the estimate for portfolio risk in the mean-
variance case is the standard deviation of portfolio returns, not the variance of portfolio returns.

See Also
Portfolio | estimatePortReturn | estimatePortMoments | plotFrontier

Related Examples
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-119
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
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• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Plotting the Efficient Frontier for a Portfolio Object
The plotFrontier function creates a plot of the efficient frontier for a given portfolio optimization
problem. This function accepts several types of inputs and generates a plot with an optional
possibility to output the estimates for portfolio risks and returns along the efficient frontier.
plotFrontier has four different ways that it can be used. In addition to a plot of the efficient
frontier, if you have an initial portfolio in the InitPort property, plotFrontier also displays the
return versus risk of the initial portfolio on the same plot. If you have a well-posed portfolio
optimization problem set up in a Portfolio object and you use plotFrontier, you get a plot of the
efficient frontier with the default number of portfolios on the frontier (the default number is 10 and is
maintained in the hidden property defaultNumPorts). This example illustrates a typical use of
plotFrontier to create a new plot:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
 
p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
plotFrontier(p)

The Name property appears as the title of the efficient frontier plot if you set it in the Portfolio
object. Without an explicit name, the title on the plot would be “Efficient Frontier.” If you want to
obtain a specific number of portfolios along the efficient frontier, use plotFrontier with the
number of portfolios that you want. Suppose that you have the Portfolio object from the previous
example and you want to plot 20 portfolios along the efficient frontier and to obtain 20 risk and
return values for each portfolio:

[prsk, pret] = plotFrontier(p, 20);
display([pret, prsk])
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ans =

    0.0590    0.0769
    0.0654    0.0784
    0.0718    0.0825
    0.0781    0.0890
    0.0845    0.0973
    0.0909    0.1071
    0.0972    0.1179
    0.1036    0.1296
    0.1100    0.1418
    0.1163    0.1545
    0.1227    0.1676
    0.1291    0.1810
    0.1354    0.1955
    0.1418    0.2128
    0.1482    0.2323
    0.1545    0.2535
    0.1609    0.2760
    0.1673    0.2995
    0.1736    0.3239
    0.1800    0.3500

Plotting Existing Efficient Portfolios
If you already have efficient portfolios from any of the "estimateFrontier" functions (see “Estimate
Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94), pass them into
plotFrontier directly to plot the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
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      0 0.0119 0.0336 0.1225 ];
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
 
p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontier(p, 20);
plotFrontier(p, pwgt)

Plotting Existing Efficient Portfolio Risks and Returns
If you already have efficient portfolio risks and returns, you can use the interface to plotFrontier
to pass them into plotFrontier to obtain a plot of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
 
p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
[prsk, pret] = estimatePortMoments(p, p.estimateFrontier(20));
plotFrontier(p, prsk, pret)
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See Also
Portfolio | estimatePortReturn | estimatePortMoments | plotFrontier

Related Examples
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
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External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Postprocessing Results to Set Up Tradable Portfolios
After obtaining efficient portfolios or estimates for expected portfolio risks and returns, use your
results to set up trades to move toward an efficient portfolio. For information on the workflow when
using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

Setting Up Tradable Portfolios
Suppose that you set up a portfolio optimization problem and obtained portfolios on the efficient
frontier. Use the dataset object from Statistics and Machine Learning Toolbox™ to form a blotter
that lists your portfolios with the names for each asset. For example, suppose that you want to obtain
five portfolios along the efficient frontier. You can set up a blotter with weights multiplied by 100 to
view the allocations for each portfolio:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
 
 p = Portfolio('InitPort', pwgt0);
 p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
 p = setAssetMoments(p, m, C);
 p = setDefaultConstraints(p);
 pwgt = estimateFrontier(p, 5);
 
 pnames = cell(1,5);
   for i = 1:5
       pnames{i} = sprintf('Port%d',i);
   end
 
 Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);
 display(Blotter)

Blotter = 

                          Port1     Port2     Port3     Port4     Port5
    Bonds                 88.906    51.216    13.525         0      0  
    Large-Cap Equities    3.6875    24.387    45.086    27.479      0  
    Small-Cap Equities    4.0425    7.7088    11.375    13.759      0  
    Emerging Equities      3.364    16.689    30.014    58.762    100  

This result indicates that you would invest primarily in bonds at the minimum-risk/minimum-return
end of the efficient frontier (Port1), and that you would invest completely in emerging equity at the
maximum-risk/maximum-return end of the efficient frontier (Port5). You can also select a particular
efficient portfolio, for example, suppose that you want a portfolio with 15% risk and you add purchase
and sale weights outputs obtained from the “estimateFrontier” functions to set up a trade blotter:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
 
p = Portfolio('InitPort', pwgt0);
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
[pwgt, pbuy, psell] = estimateFrontierByRisk(p, 0.15);
 
Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...
     {'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);
 
display(Blotter)
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Blotter = 

                          Initial    Weight    Purchases    Sales 
    Bonds                 30         20.299         0       9.7007
    Large-Cap Equities    30         41.366    11.366            0
    Small-Cap Equities    20         10.716         0       9.2838
    Emerging Equities     10         27.619    17.619            0

If you have prices for each asset (in this example, they can be ETFs), add them to your blotter and
then use the tools of the dataset object to obtain shares and shares to be traded. For an example,
see “Asset Allocation Case Study” on page 4-161.

See Also
Portfolio | estimateAssetMoments | checkFeasibility

Related Examples
• “Troubleshooting Portfolio Optimization Results” on page 4-130
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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When to Use Portfolio Objects Over Optimization Toolbox
While you can use Optimization Toolbox to solve portfolio optimization problems, Financial Toolbox
has the Portfolio, PortfolioCVaR, and PortfolioMAD objects that you can use as well. Which
tool you use depends on the problem case:

• Always use a Portfolio, PortfolioCVaR, or PortfolioMAD object when the problem can
most easily be written and implemented using one of these objects. This case includes problems
that can be solved only with the internal solvers of the Portfolio, PortfolioCVaR, or
PortfolioMAD object. The Optimization Toolbox solvers cannot directly handle these problems.
For details, see “Always Use Portfolio, PortfolioCVaR, or PortfolioMAD Object” on page 4-127.

• Prefer to use a Portfolio, PortfolioCVaR, or PortfolioMAD object when the problem can be
modeled and implemented using both the Portfolio, PortfolioCVaR, or PortfolioMAD object
and the Optimization Toolbox problem-based framework. The advantage of using a Portfolio,
PortfolioCVaR, or PortfolioMAD object instead of the Optimization Toolbox is that the internal
tools of these objects simplify the analysis. For details, see “Preferred Use of Portfolio,
PortfolioCVaR, or PortfolioMAD Object” on page 4-128.

• Opt to use Optimization Toolbox for problems that cannot be solved with the internal solvers of
the Portfolio, PortfolioCVaR, or PortfolioMAD object. Some of the problems that the
Portfolio, PortfolioCVaR, or PortfolioMAD object cannot solve can be addressed using the
Optimization Toolbox problem-based framework. Problems that cannot be directly solved with
either framework require either some restructuring of the model or an implementation of a
specialized solver. For details, see “Use Optimization Toolbox” on page 4-128.

The following table summarizes the objective functions, constraints, and variables that apply in each
case for solving a portfolio problem.

Case for Solving
Portfolio Problem

Objective Function Constraints Integer (Binary)
Variables

"Always" case with
Financial Toolbox

• Return — Gross
portfolio returns or
net portfolio returns

• Risk — Variance,
CVaR, or MAD

• Sharpe ratio (only
for mean-variance
problems using
Portfolio object)

• Return — Gross
portfolio returns or
net portfolio returns

• Risk — Variance,
CVaR, or MAD

• Linear equalities
• Linear inequalities
• Tracking error (only

for mean-variance
problems using
Portfolio object)

• Turnover

• Bounds on the
number of assets

• Conditional
(semicontinuous)
bounds (for example,
if asset i is selected,
then xi ≥ lbi,
otherwise xi = 0)
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Case for Solving
Portfolio Problem

Objective Function Constraints Integer (Binary)
Variables

"Preferred" case with
Financial Toolbox

• Return — Gross
portfolio returns or
net portfolio returns

• Risk — Variance,
CVaR, or MAD

• Sharpe ratio (only
for mean-variance
problems using
Portfolio object)

• Return — Gross
portfolio returns or
net portfolio returns

• Risk — Variance,
CVaR, or MAD

• Linear equalities
• Linear inequalities
• Tracking error (only

for mean-variance
problems using
Portfolio object)

None

Optimization Toolbox Any other nonlinear
function not mentioned
in “Always Use Portfolio,
PortfolioCVaR, or
PortfolioMAD Object”
on page 4-127 and
“Preferred Use of
Portfolio, PortfolioCVaR,
or PortfolioMAD Object”
on page 4-128

Any other nonlinear
function not mentioned
in “Always Use Portfolio,
PortfolioCVaR, or
PortfolioMAD Object”
on page 4-127 and
“Preferred Use of
Portfolio, PortfolioCVaR,
or PortfolioMAD Object”
on page 4-128

None

Always Use Portfolio, PortfolioCVaR, or PortfolioMAD Object
The two general cases for always using the Portfolio, PortfolioCVaR, or PortfolioMAD object
are:

• Problems with both supported nonlinear constraints and conditional bounds or bounds in the
number of assets.

These problems include:

• Minimum risk problems subject to constraints for return, linear equality, linear inequality,
turnover, and tracking error where the supported risk measures are variance, conditional
value-at-risk (CVaR), and mean-absolute-deviation (MAD)

• Maximum return problems subject to constraints for linear equality, liner inequality, turnover,
risk, and tracking error where the supported risk measures are variance, CVaR, and MAD

Tracking error is supported only for mean-variance problems using the Portfolio object. For
more information on the supported constraints for a Portfolio, PortfolioCVaR, or
PortfolioMAD object, see “Portfolio Set for Optimization Using Portfolio Objects” on page 4-
8.

For more information on the supported nonlinear risk functions for Portfolio, PortfolioCVaR,
and PortfolioMAD objects, see “Portfolio Optimization Theory” on page 4-3. The integer (binary)
variables can come from either of the following sources: bounds on the number of assets that can
be selected in the portfolio or the use of conditional (semicontinuous) bounds for the assets. For
example, if asset i is selected, then xi ≥ lbi, otherwise xi = 0. These problems cannot be solved
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using the Optimization Toolbox solvers. However, you can implement your own mixed-integer
solver. For more information, see “Mixed-Integer Quadratic Programming Portfolio Optimization:
Problem-Based”.

• Problems with turnover constraints and sell or buy costs

Although the continuous version of these problems can be solved by the Optimization Toolbox
solvers, the variable space must be manipulated to rewrite the nonsmooth constraints into
equivalent smooth constraints. Given that rewriting the problem requires optimization knowledge,
it is recommended to use the Portfolio, PortfolioCVaR, and PortfolioMAD objects instead.

Preferred Use of Portfolio, PortfolioCVaR, or PortfolioMAD Object
The general case for preferred use of the Portfolio, PortfolioCVaR, or PortfolioMAD object is:

• Continuous problems with minimum risk, maximum return, and maximum Sharpe ratio that are
subject to linear equality, liner inequality, turnover, and tracking error constraints.

Sharpe ratio is supported only for mean-variance problems using the Portfolio object. For more
information on the supported constraints for a Portfolio, PortfolioCVaR, or PortfolioMAD
object, see “Portfolio Set for Optimization Using Portfolio Objects” on page 4-8.

The supported risk measures are variance, CVaR, and MAD. For more information on the supported
constraints for these risk measures, see “Portfolio Set for Optimization Using Portfolio Objects” on
page 4-8, “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7, and “Portfolio
Set for Optimization Using PortfolioMAD Object” on page 6-7. For all other risk measures and
constraints and if tracking error is in the objective, use the Optimization Toolbox.

The advantage of the Portfolio, PortfolioCVaR, and PortfolioMAD object framework over the
problem-based framework for the type of problems in the "preferred" case is that common portfolio
optimization workflows are leveraged. For example, the Portfolio, PortfolioCVaR, and
PortfolioMAD object framework supports the following workflows:

• Estimating and plotting the efficient frontier
• Exchanging the return and risk proxies from the objective function to a constraint
• Solving the maximum Sharpe ratio problem
• Adding bounds on the number of assets selected
• Adding semicontinuous bounds
• Simplifying the use of turnover constraints and sell or buy costs

Use Optimization Toolbox
The two general cases to use Optimization Toolbox are:

• Problems that have nonlinear constraints other than the constraints for risk or tracking error
• Problems with nonlinear objectives other than the supported risk measures of variance, CVaR, and

MAD

See Also
Portfolio | PortfolioCVaR | PortfolioMAD
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Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17
• “Problem-Based Optimization Workflow”

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Troubleshooting Portfolio Optimization Results

Portfolio Object Destroyed When Modifying
If a Portfolio object is destroyed when modifying, remember to pass an existing object into the
Portfolio object if you want to modify it, otherwise it creates a new object. See “Creating the
Portfolio Object” on page 4-24 for details.

Optimization Fails with “Bad Pivot” Message
If the optimization fails with a "bad pivot" message from lcprog, try a larger value for tolpiv which
is a tolerance for pivot selection in the lcprog algorithm (try 1.0e-7, for example) or try the
interior-point-convex version of quadprog. For details, see “Choosing and Controlling the
Solver for Mean-Variance Portfolio Optimization” on page 4-109, the help header for lcprog, and
quadprog.

Speed of Optimization
Although it is difficult to characterize when one algorithm is faster than the other, the default solver,
lcprog is faster for smaller problems and the quadprog solver is faster for larger problems. If one
solver seems to take too much time, try the other solver. To change solvers, use setSolver.

Matrix Incompatibility and "Non-Conformable" Errors
If you get matrix incompatibility or "non-conformable" errors, the representation of data in the tools
follows a specific set of basic rules described in “Conventions for Representation of Data” on page 4-
22.

Missing Data Estimation Fails
If asset return data has missing or NaN values, the estimateAssetMoments function with the
'missingdata' flag set to true may fail with either too many iterations or a singular covariance. To
correct this problem, consider this:

• If you have asset return data with no missing or NaN values, you can compute a covariance matrix
that may be singular without difficulties. If you have missing or NaN values in your data, the
supported missing data feature requires that your covariance matrix must be positive-definite,
that is, nonsingular.

• estimateAssetMoments uses default settings for the missing data estimation procedure that
might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with either the
ECM estimation functions such as ecmnmle or with your own functions.

mv_optim_transform Errors
If you obtain optimization errors such as:
Error using mv_optim_transform (line 233)
Portfolio set appears to be either empty or unbounded. Check constraints.
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Error in Portfolio/estimateFrontier (line 63)
    [A, b, f0, f, H, g, lb] = mv_optim_transform(obj);

or

Error using mv_optim_transform (line 238)
Cannot obtain finite lower bounds for specified portfolio set.

Error in Portfolio/estimateFrontier (line 63)
    [A, b, f0, f, H, g, lb] = mv_optim_transform(obj);

Since the portfolio optimization tools require a bounded portfolio set, these errors (and similar
errors) can occur if your portfolio set is either empty and, if nonempty, unbounded. Specifically, the
portfolio optimization algorithm requires that your portfolio set have at least a finite lower bound.
The best way to deal with these problems is to use the validation functions in “Validate the Portfolio
Problem for Portfolio Object” on page 4-90. Specifically, use estimateBounds to examine your
portfolio set, and use checkFeasibility to ensure that your initial portfolio is either feasible and, if
infeasible, that you have sufficient turnover to get from your initial portfolio to the portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover or tracking-
error and gradually reduce to the value that you want.

Efficient Portfolios Do Not Make Sense
If you obtain efficient portfolios that do not seem to make sense, this can happen if you forget to set
specific constraints or you set incorrect constraints. For example, if you allow portfolio weights to fall
between 0 and 1 and do not set a budget constraint, you can get portfolios that are 100% invested in
every asset. Although it may be hard to detect, the best thing to do is to review the constraints you
have set with display of the object. If you get portfolios with 100% invested in each asset, you can
review the display of your object and quickly see that no budget constraint is set. Also, you can use
estimateBounds and checkFeasibility to determine if the bounds for your portfolio set make
sense and to determine if the portfolios you obtained are feasible relative to an independent
formulation of your portfolio set.

Efficient Frontiers Do Not Make Sense
If you obtain efficient frontiers that do not seem to make sense, this can happen for some cases of
mean and covariance of asset returns. It is possible for some mean-variance portfolio optimization
problems to have difficulties at the endpoints of the efficient frontier. It is rare for standard portfolio
problems, but this can occur. For example, this can occur when using unusual combinations of
turnover constraints and transaction costs. Usually, the workaround of setting the hidden property
enforcePareto produces a single portfolio for the entire efficient frontier, where any other
solutions are not Pareto optimal (which is what efficient portfolios must be).

An example of a portfolio optimization problem that has difficulties at the endpoints of the efficient
frontier is this standard mean-variance portfolio problem (long-only with a budget constraint) with
the following mean and covariance of asset returns:
m = [ 1; 2; 3 ];
C = [ 1 1 0; 1 1 0; 0 0 1 ]; 

p = Portfolio;
p = Portfolio(p, 'assetmean', m, 'assetcovar', C);
p = Portfolio(p, 'lowerbudget', 1, 'upperbudget', 1);
p = Portfolio(p, 'lowerbound', 0);
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plotFrontier(p)

To work around this problem, set the hidden Portfolio object property for enforcePareto. This
property instructs the optimizer to perform extra steps to ensure a Pareto-optimal solution. This slows
down the solver, but guarantees a Pareto-optimal solution.
p.enforcePareto = true;
plotFrontier(p)
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Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets,
and MaxNumAssets Constraints
When configuring a Portfolio, PortfolioCVaR, or PortfolioMAD object to include
'Conditional' BoundType (semicontinuous) constraints using setBounds or MinNumAssets and
MaxNumAssets (cardinality) constraints using setMinMaxNumAssets, the values of the inputs that
you supply can result in warning messages.

Conditional Bounds with LowerBound Defined as Empty or Zero

When using setBounds with the BoundType set to 'Conditional' and the LowerBound input
argument is empty ([ ]) or 0, the Conditional bound is not effective and is equivalent to a Simple
bound.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
    0.00022983 0.00049937 0.00019247;
    0.00420395 0.00019247 0.00764097 ];
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
p = setBounds(p, 0, 0.5, 'BoundType', 'Conditional');  
p = setMinMaxNumAssets(p, 3, 3);
estimateFrontier(p, 10)

Warning: Conditional bounds with 'LowerBound' as zero are equivalent to simple bounds.
Consider either using strictly positive 'LowerBound' or 'simple' as the 'BoundType'
instead. 
> In internal.finance.PortfolioMixedInteger/checkBoundType (line 46)
  In Portfolio/checkarguments (line 204)
  In Portfolio/setBounds (line 80) 
Warning: The solution may have less than 'MinNumAssets' assets with nonzero weight. To
enforce 'MinNumAssets' requirement, set strictly positive lower conditional bounds. 
> In internal.finance.PortfolioMixedInteger/hasIntegerConstraints (line 44)
  In Portfolio/estimateFrontier (line 51) 

ans =

  Columns 1 through 8

    0.5000    0.3555    0.3011    0.3299    0.3585    0.3873    0.4160    0.4448
    0.5000    0.5000    0.4653    0.3987    0.3322    0.2655    0.1989    0.1323
    0.0000    0.1445    0.2335    0.2714    0.3093    0.3472    0.3850    0.4229

  Columns 9 through 10

    0.4735    0.5000
    0.0657         0
    0.4608    0.5000

In all the 10 optimal allocations, there are allocations (the first and last ones) that only have two
assets, which is in conflict with the MinNumAssets constraint that three assets should be allocated.
Also there are two warnings, which actually explain what happens. In this case, the 'Conditional'
bound constraints are defined as xi = 0 or 0 <= xi <= 0.5, which are internally modeled as
0*vi<=xi<=0.5*vi, where vi is 0 or 1, where 0 indicates not allocated, and 1 indicates allocated.
Here, vi=1, which still allows the asset to have a weight of 0. In other words, setting LowerBound as
0 or empty, doesn’t clearly define the minimum allocation for an allocated asset. Therefore, a 0
weighted asset is also considered as an allocated asset. To fix this warning, follow the instructions in
the warning message, and set a LowerBound value that is strictly positive.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
    0.00022983 0.00049937 0.00019247;
    0.00420395 0.00019247 0.00764097 ];
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
p = setBounds(p, 0.3, 0.5, 'BoundType', 'Conditional');  
p = setMinMaxNumAssets(p, 3, 3);
estimateFrontier(p, 10)

ans =

 Troubleshooting Portfolio Optimization Results

4-133



  Columns 1 through 8

    0.3000    0.3180    0.3353    0.3489    0.3580    0.3638    0.3694    0.3576
    0.4000    0.3820    0.3642    0.3479    0.3333    0.3199    0.3067    0.3001
    0.3000    0.3000    0.3005    0.3032    0.3088    0.3163    0.3240    0.3423

  Columns 9 through 10

    0.3289    0.3000
    0.3000    0.3000
    0.3711    0.4000

Length of 'BoundType' Must Be Conformable with NumAssets

The setBounds optional name-value argument for 'BoundType' must be defined for all assets in a
Portfolio, PortfolioCVaR, or PortfolioMAD object. By default, the 'BoundType' is 'Simple'
and applies to all assets. Using setBounds, you can choose to define a 'BoundType' for each asset.
In this case, the number of 'BoundType' specifications must match the number of assets
(NumAssets) in the Portfolio, PortfolioCVaR, or PortfolioMAD object. The following example
demonstrates the error when the number of 'BoundType' specifications do not match the number of
assets in the Portfolio object.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
    0.00022983 0.00049937 0.00019247;
    0.00420395 0.00019247 0.00764097 ];
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
p = setBounds(p, 0.1, 0.5, 'BoundType',["simple"; "conditional"])

Cannot create bound constraints.

Caused by:
    Error using internal.finance.PortfolioMixedInteger/checkBoundType (line 28)
    Length of 'BoundType' must be conformable with 'NumAssets'=3.

To correct this, modify the BoundType to include three specifications because the Portfolio object
has three assets.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
    0.00022983 0.00049937 0.00019247;
    0.00420395 0.00019247 0.00764097 ];

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
p = setBounds(p, 0.1, 0.5, 'BoundType',["simple"; "conditional";"conditional"])
p.BoundType

p = 

  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [3×1 double]
       AssetCovar: [3×3 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 3
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [3×1 double]
       UpperBound: [3×1 double]
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
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           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
        BoundType: [3×1 categorical]
     MinNumAssets: []
     MaxNumAssets: []

ans = 

  3×1 categorical array

     simple 
     conditional 
     conditional 

Redundant Constraints from 'BoundType', 'MinNumAssets', 'MaxNumAssets' Constraints

When none of the constraints from 'BoundType', 'MinNumAssets', or 'MaxNumAssets' are
active, the redundant constraints from 'BoundType', 'MinNumAssets', 'MaxNumAssets' warning
occurs. This happens when you explicitly use setBounds and setMinMaxNumAssets but with values
that are inactive. That is, the 'Conditional' BoundType has a LowerBound = [ ] or 0,
'MinNumAssets' is 0, or 'MaxNumAssets' is the same value as NumAssets. In other words, if any
of these three are active, the warning will not show up when using the estimate functions or
plotFrontier. The following two examples show the rationale.

The first example is when the BoundType is explicitly set as 'Conditional' but the LowerBound is
0, and no 'MinNumAssets' and 'MaxNumAssets' constraints are defined using
setMinMaxNumAssets.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
    0.00022983 0.00049937 0.00019247;
    0.00420395 0.00019247 0.00764097 ];
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
p = setBounds(p, 0, 0.5, 'BoundType', 'Conditional');   
estimateFrontier(p, 10)

Warning: Redundant constraints from 'BoundType', 'MinNumAssets', 'MaxNumAssets'. 
> In internal.finance.PortfolioMixedInteger/hasIntegerConstraints (line 24)
  In Portfolio/estimateFrontier (line 51) 

ans =

  Columns 1 through 8

    0.5000    0.3555    0.3011    0.3299    0.3586    0.3873    0.4160    0.4448
    0.5000    0.5000    0.4653    0.3987    0.3321    0.2655    0.1989    0.1323
         0    0.1445    0.2335    0.2714    0.3093    0.3471    0.3850    0.4229

  Columns 9 through 10

    0.4735    0.5000
    0.0657         0
    0.4608    0.5000

The second example is when you explicitly set the three constraints, but all with inactive values. In
this example, the BoundType is 'Conditional' and the LowerBound is 0, thus specifying
ineffective 'Conditional' BoundType constraints, and the 'MinNumAssets' and
'MaxNumAssets' values are 0 and 3, respectively. The setMinMaxNumAssets function specifies
ineffective 'MinNumAssets' and 'MaxNumAssets' constraints.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
    0.00022983 0.00049937 0.00019247;
    0.00420395 0.00019247 0.00764097 ];
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
p = setBounds(p, 0, 0.5, 'BoundType', 'Conditional');   
p = setMinMaxNumAssets(p, 0, 3);   
estimateFrontier(p, 10)

Warning: Redundant constraints from 'BoundType', 'MinNumAssets', 'MaxNumAssets'. 
> In internal.finance.PortfolioMixedInteger/hasIntegerConstraints (line 24)
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  In Portfolio/estimateFrontier (line 51) 

ans =

  Columns 1 through 8

    0.5000    0.3555    0.3011    0.3299    0.3586    0.3873    0.4160    0.4448
    0.5000    0.5000    0.4653    0.3987    0.3321    0.2655    0.1989    0.1323
         0    0.1445    0.2335    0.2714    0.3093    0.3471    0.3850    0.4229

  Columns 9 through 10

    0.4735    0.5000
    0.0657         0
    0.4608    0.5000

Infeasible Portfolio Problem with 'BoundType', 'MinNumAssets', 'MaxNumAssets'

The Portfolio, PortfolioCVaR, or PortfolioMAD object performs validations of all the
constraints that you set before solving any specific optimization problems. The Portfolio,
PortfolioCVaR, or PortfolioMAD object first considers all constraints other than 'Conditional'
BoundType, 'MinNumAssets', and 'MaxNumAssets' and issues an error message if they are not
compatible. Then the Portfolio, PortfolioCVaR, or PortfolioMAD object adds the three
constraints to check if they are compatible with the already checked constraints. This separation is
natural because 'Conditional' BoundType, 'MinNumAssets', and 'MaxNumAssets' require
additional binary variables in the mathematical formulation that leads to a MINLP, while other
constraints only need continuous variables. You can follow the error messages to check when the
infeasible problem occurs and take actions to fix the constraints.

One possible scenario is when the BoundType is 'Conditional' and Groups are defined for the
Portfolio object. In this case, the Group definitions are themselves in conflict. Consequently, the
'Conditional' bound constraint cannot be applied when running estimateFrontierLimits.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
    0.00022983 0.00049937 0.00019247;
    0.00420395 0.00019247 0.00764097 ];

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
p = setBounds(p, 0.1, 0.5, 'BoundType','Conditional');
p = setGroups(p, [1,1,0], 0.3, 0.5);
p = addGroups(p, [0,1,0], 0.6, 0.7);
pwgt = estimateFrontierLimits(p)

Error using Portfolio/buildMixedIntegerProblem (line 31)
Infeasible portfolio problem prior to considering 'BoundType', 'MinNumAssets',
'MaxNumAssets'. Verify if constraints from groups, bounds, group ratios, inequality,
equality, etc. are compatible.

Error in Portfolio/estimateFrontierLimits>int_frontierLimits (line 93)
ProbStruct = buildMixedIntegerProblem(obj);

Error in Portfolio/estimateFrontierLimits (line 73)
    pwgt = int_frontierLimits(obj, minsolution, maxsolution);

To correct this error, change the LowerGroup in the addGroups function to also be 0.3 to match the
GroupMatrix input from setGroups.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
    0.00022983 0.00049937 0.00019247;
    0.00420395 0.00019247 0.00764097 ];

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
p = setBounds(p, 0.1, 0.5, 'BoundType','Conditional');
p = setGroups(p, [1,1,0], 0.3, 0.5);
p = addGroups(p, [0,1,0], 0.3, 0.7);
pwgt = estimateFrontierLimits(p)

pwgt =

         0    0.2000
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    0.5000    0.3000
    0.5000    0.5000

A second possible scenario is when the BoundType is 'Conditional' and the setEquality
function is used with the bEquality parameter set to 0.04. This sets an equality constraint to have
x1 + x3 = 0.04. At the same time, setBounds also set the semicontinuous constraints to have xi = 0
or 0.1 <= xi <= 2.5, which lead to x1 + x3 = 0 or 0.1 <= x1 + x3 <= 5. The semicontinuous
constraints are not compatible with the equality constraint because there is no way to get x1 + x3 to
equal 0.04. Therefore, the error message is displayed.
AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];
AssetCovar = [ 0.0064   0.00408  0.00192      0;
               0.00408  0.0289   0.0204   0.0119;
               0.00192  0.0204   0.0576   0.0336;
               0        0.0119   0.0336   0.1225 ];

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
A = [ 1 0 1 0 ];
b = 0.04;
p = setEquality(p, A, b);
p = setBounds(p, 0.1, 2.5, 'BoundType','Conditional');
p = setMinMaxNumAssets(p, 2, 2);  
pwgt = estimateFrontierLimits(p)

Error using Portfolio/buildMixedIntegerProblem (line 109)
Infeasible portfolio problem when considering 'BoundType', 'MinNumAssets',
'MaxNumAssets'. Verify if these are compatible with constraints from groups, bounds,
group ratios, inequality, equality, etc.

Error in Portfolio/estimateFrontierLimits>int_frontierLimits (line 93)
ProbStruct = buildMixedIntegerProblem(obj);

Error in Portfolio/estimateFrontierLimits (line 73)
    pwgt = int_frontierLimits(obj, minsolution, maxsolution);
 

To correct this error, change the bEquality parameter from 0.04 to .4.
AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];
AssetCovar = [ 0.0064   0.00408  0.00192      0;
               0.00408  0.0289   0.0204   0.0119;
               0.00192  0.0204   0.0576   0.0336;
               0        0.0119   0.0336   0.1225 ];

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar, 'Budget', 1);
A = [ 1 0 1 0 ];
b = 0.4;
p = setEquality(p, A, b);
p = setBounds(p, 0.1, 2.5, 'BoundType','Conditional');
p = setMinMaxNumAssets(p, 2, 2);  
pwgt = estimateFrontierLimits(p)

pwgt =

    0.4000         0
    0.6000         0
         0    0.4000
         0    0.6000

Unbounded Portfolio Problem

This error occurs when you are using a Portfolio, PortfolioCVaR, or PortfolioMAD object and
there is no UpperBound defined in setBounds and you are using setMinMaxNumAssets. In this
case, this is formulated as a mixed integer programming problem and an UpperBound is required to
enforce MinNumAssets and MaxNumAssets constraints.

The optimizer first attempts to estimate the upper bound of each asset, based on all the specified
constraints. If the UpperBound cannot be found, an error message occurs which instructs you to set
an explicit UpperBound. In most cases, as long as you set some upper bounds to the problem using
any set function, the optimizer can successfully find a good estimation.
AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];
AssetCovar = [ 0.0064   0.00408  0.00192      0;
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               0.00408  0.0289   0.0204   0.0119;
               0.00192  0.0204   0.0576   0.0336;
               0        0.0119   0.0336   0.1225 ];

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setBounds(p, 0.1, 'BoundType','Conditional');
p = setGroups(p, [1,1,1,0], 0.3, 0.5);
p = setMinMaxNumAssets(p, 3, 3);
pwgt = estimateFrontierLimits(p)

Error using Portfolio/buildMixedIntegerProblem (line 42)
Unbounded portfolio problem. Upper bounds cannot be inferred from the existing
constraints. Set finite upper bounds using 'setBounds'.

Error in Portfolio/estimateFrontierLimits>int_frontierLimits (line 93)
ProbStruct = buildMixedIntegerProblem(obj);

Error in Portfolio/estimateFrontierLimits (line 73)
    pwgt = int_frontierLimits(obj, minsolution, maxsolution);

To correct this error, specify an UpperBound value for setBounds.
AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];
AssetCovar = [ 0.0064   0.00408  0.00192      0;
               0.00408  0.0289   0.0204   0.0119;
               0.00192  0.0204   0.0576   0.0336;
               0        0.0119   0.0336   0.1225 ];

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setBounds(p, 0.1, .9, 'BoundType','Conditional');
p = setGroups(p, [1,1,1,0], 0.3, 0.5);
p = setMinMaxNumAssets(p, 3, 3);
pwgt = estimateFrontierLimits(p)

pwgt =

    0.1000         0
    0.1000    0.1000
    0.1000    0.4000
         0    0.9000

Total Number of Portfolio Weights with a Value > 0 Are Greater Than MaxNumAssets
Specified

When using a Portfolio, PortfolioCVaR, or PortfolioMAD object, the optimal allocation w may
contain some very small values that leads to sum(w>0) larger than MaxNumAssets, even though the
MaxNumAssets constraint is specified using setMinMaxNumAssets. For example, in the following
code when setMinMaxNumAssets is used to set MaxNumAssets to 15, the sum(w>0) indicates that
there are 19 assets. A close examination of the weights shows that the weights are extremely small
and are actually 0.
T = readtable('dowPortfolio.xlsx');
symbol = T.Properties.VariableNames(3:end);
assetReturn = tick2ret(T{:,3:end});
p = Portfolio('AssetList', symbol, 'budget', 1);
p = setMinMaxNumAssets(p, 10, 15);
p = estimateAssetMoments(p,assetReturn);
p = setBounds(p,0.01,0.5,'BoundType','Conditional','NumAssets',30);
p = setTrackingError(p,0.05,ones(1, p.NumAssets)/p.NumAssets);
w = estimateFrontierLimits(p,'min'); % minimum risk portfolio

sum(w>0)   % Number of assets that are allocated in the optimal portfolio
w(w<eps)   % Check the weights of the very small weighted assets

ans =

    19

ans =

   1.0e-20 *

   -0.0000
         0
         0
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    0.0293
         0
    0.3626
    0.2494
         0
    0.0926
   -0.0000
         0
    0.0020
         0
         0
         0
         0

This situation only happens when the OuterApproximation algorithm is used with
setSolverMINLP to solve a MINLP portfolio optimization problem. The OuterApproximation
internally fixes the latest solved integer variables and runs an NLP with quadprog or fmincon,
which introduces numerical issues and leads to weights that are very close to 0.

If you do not want to deal with very small values, you can use setSolverMINLP to select a different
algorithm. In this example, the 'TrustRegionCP' algorithm is specified.
T = readtable('dowPortfolio.xlsx');
symbol = T.Properties.VariableNames(3:end);
assetReturn = tick2ret(T{:,3:end});
p = Portfolio('AssetList', symbol, 'budget', 1);
p = setMinMaxNumAssets(p, 10, 15);
p = estimateAssetMoments(p,assetReturn);
p = setBounds(p,0.01,0.5,'BoundType','Conditional','NumAssets',30);
p = setTrackingError(p,0.05,ones(1, p.NumAssets)/p.NumAssets);
p = setSolverMINLP(p,'TrustRegionCP');
w = estimateFrontierLimits(p,'min'); % minimum risk portfolio 

sum(w>0)   % Number of assets that are allocated in the optimal portfolio
w(w<eps)   % The weights of the very small weighted assets are strictly zeros

ans =

    14

ans =

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0

See Also
Portfolio | estimateAssetMoments | checkFeasibility | setBounds |
setMinMaxNumAssets

Related Examples
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
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• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Troubleshooting MAD Portfolio Optimization Results” on page 6-110

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Portfolio Optimization Examples
The following sequence of examples highlights features of the Portfolio object in the Financial
Toolbox™. Specifically, the examples use the Portfolio object to show how to set up mean-variance
portfolio optimization problems that focus on the two-fund theorem, the impact of transaction costs
and turnover constraints, how to obtain portfolios that maximize the Sharpe ratio, and how to set up
two popular hedge-fund strategies — dollar-neutral and 130-30 portfolios.

Set up the Data

Every example works with moments for monthly total returns of a universe of 30 "blue-chip" stocks.
Although derived from real data, these data are for illustrative purposes and are not meant to be
representative of specific assets or of market performance. The data are contained in the file
BlueChipStockMoments.mat with a list of asset identifiers in the variable AssetList, a mean and
covariance of asset returns in the variables AssetMean and AssetCovar, and the mean and variance
of cash and market returns in the variables CashMean, CashVar, MarketMean, and MarketVar.
Since most of the analysis requires the use of the standard deviation of asset returns as the proxy for
risk, cash, and market variances are converted into standard deviations.

load BlueChipStockMoments

mret = MarketMean;
mrsk = sqrt(MarketVar);
cret = CashMean;
crsk = sqrt(CashVar);

Create a Portfolio Object

First create a "standard" Portfolio object with Portfolio to incorporate the list of assets, the
risk-free rate, and the moments of asset returns into the object.

p = Portfolio('AssetList',AssetList,'RiskFreeRate',CashMean);
p = setAssetMoments(p,AssetMean,AssetCovar);

To provide a basis for comparison, set up an equal-weight portfolio and make it the initial portfolio in
the Portfolio object. Keep in mind that the hedged portfolios to be constructed later will require a
different initial portfolio. Once the initial portfolio is created, the estimatePortMoments function
estimates the mean and standard deviation of equal-weight portfolio returns.

p = setInitPort(p,1/p.NumAssets);
[ersk,eret] = estimatePortMoments(p,p.InitPort);

A specialized "helper" function portfolioexamples_plot makes it possible to plot all results to be
developed here. The first plot shows the distribution of individual assets according to their means and
standard deviations of returns. In addition, the equal-weight, market, and cash portfolios are plotted
on the same plot. Note that the portfolioexamples_plot function converts monthly total returns
into annualized total returns.

clf;
portfolioexamples_plot('Asset Risks and Returns', ...
    {'scatter', mrsk, mret, {'Market'}}, ...
    {'scatter', crsk, cret, {'Cash'}}, ...
    {'scatter', ersk, eret, {'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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Set up a Portfolio Optimization Problem

Set up a "standard" or default mean-variance portfolio optimization problem with the
setDefaultConstraints function that requires fully-invested long-only portfolios (non-negative
weights that must sum to 1). Given this initial problem, estimate the efficient frontier with the
functions estimateFrontier and estimatePortMoments, where estimateFrontier estimates
efficient portfolios and estimatePortMoments estimates risks and returns for portfolios. The next
figure overlays the efficient frontier on the previous plot.

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p,20);
[prsk,pret] = estimatePortMoments(p,pwgt);

% Plot the efficient frontier.

clf;
portfolioexamples_plot('Efficient Frontier', ...
    {'line', prsk, pret}, ...
    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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Illustrate the Tangent Line to the Efficient Frontier

Tobin's mutual fund theorem (Tobin 1958 on page 4-0 ) says that the portfolio allocation problem is
viewed as a decision to allocate between a riskless asset and a risky portfolio. In the mean-variance
framework, cash serves as a proxy for a riskless asset and an efficient portfolio on the efficient
frontier serves as the risky portfolio such that any allocation between cash and this portfolio
dominates all other portfolios on the efficient frontier. This portfolio is called a tangency portfolio
because it is located at the point on the efficient frontier where a tangent line that originates at the
riskless asset touches the efficient frontier.

Given that the Portfolio object already has the risk-free rate, obtain the tangent line by creating a
copy of the Portfolio object with a budget constraint that permits allocation between 0% and 100%
in cash. Since the Portfolio object is a value object, it is easy to create a copy by assigning the
output of either Portfolio or the "set" functions to a new instance of the Portfolio object. The
plot shows the efficient frontier with Tobin's allocations that form the tangent line to the efficient
frontier.

q = setBudget(p, 0, 1);

qwgt = estimateFrontier(q,20);
[qrsk,qret] = estimatePortMoments(q,qwgt);

% Plot efficient frontier with tangent line (0 to 1 cash).

clf;
portfolioexamples_plot('Efficient Frontier with Tangent Line', ...
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    {'line', prsk, pret}, ...
    {'line', qrsk, qret, [], [], 1}, ...
    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

Note that cash actually has a small risk so that the tangent line does not pass through the cash asset.

Obtain Range of Risks and Returns

To obtain efficient portfolios with target values of either risk or return, it is necessary to obtain the
range of risks and returns among all portfolios on the efficient frontier. This is accomplished with the
estimateFrontierLimits function.

[rsk,ret] = estimatePortMoments(p,estimateFrontierLimits(p));

display(rsk)

rsk = 2×1

    0.0348
    0.0903

display(ret)

ret = 2×1

    0.0094
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    0.0179

The range of monthly portfolio returns is between 0.9% and 1.8% and the range for portfolio risks is
between 3.5% and 9.0%. In annualized terms, the range of portfolio returns is 11.2% to 21.5% and
the range of portfolio risks is 12.1% to 31.3%.

Find a Portfolio with a Targeted Return and Targeted Risk

Given the range of risks and returns, it is possible to locate specific portfolios on the efficient frontier
that have target values for return and risk using the functions estimateFrontierByReturn and
estimateFrontierByRisk.

TargetReturn = 0.20;            % Input target annualized return and risk here.
TargetRisk = 0.15;

% Obtain portfolios with targeted return and risk.

awgt = estimateFrontierByReturn(p,TargetReturn/12);
[arsk,aret] = estimatePortMoments(p,awgt);

bwgt = estimateFrontierByRisk(p,TargetRisk/sqrt(12));
[brsk,bret] = estimatePortMoments(p,bwgt);

% Plot efficient frontier with targeted portfolios.

clf;
portfolioexamples_plot('Efficient Frontier with Targeted Portfolios', ...
    {'line', prsk, pret}, ...
    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', arsk, aret, {sprintf('%g%% Return',100*TargetReturn)}}, ...
    {'scatter', brsk, bret, {sprintf('%g%% Risk',100*TargetRisk)}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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To see what these targeted portfolios look like, use the dataset object to set up "blotters" that
contain the portfolio weights and asset names (which are obtained from the Portfolio object).

aBlotter = dataset({100*awgt(awgt > 0),'Weight'}, 'obsnames', p.AssetList(awgt > 0));

displayPortfolio(sprintf('Portfolio with %g%% Target Return', 100*TargetReturn), aBlotter, false);

Portfolio with 20% Target Return
            Weight 
    CAT      1.1445
    INTC    0.17452
    MO       9.6521
    MSFT    0.85862
    UTX      56.918
    WMT      31.253

bBlotter = dataset({100*bwgt(bwgt > 0),'Weight'}, 'obsnames', p.AssetList(bwgt > 0));

displayPortfolio(sprintf('Portfolio with %g%% Target Risk', 100*TargetRisk), bBlotter, false);

Portfolio with 15% Target Risk
            Weight    
    AA      3.1928e-22
    AIG     5.5874e-21
    AXP     4.3836e-21
    BA       6.257e-22
    C       8.7778e-21
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    GE      4.3302e-22
    GM      5.3508e-22
    HD      9.4473e-21
    HON     2.2103e-22
    IBM     3.8403e-20
    INTC        2.2585
    JNJ         9.2162
    MCD     3.7312e-22
    MMM         16.603
    MO          15.388
    MRK      1.641e-21
    MSFT        4.4467
    PFE     1.5991e-21
    PG           4.086
    UTX         10.281
    WMT         25.031
    XOM          12.69

Transactions Costs

The Portfolio object makes it possible to account for transaction costs as part of the optimization
problem. Although individual costs can be set for each asset, use the scalar expansion features of the
Portfolio object's functions to set up uniform transaction costs across all assets and compare
efficient frontiers with gross versus net portfolio returns.

BuyCost = 0.0020;
SellCost = 0.0020;

q = setCosts(p,BuyCost,SellCost);

qwgt = estimateFrontier(q,20);
[qrsk,qret] = estimatePortMoments(q,qwgt);

% Plot efficient frontiers with gross and net returns.

clf;
portfolioexamples_plot('Efficient Frontier with and without Transaction Costs', ...
    {'line', prsk, pret, {'Gross'}, ':b'}, ...
    {'line', qrsk, qret, {'Net'}}, ...
    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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Turnover Constraint

In addition to transaction costs, the Portfolio object can handle turnover constraints. The following
example demonstrates that a turnover constraint produces an efficient frontier in the neighborhood
of an initial portfolio that may restrict trading. Moreover, the introduction of a turnover constraint
often implies that multiple trades may be necessary to shift from an initial portfolio to an
unconstrained efficient frontier. Consequently, the turnover constraint introduces a form of time
diversification that can spread trades out over multiple time periods. In this example, note that the
sum of purchases and sales from the estimateFrontier function confirms that the turnover
constraint is satisfied.

BuyCost = 0.0020;
SellCost = 0.0020;
Turnover = 0.2;

q = setCosts(p, BuyCost,SellCost);
q = setTurnover(q,Turnover);

[qwgt,qbuy,qsell] = estimateFrontier(q,20);
[qrsk,qret] = estimatePortMoments(q,qwgt);

% Plot efficient frontier with turnover constraint.

clf;
portfolioexamples_plot('Efficient Frontier with Turnover Constraint', ...
    {'line', prsk, pret, {'Unconstrained'}, ':b'}, ...
    {'line', qrsk, qret, {sprintf('%g%% Turnover', 100*Turnover)}}, ...
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    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

displaySumOfTransactions(Turnover, qbuy, qsell)

Sum of Purchases by Portfolio along Efficient Frontier (Max. Turnover 20%)
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 
Sum of Sales by Portfolio along Efficient Frontier (Max. Turnover 20%)
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 

Tracking-Error Constraint

The Portfolio object can handle tracking-error constraints, where tracking-error is the relative risk
of a portfolio compared with a tracking portfolio. In this example, a sub-collection of nine assets
forms an equally-weighted tracking portfolio. The goal is to find efficient portfolios with tracking
errors that are within 5% of this tracking portfolio.

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30];    % Indexes of assets to include in the tracking portfolio.

TrackingError = 0.05/sqrt(12);
TrackingPort = zeros(30, 1);
TrackingPort(ii) = 1;
TrackingPort = (1/sum(TrackingPort))*TrackingPort;

q = setTrackingError(p,TrackingError,TrackingPort);

qwgt = estimateFrontier(q,20);
[qrsk,qret] = estimatePortMoments(q,qwgt);
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[trsk,tret] = estimatePortMoments(q,TrackingPort);

% Plot the efficient frontier with tracking-error constraint.

clf;
portfolioexamples_plot('Efficient Frontier with 5% Tracking-Error Constraint', ...
    {'line', prsk, pret, {'Unconstrained'}, ':b'}, ...
    {'line', qrsk, qret, {'Tracking'}}, ...
    {'scatter', [mrsk, crsk], [mret, cret], {'Market', 'Cash'}}, ...
    {'scatter', trsk, tret, {'Tracking'}, 'r'});

Combined Turnover and Tracking-Error Constraints

This example illustrates the interactions that can occur with combined constraints. In this case, both
a turnover constraint relative to an initial equal-weight portfolio and a tracking-error constraint
relative to a tracking portfolio must be satisfied. The turnover constraint has a maximum of 30%
turnover and the tracking-error constraint has a maximum of 5% tracking error. Note that the
turnover to get from the initial portfolio to the tracking portfolio is 70% so that an upper bound of
30% turnover means that the efficient frontier will lie somewhere between the initial portfolio and the
tracking portfolio.

Turnover = 0.3;
InitPort = (1/q.NumAssets)*ones(q.NumAssets, 1);

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30];    % Indexes of assets to include in tracking portfolio.
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TrackingError = 0.05/sqrt(12);
TrackingPort = zeros(30, 1);
TrackingPort(ii) = 1;
TrackingPort = (1/sum(TrackingPort))*TrackingPort;

q = setTurnover(q,Turnover,InitPort);

qwgt = estimateFrontier(q,20);
[qrsk,qret] = estimatePortMoments(q,qwgt);

[trsk,tret] = estimatePortMoments(q,TrackingPort);
[ersk,eret] = estimatePortMoments(q,InitPort);

% Plot the efficient frontier with combined turnover and tracking-error constraint.

clf;
portfolioexamples_plot('Efficient Frontier with Turnover and Tracking-Error Constraint', ...
    {'line', prsk, pret, {'Unconstrained'}, ':b'}, ...
    {'line', qrsk, qret, {'Turnover & Tracking'}}, ...
    {'scatter', [mrsk, crsk], [mret, cret], {'Market', 'Cash'}}, ...
    {'scatter', trsk, tret, {'Tracking'}, 'r'}, ...
    {'scatter', ersk, eret, {'Initial'}, 'b'});

Maximize the Sharpe Ratio

The Sharpe ratio (Sharpe 1966 on page 4-0 ) is a measure of return-to-risk that plays an important
role in portfolio analysis. Specifically, a portfolio that maximizes the Sharpe ratio is also the tangency
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portfolio on the efficient frontier from the mutual fund theorem. The maximum Sharpe ratio portfolio
is located on the efficient frontier with the function estimateMaxSharpeRatio and the dataset
object is used to list the assets in this portfolio.

p = setInitPort(p, 0);

swgt = estimateMaxSharpeRatio(p);
[srsk,sret] = estimatePortMoments(p,swgt);

% Plot the efficient frontier with portfolio that attains maximum Sharpe ratio.

clf;
portfolioexamples_plot('Efficient Frontier with Maximum Sharpe Ratio Portfolio', ...
    {'line', prsk, pret}, ...
    {'scatter', srsk, sret, {'Sharpe'}}, ...
    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio.

Blotter = dataset({100*swgt(swgt > 0),'Weight'}, 'obsnames', AssetList(swgt > 0));

displayPortfolio('Portfolio with Maximum Sharpe Ratio', Blotter, false);

Portfolio with Maximum Sharpe Ratio
            Weight    
    AA      1.9674e-15
    AIG     1.9059e-15
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    AXP     1.0567e-15
    BA      5.6013e-16
    C       2.0055e-15
    CAT     2.9716e-15
    DD      3.1346e-16
    DIS     5.9556e-16
    GE      5.6145e-15
    GM      7.3246e-16
    HD      2.0342e-11
    HON      3.309e-16
    HPQ     2.0307e-15
    IBM     8.8746e-15
    INTC        2.6638
    JNJ         9.0044
    JPM     5.4026e-16
    KO      2.4602e-16
    MCD     8.7472e-16
    MMM         15.502
    MO          13.996
    MRK     3.2239e-16
    MSFT        4.4777
    PFE     7.3425e-16
    PG          7.4588
    SBC     3.8329e-16
    UTX         6.0056
    VZ      3.9079e-16
    WMT         22.051
    XOM         18.841

Confirm that Maximum Sharpe Ratio is a Maximum

The following plot demonstrates that this portfolio (which is located at the dot on the plots) indeed
maximizes the Sharpe ratio among all portfolios on the efficient frontier.

psratio = (pret - p.RiskFreeRate) ./ prsk;
ssratio = (sret - p.RiskFreeRate) / srsk;

clf;
subplot(2,1,1);
plot(prsk, pret, 'LineWidth', 2);
hold on
scatter(srsk, sret, 'g', 'filled');
title('\bfEfficient Frontier');
xlabel('Portfolio Risk');
ylabel('Portfolio Return');
hold off

subplot(2,1,2);
plot(prsk, psratio, 'LineWidth', 2);
hold on
scatter(srsk, ssratio, 'g', 'filled');
title('\bfSharpe Ratio');
xlabel('Portfolio Risk');
ylabel('Sharpe Ratio');
hold off
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Illustrate that Sharpe is the Tangent Portfolio

The next plot demonstrates that the portfolio that maximizes the Sharpe ratio is also a tangency
portfolio (in this case, the budget constraint is opened up to permit between 0% and 100% in cash).

q = setBudget(p, 0, 1);

qwgt = estimateFrontier(q,20);
[qrsk,qret] = estimatePortMoments(q,qwgt);

% Plot showing that the Sharpe ratio portfolio is the tangency portfolio.

clf;
portfolioexamples_plot('Efficient Frontier with Maximum Sharpe Ratio Portfolio', ...
    {'line', prsk, pret}, ...
    {'line', qrsk, qret, [], [], 1}, ...
    {'scatter', srsk, sret, {'Sharpe'}}, ...
    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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Dollar-Neutral Hedge-Fund Structure

To illustrate how to use the portfolio optimization tools in hedge fund management, two popular
strategies with dollar-neutral and 130-30 portfolios are examined. The dollar-neutral strategy invests
equally in long and short positions such that the net portfolio position is 0. Such a portfolio is said to
be "dollar-neutral."

To set up a dollar-neutral portfolio, start with the "standard" portfolio problem and set the maximum
exposure in long and short positions in the variable Exposure. The bounds for individual asset
weights are plus or minus Exposure. Since the net position must be dollar-neutral, the budget
constraint is 0 and the initial portfolio must be 0. Finally, the one-way turnover constraints provide
the necessary long and short restrictions to prevent "double-counting" of long and short positions.
The blotter shows the portfolio weights for the dollar-neutral portfolio that maximizes the Sharpe
ratio. The long and short positions are obtained from the buy and sell trades relative to the initial
portfolio.

Exposure = 1;

q = setBounds(p, -Exposure, Exposure);
q = setBudget(q, 0, 0);
q = setOneWayTurnover(q, Exposure, Exposure, 0);

[qwgt,qlong,qshort] = estimateFrontier(q,20);
[qrsk,qret] = estimatePortMoments(q,qwgt);

[qswgt,qslong,qsshort] = estimateMaxSharpeRatio(q);
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[qsrsk,qsret] = estimatePortMoments(q,qswgt);

% Plot the efficient frontier for a dollar-neutral fund structure with tangency portfolio.

clf;
portfolioexamples_plot('Efficient Frontier with Dollar-Neutral Portfolio', ...
    {'line', prsk, pret, {'Standard'}, 'b:'}, ...
    {'line', qrsk, qret, {'Dollar-Neutral'}, 'b'}, ...
    {'scatter', qsrsk, qsret, {'Sharpe'}}, ...
    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio.

Blotter = dataset({100*qswgt(abs(qswgt) > 1.0e-4), 'Weight'}, ...
    {100*qslong(abs(qswgt) > 1.0e-4), 'Long'}, ...
    {100*qsshort(abs(qswgt) > 1.0e-4), 'Short'}, ...
    'obsnames', AssetList(abs(qswgt) > 1.0e-4));

displayPortfolio('Dollar-Neutral Portfolio with Maximum Sharpe Ratio', Blotter, true, 'Dollar-Neutral');

Dollar-Neutral Portfolio with Maximum Sharpe Ratio
            Weight     Long       Short 
    AA       0.5088     0.5088         0
    AIG      3.0394     3.0394         0
    AXP     0.92797    0.92797         0
    BA      -3.4952          0    3.4952
    C        14.003     14.003         0
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    CAT      3.7261     3.7261         0
    DD      -18.063          0    18.063
    DIS     -4.8236          0    4.8236
    GE      -3.6178          0    3.6178
    GM      -3.7211          0    3.7211
    HD        1.101      1.101         0
    HON     -1.4349          0    1.4349
    HPQ     0.09909    0.09909         0
    IBM     -8.0585          0    8.0585
    INTC     1.7693     1.7693         0
    JNJ      1.3696     1.3696         0
    JPM     -2.5271          0    2.5271
    KO      -14.205          0    14.205
    MCD        3.91       3.91         0
    MMM      7.5995     7.5995         0
    MO       4.0856     4.0856         0
    MRK       3.747      3.747         0
    MSFT     4.0769     4.0769         0
    PFE      -9.096          0     9.096
    PG       1.6493     1.6493         0
    SBC     -5.2547          0    5.2547
    UTX      5.7454     5.7454         0
    VZ       -2.438          0     2.438
    WMT     0.84844    0.84844         0
    XOM      18.529     18.529         0

Confirm Dollar-Neutral Portfolio
  (Net, Long, Short)
-0.0000 76.7350 76.7350 

130/30 Fund Structure

Finally, the turnover constraints are used to set up a 130-30 portfolio structure, which is a structure
with a net long position but permits leverage with long and short positions up to a maximum amount
of leverage. In the case of a 130-30 portfolio, the leverage is 30%.

To set up a 130-30 portfolio, start with the "standard" portfolio problem and set the maximum value
for leverage in the variable Leverage. The bounds for individual asset weights range between -
Leverage and 1 + Leverage. Since the net position must be long, the budget constraint is 1 and,
once again, the initial portfolio is 0. Finally, the one-way turnover constraints provide the necessary
long and short restrictions to prevent "double-counting" of long and short positions. The blotter
shows the portfolio weights for the 130-30 portfolio that maximizes the Sharpe ratio. The long and
short positions are obtained from the buy and sell trades relative to the initial portfolio.

Leverage = 0.3;

q = setBounds(p, -Leverage, 1 + Leverage);
q = setBudget(q, 1, 1);
q = setOneWayTurnover(q, 1 + Leverage, Leverage);

[qwgt,qbuy,qsell] = estimateFrontier(q,20);
[qrsk,qret] = estimatePortMoments(q,qwgt);

[qswgt,qslong,qsshort] = estimateMaxSharpeRatio(q);
[qsrsk,qsret] = estimatePortMoments(q,qswgt);

% Plot the efficient frontier for a 130-30 fund structure with tangency portfolio.
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clf;
portfolioexamples_plot(sprintf('Efficient Frontier with %g-%g Portfolio', ...
    100*(1 + Leverage),100*Leverage), ...
    {'line', prsk, pret, {'Standard'}, 'b:'}, ...
    {'line', qrsk, qret, {'130-30'}, 'b'}, ...
    {'scatter', qsrsk, qsret, {'Sharpe'}}, ...
    {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
    {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio.

Blotter = dataset({100*qswgt(abs(qswgt) > 1.0e-4), 'Weight'}, ...
    {100*qslong(abs(qswgt) > 1.0e-4), 'Long'}, ...
    {100*qsshort(abs(qswgt) > 1.0e-4), 'Short'}, ...
    'obsnames', AssetList(abs(qswgt) > 1.0e-4));

displayPortfolio(sprintf('%g-%g Portfolio with Maximum Sharpe Ratio', 100*(1 + Leverage), 100*Leverage), Blotter, true, sprintf('%g-%g', 100*(1 + Leverage), 100*Leverage));

130-30 Portfolio with Maximum Sharpe Ratio
            Weight      Long      Short  
    DD       -9.5565         0     9.5565
    HON      -6.0244         0     6.0244
    INTC      4.0335    4.0335          0
    JNJ       7.1234    7.1234          0
    JPM     -0.44583         0    0.44583
    KO       -13.646         0     13.646
    MMM       20.908    20.908          0
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    MO        14.433    14.433          0
    MSFT      4.5592    4.5592          0
    PG        17.243    17.243          0
    SBC     -0.32712         0    0.32712
    UTX       5.3584    5.3584          0
    WMT       21.018    21.018          0
    XOM       35.323    35.323          0

Confirm 130-30 Portfolio
  (Net, Long, Short)
100.0000 130.0000 30.0000 
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Local Functions

function displaySumOfTransactions(Turnover, qbuy, qsell)
fprintf('Sum of Purchases by Portfolio along Efficient Frontier (Max. Turnover %g%%)\n', ...
    100*Turnover);
fprintf('%.4f ', 100*sum(qbuy)), sprintf('\n\n');
fprintf('\n')
fprintf('Sum of Sales by Portfolio along Efficient Frontier (Max. Turnover %g%%)\n', ...
    100*Turnover);
fprintf('%.4f ', 100*sum(qsell));
end

function displayPortfolio(Description, Blotter, LongShortFlag, portfolioType)
fprintf('%s\n', Description);
disp(Blotter);
if (LongShortFlag)
    fprintf('Confirm %s Portfolio\n', portfolioType);
    fprintf('  (Net, Long, Short)\n');
    fprintf('%.4f ' , [ sum(Blotter.Weight), sum(Blotter.Long), sum(Blotter.Short) ]);
end
end

See Also
Portfolio | setBounds | addGroups | setAssetMoments | estimateAssetMoments |
estimateBounds | plotFrontier | estimateFrontierLimits | estimateFrontierByRisk |
estimatePortRisk
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Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Against a Benchmark” on page 4-184
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Analysis with Turnover Constraints” on page 4-193
• “Leverage in Portfolio Optimization with a Risk-Free Asset” on page 4-199
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Asset Allocation Case Study
This example shows how to set up a basic asset allocation problem that uses mean-variance portfolio
optimization with a Portfolio object to estimate efficient portfolios.

Step 1. Defining the portfolio problem.

Suppose that you want to manage an asset allocation fund with four asset classes: bonds, large-cap
equities, small-cap equities, and emerging equities. The fund is long-only with no borrowing or
leverage, should have no more than 85% of the portfolio in equities, and no more than 35% of the
portfolio in emerging equities. The cost to trade the first three assets is 10 basis points annualized
and the cost to trade emerging equities is four times higher. Finally, you want to ensure that average
turnover is no more than 15%. To solve this problem, you will set up a basic mean-variance portfolio
optimization problem and then slowly introduce the various constraints on the problem to get to a
solution.

To set up the portfolio optimization problem, start with basic definitions of known quantities
associated with the structure of this problem. Each asset class is assumed to have a tradeable asset
with a real-time price. Such assets can be, for example, exchange-traded funds (ETFs). The initial
portfolio with holdings in each asset that has a total of $7.5 million along with an additional cash
position of $60,000. These basic quantities and the costs to trade are set up in the following variables
with asset names in the cell array Asset, current prices in the vector Price, current portfolio
holdings in the vector Holding, and transaction costs in the vector UnitCost.

To analyze this portfolio, you can set up a blotter in a table object to help track prices, holdings,
weights, and so forth. In particular, you can compute the initial portfolio weights and maintain them
in a new blotter field called InitPort.

Asset = { 'Bonds', 'Large-Cap Equities', 'Small-Cap Equities', 'Emerging Equities' };
Price = [ 52.4; 122.7; 35.2; 46.9 ];
Holding = [ 42938; 24449; 42612; 15991 ];
UnitCost = [ 0.001; 0.001; 0.001; 0.004 ];

Blotter = table('RowNames', Asset);
Blotter.Price = Price;
Blotter.InitHolding = Holding;
Wealth = sum(Blotter.Price .* Blotter.InitHolding);
Blotter.InitPort = (1/Wealth)*(Blotter.Price .* Blotter.InitHolding);
Blotter.UnitCost = UnitCost;
Blotter

Blotter=4×4 table
                          Price    InitHolding    InitPort    UnitCost
                          _____    ___________    ________    ________

    Bonds                  52.4       42938         0.3        0.001  
    Large-Cap Equities    122.7       24449         0.4        0.001  
    Small-Cap Equities     35.2       42612         0.2        0.001  
    Emerging Equities      46.9       15991         0.1        0.004  

Step 2. Simulating asset prices.

Since this is a hypothetical example, to simulate asset prices from a given mean and covariance of
annual asset total returns for the asset classes, the portsim function is used to create asset returns
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with the desired mean and covariance. Specifically, portsim is used to simulate five years of monthly
total returns and then plotted to show the log of the simulated total return prices

The mean and covariance of annual asset total returns are maintained in the variables AssetMean
and AssetCovar. The simulated asset total return prices (which are compounded total returns) are
maintained in the variable Y. All initial asset total return prices are normalized to 1 in this example.

AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];
AssetCovar = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

X = portsim(AssetMean'/12, AssetCovar/12, 60); % Monthly total returns for 5 years (60 months)
[Y, T] = ret2tick(X, [], 1/12);                % form total return prices.
plot(T, log(Y));
title('\bfSimulated Asset Class Total Return Prices');
xlabel('Year');
ylabel('Log Total Return Price');
legend(Asset,'Location','best');

Step 3. Setting up the Portfolio object.

To explore portfolios on the efficient frontier, set up a Portfolio object using these specifications:

• Portfolio weights are nonnegative and sum to 1.
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• Equity allocation is no more than 85% of the portfolio.
• Emerging equity is no more than 35% of the portfolio.

These specifications are incorporated into the Portfolio object p in the following sequence of using
functions that starts with using the Portfolio object.

1 The specification of the initial portfolio from Blotter gives the number of assets in your
universe so you do not need to specify the NumAssets property directly. Next, set up default
constraints (long-only with a budget constraint). In addition, set up the group constraint that
imposes an upper bound on equities in the portfolio (equities are identified in the group matrix
with 1's) and the upper bound constraint on emerging equities. Although you could have set the
upper bound on emerging equities using the setBounds function, notice how the addGroups
function is used to set up this constraint.

2 To have a fully specified mean-variance portfolio optimization problem, you must specify the
mean and covariance of asset returns. Since starting with these moments in the variables
AssetMean and AssetCovar, you can use the setAssetMoments function to enter these
variables into your Portfolio object (remember that you are assuming that your raw data are
monthly returns which is why you divide your annual input moments by 12 to get monthly
returns).

3 Use the total return prices with the estimateAssetMoments function with a specification that
your data in Y are prices, and not returns, to estimate asset return moments for your Portfolio
object.

4 Although the returns in your Portfolio object are in units of monthly returns, and since
subsequent costs are annualized, it is convenient to specify them as annualized total returns with
this direct transformation of the AssetMean and AssetCovar properties of your Portfolio
object p.

5 Display the Portfolio object p.

p = Portfolio('Name', 'Asset Allocation Portfolio', ...
'AssetList', Asset, 'InitPort', Blotter.InitPort);

p = setDefaultConstraints(p);
p = setGroups(p, [ 0, 1, 1, 1 ], [], 0.85);
p = addGroups(p, [ 0, 0, 0, 1 ], [], 0.35);

p = setAssetMoments(p, AssetMean/12, AssetCovar/12);
p = estimateAssetMoments(p, Y, 'DataFormat', 'Prices');

p.AssetMean = 12*p.AssetMean;
p.AssetCovar = 12*p.AssetCovar;

display(p)

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [4x1 double]
       AssetCovar: [4x4 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
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      BuyTurnover: []
     SellTurnover: []
             Name: 'Asset Allocation Portfolio'
        NumAssets: 4
        AssetList: {1x4 cell}
         InitPort: [4x1 double]
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [4x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: [2x4 double]
       LowerGroup: []
       UpperGroup: [2x1 double]
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: [4x1 categorical]

Step 4. Validate the portfolio problem.

An important step in portfolio optimization is to validate that the portfolio problem is feasible and the
main test is to ensure that the set of portfolios is nonempty and bounded. Use the estimateBounds
function to determine the bounds for the portfolio set. In this case, since both lb and ub are finite,
the set is bounded.

[lb, ub] = estimateBounds(p);
display([lb, ub])

    0.1500    1.0000
         0    0.8500
         0    0.8500
         0    0.3500

Step 5. Plotting the efficient frontier.

Given the constructed Portfolio object, use the plotFrontier function to view the efficient
frontier. Instead of using the default of 10 portfolios along the frontier, you can display the frontier
with 40 portfolios. Notice gross efficient portfolio returns fall between approximately 6% and 16% per
years.

plotFrontier(p, 40)
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Step 6. Evaluating gross vs. net portfolio returns.

The Portfolio object p does not include transaction costs so that the portfolio optimization problem
specified in p uses gross portfolio return as the return proxy. To handle net returns, create a second
Portfolio object q that includes transaction costs.

q = setCosts(p, UnitCost, UnitCost);
display(q)

q = 
  Portfolio with properties:

          BuyCost: [4x1 double]
         SellCost: [4x1 double]
     RiskFreeRate: []
        AssetMean: [4x1 double]
       AssetCovar: [4x4 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: 'Asset Allocation Portfolio'
        NumAssets: 4
        AssetList: {1x4 cell}
         InitPort: [4x1 double]
      AInequality: []
      bInequality: []
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        AEquality: []
        bEquality: []
       LowerBound: [4x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: [2x4 double]
       LowerGroup: []
       UpperGroup: [2x1 double]
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: [4x1 categorical]

Step 7. Analyzing descriptive properties of the Portfolio structures.

To be more concrete about the ranges of efficient portfolio returns and risks, use the
estimateFrontierLimits function to obtain portfolios at the endpoints of the efficient frontier.
Given these portfolios, compute their moments using the estimatePortMoments function. The
following code generates a table that lists the risk and return of the initial portfolio as well as the
gross and net moments of portfolio returns for the portfolios at the endpoints of the efficient frontier:

[prsk0, pret0] = estimatePortMoments(p, p.InitPort);

pret = estimatePortReturn(p, p.estimateFrontierLimits);
qret = estimatePortReturn(q, q.estimateFrontierLimits);

displayReturns(pret0, pret, qret)

Annualized Portfolio Returns ...
                                    Gross       Net
Initial Portfolio Return             9.70 %    9.70 %
Minimum Efficient Portfolio Return   5.90 %    5.77 %
Maximum Efficient Portfolio Return  13.05 %   12.86 %

The results show that the cost to trade ranges from 14 to 19 basis points to get from the current
portfolio to the efficient portfolios at the endpoints of the efficient frontier (these costs are the
difference between gross and net portfolio returns.) In addition, notice that the maximum efficient
portfolio return (13%) is less than the maximum asset return (18%) due to the constraints on equity
allocations.

Step 8. Obtaining a Portfolio at the specified return level on the efficient frontier.

A common approach to select efficient portfolios is to pick a portfolio that has a desired fraction of
the range of expected portfolio returns. To obtain the portfolio that is 30% of the range from the
minimum to maximum return on the efficient frontier, obtain the range of net returns in qret using
the Portfolio object q and interpolate to obtain a 30% level with the interp1 function to obtain a
portfolio qwgt.

Level = 0.3;

qret = estimatePortReturn(q, q.estimateFrontierLimits);
qwgt = estimateFrontierByReturn(q, interp1([0, 1], qret, Level));
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[qrsk, qret] = estimatePortMoments(q, qwgt);

displayReturnLevel(Level, qret, qrsk);

Portfolio at 30% return level on efficient frontier ...
    Return       Risk
      7.90       9.09

display(qwgt)

qwgt = 4×1

    0.6252
    0.1856
    0.0695
    0.1198

The target portfolio that is 30% of the range from minimum to maximum net returns has a return of
7.9% and a risk of 9.1%.

Step 9. Obtaining a Portfolio at the specified risk levels on the efficient frontier.

Although you could accept this result, suppose that you want to target values for portfolio risk.
Specifically, suppose that you have a conservative target risk of 10%, a moderate target risk of 15%,
and an aggressive target risk of 20% and you want to obtain portfolios that satisfy each risk target.
Use the estimateFrontierByRisk function to obtain targeted risks specified in the variable
TargetRisk. The resultant three efficient portfolios are obtained in qwgt.

TargetRisk = [ 0.10; 0.15; 0.20 ];
qwgt = estimateFrontierByRisk(q, TargetRisk);
display(qwgt)

qwgt = 4×3

    0.5407    0.2020    0.1500
    0.2332    0.4000    0.0318
    0.0788    0.1280    0.4682
    0.1474    0.2700    0.3500

Use the estimatePortRisk function to compute the portfolio risks for the three portfolios to
confirm that the target risks have been attained:

display(estimatePortRisk(q, qwgt))

    0.1000
    0.1500
    0.2000

Suppose that you want to shift from the current portfolio to the moderate portfolio. You can estimate
the purchases and sales to get to this portfolio:

[qwgt, qbuy, qsell] = estimateFrontierByRisk(q, 0.15);

If you average the purchases and sales for this portfolio, you can see that the average turnover is
17%, which is greater than the target of 15%:

disp(sum(qbuy + qsell)/2) 
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    0.1700

Since you also want to ensure that average turnover is no more than 15%, you can add the average
turnover constraint to the Portfolio object using setTurnover:

q = setTurnover(q, 0.15);
[qwgt, qbuy, qsell] = estimateFrontierByRisk(q, 0.15);

You can enter the estimated efficient portfolio with purchases and sales into the Blotter:

qbuy(abs(qbuy) < 1.0e-5) = 0;
qsell(abs(qsell) < 1.0e-5) = 0;  % Zero out near 0 trade weights.

Blotter.Port = qwgt;
Blotter.Buy = qbuy;
Blotter.Sell = qsell;

display(Blotter)

Blotter=4×7 table
                          Price    InitHolding    InitPort    UnitCost     Port      Buy       Sell  
                          _____    ___________    ________    ________    _______    ____    ________

    Bonds                  52.4       42938         0.3        0.001      0.18787       0     0.11213
    Large-Cap Equities    122.7       24449         0.4        0.001          0.4       0           0
    Small-Cap Equities     35.2       42612         0.2        0.001      0.16213       0    0.037871
    Emerging Equities      46.9       15991         0.1        0.004         0.25    0.15           0

The Buy and Sell elements of the Blotter are changes in portfolio weights that must be converted
into changes in portfolio holdings to determine the trades. Since you are working with net portfolio
returns, you must first compute the cost to trade from your initial portfolio to the new portfolio. This
is accomplished as follows:

TotalCost = Wealth * sum(Blotter.UnitCost .* (Blotter.Buy + Blotter.Sell))

TotalCost = 5.6248e+03

The cost to trade is $5,625, so that, in general, you would have to adjust your initial wealth
accordingly before setting up your new portfolio weights. However, to keep the analysis simple, note
that you have sufficient cash ($60,0000) set aside to pay the trading costs and that you will not touch
the cash position to build up any positions in your portfolio. Thus, you can populate your blotter with
the new portfolio holdings and the trades to get to the new portfolio without making any changes in
your total invested wealth. First, compute the portfolio holding:

Blotter.Holding = Wealth * (Blotter.Port ./ Blotter.Price);

Compute number of shares to Buy and Sell in your Blotter:

Blotter.BuyShare = Wealth * (Blotter.Buy ./ Blotter.Price);
Blotter.SellShare = Wealth * (Blotter.Sell ./ Blotter.Price);

Notice how you used an ad hoc truncation rule to obtain unit numbers of shares to buy and sell. Clean
up the Blotter by removing the unit costs and the buy and sell portfolio weights:

Blotter.Buy = [];
Blotter.Sell = [];
Blotter.UnitCost = [];
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Step 10. Displaying the final results.

The final result is a blotter that contains proposed trades to get from your current portfolio to a
moderate-risk portfolio. To make the trade, you would need to sell 16,049 shares of your bond asset
and 8,069 shares of your small-cap equity asset and would need to purchase 23,986 shares of your
emerging equities asset.

display(Blotter)

Blotter=4×7 table
                          Price    InitHolding    InitPort     Port      Holding    BuyShare    SellShare
                          _____    ___________    ________    _______    _______    ________    _________

    Bonds                  52.4       42938         0.3       0.18787     26889          0        16049  
    Large-Cap Equities    122.7       24449         0.4           0.4     24449          0            0  
    Small-Cap Equities     35.2       42612         0.2       0.16213     34543          0       8068.8  
    Emerging Equities      46.9       15991         0.1          0.25     39977      23986            0  

The final plot uses the plotFrontier function to display the efficient frontier and the initial portfolio
for the fully specified portfolio optimization problem. It also adds the location of the moderate-risk or
final portfolio on the efficient frontier.

plotFrontier(q, 40);
hold on
scatter(estimatePortRisk(q, qwgt), estimatePortReturn(q, qwgt), 'filled', 'r');
h = legend('Initial Portfolio', 'Efficient Frontier', 'Final Portfolio', 'location', 'best');
set(h, 'Fontsize', 8);
hold off
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Local Functions

function displayReturns(pret0, pret, qret)
fprintf('Annualized Portfolio Returns ...\n');
fprintf('                                   %6s    %6s\n','Gross','Net');
fprintf('Initial Portfolio Return           %6.2f %%  %6.2f %%\n',100*pret0,100*pret0);
fprintf('Minimum Efficient Portfolio Return %6.2f %%  %6.2f %%\n',100*pret(1),100*qret(1));
fprintf('Maximum Efficient Portfolio Return %6.2f %%  %6.2f %%\n',100*pret(2),100*qret(2));
end

function displayReturnLevel(Level, qret, qrsk)
fprintf('Portfolio at %g%% return level on efficient frontier ...\n',100*Level);
fprintf('%10s %10s\n','Return','Risk');
fprintf('%10.2f %10.2f\n',100*qret,100*qrsk);
end

See Also
Portfolio | setBounds | addGroups | setAssetMoments | estimateAssetMoments |
estimateBounds | plotFrontier | estimateFrontierLimits | estimateFrontierByRisk |
estimatePortRisk

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
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• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Against a Benchmark” on page 4-184
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Analysis with Turnover Constraints” on page 4-193
• “Leverage in Portfolio Optimization with a Risk-Free Asset” on page 4-199
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Portfolio Optimization with Semicontinuous and Cardinality
Constraints

This example shows how to use a Portfolio object to directly handle semicontinuous and
cardinality constraints when performing portfolio optimization. Portfolio optimization finds the asset
allocation that maximizes the return or minimizes the risk, subject to a set of investment constraints.
The Portfolio class in Financial Toolbox™ is designed and implemented based on the Markowitz
Mean-Variance Optimization framework. The Mean-Variance Optimization framework handles
problems where the return is the expected portfolio return, and the risk is the variance of portfolio
returns. Using the Portfolio class, you can minimize the risk on the efficient frontier (EF),
maximize the return on the EF, maximize the return for a given risk, and minimize the risk for a given
return. You can also use PortfolioCVaR or PortfolioMAD classes in Financial Toolbox™ to specify
semicontinuous and cardinality constraints. Such optimization problems integrate with constraints
such as group, linear inequality, turnover, and tracking error constraints. These constraints are
formulated as nonlinear programming (NLP) problems with continuous variables represented as the
asset weights xi.

Semicontinuous and cardinality constraints are two other common categories of portfolio constraints
that are formulated mathematically by adding the binary variables vi.

• A semicontinuous constraint confines the allocation of an asset. For example, you can use this
constraint to confine the allocated weight of an allocated asset to between 5% and 50%. By using
this constraint, you can avoid very small or large positions to minimize the churns and operational
costs. To mathematically formulate this type of constraint, a binary variable vi is needed, where vi
is 0 or 1. The value 0 indicates that asset i is not allocated and the value 1 indicates that asset i is
allocated. The mathematical form is lb * vi ≤ xi ≤ ub * vi, where vi is 0 or 1. Specify this type of
constraint as a 'Conditional' BoundType in the Portfolio class using the setBounds
function.

• A cardinality constraint limits the number of assets in the optimal allocation, For example, for a
portfolio with a universe of 100 assets, you can specify an optimal portfolio allocation between 20
and 40 assets. This capability helps limit the number of positions, and thus reduce operational
costs. To mathematically formulate this type of constraint, binary variables represented as vi are
needed, where vi is 0 or 1. The value 0 indicates that asset i is not allocated and the value 1
indicates that asset i is allocated. The mathematical form is
MinNumAssets ≤ ∑1

NumAssetsvi ≤ MaxNumAssets, where vi is 0 or 1. Specify this type of constraint
by setting the 'MinNumAssets' and 'MaxNumAssets'constraints in the Portfolio class using
the setMinMaxNumAssets function.

For more information on semicontinuous and cardinality constraints, see “Algorithms” on page 19-
1383.

When semicontinuous and cardinality constraints are used for portfolio optimization, this leads to
mixed integer nonlinear programming problems (MINLP). The Portfolio class allows you to
configure these two constraints, specifically, semicontinuous constraints using setBounds with
'Conditional' BoundType, and cardinality constraints using setMinMaxNumAssets. The
Portfolio class automatically formulates the mathematical problems and validates the specified
constraints. The Portfolio class also provides built-in MINLP solvers and flexible solver options for
you to tune the solver performance using the setSolverMINLP function.

This example demonstrates a Portfolio object with semicontinuous and cardinality constraints and
uses the BlueChipStockMoments dataset, which has a universe of 30 assets.
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load BlueChipStockMoments
numAssets = numel(AssetList)

numAssets = 30

Limit the Minimum Weight for Each Allocated Asset

Create a fully invested portfolio with only long positions: xi ≥ 0 and sum xi = 1. These are configured
with setDefaultConstraints.

p = Portfolio('AssetList', AssetList,'AssetCovar', AssetCovar, 'AssetMean', AssetMean);
p = setDefaultConstraints(p);

Suppose that you want to avoid very small positions to minimize the churn and operational costs. Add
another constraint to confine the allocated positions to be no less than 5%, by setting the constraints
xi = 0 or xi ≥ 0 . 05 using setBounds with a 'Conditional' BoundType.

pWithMinWeight = setBounds(p, 0.05, 'BoundType', 'Conditional');

Plot the efficient frontiers for both Portfolio objects.

wgt = estimateFrontier(p);
wgtWithMinWeight = estimateFrontier(pWithMinWeight);
figure(1);
plotFrontier(p, wgt); hold on;
plotFrontier(pWithMinWeight, wgtWithMinWeight); hold off;
legend('Baseline portfolio', 'With minWeight constraint', 'location', 'best');
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The figure shows that the two Portfolio objects have almost identical efficient frontiers. However,
the one with the minimum weight requirement is more practical, since it prevents the close-to-zero
positions.

Check the optimal weights for the portfolio with default constraints to see how many assets are below
the 5% limit for each optimal allocation.

toler = eps;
sum(wgt>toler & wgt<0.05)

ans = 1×10

     5     7     5     4     2     3     4     2     0     0

Use estimateFrontierByReturn to investigate the portfolio compositions for a target return on
the frontier for both cases.

targetRetn = 0.011;
pwgt = estimateFrontierByReturn(p, targetRetn);
pwgtWithMinWeight = estimateFrontierByReturn(pWithMinWeight, targetRetn);

Plot the composition of the two Portfolio objects for the universe of 30 assets.

figure(2);
barh([pwgt, pwgtWithMinWeight]);
grid on
xlabel('Proportion of Investment')
yticks(1:p.NumAssets);
yticklabels(p.AssetList);
title('Asset Allocation');
legend('Without min weight limit', 'With min weight limit', 'location', 'best');
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Show only the allocated assets.

idx = (pwgt>toler) | (pwgtWithMinWeight>toler);

barh([pwgt(idx), pwgtWithMinWeight(idx)]);
grid on
xlabel('Proportion of Investment')
yticks(1:sum(idx));
yticklabels(p.AssetList(idx));
title('Asset Allocation');
legend('Without min weight limit', 'With min weight limit', 'location', 'best');
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Limit the Maximum Number of Assets to Allocate

Use setMinMaxNumAssets to set the maximum number of allocated assets for the Portfolio
object. Suppose that you want no more than eight assets invested in the optimal portfolio. To do this
with a Portfolio object, use setMinMaxNumAssets.

pWithMaxNumAssets = setMinMaxNumAssets(p, [], 8);

wgt = estimateFrontier(p);
wgtWithMaxNumAssets = estimateFrontier(pWithMaxNumAssets);
plotFrontier(p, wgt); hold on;
plotFrontier(pWithMaxNumAssets, wgtWithMaxNumAssets); hold off;
legend('Baseline portfolio', 'With MaxNumAssets constraint', 'location', 'best');
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Use estimateFrontierByReturn to find the allocation that minimizes the risk on the frontier for
the given target return.

pwgtWithMaxNum = estimateFrontierByReturn(pWithMaxNumAssets, targetRetn);

Plot the composition of the two Portfolio objects for the universe of 30 assets.

idx = (pwgt>toler) | (pwgtWithMaxNum>toler);

barh([pwgt(idx), pwgtWithMaxNum(idx)]);
grid on
xlabel('Proportion of Investment')
yticks(1:sum(idx));
yticklabels(p.AssetList(idx));
title('Asset Allocation');
legend('Baseline portfolio', 'With MaxNumAssets constraint', 'location', 'best');
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sum(abs(pwgt)>toler)

ans = 11

Count the total number of allocated assets to verify that only eight assets at most are allocated.

sum(abs(pwgtWithMaxNum)>toler)

ans = 8

Limit the Minimum and Maximum Number of Assets to Allocate

Suppose that you want to set both the lower and upper bounds for the number of assets to allocate in
a portfolio, given the universe of assets. Use setBounds to specify the allowed number of assets to
allocate as from 5 through 10, and the allocated weight as no less than 5%.

p1 = setMinMaxNumAssets(p, 5, 10);
p1 = setBounds(p1, 0.05, 'BoundType', 'conditional'); 

If an asset is allocated, it is necessary to clearly define the minimum weight requirement for that
asset. This is done using setBounds with a 'Conditional' BoundType. Otherwise, the optimizer
cannot evaluate which assets are allocated and cannot formulate the MinNumAssets constraint. For
more details, see “Conditional Bounds with LowerBound Defined as Empty or Zero” on page 4-133.

Plot the efficient frontier to compare this portfolio to the baseline portfolio, which has only default
constraints.

wgt = estimateFrontier(p);
wgt1 = estimateFrontier(p1);
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plotFrontier(p, wgt); hold on;
plotFrontier(p1, wgt1); hold off;
legend('Baseline portfolio', 'With MaxNumAssets constraint', 'location', 'best');

Asset Allocation for an Equal-Weighted Portfolio

Create an equal-weighted portfolio using both setBounds and setMinMaxNumAssets functions.

numAssetsAllocated = 8;
weight= 1/numAssetsAllocated;
p2 = setBounds(p, weight, weight, 'BoundType', 'conditional');   
p2 = setMinMaxNumAssets(p2, numAssetsAllocated, numAssetsAllocated); 

When any one, or any combination of 'Conditional' BoundType, MinNumAssets, or
MaxNumAssets are active, the optimization problem is formulated as a mixed integer nonlinear
programming (MINLP) problem. The Portfolio class automatically constructs the MINLP problem
based on the specified constraints.

When working with a Portfolio object, you can select one of three solvers using the
setSolverMINLP function. In this example, instead of using default MINLP solver options, customize
the solver options to help with a convergence issue. Use a large number (50) for
'MaxIterationsInactiveCut' with setSolverMINLP, instead of the default value of 30 for
'MaxIterationsInactiveCut'. The value 50 works well in finding the efficient frontier of optimal
asset allocation.

p2 = setSolverMINLP(p2, 'OuterApproximation', 'MaxIterationsInactiveCut', 50);

Plot the efficient frontiers for the baseline and equal-weighted portfolios.
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wgt = estimateFrontier(p);
wgt2 = estimateFrontier(p2);
plotFrontier(p, wgt); hold on;
plotFrontier(p2, wgt2); hold off;
legend('Baseline portfolio', 'Equal Weighted portfolio', 'location', 'best');

Use estimateFrontierByRisk to optimize for a specific risk level, in this case .05, to determine
what allocation maximizes the portfolio return.

targetRisk = 0.05;
pwgt = estimateFrontierByRisk(p, targetRisk);
pwgt2 = estimateFrontierByRisk(p2, targetRisk);

idx = (pwgt>toler) | (pwgt2>toler);
barh([pwgt(idx), pwgt2(idx)]);
grid on
xlabel('Proportion of investment')
yticks(1:sum(idx));
yticklabels(p.AssetList(idx));
title('Asset Allocation');
legend('Baseline portfolio', 'Equal weighted portfolio', 'location', 'best');
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Use 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints with Other
Constraints

You can define other constraints for a Portfolio object using the set functions. These other
constraints for a Portfolio object, such as group, linear inequality, turnover, and tracking error can
be used together with the 'Conditional' BoundType, 'MinNumAssets', and 'MaxNumAssets'
constraints. For example, specify a tracking error constraint using setTrackingError.

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30];    % indexes of assets to include in tracking portfolio
trackingPort(ii) = 1/numel(ii);
q = setTrackingError(p, 0.5, trackingPort);

Then use setMinMaxNumAssets to add a constraint to limit maximum number of assets to invest.

q = setMinMaxNumAssets(q, [], 8);

On top of these previously specified constraints, use setBounds to add a constraint to limit the
weight for the allocated assets. You can use constraints with mixed BoundType values, where
'Simple' means lb ≤ xi ≤ ub and 'Conditional' means xi = 0 or lb ≤ xi ≤ ub.

Allow the assets in trackingPort to have the BoundType value 'Conditional' in the optimum
allocation.

lb = zeros(q.NumAssets, 1);
ub = zeros(q.NumAssets, 1)*0.5;
lb(ii) = 0.1;
ub(ii) = 0.3;
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boundType = repmat("simple",q.NumAssets,1);
boundType(ii) = "conditional";
q = setBounds(q, lb, ub, 'BoundType',boundType);

Plot the efficient frontier:

plotFrontier(q);

Use estimateFrontierByReturn to find the allocation that minimizes the risk for a given return at
0.125.

targetRetn = 0.0125;
pwgt = estimateFrontierByReturn(q, targetRetn);

Show the allocation of assets by weight.

idx = abs(pwgt)>eps;
assetnames = q.AssetList';
Asset = assetnames(idx);
Weight = pwgt(idx);
resultAlloc = table(Asset, Weight)

resultAlloc=7×2 table
     Asset      Weight 
    ________    _______

    {'JNJ' }        0.1
    {'MMM' }    0.19503
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    {'MO'  }     0.1485
    {'MSFT'}        0.1
    {'PG'  }        0.1
    {'WMT' }     0.2212
    {'XOM' }    0.13527

See Also
Portfolio | setBounds | setMinMaxNumAssets | setSolverMINLP

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Asset Allocation Case Study” on page 4-161
• “Portfolio Optimization Examples” on page 4-141
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

Portfolio Objects” on page 4-78
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Portfolio Optimization Against a Benchmark
This example shows how to perform portfolio optimization using the Portfolio object in Financial
Toolbox™.

This example, in particular, demonstrates optimizing a portfolio to maximize the information ratio
relative to a market benchmark. Specifically, financial data contained in a table is read into
MATLAB® and visualizations (at both daily and annual levels) are performed. A Portfolio object is
created with the market data using an active daily return for each asset. Using functions supporting a
Portfolio object, the efficient frontier is calculated directly. Then, a customized optimization
problem is solved to find the asset allocation with the maximized information ratio.

Import Historical Data Using MATLAB®

Import historical prices for the asset universe and the Dow Jones Industrial Average (DJI) market
benchmark. The data is imported into a table from a Microsoft® Excel® spreadsheet using the
MATLAB® readtable function.

data = readtable('dowPortfolio.xlsx');
head(data, 10)

ans=10×32 table
       Dates        DJI      AA       AIG      AXP      BA        C       CAT      DD       DIS      GE       GM       HD       HON      HPQ      IBM     INTC      JNJ      JPM      KO       MCD      MMM      MO       MRK     MSFT      PFE      PG        T       UTX      VZ       WMT      XOM 
    ___________    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____

    03-Jan-2006    10847    28.72    68.41    51.53    68.63    45.26    55.86    40.68    24.18     33.6    17.82    39.79    36.14    28.35    80.13    24.57    59.08    37.78    38.98    32.72    75.93    52.27    30.73    26.19    22.16    56.38     22.7    54.94    26.79     44.9    56.64
    04-Jan-2006    10880    28.89    68.51    51.03    69.34    44.42    57.29    40.46    23.77    33.56     18.3    39.05    35.99    29.18    80.03     24.9    59.99    37.56    38.91    33.01    75.54    52.65    31.08    26.32    22.88    56.48    22.87    54.61    27.58    44.99    56.74
    05-Jan-2006    10882    29.12     68.6    51.57    68.53    44.65    57.29    40.38    24.19    33.47    19.34    38.67    35.97    28.97    80.56    25.25    59.74    37.67     39.1    33.05    74.85    52.52    31.13    26.34     22.9     56.3    22.92    54.41     27.9    44.38    56.45
    06-Jan-2006    10959    29.02    68.89    51.75    67.57    44.65    58.43    40.55    24.52     33.7    19.61    38.96    36.53     29.8    82.96    25.28    60.01    37.94    39.47    33.25    75.47    52.95    31.08    26.26    23.16    56.24    23.21    54.58    28.01    44.56    57.57
    09-Jan-2006    11012    29.37    68.57    53.04    67.01    44.43    59.49    40.32    24.78    33.61    21.12    39.38    36.23    30.17    81.76    25.44    60.38    38.55    39.66    33.88    75.84    53.11    31.58    26.21    23.16    56.67     23.3     55.2    28.12     44.4    57.54
    10-Jan-2006    11012    28.44    69.18    52.88    67.33    44.57    59.25     40.2    25.09    33.43    20.79    40.33    36.17    30.33     82.1     25.1    60.49    38.61     39.7    33.91    75.37    53.04    31.27    26.35    22.77    56.45    23.16    55.24    28.24    44.54    57.99
    11-Jan-2006    11043    28.05     69.6    52.59     68.3    44.98    59.28    38.87    25.33    33.66    20.61    41.44    36.19    30.88    82.19    25.12    59.91    38.58    39.72     34.5    75.22    53.31    31.39    26.63    23.06    56.65    23.34    54.41    28.58    45.23    58.38
    12-Jan-2006    10962    27.68    69.04     52.6     67.9    45.02    60.13    38.02    25.41    33.25    19.76    41.05    35.77    30.57    81.61    24.96    59.63    37.87     39.5    33.96    74.57    53.23    31.41    26.48     22.9    56.02    23.24     53.9    28.69    44.43    57.77
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    13-Jan-2006    10960    27.81    68.84     52.5     67.7    44.92    60.24    37.86    25.47    33.35     19.2    40.43    35.85    31.43    81.22    24.78    59.26    37.84    39.37    33.65    74.38    53.29     31.4    26.53    22.99    56.49    23.27     54.1    28.75     44.1    59.06
    17-Jan-2006    10896    27.97    67.84    52.03    66.93    44.47    60.85    37.75    25.15     33.2    18.68    40.11    35.56     31.2    81.05    24.52    58.74    37.64    39.11    33.77    73.99    52.85    31.16    26.34    22.63    56.25    23.13    54.41    28.12    43.66    59.61

Separate the asset names, asset prices, and DJI benchmark prices from the table. The visualization
shows the evolution of all the asset prices normalized to start at unity, that is accumulative returns.

benchPrice = data.DJI;
assetNames = data.Properties.VariableNames(3:2:end); % using half of the assets for display
assetPrice = data(:,assetNames).Variables;

assetP = assetPrice./assetPrice(1, :);  
benchmarkP = benchPrice / benchPrice(1);

figure;
plot(data.Dates,assetP);
hold on;
plot(data.Dates,benchmarkP,'LineWidth',3,'Color','k');
hold off;
xlabel('Date');
ylabel('Normalized Price');
title('Normalized Asset Prices and Benchmark');
grid on;

The bold line indicates the DJIA market benchmark.
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Compute Returns and Risk-Adjusted Returns

Calculate the return series from the price series and compute the asset moments (historical returns
and standard deviations). The visualization shows a scatter plot of the risk-return characteristics of
all the assets and the DJI market benchmark.

benchReturn = tick2ret(benchPrice);
assetReturn = tick2ret(assetPrice);

benchRetn = mean(benchReturn);
benchRisk =  std(benchReturn);
assetRetn = mean(assetReturn);
assetRisk =  std(assetReturn);

Calculate historical statistics and plot the annual risk-return. Note that the plot is at the annual level,
therefore scaling is performed on the daily returns.

scale = 252;

assetRiskR = sqrt(scale) * assetRisk;
benchRiskR = sqrt(scale) * benchRisk;
assetReturnR = scale * assetRetn;
benchReturnR = scale * benchRetn;

figure;
scatter(assetRiskR, assetReturnR, 6, 'm', 'Filled');
hold on
scatter(benchRiskR, benchReturnR, 6, 'g', 'Filled');
for k = 1:length(assetNames)
    text(assetRiskR(k) + 0.005, assetReturnR(k), assetNames{k}, 'FontSize', 8);
end
text(benchRiskR + 0.005, benchReturnR, 'Benchmark', 'Fontsize', 8);
hold off;

xlabel('Risk (Std Dev of Return)');
ylabel('Expected Annual Return');
grid on;
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Set Up a Portfolio Optimization

Set up a portfolio optimization problem by populating the object using Portfolio. Because the goal
is to optimize portfolio allocation against a benchmark, the active return of each asset is computed
and used in the Portfolio object. In this example, the expected returns and covariances of the
assets in the portfolio are set to their historical values.

p = Portfolio('AssetList',assetNames);

Set up default portfolio constraints (all weights sum to 1, no shorting, and 100% investment in risky
assets).

p = setDefaultConstraints(p);

Add asset returns and covariance to the Portfolio object.

activReturn = assetReturn - benchReturn;
pAct = estimateAssetMoments(p,activReturn,'missingdata',false)

pAct = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [15x1 double]
       AssetCovar: [15x15 double]
    TrackingError: []
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     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 15
        AssetList: {1x15 cell}
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [15x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: [15x1 categorical]

Compute the Efficient Frontier Using the Portfolio Object

Compute the mean-variance efficient frontier of 20 optimal portfolios. Visualize the frontier over the
risk-return characteristics of the individual assets. Furthermore, calculate and visualize the
information ratio for each portfolio along the frontier.

pwgtAct = estimateFrontier(pAct, 20); % Estimate the weights.
[portRiskAct, portRetnAct] = estimatePortMoments(pAct, pwgtAct); % Get the risk and return.

% Extract the asset moments and names.
[assetActRetnDaily, assetActCovarDaily] = getAssetMoments(pAct);
assetActRiskDaily = sqrt(diag(assetActCovarDaily));
assetNames = pAct.AssetList;

% Rescale.
assetActRiskAnnual = sqrt(scale) * assetActRiskDaily;
portRiskAnnual  = sqrt(scale) *  portRiskAct;
assetActRetnAnnual = scale * assetActRetnDaily;
portRetnAnnual = scale *  portRetnAct;

figure;
subplot(2,1,1);
plot(portRiskAnnual, portRetnAnnual, 'bo-', 'MarkerFaceColor', 'b');
hold on;

scatter(assetActRiskAnnual, assetActRetnAnnual, 12, 'm', 'Filled');
hold on;
for k = 1:length(assetNames)
    text(assetActRiskAnnual(k) + 0.005, assetActRetnAnnual(k), assetNames{k}, 'FontSize', 8);
end
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hold off;

xlabel('Risk (Std Dev of Active Return)');
ylabel('Expected Active Return');
grid on;

subplot(2,1,2);
plot(portRiskAnnual, portRetnAnnual./portRiskAnnual, 'bo-', 'MarkerFaceColor', 'b');
xlabel('Risk (Std Dev of Active Return)');
ylabel('Information Ratio');
grid on;

Perform Information Ratio Maximization Using Optimization Toolbox™

Run a hybrid optimization to find the portfolio along the frontier with the maximum information ratio.
The information ratio is the ratio of relative return to relative risk (known as "tracking error").
Whereas the Sharpe ratio looks at returns relative to a riskless asset, the information ratio is based
on returns relative to a risky benchmark, in this case the DJI benchmark. This is done by running an
optimization that finds the optimal return constraint for which the portfolio optimization problem
returns the maximum information ratio portfolio. The portfolio optimization functions are called from
an objective function infoRatioTargetReturn that is optimized by the Optimization Toolbox™
function fminbnd. The local function on page 4-0  infoRatioTargetReturn calculates a
minimum (active) risk portfolio given a target active return.
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The infoRatioTargetReturn local function is called as an objective function in an optimization
routine (fminbnd) that seeks to find the target return that maximizes the information ratio and
minimizes a negative information ratio.

objFun = @(targetReturn) -infoRatioTargetReturn(targetReturn,pAct);
options = optimset('TolX',1.0e-8);
[optPortRetn, ~, exitflag] = fminbnd(objFun,min(portRetnAct),max(portRetnAct),options);

Get weights, information ratio, and risk return for the optimal portfolio.

[optInfoRatio,optWts] = infoRatioTargetReturn(optPortRetn,pAct);
optPortRisk = estimatePortRisk(pAct,optWts) 

optPortRisk = 0.0040

Plot the Optimal Portfolio

Verify that the portfolio found is indeed the maximum information-ratio portfolio.

% Rescale.
optPortRiskAnnual = sqrt(scale) * optPortRisk;
optPortReturnAnnual = scale * optPortRetn;

figure;
subplot(2,1,1);

scatter(assetActRiskAnnual, assetActRetnAnnual, 6, 'm', 'Filled');
hold on
for k = 1:length(assetNames)
    text(assetActRiskAnnual(k) + 0.005,assetActRetnAnnual(k),assetNames{k},'FontSize',8);
end
plot(portRiskAnnual,portRetnAnnual,'bo-','MarkerSize',4,'MarkerFaceColor','b');
plot(optPortRiskAnnual,optPortReturnAnnual,'ro-','MarkerFaceColor','r');
hold off;

xlabel('Risk (Std Dev of Active Return)');
ylabel('Expected Active Return');
grid on;

subplot(2,1,2);
plot(portRiskAnnual,portRetnAnnual./portRiskAnnual,'bo-','MarkerSize',4,'MarkerFaceColor','b');
hold on
plot(optPortRiskAnnual,optPortReturnAnnual./optPortRiskAnnual,'ro-','MarkerFaceColor','r');
hold off;

xlabel('Risk (Std Dev of Active Return)');
ylabel('Information Ratio');
title('Information Ratio with Optimal Portfolio');
grid on;
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Display the Portfolio Optimization Solution

Display the portfolio optimization solution.

assetIndx = optWts > .001;
results = table(assetNames(assetIndx)', optWts(assetIndx)*100, 'VariableNames',{'Asset', 'Weight'});
disp('Maximum Information Ratio Portfolio:')

Maximum Information Ratio Portfolio:

disp(results)

     Asset      Weight 
    ________    _______

    {'AA'  }      1.539
    {'AXP' }    0.35551
    {'C'   }     9.6533
    {'DD'  }     4.0684
    {'HPQ' }     17.698
    {'JPM' }     21.565
    {'MCD' }     26.736
    {'MO'  }     13.648
    {'MSFT'}     2.6858
    {'UTX' }     2.0509

fprintf('Active return for Max. Info Ratio portfolio is %0.2f%%\n', optPortRetn*25200);

Active return for Max. Info Ratio portfolio is 12.14%
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fprintf('Tracking error for Max. Info Ratio portfolio is %0.2f%%\n', optPortRisk*sqrt(252)*100);

Tracking error for Max. Info Ratio portfolio is 6.32%

Local Function

function [infoRatio,wts] = infoRatioTargetReturn(targetReturn,portObj)
% Calculate information ratio for a target-return portfolio along the
% efficient frontier.
wts = estimateFrontierByReturn(portObj,targetReturn);
portRiskAct = estimatePortRisk(portObj,wts);
infoRatio = targetReturn/portRiskAct;
end

See Also
Portfolio | inforatio | fminbnd

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Portfolio Optimization Examples” on page 4-141
• “Information Ratio” on page 7-7
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Performance Metrics Overview” on page 7-2
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Portfolio Analysis with Turnover Constraints
This example shows how to analyze the characteristics of a portfolio of equities, and then compare
them with the efficient frontier. This example seeks to answer the question of how much closer can
you get to the efficient frontier by only risking a certain percentage of a portfolio to avoid transaction
costs.

Import Data for the Portfolio Holdings

Load information on the current portfolio holdings from a Microsoft® Excel® spreadsheet into a
table using the MATLAB® readtable function.

AssetHoldingData = readtable('portfolio.xls');
% Create a normalized current holdings vector that shows the respective
% investments as a percentage of total capital:
W = AssetHoldingData.Value/sum(AssetHoldingData.Value);

Import Market Data for Share Prices

Import the market data from a data source supported by Datafeed Toolbox™ that constitutes three
years of closing prices for the stocks listed in the portfolio.

load SharePrices

Create a Portfolio Object

The Portfolio class enables you to use the imported data to create a Portfolio object. The 
estimateAssetMoments function for the Portfolio object enables you to set up a portfolio given
only a historical price or returns series. The estimateAssetMoments function estimates mean and
covariance of asset returns from data even if there is missing data.

P = Portfolio('Name', 'Sample Turnover Constraint Portfolio');
P = estimateAssetMoments(P,data,'DataFormat','Prices');

% You can assign text names to each asset in the portfolio.
P = setAssetList(P,AssetHoldingData.Symbol);

% Provide the current holdings.
P = setInitPort(P,W);

Perform Portfolio Optimization with No Turnover Constraint

The Portfolio object can optimize the holdings given any number of constraints. This example
demonstrates using a simple, default constraint, that is, long positions only and 100% invested in
assets.

P = setDefaultConstraints(P);

Visualize this efficient frontier with the plotFrontier function.

plotFrontier(P)
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Visualize the Transaction Costs and Turnover

Due to transaction costs, it can be expensive to shift holdings from the current portfolio to a portfolio
along this efficient frontier. The following custom plot shows that you must turn over between 50%
and 75% of the holdings to get to this frontier.

TurnoverPlot(P)
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Perform Portfolio Optimization with a Turnover Constraint

How close can you get to this efficient frontier by only trading some of the portfolio? Assume that you
want to trade only a certain percentage of the portfolio to avoid too much turnover in your holdings.
This requirement imposes some nonlinear constraints on the problem and gives a problem with
multiple local minima. Even so, the Portfolio object solves the problem, and you specify the
turnover constraint using the setTurnover function.

P10 = setTurnover(P,0.10);
plotFrontier(P10)

 Portfolio Analysis with Turnover Constraints

4-195



Visualize the Efficient Frontier at Different Turnover Thresholds

This efficient frontier is much closer to the initial portfolio than the starting efficient frontier without
turnover constraints. To visualize this difference, use the custom function
TurnoverConstraintPlot to visualize multiple constrained efficient frontiers at different turnover
thresholds.

turnovers = 0.05:0.05:0.25;
TurnoverConstraintPlot(P,turnovers)
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The Portfolio object is a powerful and efficient tool for performing various portfolio analysis tasks.
In addition to turnover constraints, you can also optimize a Portfolio object for transaction costs
for buying and selling portfolio assets using the setCosts function.

See Also
Portfolio | setBounds | addGroups | setAssetMoments | estimateAssetMoments |
estimateBounds | plotFrontier | estimateFrontierLimits | estimateFrontierByRisk |
estimatePortRisk

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Against a Benchmark” on page 4-184
• “Portfolio Optimization Examples” on page 4-141
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• “Leverage in Portfolio Optimization with a Risk-Free Asset” on page 4-199
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Leverage in Portfolio Optimization with a Risk-Free Asset
This example shows how to use the setBudget function for the Portfolio class to define the limits
on the sum(AssetWeight_i) in risky assets.

If the sum(AssetWeight_i) is less than 1, the extra cash is invested in a risk-free asset. If the
sum(AssetWeight_i) is larger than 1, meaning that total risky asset investment is larger than
initial available cash, the risk-free asset is shorted (borrowed) to fund the extra investment in a risky
asset. The cost associated with borrowing a risk-free asset is automatically captured in the mean-
variance optimization model for the Portfolio class. Therefore, you can use the setBudget
function directly to control the level of leverage of cash for the portfolio.

Portfolio Without Leverage

Consider the following example that does not leverage a risk-free asset.

assetsMean = [ 0.05; 0.1; 0.12; 0.18; ];
assetCovar = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225];
riskFreeRate = 0.03;

% create a portfolio and define risk-free rate.
p = Portfolio('RiskFreeRate', riskFreeRate, 'assetmean', assetsMean, 'assetcovar', assetCovar, 'lowerbound', 0);

Create multiple portfolios with different budgets on risky assets to control the limits for investing in a
risk-free asset.

p = setBudget(p, 1, 1);     % allow 0% risk free asset allocation, meaning fully invested in risky assets
p1 = setBudget(p, 0, 1);    % allow 0% to 100% risk free asset allocation
p2 = setBudget(p, 0.7, 1);  % allow 0% to 30% risk free asset allocation
[risk, retn] = estimatePortMoments(p, estimateMaxSharpeRatio(p));

figure;
plotFrontier(p); hold on; 
plotFrontier(p1);hold on;
plotFrontier(p2); hold on;
plot(risk, retn, 'g*'); hold off;
legend('without risk-free asset', ...
    'with risk-free asset in range [0,1]', ...
    'with risk-free asset in range [0, 0.3]', ...
    'Max Sharpe Ratio', 'location','southeast');
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In the efficient frontiers in the above figure, the lower-left part of the red efficient frontier line for the
portfolio with a risk-free asset is in range [0,1] and is actually the capital allocation line (CAL). The
slope of this line is the maximum Sharpe ratio of the portfolio, which demonstrates how return is best
awarded by taking extra risk. The upper right of the red efficient frontier line is the same as a fully
invested portfolio (blue line). Once the portfolio crosses the Sharpe ratio point, the portfolio is fully
invested and there is no more cash available to allow high risk-awarded returns following the straight
CAL. However, if borrowing of a risk-free asset is allowed, you can effectively use the funds from the
borrowing of a risk-free asset to invest in more risky assets, as demonstrated in the "Portfolio with
Leverage" section.

Portfolio with Leverage

To fund investments in risky assets, consider using leverage by borrowing a risk-free asset. The
Portfolio class enables you to use leverage in asset allocation when a risk-free asset is available in
the portfolio.

First, check if the RiskFreeRate property for the Portfolio object is nonzero.

p

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: 0.0300
        AssetMean: [4x1 double]
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       AssetCovar: [4x4 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 4
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [4x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: []

In this Portfolio object, the lower and upper budgets are both 1. Limits must be set on the total
investment in risky assets. Borrowing a risk-free asset funds the extra investment in risky assets. Use
setBudget to set the lower and upper bounds to set the limits of the borrowed risk-free assets.

p = setBudget(p, 1, 1);      % allow 0% risk free asset allocation, meaning fully invested in risky assets
p3 = setBudget(p, 1, 1.3);   % allow 0% risk free asset allocation, and allow borrowing of risk free asset to reach up to 30% leverage
p4 = setBudget(p, 1.3, 2);   % allow 0% risk free asset allocation, and allow borrowing of risk free asset to have at least 30% leverage and max 100% leverage
[risk, retn] = estimatePortMoments(p, estimateMaxSharpeRatio(p));

figure
plotFrontier(p); hold on; 
plotFrontier(p1);hold on;
plotFrontier(p3); hold on;
plotFrontier(p4); hold on;
plot(risk, retn, 'g*'); hold off;
legend('without risk free asset',  ...
    'with risk free asset in range [0,1]', ...
    'with risk free asset in range [-0.3, 0]', ...
    'with risk free asset in range [-1.0, -0.3]',...
    'Max Sharpe Ratio', 'location','southeast');

 Leverage in Portfolio Optimization with a Risk-Free Asset

4-201



In this figure, the upper-right parts of both the orange and purple efficient frontiers extend from the
CAL (lower-left red line), because of the leverage of a risk-free asset. The same levels of risk-awarded
returns are obtained. Once the portfolio exhausts the maximum allowed leverage, the efficient
frontier starts to fall below the CAL again, resulting in portfolios with lower Sharpe ratios.

See Also
Portfolio | setBounds | addGroups | setAssetMoments | estimateAssetMoments |
estimateBounds | plotFrontier | estimateFrontierLimits | estimateFrontierByRisk |
estimatePortRisk

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Against a Benchmark” on page 4-184
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• “Portfolio Optimization Examples” on page 4-141
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Using Factor Models” on page 4-213
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Black-Litterman Portfolio Optimization
This example shows the workflow to implement the Black-Litterman model with the Portfolio class.
The Black-Litterman model is an asset allocation approach that allows investment analysts to
incorporate subjective views (based on investment analyst estimates) into market equilibrium
returns. By blending analyst views and equilibrium returns instead of relying only on historical asset
returns, the Black-Litterman model provides a systematic way to estimate the mean and covariance of
asset returns.

In the Black-Litterman model, the blended expected return is μ− = PTΩ−1P + C−1 −1 PTΩ−1q + C−1π

and the estimation uncertainty is cov μ = PTΩ−1P + C−1 −1. To use the Black-Litterman model, you
must prepare the inputs: P, q , Ω , π, and C. The inputs for P, q , and Ω are view-related and defined
by the investment analyst. π is the equilibrium return and C is the uncertainty in prior belief. This
example guides you to define these inputs and use the resulting blended returns in a portfolio
optimization. For more information on the concept and derivation of the Black-Litterman model, see
the Appendix section Black-Litterman Model under a Bayesian Framework on page 4-0 .

Define the Universe of Assets

The dowPortfolio.xlsx data set includes 30 assets and one benchmark. Seven assets from this
data set comprise the investment universe in this example. The risk-free rate is assumed to be zero.

T = readtable('dowPortfolio.xlsx');

Define the asset universe and extract the asset returns from the price data.

assetNames = ["AA", "AIG", "WMT", "MSFT", "BA", "GE", "IBM"];
benchmarkName = "DJI";
head(T(:,["Dates" benchmarkName assetNames]))

ans=8×9 table
       Dates        DJI      AA       AIG      WMT     MSFT      BA       GE       IBM 
    ___________    _____    _____    _____    _____    _____    _____    _____    _____

    03-Jan-2006    10847    28.72    68.41     44.9    26.19    68.63     33.6    80.13
    04-Jan-2006    10880    28.89    68.51    44.99    26.32    69.34    33.56    80.03
    05-Jan-2006    10882    29.12     68.6    44.38    26.34    68.53    33.47    80.56
    06-Jan-2006    10959    29.02    68.89    44.56    26.26    67.57     33.7    82.96
    09-Jan-2006    11012    29.37    68.57     44.4    26.21    67.01    33.61    81.76
    10-Jan-2006    11012    28.44    69.18    44.54    26.35    67.33    33.43     82.1
    11-Jan-2006    11043    28.05     69.6    45.23    26.63     68.3    33.66    82.19
    12-Jan-2006    10962    27.68    69.04    44.43    26.48     67.9    33.25    81.61
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retnsT = tick2ret(T(:, 2:end));
assetRetns = retnsT(:, assetNames);
benchRetn = retnsT(:, "DJI");
numAssets = size(assetRetns, 2);

Specify Views of the Market

The views represent the subjective views of the investment analyst regarding future market changes,
expressed as q = P * μ + ε, ε N 0, Ω , Ω = diag ω1, ω2, . . . ωv , where v is total number of views.
For more information, see the Appendix section Assumptions and Views on page 4-0 . With v views
and k assets, P is a v-by-k matrix, q is a v-by-1 vector, and Ω is a v-by-v diagonal matrix (representing
the independent uncertainty in the views). The views do not necessarily need to be independent
among themselves and the structure of Ω can be chosen to account for investment analyst
uncertainties in the views [4 on page 4-0 ]. The smaller the ωi in Ω, the smaller the variance in the
distribution of the ith view, and the stronger or more certain the investor's ith view. This example
assumes three independent views.

1 AIG is going to have 5% annual return with uncertainty 1e-3. This is a weak absolute view due to
its high uncertainty.

2 WMT is going to have 3% annual return with uncertainty 1e-3. This is a weak absolute view due
to its high uncertainty.

3 MSFT is going to outperform IBM by 5% annual return with uncertainty 1e-5. This is a strong
relative view due to its low uncertainty.

v = 3;  % total 3 views
P = zeros(v, numAssets);
q = zeros(v, 1);
Omega = zeros(v);

% View 1
P(1, assetNames=="AIG") = 1; 
q(1) = 0.05;
Omega(1, 1) = 1e-3;

% View 2
P(2, assetNames=="WMT") = 1; 
q(2) = 0.03;
Omega(2, 2) = 1e-3;

% View 3
P(3, assetNames=="MSFT") = 1; 
P(3, assetNames=="IBM") = -1; 
q(3) = 0.05;
Omega(3, 3) = 1e-5;

Visualize the three views in table form.

viewTable = array2table([P q diag(Omega)], 'VariableNames', [assetNames "View_Return" "View_Uncertainty"]) 

viewTable=3×9 table
    AA    AIG    WMT    MSFT    BA    GE    IBM    View_Return    View_Uncertainty
    __    ___    ___    ____    __    __    ___    ___________    ________________

    0      1      0      0      0     0      0        0.05             0.001      
    0      0      1      0      0     0      0        0.03             0.001      
    0      0      0      1      0     0     -1        0.05             1e-05      
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Because the returns from dowPortfolio.xlsx data set are daily returns and the views are on the
annual returns, you must convert views to be on daily returns.

bizyear2bizday = 1/252;
q = q*bizyear2bizday; 
Omega = Omega*bizyear2bizday;

Estimate the Covariance from the Historical Asset Returns

Σ is the covariance of the historical asset returns.

Sigma = cov(assetRetns.Variables);

Define the Uncertainty C

The Black-Litterman model makes the assumption that the structure of C is proportional to the
covariance Σ. Therefore, C = τΣ, where τ is a small constant. A smaller τ indicates a higher
confidence in the prior belief of μ. The work of He and Litterman uses a value of 0.025. Other authors
suggest using 1/n where n is the number of data points used to generate the covariance matrix [3 on
page 4-0 ]. This example uses 1/n.

tau = 1/size(assetRetns.Variables, 1);
C = tau*Sigma;

Market Implied Equilibrium Return

In the absence of any views, the equilibrium returns are likely equal to the implied returns from the
equilibrium portfolio holding. In practice, the applicable equilibrium portfolio holding can be any
optimal portfolio that the investment analyst would use in the absence of additional views on the
market, such as the portfolio benchmark, an index, or even the current portfolio [2 on page 4-0 ]. In
this example, you use linear regression to find a market portfolio that tracks the returns of the DJI
benchmark. Then, you use the market portfolio as the equilibrium portfolio and the equilibrium
returns are implied from the market portfolio. The findMarketPortfolioAndImpliedReturn
function, defined in Local Functions on page 4-0 , implements the equilibrium returns. This function
takes historical asset returns and benchmark returns as inputs and outputs the market portfolio and
the corresponding implied returns.

[wtsMarket, PI] = findMarketPortfolioAndImpliedReturn(assetRetns.Variables, benchRetn.Variables);

Compute the Estimated Mean Return and Covariance

Use the P, q , Ω , π , and C inputs to compute the blended asset return and variance using the Black-
Litterman model.

You can compute μ− and cov μ  directly by using this matrix operation:

μ− = PTΩ−1P + C−1 −1 PTΩ−1q + C−1π , cov μ = PTΩ−1P + C−1 −1

mu_bl = (P'*(Omega\P) + inv(C)) \ ( C\PI + P'*(Omega\q));
cov_mu = inv(P'*(Omega\P) + inv(C));

Comparing the blended expected return from Black-Litterman model to the prior belief of expected
return π, you find that the expected return from Black-Litterman model is indeed a mixture of both
prior belief and investor views. For example, as shown in the table below, the prior belief assumes
similar returns for MSFT and IBM, but in the blended expected return, MSFT has a higher return
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than IBM by more than 4%. This difference is due to the imposed strong view that MSFT outperforms
IBM by 5%.

table(assetNames', PI*252, mu_bl*252, 'VariableNames', ["Asset_Name", ...
    "Prior_Belief_of_Expected_Return", "Black_Litterman_Blended_Expected_Return"])

ans=7×3 table
    Asset_Name    Prior_Belief_of_Expected_Return    Black_Litterman_Blended_Expected_Return
    __________    _______________________________    _______________________________________

      "AA"                    0.19143                                0.19012                
      "AIG"                   0.14432                                0.13303                
      "WMT"                   0.15754                                 0.1408                
      "MSFT"                  0.14071                                0.17557                
      "BA"                    0.21108                                 0.2017                
      "GE"                    0.13323                                0.12525                
      "IBM"                   0.14816                                0.12877                

Portfolio Optimization and Results

The Portfolio object in Financial Toolbox™ implements the Markowitz mean variance portfolio
optimization framework. Using a Portfolio object, you can find the efficient portfolio for a given
risk or return level, and you can also maximize the Sharpe ratio.

Use estimateMaxSharpeRatio with the Portfolio object to find allocations with the maximum
Sharpe ratio for the following portfolios:

• Portfolio with asset mean and covariance from historical asset returns
• Portfolio with blended asset return and covariance from the Black-Litterman model

port = Portfolio('NumAssets', numAssets, 'lb', 0, 'budget', 1, 'Name', 'Mean Variance');
port = setAssetMoments(port, mean(assetRetns.Variables), Sigma);
wts = estimateMaxSharpeRatio(port);

portBL = Portfolio('NumAssets', numAssets, 'lb', 0, 'budget', 1, 'Name', 'Mean Variance with Black-Litterman');
portBL = setAssetMoments(portBL, mu_bl, Sigma + cov_mu);  
wtsBL = estimateMaxSharpeRatio(portBL);

ax1 = subplot(1,2,1);
idx = wts>0.001;
pie(ax1, wts(idx), assetNames(idx));
title(ax1, port.Name ,'Position', [-0.05, 1.6, 0]);

ax2 = subplot(1,2,2);
idx_BL = wtsBL>0.001;
pie(ax2, wtsBL(idx_BL), assetNames(idx_BL));
title(ax2, portBL.Name ,'Position', [-0.05, 1.6, 0]);
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table(assetNames', wts, wtsBL, 'VariableNames', ["AssetName", "Mean_Variance", ...
     "Mean_Variance_with_Black_Litterman"])

ans=7×3 table
    AssetName    Mean_Variance    Mean_Variance_with_Black_Litterman
    _________    _____________    __________________________________

     "AA"         6.6352e-16                     0.1115             
     "AIG"        5.7712e-17                    0.23314             
     "WMT"        1.8628e-17                   0.098048             
     "MSFT"         0.059393                    0.15824             
     "BA"            0.32068                    0.10748             
     "GE"         7.7553e-15                     0.1772             
     "IBM"           0.61993                    0.11439             

When you use the values for the blended asset return and the covariance from the Black-Litterman
model in a mean-variance optimization, the optimal allocations reflect the views of the investment
analyst directly. The allocation from the Black-Litterman model is more diversified, as the pie chart
shows. Also, the weights among the assets in the Black-Litterman model agree with the investment
analyst views. For example, when you compare the Black-Litterman result with the plain mean-
variance optimization result, you can see that the Black-Litterman result is more heavily invested in
MSFT than in IBM. This is because the investment analyst has a strong view that MSFT will
outperform IBM.
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Local Functions

function [wtsMarket, PI] = findMarketPortfolioAndImpliedReturn(assetRetn, benchRetn)
% Find the market portfolio that tracks the benchmark and its corresponding implied expected return.

The implied return is calculated by reverse optimization. The risk-free rate is assumed to be zero. The
general formulation of a portfolio optimization is given by the Markowitz optimization problem:
argmax

ω
ωTμ− δ

2ωTΣω. Here ω is an N-element vector of asset weights, μ is an N-element vector of

expected asset returns, Σ is the N-by-N covariance matrix of asset returns, and δ is a positive risk
aversion parameter. Given δ , in the absence of constraints, a closed form solution to this problem is
ω = 1

δ Σ−1μ. Therefore, with a market portfolio, the implied expected return is π = δΣωmkt.

To compute an implied expected return, you need Σ, ωmkt, δ.

1) Find Σ.

Σ is calculated from historical asset returns.

Sigma = cov(assetRetn);

2) Find the market portfolio.

To find the market portfolio, regress against the DJI. The imposed constraints are fully invested and

long only: ∑
i = 1

n
ωi = 1, 0 ≤ ωi, ∀i ∈ {1, . . . , n}

numAssets = size(assetRetn,2);
LB = zeros(1,numAssets);
Aeq = ones(1,numAssets);
Beq = 1;
opts = optimoptions('lsqlin','Algorithm','interior-point', 'Display',"off");
wtsMarket = lsqlin(assetRetn, benchRetn, [], [], Aeq, Beq, LB, [], [], opts);

3) Find δ.

Multiply both sides of π = δΣωmkt with ωmkt
T  to output δ = SharpeRatio

σm
. Here, the Benchmark is

assumed to be maximizing the Sharpe ratio and the corresponding value is used as market Sharpe
ratio. Alternatively, you can calibrate an annualized Sharpe ratio to be 0.5, which leads to shpr=0.5/
sqrt(252) [1 on page 4-0 ]. σm is the standard deviation of the market portfolio.

shpr = mean(benchRetn)/std(benchRetn);
delta = shpr/sqrt(wtsMarket'*Sigma*wtsMarket); 

4) Compute the implied expected return.

Assuming that the market portfolio maximizes the Sharpe ratio, the implied return, without the
effects from constraints, is computed directly as π = δΣω.

PI = delta*Sigma*wtsMarket;
end
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Appendix: Black-Litterman Model Under a Bayesian Framework

Assumptions and Views

Assume that the investment universe is composed of k assets and the vector of asset returns r is
modeled as a random variable, following a multivariate normal distribution r N μ, Σ . Σ is the
covariance from historical asset returns. The unknown model parameter is the expected return μ.
From the perspective of Bayesian statistics, the Black-Litterman model attempts to estimate μ by
combining the investment analyst views (or "observations of the future") and some prior knowledge
about μ.

In addition, assume the prior knowledge that μ is a normally distributed random variable μ N π,C
[1, 2 on page 4-0 ]. In the absence of any views (observations), the prior mean π is likely to be the
equilibrium returns, implied from the equilibrium portfolio holding. In practice, the applicable
equilibrium portfolio holding is not necessarily the equilibrium portfolio, but rather a target optimal
portfolio that the investment analyst would use in the absence of additional views on the market, such
as the portfolio benchmark, an index, or even the current portfolio. C represents the uncertainty in
the prior and the Black-Litterman model makes the assumption that the structure of C is τΣ. τ is a
small constant, and many authors use different values. A detailed discussion about τ can be found in
[3 on page 4-0 ].

Observations are necessary to perform a statistical inference on μ. In the Black-Litterman model, the
observations are views about future asset returns expressed at the portfolio level. A view is the
expected return of a portfolio composed of the universe of k assets. Usually, the portfolio return has
uncertainty, so an error term is added to catch the departure. Assume that there is a total of v views.
For a view i, pi is a row vector with dimension 1 x k, and qi is a scalar [2 on page 4-0 ].

qi = Ε pi * r μ + εi , i = 1, 2, . . . , v

You can stack the v views vertically, and Ω is the covariance of the uncertainties from all views.
Assume that the uncertainties are independent.

q = Ε P * r μ + ε, ε N 0, Ω , Ω = diag ω1, ω2, . . . ωv .

Note that Ω does not necessarily need to be a diagonal matrix. The investment analyst can choose the
structure of Ω to account for their uncertainties in the views [4 on page 4-0 ].

Under the previous assumption r N μ, Σ , it follows that

q = P * μ + ε, ε N 0, Ω , Ω = diag ω1, ω2, . . . ωv .

The Bayesian Definition of the Black-Litterman Model

Based on Bayesian statistics, it is known that: posterior ∝ likelihood * prior.
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In the context of the Black-Litterman model, posterior ∝ likelihood * prior is expressed as f μ q ∝
f q μ *f μ , where each Bayesian term is defined as follows [2 on page 4-0 ]:

• The likelihood is how likely it is for the views to happen given μ and is expressed as
f q μ ∝ exp − 1

2 Pμ− q ′Ω−1 Pμ− q .

• The prior assumes the prior knowledge that μ N π, C  and is expressed as f μ
∝ exp − 1

2 μ− π ′C−1 μ− π .

• The posterior is the distribution of μ given views and is expressed as
f μ q ∝ exp − 1

2 Pμ− q ′Ω−1 Pμ− q − 1
2 μ− π ′C−1 μ− π .

As previously stated, the posterior distribution of μ is also a normal distribution. By completing the
squares, you can derive the posterior mean and covariance as
μ− = PTΩ−1P + C−1 −1 PTΩ−1q + C−1π , cov μ = PTΩ−1P + C−1 −1.

Finally, by combining the Bayesian posterior distribution of μ and the model of asset returns
r N μ, Σ , you then have the posterior prediction of asset returns as r N μ−, Σ + cov μ .
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Portfolio Optimization Using Factor Models
This example shows two approaches for using a factor model to optimize asset allocation under a
mean-variance framework. Multifactor models are often used in risk modeling, portfolio management,
and portfolio performance attribution. A multifactor model reduces the dimension of the investment
universe and is responsible for describing most of the randomness of the market [1 on page 4-0 ].
The factors can be statistical, macroeconomic, and fundamental. In the first approach in this example,
you build statistical factors from asset returns and optimize the allocation directly against the factors.
In the second approach you use the given factor information to compute the covariance matrix of the
asset returns and then use the Portfolio class to optimize the asset allocation.

Load Data

Load a simulated data set, which includes asset returns total p = 100 assets and 2000 daily
observations.

clear;
load('asset_return_100_simulated.mat');
[nObservation, p] = size(stockReturns)

nObservation = 2000

p = 100

splitPoint = ceil(nObservation*0.6);
training = 1:splitPoint;
test = splitPoint+1:nObservation;
trainingNum = numel(training);

Visualize the equity curve for each stock. For this example, plot the first five stocks.

plot(ret2tick(stockReturns{training,1:5}, 'method', 'simple')*100); hold off;
xlabel('Timestep');
ylabel('Value');
title('Equity Curve');
legend(stockReturns.Properties.VariableNames(1:5), 'Location',"bestoutside",'Interpreter', 'none');
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Optimize the Asset Allocation Directly Against Factors with a Problem-Based Definition
Framework

For the factors, you can use statistical factors extracted from the asset return series. In this example,
you use principal component analysis (PCA) to extract statistical factors [1 on page 4-0 ]. You can
then use this factor model to solve the portfolio optimization problem.

With a factor model, p asset returns can be expressed as a linear combination of k factor returns,
ra = μa + F rf + εa , where k<<p. In the mean-variance framework, portfolio risk is

Var Rp = Var ra
Twa = Var μa + F rf + εa

Twa = wa
T FΣfFT + D wa = wf

T Σf wf + wa
T D wa, with

wf = FTwa,

where:

Rp is the portfolio return (a scalar).

ra is the asset return.

μa  is the mean of asset return.

F is the factor loading, with the dimensions p-by-k.

rf  is the factor return.

4 Mean-Variance Portfolio Optimization Tools

4-214



εa is the idiosyncratic return related to each asset.

wa is the asset weight.

wf  is the factor weight.

Σf  is the covariance of factor returns.

D is the variance of idiosyncratic returns.

The parameters ra, wa, μa, εa are p-by-1 column vectors, rfand wf  are k-by-1 column vectors, Σa is a p-
by-p matrix, Σk is a k-by-k matrix, and D is a p-by-p diagonal matrix.

Therefore, the mean-variance optimization problem is formulated as

max μa
T wa , s . t . FTwa = wf , wf

T Σf wf + wa
T D wa ≤ trisk,0 ≤ w ≤ 1, eTwa = 1.

In the p dimensional space formed by p asset returns, PCA finds the most important k directions that
capture the most important variations in the given returns of p assets. Usually, k is less than p.
Therefore, by using PCA you can decompose the p asset returns into the k factors, which greatly
reduces the dimension of the problem. The k principle directions are interpreted as factor loadings
and the scores from the decomposition are interpreted as factor returns. For more information, see
pca (Statistics and Machine Learning Toolbox™). In this example, use k = 10 as the number of
principal components. Alternatively, you can also find the k value by defining a threshold for the total
variance represented as the top k principal components. Usually 95% is an acceptable threshold.

k = 10;
[factorLoading,factorRetn,latent,tsq,explained,mu] = pca(stockReturns{training,:}, 'NumComponents', k);
disp(size(factorLoading))

   100    10

disp(size(factorRetn))

        1200          10

In the output p-by-k factorLoading, each column is a principal component. The asset return vector
at each timestep is decomposed to these k dimensional spaces, where k << p. The output
factorRetn is a trainingNum-by-k dimension.

Estimate the factor covariance matrix with factor returns.

covarFactor = cov(factorRetn);

You can reconstruct the p asset returns for each observation using each k factor returns by following
ra = μa + F rf + εa.

Reconstruct the total 1200 observations for the training set.

reconReturn = factorRetn*factorLoading' + mu;
unexplainedRetn = stockReturns{training,:} - reconReturn;

There are unexplained asset returns εa because the remaining (p - k) principal components are
dropped. You can attribute the unexplained asset returns to the asset-specific risks represented as D.
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unexplainedCovar = diag(cov(unexplainedRetn));
D = diag(unexplainedCovar);

You can use a problem-based definition framework from Optimization Toolbox™ to construct the
variables, objective, and constraints for the problem: max μa

T wa , s . t . FTwa = wf ,
wf

T Σf wf + wa
T D wa ≤ trisk, eTwa = 1, 0 ≤ w ≤ 1. The problem-based definition framework enables you

to define variables and express objective and constraints symbolically. You can add other constraints
or use a different objective based on your specific problem. For more information, see “First Choose
Problem-Based or Solver-Based Approach”.

targetRisk = 0.007;  % Standard deviation of portfolio return
tRisk = targetRisk*targetRisk;  % Variance of portfolio return
meanStockRetn = mean(stockReturns{training,:});

optimProb = optimproblem('Description','Portfolio with factor covariance matrix','ObjectiveSense','max');
wgtAsset = optimvar('asset_weight', p, 1, 'Type', 'continuous', 'LowerBound', 0, 'UpperBound', 1);
wgtFactor = optimvar('factor_weight', k, 1, 'Type', 'continuous');

optimProb.Objective = sum(meanStockRetn'.*wgtAsset);

optimProb.Constraints.asset_factor_weight = factorLoading'*wgtAsset - wgtFactor == 0;
optimProb.Constraints.risk = wgtFactor'*covarFactor*wgtFactor + wgtAsset'*D*wgtAsset <= tRisk;
optimProb.Constraints.budget = sum(wgtAsset) == 1;

x0.asset_weight = ones(p, 1)/p;
x0.factor_weight = zeros(k, 1);
opt = optimoptions("fmincon", "Algorithm","sqp", "Display", "off", ...
    'ConstraintTolerance', 1.0e-8, 'OptimalityTolerance', 1.0e-8, 'StepTolerance', 1.0e-8);
x = solve(optimProb,x0, "Options",opt);
assetWgt1 = x.asset_weight;

In this example, you are maximizing the portfolio return for a target risk. This is a nonlinear
programming problem with a quadratic constraint and you use fmincon to solve this problem.

Check for asset allocations that are over 5% to determine which assets have large investment
weights.

percentage = 0.05;
AssetName = stockReturns.Properties.VariableNames(assetWgt1>=percentage)';
Weight = assetWgt1(assetWgt1>=percentage);
T1 = table(AssetName, Weight)

T1=7×2 table
     AssetName      Weight 
    ___________    ________

    {'Asset9' }    0.080054
    {'Asset32'}     0.22355
    {'Asset47'}     0.11369
    {'Asset57'}    0.088321
    {'Asset61'}    0.068845
    {'Asset75'}    0.063648
    {'Asset94'}     0.22163
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Optimize Asset Allocation Using Portfolio Class with Factor Information

If you already have the factor loading and factor covariance matrix from some other analysis or third-
party provider, you can use this information to compute the asset covariance matrix and then directly
run a mean-variance optimization using the Portfolio class. Recall that portfolio risk is
Var Rp = Var μa + F rf + εa

Twa = wa
T FΣfFT + D wa , so you can obtain the covariance of the asset

returns by Σa = FΣfFT + D.

Use estimateFrontierByRisk in the Portfolio class to solve the optimization problem:
max μa

T wa , s . t . wa
T Σa wa ≤ trisk,0 ≤ wa ≤ 1, eTwa = 1. The Portfolio class supports has a variety of

built-in constraints that you can use to describe your portfolio problem and estimate the risk and
returns on the efficient frontier. For more information, see “Portfolio Set for Optimization Using
Portfolio Objects” on page 4-8.

covarAsset = factorLoading*covarFactor*factorLoading'+D;
port = Portfolio("AssetMean", meanStockRetn, 'AssetCovar', covarAsset, 'LowerBound', 0, 'UpperBound', 1, ...
    'Budget', 1);
assetWgt2 = estimateFrontierByRisk(port, targetRisk);

AssetName = stockReturns.Properties.VariableNames(assetWgt2>=percentage)';
Weight = assetWgt2(assetWgt2>=percentage);
T2 = table(AssetName, Weight)

T2=7×2 table
     AssetName      Weight 
    ___________    ________

    {'Asset9' }    0.080061
    {'Asset32'}     0.22355
    {'Asset47'}     0.11369
    {'Asset57'}    0.088314
    {'Asset61'}    0.068847
    {'Asset75'}    0.063644
    {'Asset94'}     0.22163

Portfolio Optimization Results

Tables T1 and T2 show an identical allocation for the asset allocations that are over 5%. Therefore, in
this example, both approaches to portfolio optimization with a factor model obtain asset weights that
are identical.

Visualize the performance of the optimized allocation over the testing period.

retn = stockReturns{test, :}*assetWgt1;
plot(ret2tick(retn, 'method', 'simple')*100); hold off;
xlabel('Timestep');
ylabel('Value');
title('Portfolio Equity Curve');
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This example demonstrates how to derive statistical factors from asset returns using PCA and then
use these factors to perform a factor-based portfolio optimization. This example also shows how to
use these statistical factors with the Portfolio class. In practice, you can adapt this example to
incorporate some measurable market factors, such as industrial factors or ETF returns from various
sectors, to describe the randomness in the market [1 on page 4-0 ]. You can define custom
constraints on the weights of factors or assets with high flexibility using the problem-based definition
framework from Optimization Toolbox™. Alternatively, you can work directly with the Portfolio
class to run a portfolio optimization with various built-in constraints.

Reference

1 Meucci, A. "Modeling the Market." Risk and Asset Allocation. Berlin:Springer, 2009.

See Also
Portfolio | setBounds | addGroups | setAssetMoments | estimateAssetMoments |
estimateBounds | plotFrontier | estimateFrontierLimits | estimateFrontierByRisk |
estimatePortRisk

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
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• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Against a Benchmark” on page 4-184
• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Backtest Investment Strategies
This example shows how to perform backtesting of portfolio strategies using a backtesting framework
implemented in MATLAB®. Backtesting is a useful tool to compare how investment strategies
perform over historical or simulated market data. This example develops five different investment
strategies and then compares their performance after running over a one-year period of historical
stock data. The backtesting framework is implemented in two MATLAB® classes:
backtestStrategy and backtestEngine.

Load Data

Load one year of adjusted price data for 30 stocks. The backtesting frameworks require adjusted
asset prices, meaning prices adjusted for dividends, splits, or other events. The prices must be stored
in a MATLAB® timetable with each column holding a time series of asset prices for an investable
asset.

For this example, use one year of asset price data from the component stocks of the Dow Jones
Industrial Average.

% Read a table of daily adjusted close prices for 2006 DJIA stocks.
T = readtable('dowPortfolio.xlsx');

% For readability, use only 15 of the 30 DJI component stocks.
assetSymbols = ["AA","CAT","DIS","GM","HPQ","JNJ","MCD","MMM","MO","MRK","MSFT","PFE","PG","T","XOM"];

% Prune the table to hold only the dates and selected stocks.
timeColumn = "Dates";
T = T(:,[timeColumn assetSymbols]);

% Convert to the table to a timetable.
pricesTT = table2timetable(T,'RowTimes','Dates');

% View the structure of the prices timetable.
head(pricesTT)

ans=8×15 timetable
       Dates        AA       CAT      DIS      GM       HPQ      JNJ      MCD      MMM      MO       MRK     MSFT      PFE      PG        T       XOM 
    ___________    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____

    03-Jan-2006    28.72    55.86    24.18    17.82    28.35    59.08    32.72    75.93    52.27    30.73    26.19    22.16    56.38     22.7    56.64
    04-Jan-2006    28.89    57.29    23.77     18.3    29.18    59.99    33.01    75.54    52.65    31.08    26.32    22.88    56.48    22.87    56.74
    05-Jan-2006    29.12    57.29    24.19    19.34    28.97    59.74    33.05    74.85    52.52    31.13    26.34     22.9     56.3    22.92    56.45
    06-Jan-2006    29.02    58.43    24.52    19.61     29.8    60.01    33.25    75.47    52.95    31.08    26.26    23.16    56.24    23.21    57.57
    09-Jan-2006    29.37    59.49    24.78    21.12    30.17    60.38    33.88    75.84    53.11    31.58    26.21    23.16    56.67     23.3    57.54
    10-Jan-2006    28.44    59.25    25.09    20.79    30.33    60.49    33.91    75.37    53.04    31.27    26.35    22.77    56.45    23.16    57.99
    11-Jan-2006    28.05    59.28    25.33    20.61    30.88    59.91     34.5    75.22    53.31    31.39    26.63    23.06    56.65    23.34    58.38
    12-Jan-2006    27.68    60.13    25.41    19.76    30.57    59.63    33.96    74.57    53.23    31.41    26.48     22.9    56.02    23.24    57.77

% View the size of the asset price data set.
numSample = size(pricesTT.Variables, 1);
numAssets = size(pricesTT.Variables, 2);
table(numSample, numAssets)

ans=1×2 table
    numSample    numAssets
    _________    _________
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       251          15    

Define the Strategies

Investment strategies capture the logic used to make asset allocation decisions while a backtest is
running. As the backtest runs, each strategy is periodically given the opportunity to update its
portfolio allocation based on the trailing market conditions, which it does by setting a vector of asset
weights. The asset weights represent the percentage of available capital invested into each asset,
with each element in the weights vector corresponding to the respective column in the asset
pricesTT timetable. If the sum of the weights vector is 1, then the portfolio is fully invested.

In this example, there are five backtest strategies. The backtest strategies assign asset weights using
the following criteria:

• Equal-weighted

ωEW = ω1, ω2, . . . , ωN , ωi = 1
N

• Maximization of Sharpe ratio

ωSR = argmax
ω

r′ω
ω′Qω |ω ≥ 0, ∑1

N ωi = 1, 0 ≤ ω ≤ 0 . 1 , where r is a vector of expected returns and Q
is the covariance matrix of asset returns.

• Inverse variance

ωIV = ω1, ω2, . . . , ωN ,ωi =
σii
−1

∑i = 1
N σii

−1 , where σii are diagonal elements of the asset return covariance

matrix.

• Markowitz portfolio optimization (maximizing return and minimizing risk with fixed risk-aversion
coefficient)

RMkwtz = max
ω

r′ω − λω′Qω | ω ≥ 0, ∑1
N ωi = 1, 0 ≤ ω ≤ 0 . 1 , where λ is the risk-aversion coefficient.

• Robust optimization with uncertainty in expected returns
• The robust portfolio optimization strategy, in contrast to the deterministic Markowitz formulation,

takes into consideration the uncertainty expected returns of the assets and their variances and
covariances. Instead of modeling unknown values (for example, expected returns) as one point,
typically represented by the mean value calculated from the past, unknowns are specified as a set
of values that contain the most likely possible realizations, r = {r |r ∈ S(r0)}.

In this case, the expected return is defined not by the deterministic vector r0 but by the region S(r0)
around the vector r0.

Taking this into consideration, there are several ways to reformulate the portfolio optimization
problem. One of the most frequently used methods is to formulate the problem as a problem of
finding the maximum and minimum:
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Rrobust = max
ω

min
r ∈ S r0

r′ω − λω′Qω | ω ≥ 0,∑1
N ωi = 1, 0 ≤ ω ≤ 0 . 1

In this example, the region of uncertainty S r0  is specified as an ellipsoid:

S(r0) = {r | (r − r0)′Σr
−1(r − r0) ≤ κ2}

Here, κ - is the uncertainty aversion coefficient that defines how wide the uncertainty region is, and
Σr is the matrix of estimation errors in expected returns r.

With the addition of the ellipsoid uncertainty to the Markowitz model, the robust optimization
problem is reformulated as:

Rrobust = max
ω

r′ω − λω′Qω− kz | ω ≥ 0, z ≥ 0, ω′Σrω− z2 ≤ 0, ∑1
N ωi = 1, 0 ≤ ω ≤ 0 . 1

Implement the Strategy Rebalance Functions

The core logic of each strategy is implemented in a rebalance function. A rebalance function is a user-
defined MATLAB® function that specifies how a strategy allocates capital in a portfolio. The
rebalance function is an input argument to backtestStrategy. The rebalance function must
implement the following fixed signature:

function new_weights = allocationFunctionName(current_weights,
pricesTimetable)

This fixed signature is the API that the backtest framework uses when rebalancing a portfolio. As the
backtest runs, the backtesting engine calls the rebalance function of each strategy, passing in these
inputs:

• current_weights — Current portfolio weights before rebalancing
• pricesTimetable — MATLAB® timetable object containing the rolling window of asset prices.

The backtestStrategy rebalance function uses this information to compute the desired new
portfolio weights, which are returned to the backtesting engine in the function output new_weights.
See the Local Functions on page 4-0  sections for the rebalance function for each of the five
strategies.

Compute Initial Strategy Weights

Use the strategy rebalance functions to compute the initial weights for each strategy. Setting the
initial weights is important because otherwise the strategies begin the backtest with 100% in cash,
earning the risk-free rate, until the first rebalance date.

This example uses the first 40 days of the data set (about 2 months) to initialize the strategies. The
backtest is then run over the remaining data (about 10 months).

warmupPeriod = 40;

The initial weights are calculated by calling the backtestStrategy rebalance function in the same
way that the backtesting engine will call it. To do so, pass in a vector of current weights (all zeros,
that is 100% cash) as well as a window of price data that the strategies will use to set the desired
weights (the warm-up data partition). Using the rebalance functions to compute the initial weights in
this way is not required. The initial weights are a vector of the initial portfolio weights and can be set
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to any appropriate value. The rebalance functions in this example approximate the state the
strategies would be in had they been already running at the start of the backtest.

% No current weights (100% cash position).
current_weights = zeros(1,numAssets);

% Warm-up partition of data set timetable.
warmupTT = pricesTT(1:warmupPeriod,:);

% Compute the initial portfolio weights for each strategy.
equalWeight_initial     = equalWeightFcn(current_weights,warmupTT);
maxSharpeRatio_initial  = maxSharpeRatioFcn(current_weights,warmupTT);
inverseVariance_initial = inverseVarianceFcn(current_weights,warmupTT);
markowitz_initial       = markowitzFcn(current_weights,warmupTT);
robustOptim_initial     = robustOptimFcn(current_weights,warmupTT);

Visualize the initial weight allocations from the strategies.

strategyNames = {'Equal Weighted', 'Max Sharpe Ratio', 'Inverse Variance', 'Markowitz Optimization','Robust Optimization'};
assetSymbols = pricesTT.Properties.VariableNames;
initialWeights = [equalWeight_initial(:), maxSharpeRatio_initial(:), inverseVariance_initial(:), markowitz_initial(:), robustOptim_initial(:)];
heatmap(strategyNames, assetSymbols, initialWeights, 'title','Initial Asset Allocations','Colormap', parula);

Create Backtest Strategies

To use the strategies in the backtesting framework, you must build backtestStrategy objects, one
for each strategy. The backtestStrategy function takes as input the strategy name and
rebalancing function for each strategy. Additionally, the backtestStrategy can take a variety of
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name-value pair arguments to specify various options. For more information on creating backtest
strategies, see backtestStrategy.

Set the rebalance frequency and lookback window size are set in terms of number of time steps (that
is, rows of the pricesTT timetable). Since the data is daily price data, specify the rebalance
frequency and rolling lookback window in days.

% Rebalance approximately every 1 month (252 / 12 = 21).
rebalFreq = 21;

% Set the rolling lookback window to be at least 40 days and at most 126
% days (about 6 months).
lookback  = [40 126];

% Use a fixed transaction cost (buy and sell costs are both 0.5% of amount
% traded).
transactionsFixed = 0.005;

% Customize the transaction costs using a function. See the
% variableTransactionCosts function below for an example.
transactionsVariable = @variableTransactionCosts;

% The first two strategies use fixed transaction costs. The equal-weighted
% strategy does not require a lookback window of trailing data, as its
% allocation is fixed.
strat1 = backtestStrategy('Equal Weighted', @equalWeightFcn,...
    'RebalanceFrequency', rebalFreq,...
    'LookbackWindow', 0,...
    'TransactionCosts', transactionsFixed,...
    'InitialWeights', equalWeight_initial);

strat2 = backtestStrategy('Max Sharpe Ratio', @maxSharpeRatioFcn,...
    'RebalanceFrequency', rebalFreq,...
    'LookbackWindow', lookback,...
    'TransactionCosts', transactionsFixed,...
    'InitialWeights', maxSharpeRatio_initial);

% Use variable transaction costs for the remaining strategies.
strat3 = backtestStrategy('Inverse Variance', @inverseVarianceFcn,...
    'RebalanceFrequency', rebalFreq,...
    'LookbackWindow', lookback,...
    'TransactionCosts', @variableTransactionCosts,...
    'InitialWeights', inverseVariance_initial);
strat4 = backtestStrategy('Markowitz Optimization', @markowitzFcn,...
    'RebalanceFrequency', rebalFreq,...
    'LookbackWindow', lookback,...
    'TransactionCosts', transactionsFixed,...
    'InitialWeights', markowitz_initial);
strat5 = backtestStrategy('Robust Optimization', @robustOptimFcn,...
    'RebalanceFrequency', rebalFreq,...
    'LookbackWindow', lookback,...
    'TransactionCosts', transactionsFixed,...
    'InitialWeights', robustOptim_initial);

% Aggregate the strategy objects into an array.
strategies = [strat1, strat2, strat3, strat4, strat5];
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Backtest the Strategies

Use the following the workflow to backtest the strategies with a backtestEngine.

Define Backtesting Engine

The backtestEngine function takes as input an array of backtestStrategy objects. Additionally,
when using backtestEngine, you can set several options, such as the risk-free rate and the initial
portfolio value. When the risk-free rate is specified in annualized terms, the backtestEngine uses
Basis property to set the day count convention. For more information on creating backtesting
engines, see backtestEngine.

% Risk-free rate is 1% annualized
annualRiskFreeRate = 0.01;

% Create the backtesting engine object
backtester = backtestEngine(strategies, 'RiskFreeRate', annualRiskFreeRate)

backtester = 
  backtestEngine with properties:

               Strategies: [1x5 backtestStrategy]
             RiskFreeRate: 0.0100
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
                NumAssets: []
                  Returns: []
                Positions: []
                 Turnover: []
                  BuyCost: []
                 SellCost: []

Run Backtest

Use runBacktest to run the backtest using the test data partition. Use the runBacktest name-
value pair argument 'Start'to avoid look-ahead bias (that is, "seeing the future"). Begin the
backtest at the end of the "warm-up" period. Running the backtest populates the empty fields of the
backtestEngine object with the day-by-day backtest results.

backtester = runBacktest(backtester, pricesTT, 'Start', warmupPeriod)

backtester = 
  backtestEngine with properties:

               Strategies: [1x5 backtestStrategy]
             RiskFreeRate: 0.0100
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
                NumAssets: 15
                  Returns: [211x5 timetable]
                Positions: [1x1 struct]
                 Turnover: [211x5 timetable]
                  BuyCost: [211x5 timetable]
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                 SellCost: [211x5 timetable]

Examine Backtest Results

Use the summary function to generate a table of strategy performance results for the backtest.

summaryByStrategies = summary(backtester)

summaryByStrategies=9×5 table
                       Equal_Weighted    Max_Sharpe_Ratio    Inverse_Variance    Markowitz_Optimization    Robust_Optimization
                       ______________    ________________    ________________    ______________________    ___________________

    TotalReturn             0.18745            0.14991            0.15906                 0.17404                 0.15655     
    SharpeRatio             0.12559           0.092456            0.12179                 0.10339                 0.11442     
    Volatility            0.0063474          0.0070186          0.0055626               0.0072466               0.0058447     
    AverageTurnover      0.00087623          0.0065762          0.0028666               0.0058268               0.0025172     
    MaxTurnover            0.031251              0.239            0.09114                 0.21873                0.073746     
    AverageReturn        0.00083462         0.00068672          0.0007152              0.00078682              0.00070651     
    MaxDrawdown            0.072392           0.084768           0.054344                0.085544                0.064904     
    AverageBuyCost         0.047298             0.3449            0.15228                  0.3155                  0.1328     
    AverageSellCost        0.047298             0.3449            0.22842                  0.3155                  0.1328     

The detailed backtest results, including the daily returns, asset positions, and turnover, are stored in
properties of the backtestEngine object.

Use equityCurve to plot the equity curve for the five different investment strategies.

equityCurve(backtester)
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Transposing the summary table to make plots of certain metrics can be useful.

% Transpose the summary table to plot the metrics.
summaryByMetrics = rows2vars(summaryByStrategies);
summaryByMetrics.Properties.VariableNames{1} = 'Strategy'

summaryByMetrics=5×10 table
             Strategy             TotalReturn    SharpeRatio    Volatility    AverageTurnover    MaxTurnover    AverageReturn    MaxDrawdown    AverageBuyCost    AverageSellCost
    __________________________    ___________    ___________    __________    _______________    ___________    _____________    ___________    ______________    _______________

    {'Equal_Weighted'        }      0.18745        0.12559      0.0063474       0.00087623        0.031251       0.00083462       0.072392         0.047298          0.047298    
    {'Max_Sharpe_Ratio'      }      0.14991       0.092456      0.0070186        0.0065762           0.239       0.00068672       0.084768           0.3449            0.3449    
    {'Inverse_Variance'      }      0.15906        0.12179      0.0055626        0.0028666         0.09114        0.0007152       0.054344          0.15228           0.22842    
    {'Markowitz_Optimization'}      0.17404        0.10339      0.0072466        0.0058268         0.21873       0.00078682       0.085544           0.3155            0.3155    
    {'Robust_Optimization'   }      0.15655        0.11442      0.0058447        0.0025172        0.073746       0.00070651       0.064904           0.1328            0.1328    

% Compare the strategy turnover.
names = [backtester.Strategies.Name];
nameLabels = strrep(names,'_',' ');
bar(summaryByMetrics.AverageTurnover)
title('Average Turnover')
ylabel('Daily Turnover (%)')
set(gca,'xticklabel',nameLabels)
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You can visualize the change in the strategy allocations over time using an area chart of the daily
asset positions. For information on the assetAreaPlot function, see the Local Functions on page 4-
0  section.

strategyName = ;
assetAreaPlot(backtester,strategyName)
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Local Functions

The strategy rebalancing functions as well as the variable transaction cost function follow.

function new_weights = equalWeightFcn(current_weights, pricesTT)
% Equal-weighted portfolio allocation

nAssets = size(pricesTT, 2);
new_weights = ones(1,nAssets);
new_weights = new_weights / sum(new_weights);

end

function new_weights = maxSharpeRatioFcn(current_weights, pricesTT)
% Mean-variance portfolio allocation

nAssets = size(pricesTT, 2);
assetReturns = tick2ret(pricesTT);
% Max 25% into a single asset (including cash)
p = Portfolio('NumAssets',nAssets,...
    'LowerBound',0,'UpperBound',0.1,...
    'LowerBudget',1,'UpperBudget',1);
p = estimateAssetMoments(p, assetReturns{:,:});
new_weights = estimateMaxSharpeRatio(p);

end
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function new_weights = inverseVarianceFcn(current_weights, pricesTT) 
% Inverse-variance portfolio allocation

assetReturns = tick2ret(pricesTT);
assetCov = cov(assetReturns{:,:});
new_weights = 1 ./ diag(assetCov);
new_weights = new_weights / sum(new_weights);

end

function new_weights = robustOptimFcn(current_weights, pricesTT) 
% Robust portfolio allocation

nAssets = size(pricesTT, 2);
assetReturns = tick2ret(pricesTT);

Q = cov(table2array(assetReturns));
SIGMAx = diag(diag(Q));

% Robust aversion coefficient
k = 1.1;

% Robust aversion coefficient
lambda = 0.05;

rPortfolio = mean(table2array(assetReturns))';

% Create the optimization problem
pRobust = optimproblem('Description','Robust Portfolio');

% Define the variables
% xRobust - x  allocation vector
xRobust = optimvar('x',nAssets,1,'Type','continuous','LowerBound',0.0,'UpperBound',0.1);
zRobust = optimvar('z','LowerBound',0);

% Define the budget constraint
pRobust.Constraints.budget = sum(xRobust) == 1;

% Define the robust constraint
pRobust.Constraints.robust = xRobust'*SIGMAx*xRobust - zRobust*zRobust <=0;
pRobust.Objective = -rPortfolio'*xRobust + k*zRobust + lambda*xRobust'*Q*xRobust;
x0.x = zeros(nAssets,1);
x0.z = 0;
opt = optimoptions('fmincon','Display','off');
[solRobust,~,~] = solve(pRobust,x0,'Options',opt);
new_weights = solRobust.x;

end

function new_weights = markowitzFcn(current_weights, pricesTT) 
% Robust portfolio allocation

nAssets = size(pricesTT, 2);
assetReturns = tick2ret(pricesTT);

Q = cov(table2array(assetReturns));

% Risk aversion coefficient
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lambda = 0.05;

rPortfolio = mean(table2array(assetReturns))';

% Create the optimization problem
pMrkwtz = optimproblem('Description','Markowitz Mean Variance Portfolio ');

% Define the variables
% xRobust - x  allocation vector
xMrkwtz = optimvar('x',nAssets,1,'Type','continuous','LowerBound',0.0,'UpperBound',0.1);

% Define the budget constraint
pMrkwtz.Constraints.budget = sum(xMrkwtz) == 1;

% Define the Markowitz objective
pMrkwtz.Objective = -rPortfolio'*xMrkwtz + lambda*xMrkwtz'*Q*xMrkwtz;
x0.x = zeros(nAssets,1);

opt = optimoptions('quadprog','Display','off');
[solMrkwtz,~,~] = solve(pMrkwtz,x0,'Options',opt);
new_weights = solMrkwtz.x;

end

function [buy, sell] = variableTransactionCosts(deltaPositions)
% Variable transaction cost function
%
% This function is an example of how to compute variable transaction costs.
%
% Compute scaled transaction costs based on the change in market value of
% each asset after a rebalance.  Costs are computed at the following rates:
%
% Buys:
%   $0-$10,000 : 0.5%
%   $10,000+   : 0.35%
% Sells:
%   $0-$1,000  : 0.75%
%   $1,000+    : 0.5%

buy  = zeros(1,numel(deltaPositions));
sell = zeros(1,numel(deltaPositions));

% Buys
idx = 0 < deltaPositions & deltaPositions < 1e4;
buy(idx) = 0.005 * deltaPositions(idx); % 50 basis points
idx = 1e4 <= deltaPositions;
buy(idx) = 0.0035 * deltaPositions(idx); % 35 basis ponits
buy = sum(buy);

% Sells
idx = -1e3 < deltaPositions & deltaPositions < 0;
sell(idx) = 0.0075 * -deltaPositions(idx); % 75 basis points
idx = deltaPositions <= -1e3;
sell(idx) = 0.005 * -deltaPositions(idx); % 50 basis points
sell = sum(sell);

end
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function assetAreaPlot(backtester,strategyName)
% Plot the asset allocation as an area plot.

t = backtester.Positions.(strategyName).Time;
positions = backtester.Positions.(strategyName).Variables;
h = area(t,positions);
title(sprintf('%s Positions',strrep(strategyName,'_',' ')));
xlabel('Date');
ylabel('Asset Positions');
datetick('x','mm/dd','keepticks');
xlim([t(1) t(end)])
oldylim = ylim;
ylim([0 oldylim(2)]);
cm = parula(numel(h));
for i = 1:numel(h)
    set(h(i),'FaceColor',cm(i,:));
end
legend(backtester.Positions.(strategyName).Properties.VariableNames)

end

See Also
backtestStrategy | backtestEngine | runBacktest | summary

Related Examples
• “Backtest Investment Strategies with Trading Signals” on page 4-233
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Backtest Investment Strategies with Trading Signals
This example shows how to perform backtesting of portfolio strategies that incorporate investment
signals in their trading strategy. The term signals includes any information that a strategy author
needs to make with respect to trading decisions outside of the price history of the assets. Such
information can include technical indicators, the outputs of machine learning models, sentiment data,
macroeconomic data, and so on. This example uses three simple investment strategies based on
derivative signal data:

• Moving average crossovers
• Moving average convergence/divergence
• Relative strength index

In this example you can run a backtest using these strategies over one year of stock data. You then
analyze the results to compare the performance of each strategy.

Even though technical indicators are not typically used as standalone trading strategies, this example
uses these strategies to demonstrate how to build investment strategies based on signal data when
you use the backtestEngine object in MATLAB®.

Load Data

Load the adjusted price data for 15 stocks for the year 2006. This example uses a small set of
investable assets for readability.

Read a table of daily adjusted close prices for 2006 DJIA stocks.

T = readtable('dowPortfolio.xlsx');

For readability, use only 15 of the 30 DJI component stocks.

symbols = ["AA","CAT","DIS","GM","HPQ","JNJ","MCD","MMM","MO","MRK","MSFT","PFE","PG","T","XOM"];

Prune the table to hold only the dates and selected stocks.

timeColumn = "Dates";
T = T(:,[timeColumn symbols]);

Convert the data to a timetable.

pricesTT = table2timetable(T,'RowTimes','Dates');

View the structure of the prices timetable.

head(pricesTT)

ans=8×15 timetable
       Dates        AA       CAT      DIS      GM       HPQ      JNJ      MCD      MMM      MO       MRK     MSFT      PFE      PG        T       XOM 
    ___________    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____    _____

    03-Jan-2006    28.72    55.86    24.18    17.82    28.35    59.08    32.72    75.93    52.27    30.73    26.19    22.16    56.38     22.7    56.64
    04-Jan-2006    28.89    57.29    23.77     18.3    29.18    59.99    33.01    75.54    52.65    31.08    26.32    22.88    56.48    22.87    56.74
    05-Jan-2006    29.12    57.29    24.19    19.34    28.97    59.74    33.05    74.85    52.52    31.13    26.34     22.9     56.3    22.92    56.45
    06-Jan-2006    29.02    58.43    24.52    19.61     29.8    60.01    33.25    75.47    52.95    31.08    26.26    23.16    56.24    23.21    57.57
    09-Jan-2006    29.37    59.49    24.78    21.12    30.17    60.38    33.88    75.84    53.11    31.58    26.21    23.16    56.67     23.3    57.54
    10-Jan-2006    28.44    59.25    25.09    20.79    30.33    60.49    33.91    75.37    53.04    31.27    26.35    22.77    56.45    23.16    57.99
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    11-Jan-2006    28.05    59.28    25.33    20.61    30.88    59.91     34.5    75.22    53.31    31.39    26.63    23.06    56.65    23.34    58.38
    12-Jan-2006    27.68    60.13    25.41    19.76    30.57    59.63    33.96    74.57    53.23    31.41    26.48     22.9    56.02    23.24    57.77

Inspect Data Set

Visualize the correlation and total return of each stock in the data set.

% Visualize the correlation between the 15 stocks.
returns = tick2ret(pricesTT);
stockCorr = corr(returns.Variables);
heatmap(symbols,symbols,stockCorr,'Colormap',parula);

% Visualize the performance of each stock over the range of price data.
totalRet = ret2tick(returns);
plot(totalRet.Dates,totalRet.Variables);
legend(symbols,'Location','NW');
title('Growth of $1 for Each Stock')
ylabel('$')
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% Get the total return of each stock for the duration of the data set.
totalRet(end,:)

ans=1×15 timetable
       Dates         AA       CAT       DIS        GM       HPQ       JNJ       MCD       MMM        MO       MRK       MSFT      PFE        PG        T        XOM 
    ___________    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______    _____

    29-Dec-2006    1.0254    1.0781    1.4173    1.6852    1.4451    1.0965    1.3548    1.0087    1.1946    1.3856    1.1287    1.1304    1.1164    1.5181    1.336

Build Signal Table

In addition to the historical adjusted asset prices, the backtesting framework allows you to optionally
specify signal data when running a backtest. Specify the signal data in a similar way as the prices by
using a MATLAB® timetable. The "time" dimension of the signal timetable must match that of the
prices timetable — that is, the rows of each table must have matching datetime values for the Time
column.

This example builds a signal timetable to support each of the three investment strategies:

• Simple moving average crossover (SMA) strategy
• Moving Average Convergence / Divergence (MACD) strategy
• Relative Strength Index (RSI) strategy

Each strategy has a timetable of signals that are precomputed. Before you run the backtest, you
merge the three separate signal timetables into a single aggregate signal timetable to use for the
backtest.
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SMA: Simple Moving Average Crossover

The SMA indicator uses 5-day and 20-day simple moving averages to make buy and sell decisions.
When the 5-day SMA crosses the 20-day SMA (moving upwards), then the stock is bought. When the
5-day SMA crosses below the 20-day SMA, the stock is sold.

% Create SMA timetables using the movavg function.
sma5  = movavg(pricesTT,'simple',5);
sma20 = movavg(pricesTT,'simple',20);

Create the SMA indicator signal timetable.

smaSignalNameEnding = '_SMA5over20';

smaSignal = timetable;
for i = 1:numel(symbols)
    symi = symbols(i);
    % Build a timetable for each symbol, then aggregate them together.
    smaSignali = timetable(pricesTT.Dates,...
        double(sma5.(symi) > sma20.(symi)),...
        'VariableNames',{sprintf('%s%s',symi,smaSignalNameEnding)});
    % Use the synchronize function to merge the timetables together.
    smaSignal = synchronize(smaSignal,smaSignali);
end

The SMA signal timetable contains an indicator with a value of 1 when the 5-day moving average is
above the 20-day moving average for each asset, and a 0 otherwise. The column names for each stock
indicator are [stock symbol]SMA5over20. The backtestStrategy object makes trading decisions
based on these crossover events.

View the structure of the SMA signal timetable.

head(smaSignal)

ans=8×15 timetable
       Time        AA_SMA5over20    CAT_SMA5over20    DIS_SMA5over20    GM_SMA5over20    HPQ_SMA5over20    JNJ_SMA5over20    MCD_SMA5over20    MMM_SMA5over20    MO_SMA5over20    MRK_SMA5over20    MSFT_SMA5over20    PFE_SMA5over20    PG_SMA5over20    T_SMA5over20    XOM_SMA5over20
    ___________    _____________    ______________    ______________    _____________    ______________    ______________    ______________    ______________    _____________    ______________    _______________    ______________    _____________    ____________    ______________

    03-Jan-2006          0                0                 0                 0                0                 0                 0                 0                 0                0                  0                 0                 0               0                0       
    04-Jan-2006          0                0                 0                 0                0                 0                 0                 0                 0                0                  0                 0                 0               0                0       
    05-Jan-2006          0                0                 0                 0                0                 0                 0                 0                 0                0                  0                 0                 0               0                0       
    06-Jan-2006          0                0                 0                 0                0                 0                 0                 0                 0                0                  0                 0                 0               0                0       
    09-Jan-2006          0                0                 0                 0                0                 0                 0                 0                 0                0                  0                 0                 0               0                0       
    10-Jan-2006          1                1                 1                 1                1                 1                 1                 0                 1                1                  1                 1                 1               1                1       
    11-Jan-2006          0                1                 1                 1                1                 1                 1                 0                 1                1                  1                 1                 1               1                1       
    12-Jan-2006          0                1                 1                 1                1                 1                 1                 0                 1                1                  1                 1                 1               1                1       

Plot the signal for a single asset to preview the trading frequency.

plot(smaSignal.Time,smaSignal.CAT_SMA5over20);
ylim([-0.5, 1.5]);
ylabel('SMA 5 > SMA 20');
title(sprintf('SMA 5 over 20 for CAT'));
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MACD: Moving Average Convergence/Divergence

You can use the MACD metric in a variety of ways. Often, MACD is compared to its own exponential
moving average, but for this example, MACD serves as a trigger for a buy signal when the MACD
rises above 0. A position is sold when the MACD falls back below 0.

% Create a timetable of the MACD metric using the MACD function.
macdTT = macd(pricesTT);

Create the MACD indicator signal timetable.

macdSignalNameEnding = '_MACD';

macdSignal = timetable;
for i = 1:numel(symbols)
    symi = symbols(i);
    % Build a timetable for each symbol, then aggregate the symbols together.
    macdSignali = timetable(pricesTT.Dates,...
        double(macdTT.(symi) > 0),...
        'VariableNames',{sprintf('%s%s',symi,macdSignalNameEnding)});
    macdSignal = synchronize(macdSignal,macdSignali);
end

The MACD signal table contains a column for each asset with the name [stock symbol]MACD. Each
signal has a value of 1 when the MACD of the stock is above 0. The signal has a value of 0 when the
MACD of the stock falls below 0.

head(macdSignal)
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ans=8×15 timetable
       Time        AA_MACD    CAT_MACD    DIS_MACD    GM_MACD    HPQ_MACD    JNJ_MACD    MCD_MACD    MMM_MACD    MO_MACD    MRK_MACD    MSFT_MACD    PFE_MACD    PG_MACD    T_MACD    XOM_MACD
    ___________    _______    ________    ________    _______    ________    ________    ________    ________    _______    ________    _________    ________    _______    ______    ________

    03-Jan-2006       0          0           0           0          0           0           0           0           0          0            0           0           0         0          0    
    04-Jan-2006       0          0           0           0          0           0           0           0           0          0            0           0           0         0          0    
    05-Jan-2006       0          0           0           0          0           0           0           0           0          0            0           0           0         0          0    
    06-Jan-2006       0          0           0           0          0           0           0           0           0          0            0           0           0         0          0    
    09-Jan-2006       0          0           0           0          0           0           0           0           0          0            0           0           0         0          0    
    10-Jan-2006       0          0           0           0          0           0           0           0           0          0            0           0           0         0          0    
    11-Jan-2006       0          0           0           0          0           0           0           0           0          0            0           0           0         0          0    
    12-Jan-2006       0          0           0           0          0           0           0           0           0          0            0           0           0         0          0    

Similar to the SMA, plot the signal for a single asset to preview the trading frequency.

plot(macdSignal.Time,macdSignal.CAT_MACD)
ylim([-0.5, 1.5]);
ylabel('MACD > 0');
title(sprintf('MACD > 0 for CAT'));

RSI: Relative Strength Index

The RSI is a metric to capture momentum. A common heuristic is to buy when the RSI falls below 30
and to sell when the RSI rises above 70.

rsiSignalNameEnding = '_RSI';
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rsiSignal = timetable;
for i = 1:numel(symbols)
    symi = symbols(i);
    rsiValues = rsindex(pricesTT.(symi));
    rsiBuySell = zeros(size(rsiValues));
    rsiBuySell(rsiValues < 30) = 1;
    rsiBuySell(rsiValues > 70) = -1;
    % Build a timetable for each symbol, then aggregate the symbols together.
    rsiSignali = timetable(pricesTT.Dates,...
        rsiBuySell,...
        'VariableNames',{sprintf('%s%s',symi,rsiSignalNameEnding)});
    rsiSignal = synchronize(rsiSignal,rsiSignali);
end

The RSI signal takes a value of 1 (indicating a buy signal) when the RSI value for the stock falls below
30. The signal takes a value of -1 (indicating a sell signal) when the RSI for the stock rises above 70.
Otherwise, the signal takes a value of 0, indicating no action.

Plot the signal for a single asset to preview the trading frequency.

plot(rsiSignal.Time,rsiSignal.CAT_RSI)
ylim([-1.5, 1.5]);
ylabel('RSI Buy/Sell Signal');
title(sprintf('RSI Buy/Sell Signal for CAT'));
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Build the Strategies

Build the strategies for the backtestStrategy object using the rebalance functions defined in the
Local Functions on page 4-0  section. Each strategy uses the rebalance function to make trading
decisions based on the appropriate signals.

The signals require sufficient trailing data to compute the trading signals (for example, computing
the SMA20 for day X requires prices from the 20 days prior to day X). All of the trailing data is
captured in the precomputed trading signals. So the actual strategies need only a 2-day lookback
window to make trading decisions to evaluate when the signals cross trading thresholds.

All strategies pay 25 basis points transaction costs on buys and sells.

The initial weights are computed based on the signal values after 20 trading days. The backtest
begins after this 20 day initialization period.

tradingCosts = 0.0025;

% Use the crossoverRebalanceFunction for both the SMA
% strategy as well as the MACD strategy.  This is because they both trade
% on their respective signals in the same way (buy when signal goes from
% 0->1, sell when signal goes from 1->0).  Build an anonymous
% function for the rebalance functions of the strategies that calls the
% shared crossoverRebalanceFcn() with the appropriate signal name string
% for each strategy.

% Each anonymous function takes the current weights (w), prices (p), 
% and signal (s) data from the backtest engine and passes it to the
% crossoverRebalanceFcn function with the signal name string.
smaInitWeights = computeInitialWeights(smaSignal(20,:));
smaRebalanceFcn = @(w,p,s) crossoverRebalanceFcn(w,p,s,smaSignalNameEnding);
smaStrategy = backtestStrategy('SMA',smaRebalanceFcn,...
    'TransactionCosts',tradingCosts,...
    'LookbackWindow',2,...
    'InitialWeights',smaInitWeights);

macdInitWeights = computeInitialWeights(macdSignal(20,:));
macdRebalanceFcn = @(w,p,s) crossoverRebalanceFcn(w,p,s,macdSignalNameEnding);
macdStrategy = backtestStrategy('MACD',macdRebalanceFcn,...
    'TransactionCosts',tradingCosts,...
    'LookbackWindow',2,...
    'InitialWeights',macdInitWeights);

% The RSI strategy uses its signal differently, buying on a 0->1
% transition and selling on a 0->-1 transition.  This logic is captured in
% the rsiRebalanceFcn function defined in the Local Functions section.
rsiInitWeights = computeInitialWeights(rsiSignal(20,:));
rsiStrategy = backtestStrategy('RSI',@rsiRebalanceFcn,...
    'TransactionCosts',tradingCosts,...
    'LookbackWindow',2,...
    'InitialWeights',rsiInitWeights);

Set Up Backtest

As a benchmark, this example also runs a simple equal-weighted strategy to determine if the trading
signals are providing valuable insights into future returns of the assets. The benchmark strategy is
rebalanced every four weeks.
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% The equal weight strategy requires no history, so set LookbackWindow to 0.
benchmarkStrategy = backtestStrategy('Benchmark',@equalWeightFcn,...
    'TransactionCosts',tradingCosts,...
    'RebalanceFrequency',20,...
    'LookbackWindow',0);

Aggregate each of the individual signal timetables into a single backtest signal timetable.

% Combine the three signal timetables.
signalTT = timetable;
signalTT = synchronize(signalTT, smaSignal);
signalTT = synchronize(signalTT, macdSignal);
signalTT = synchronize(signalTT, rsiSignal);

Use backtestEngine to create the backtesting engine and then use runBacktest to run the
backtest. The risk-free rate earned on uninvested cash is 1% annualized.

% Put the benchmark strategy and three signal strategies into an array.
strategies = [benchmarkStrategy smaStrategy macdStrategy rsiStrategy];
% Create the backtesting engine.
bt = backtestEngine(strategies,'RiskFreeRate',0.01)

bt = 
  backtestEngine with properties:

               Strategies: [1x4 backtestStrategy]
             RiskFreeRate: 0.0100
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
                NumAssets: []
                  Returns: []
                Positions: []
                 Turnover: []
                  BuyCost: []
                 SellCost: []

Backtest Strategies

% Start with the end of the initial weights calculation warm-up period.
startIdx = 20;

% Run the backtest.
bt = runBacktest(bt,pricesTT,signalTT,'Start',startIdx);

Examine Backtest Results

Use equityCurve to plot the strategy equity curves to visualize their performance over the backtest.

equityCurve(bt)
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As mentioned previously, these strategies are not typically used as standalone trading signals. In fact,
these three strategies perform worse than the simple benchmark strategy for the 2006 timeframe.
You can visualize how the strategy allocations change over time using an area chart of the daily asset
positions. To do so, use the assetAreaPlot helper function, defined in the Local Functions on page
4-0  section.

strategyName = ;
assetAreaPlot(bt,strategyName)
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Conclusion

The broad equity market had a very bullish 6 months in the second half of 2006 and all three of these
strategies failed to fully capture that growth by leaving too much capital in cash. While none of these
strategies performed well on their own, this example demonstrates how you can build signal-based
trading strategies and backtest them to assess their performance.

Local Functions

The initial weight calculation function as well as the strategy rebalancing functions follow.

function initial_weights = computeInitialWeights(signals)
% Compute initial weights based on most recent signal.

nAssets = size(signals,2);
final_signal = signals{end,:};
buys = final_signal == 1;
initial_weights = zeros(1,nAssets);
initial_weights(buys) = 1 / nAssets;

end

function new_weights = crossoverRebalanceFcn(current_weights, pricesTT, signalTT, signalNameEnding)
% Signal crossover rebalance function.

% Build cell array of signal names that correspond to the crossover signals.
symbols = pricesTT.Properties.VariableNames;
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signalNames = cellfun(@(s) sprintf('%s%s',s,signalNameEnding), symbols, 'UniformOutput', false);

% Pull out the relevant signal data for the strategy.
crossoverSignals = signalTT(:,signalNames);

% Start with our current weights.
new_weights = current_weights;

% Sell any existing long position where the signal has turned to 0.
idx = crossoverSignals{end,:} == 0;
new_weights(idx) = 0;

% Find the new crossovers (signal changed from 0 to 1).
idx = crossoverSignals{end,:} == 1 & crossoverSignals{end-1,:} == 0;

% Bet sizing, split available capital across all remaining assets, and then
% invest only in the new positive crossover assets.  This leaves some
% proportional amount of capital uninvested for future investments into the
% zero-weight assets.
availableCapital = 1 - sum(new_weights);
uninvestedAssets = sum(new_weights == 0);
new_weights(idx) = availableCapital / uninvestedAssets;

end

function new_weights = rsiRebalanceFcn(current_weights, pricesTT, signalTT)
% Buy and sell on 1 and -1 rebalance function.

signalNameEnding = '_RSI';

% Build cell array of signal names that correspond to the crossover signals.
symbols = pricesTT.Properties.VariableNames;
signalNames = cellfun(@(s) sprintf('%s%s',s,signalNameEnding), symbols, 'UniformOutput', false);

% Pull out the relevant signal data for the strategy.
buySellSignals = signalTT(:,signalNames);

% Start with the current weights.
new_weights = current_weights;

% Sell any existing long position where the signal has turned to -1.
idx = buySellSignals{end,:} == -1;
new_weights(idx) = 0;

% Find the new buys (signal is 1 and weights are currently 0).
idx = new_weights == 0 & buySellSignals{end,:} == 1;

% Bet sizing, split available capital across all remaining assets, and then
% invest only in the new positive crossover assets.  This leaves some
% proportional amount of capital uninvested for future investments into the
% zero-weight assets.
availableCapital = 1 - sum(new_weights);
uninvestedAssets = sum(new_weights == 0);
new_weights(idx) = availableCapital / uninvestedAssets;

end
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function new_weights = equalWeightFcn(current_weights,~)
% Equal-weighted portfolio allocation.

nAssets = numel(current_weights);
new_weights = ones(1,nAssets);
new_weights = new_weights / sum(new_weights);

end

function assetAreaPlot(backtester,strategyName)
% Plot the asset allocation as an area plot.

t = backtester.Positions.(strategyName).Time;
positions = backtester.Positions.(strategyName).Variables;
h = area(t,positions);
title(sprintf('%s Positions',strrep(strategyName,'_',' ')));
xlabel('Date');
ylabel('Asset Positions');
datetick('x','mm/dd','keepticks');
xlim([t(1) t(end)])
oldylim = ylim;
ylim([0 oldylim(2)]);
cm = parula(numel(h));
for i = 1:numel(h)
    set(h(i),'FaceColor',cm(i,:));
end
legend(backtester.Positions.(strategyName).Properties.VariableNames)

end

See Also
backtestStrategy | backtestEngine | runBacktest | summary

Related Examples
• “Backtest Investment Strategies” on page 4-220
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Portfolio Optimization Using a Social Performance Measure
This example shows how to use a Portfolio object for portfolio optimization that includes a social
performance measure for the percentage of women on a company's board and group constraints.

The goal of this example is to find portfolios that are effcient in the sense that they minimize the
variance, maximize return, and maximize the average percentage of women on the board of directors.
To find the average percentage of women on a company's board (WoB) for a given portfolio, this
example uses a weighted sum of the percentages of WoB for each individual asset, where the weights
are given by the amount invested in each asset for the portfolio. By defining the average percentage
of WoB this way, the WoB function is linear with respect to the weights.

Load Portfolio Data

load CAPMuniverse
% Assume that the percentage of women on the board of directors per company
% are as follows:
WoB = [0.2857; 0.5; 0.3; 0.2857; 0.3077; 0.2727; ...
    0.4167; 0.2143; 0.3; 0.4167; 0.3077];
table(WoB,'VariableNames',{'WoB'},'RowNames',Assets(1:11))

ans=11×1 table
             WoB  
            ______

    AAPL    0.2857
    AMZN       0.5
    CSCO       0.3
    DELL    0.2857
    EBAY    0.3077
    GOOG    0.2727
    HPQ     0.4167
    IBM     0.2143
    INTC       0.3
    MSFT    0.4167
    ORCL    0.3077

Create Portfolio Object

Create a standard Portfolio object and incorporate the list of assets and estimate the moments of
the assets' returns from the data. Use setDefaultConstraints to set the default mean-variance
portfolio constraints. These constraints require fully invested, long-only portfolios where the
nonnegative weights must sum to 1.

p = Portfolio('AssetList',Assets(1:11));
p = estimateAssetMoments(p, Data(:,1:11));
p = setDefaultConstraints(p);

Set Group Constraints

Use getGroups to include group contraints. The first group constraint ensures that the weights
invested in mixed retail (Amazon and eBay) are at least 15%. The second group constraint ensures
that the weights invested in computer companies (Apple, Dell and HP) are between 25% and 50%.

% Group constraints
G = [0 1 0 0 1 0 0 0 0 0 0;
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     1 0 0 1 0 0 1 0 0 0 0];
LowG = [0.15; 0.25];
UpG = [Inf; 0.5];
p = setGroups(p, G, LowG, UpG);

Find the minimum and maximum percentage of WoB that a portfolio can attain given these extra
group constraints. Because the percentage of WoB is linear with respect to the investment weights
and all the constraints in the portfolio are linear, the optimization problem is solved using linprog.
However, first you need to transform the linear constraints to solver form.

% Transform default contraints
lb = zeros(p.NumAssets,1); % Long-only constraint
ub = [];                   % No explicit weight upper bounds
Aeq = ones(1,p.NumAssets); % Weights must sum to 1
beq = 1;

%Transform group constraints
% GroupMatrix * x <= UpperGroup
% -GroupMatrix * x <= -LowerGroup
A = [G; -G];
b = [UpG; -LowG];

% Get rid of unbounded inequality constraints
ii = isfinite(b);
A = A(ii,:);
b = b(ii);

Find the portfolio with the minimum average percentage of WoB with the group constraints.

[wgt_minWoB,minWoB] = linprog(WoB,A,b,Aeq,beq,lb,ub);

Optimal solution found.

Find the portfolio with the maximum average percentage of WoB with the group constraints.

[wgt_maxWoB,fval] = linprog(-WoB,A,b,Aeq,beq,lb,ub);

Optimal solution found.

maxWoB = -fval;

Define a grid of WoB percentages such that minWoB = targetWoB(1) ≤ … ≤ targetWoB(N) =
maxWoB.

N = 20; % Size of grid
targetWoB = linspace(minWoB,maxWoB,N);

Use setInequality to set the percentage of WoB as a constraint. The coefficients of the linear
constraint should be the WoB percentages associated to each asset, and the right-hand side should be
the target portfolio WoB. The convention of the inequality is ≤. Since the goal is to maximize portfolio
WoB, then the target WoB should be a lower bound for the portfolio WoB. Therefore, the signs of the
coefficients and the right-hand side of the added inequality should be flipped.

Ain = -WoB';
bin = -minWoB; % Start with the smallest WoB
p = setInequality(p,Ain,bin);
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Compute and Plot the Efficient Frontier

For each target WoB, targetWoB(i), find the efficient mean-variance frontier using
estimateFrontier. At each iteration, the right-hand side of the WoB portfolio constraint should be
changed to ensure that the returned portfolios achieve at least the target WoB. This method returns
the weights of the portfolios on the mean-variance efficient frontier that have a WoB of at least
targetWoB(i). Using the weights obtained for each target WoB, compute the portfolios' expected
return, risk, and percentage of WoB.

prsk = cell(N,1);
pret = cell(N,1);
pWoB = cell(N,1);
for i = 1:N
    p.bInequality = -targetWoB(i);
    pwgt = estimateFrontier(p,N);
    [prsk{i},pret{i}] = estimatePortMoments(p,pwgt);
    pWoB{i} = pwgt'*WoB;
end

Plot the efficient portfolios.

scatter3(cell2mat(prsk),cell2mat(pret),cell2mat(pWoB))
title('Efficient Portfolios')
xlabel('Risk Level')
ylabel('Expected Return')
zlabel('Percentage of WoB')
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To visualize the tradeoff between a portfolio's average percentage of WoB and the traditional mean-
variance efficient frontier, a set of contour plots are computed for some target WoB percentages using
the plotContours function in Local Functions on page 4-0 .

nC = 5; % Number of contour plots
minContour = max(pWoB{1}); % WoB values lower than this
                           % return overlapped contours.

% Plot contours
plotContours(p,minContour,maxWoB,nC,N)

Exclusion Examples

Instead of requiring a specific level for the portfolio's average percentage of WoB, the goal is to find
the traditional mean-variance efficient frontiers while excluding assets that have a percentage of WoB
lower than a given threshold. You can plot the exclusion using the plotExclusionExample function
in Local Functions on page 4-0 .

% Remove the average percetage of WoB constraint
p.AInequality = []; p.bInequality = [];

% Set of thresholds for excluding assets
thresholdWoB = 0.25:0.05:0.40;

% Plot exclusion example
plotExclusionExample(p,WoB,thresholdWoB,N)
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The differences between this approach and the one presented in the previous sections are quite
evident. Requiring all the assets to have a WoB percentage of at least 35% gives an efficient frontier
that can achieve a return of at most around 1 . 2 10 −3. On the other hand, requiring only that the
portfolio's average percentage of WoB is 36.57% gives the possibility to reach a return of around
3 . 2 10 −3, almost 2.5 times the return obtained when excluding assets. To better show the diffences
between these two approaches, compute the maximum return achieved for a given standard deviation
for the two ways of including the percentage of WoB requirements to the portfolio.

Approach 1

In the first approach, exclude all assets with a WoB percentage lower than 33% and find the portfolio
of maximum return that has a standard deviation of at most 0.012.

% Select assets to exclude
ub = zeros(p.NumAssets,1);
ub(WoB >= 0.33) = 1;
p.UpperBound = ub;
% Estimate the return for a risk level of 0.012
pwgt_exclude = estimateFrontierByRisk(p,0.012);
ret_exclude = estimatePortReturn(p,pwgt_exclude)

ret_exclude = 0.0011

% Return constraints to the original portfolio
p.UpperBound = [];
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Approach 2

For the second approach, ensure that the average WoB percentage is of at least 33% and find the
portfolio of maximum return that has a standard deviation of at most 0.012.

% Include WoB constraint into the portfolio
p = addInequality(p,-WoB',-0.33);
% Estimate the return for a risk level of 0.012
pwgt_avgWoB = estimateFrontierByRisk(p,0.012);
ret_avgWoB = estimatePortReturn(p,pwgt_avgWoB)

ret_avgWoB = 0.0028

% Return constraints to the original portfolio
p.AInequality = []; p.bInequality = [];

Compute the increase in return between these two approaches.

ret_increase = (ret_avgWoB-ret_exclude)/ret_exclude

ret_increase = 1.5202

This ret_increase value shows that the return from the approach that only bounds the portfolio's
average WoB percentage instead of excluding certain assets has a return 152% higher (for the same
risk level). Hence, when tackling problems with more than two objectives, excluding assets that do
not meet a certain criteria might not be the best option. Instead, a weighted sum of the criteria of
interest might show better results.

Local Functions

function [] = plotContours(p,minWoB,maxWoB,nContour,nPort)

% Set of WoB levels for contour plot
contourWoB = linspace(minWoB,maxWoB,nContour+1);

% Compute and plot efficient frontier for each value in
% contourWoB.
figure;
hold on
labels = strings(nContour+1,1);
for i = 1:nContour
    p.bInequality = -contourWoB(i);
    pwgt = estimateFrontier(p,nPort);
    [prsk,pret] = estimatePortMoments(p,pwgt);
    plot(prsk,pret,'LineWidth',2);
    labels(i) = sprintf("%6.2f%% WoB",contourWoB(i)*100);
end
% Plot the "original" mean-variance frontier, i.e., the
% frontier without WoB requierements
p.AInequality = []; p.bInequality = [];
pwgt = estimateFrontier(p,nPort);
[prsk,pret] = estimatePortMoments(p,pwgt);
plot(prsk,pret,'LineWidth',2);
labels(i+1) = "No WoB restriction";
title('Efficient Frontiers')
xlabel('Standard Deviation of Portfolio Returns')
ylabel('Mean of Portfolio Returns')
legend(labels,'Location','northwest')
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grid on
hold off

end

function [] = plotExclusionExample(p,WoB,thresholdWoB, ...
    nPort)

% Compute and plot efficient frontier excluding assets
% that are below the WoB threshold
nT = length(thresholdWoB);
figure;
hold on
labels = strings(nT+1,1);
for i=1:nT
    ub = zeros(p.NumAssets,1);
    % Only select assets above WoB threshold
    ub(WoB >= thresholdWoB(i)) = 1;
    p.UpperBound = ub;
    pwgt = estimateFrontier(p,nPort);
    [prsk,pret] = estimatePortMoments(p,pwgt);
    plot(prsk,pret,'LineWidth',2);
    labels(i) = sprintf("%6.2f%% WoB",thresholdWoB(i)*100);
end
% Plot the "original" mean-variance frontier, i.e., the
% frontier without the WoB threshold
p.UpperBound = [];
pwgt = estimateFrontier(p,nPort);
[prsk,pret] = estimatePortMoments(p,pwgt);
plot(prsk,pret,'LineWidth',2);
labels(i+1) = "No WoB restriction";
title('Efficient Frontiers')
xlabel('Standard Deviation of Portfolio Returns')
ylabel('Mean of Portfolio Returns')
legend(labels,'Location','northwest')
grid on
hold off

end

See Also
Portfolio | setBounds | addGroups | setAssetMoments | estimateAssetMoments |
estimateBounds | plotFrontier | estimateFrontierLimits | estimateFrontierByRisk |
estimatePortRisk

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
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• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Against a Benchmark” on page 4-184
• “Portfolio Optimization Examples” on page 4-141
• “Diversification of Portfolios” on page 4-254

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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Diversification of Portfolios
This example shows three techniques of asset diversification in a portfolio. The purpose of asset
diversification is to balance the exposure of the portfolio to any given asset in order to reduce
volatility over a period of time. Given the sensitivity of the minimum variance portfolio to the
estimation of the covariance matrix, some practitioners have added diversification techniques to the
portfolio selection with the hope of minimizing risk measures other than the variance measures such
as turnover, maximum drawdown, and so on.

This example presents these common diversification techniques:

• Equally weighted (EW) portfolio
• Equal risk contribution (ERC)
• Most diversified portfolio (MDP)

Additionally, this example demonstrates penalty methods that can be used to achieve different
degrees of diversification. In those methods, a penalty term is added to the objective function to
balance the level of variance reduction and the diversification of the portfolio.

Retrieve Market Data and Define Mean-Variance Portfolio

Begin by loading and computing the expected returns and their covariance matrix.

% Load data
load('port5.mat');
% Store returns and covariance
mu = mean_return;
Sigma = Correlation .* (stdDev_return * stdDev_return');

Define a mean-variance portfolio using a Portfolio object with default constraints to create a fully
invested, long-only portfolio.

% Create a mean-variance Portfolio object with default constraints
p = Portfolio('AssetMean',mu,'AssetCovar',Sigma);
p = setDefaultConstraints(p);

One of the many features of the Portfolio object is that it can obtain the efficient frontier of the
portfolio problem. The efficient frontier is computed by solving a series of optimization problems for
which the return level of the portfolio, μ0, is modified to obtain different points on the efficient
frontier. These problems are defined as

min xTΣx

st . ∑
i = 1

n
xi = 1

xTμ ≥ μ0
x ≥ 0

The advantage of using the Portfolio object to compute the efficient frontier is that it is obtained
without having to manually formulate and solve the multiple optimization problems shown above.

plotFrontier(p);
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The Portfolio object can also compute the weights associated to the minimum variance portfolio,
which is defined by the following problem.

min xTΣx

st . ∑
i = 1

n
xi = 1

x ≥ 0

The minimum variance weights is considered the benchmark against which all the weights of the
diversification strategies are compared.

wMinVar = estimateFrontierLimits(p,'min');

The Portfolio object can compute the minimum variance portfolio. However, the diversification
strategies add modifications to the objective function of the portfolio problem that are not supported
by the Portfolio object. Thus, you must use Optimization Toolbox™ to solve the following problems.
To learn more about the problems that can be solved by the Portfolio object, see “When to Use
Portfolio Objects Over Optimization Toolbox” on page 4-126.

Specify Diversification Techniques

This section presents the three diversification methods. Each of the three diversification methods is
associated with a diversification measure and that diversification measure is used to define a penalty
term to achieve different diversification levels. The diversification, obtained by adding the penalty
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term to the objective function, ranges from the behavior achieved by the minimum variance portfolio
to the behavior of the EW, ECR, and MDP, respectively.

Start by initializing an optimproblem object and define its constraints. All the following portfolio
problems have the same constraints and only the objective function changes. Therefore, the following
optimproblem can be reused while the objective function is redefined accordingly.

% Define an optimization problem to adjust portfolio diversification
diverseProb = optimproblem('ObjectiveSense','minimize');

The default portfolio has only one equality constraint and a lower bound for the assets weights. The
weights must be nonnegative and they must sum to 1. The feasible set is represented asX:

X = x x ≥ 0, ∑
i = 1

n
xi = 1

% Variables
nX = p.NumAssets;
% Porfolio weights [nX-by-1 vector]
x = optimvar('x',nX,1,'LowerBound',0); % x >= 0 (long-only portfolio)

% Equality constraint
% Sum of weights equal to one
diverseProb.Constraints.fullyInvested = sum(x) == 1;

The first part of the example shows how to compute the minimum variance porftolio using the
Portfolio object. However, the minimum variance weights can also be obtained with the following
piece of code that represents the minimum variance problem:

min
x ∈ X

xTΣx

% Minimize variance
diverseProb.Objective = x'*p.AssetCovar*x;
% Solution of minimum variance portfolio
opts = optimoptions('quadprog','Display','none'); % No output display
[wMinVar2,fMinVar,c,d,e] = solve(diverseProb,'options',opts);

The solution above and the one obtained by the Portfolio object are not exactly the same.

norm(wMinVar-wMinVar2.x,inf)

ans = 0.0032

This result happens because the minimum variance problem is badly scaled given the size of the
eigenvalues of the covariance matrix. If the objective function is rescaled by a large constant (for
example, 1e4), then both solutions coincide within numerical accuracy. This capability is another
advantage of using the Portfolio object. The Portfolio object rescales the problem by default to
resolve numerical issues, so it obtains a portfolio with smaller variance than the one obtained without
scaling the problem.

Since the purpose of the example is to show the different diversification strategies, this example
proceeds without rescaling the optimization problems. However, keep in mind that the variance term
(xTΣ x) can be rescaled in any of the following problems.
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Equally Weighted (EW) Portfolio

One of the diversification measures is the Herfindahl-Hirschman (HH) index defined as:

HH x = ∑
i = 1

n
xi

2

This index is minimized when the portfolio is equally weighted. The portfolios obtained from using
this index as a penalty have weights that satisfy the portfolio constraints and that are more evenly
weighted.

The portfolio that minimizes the HH index is min
x ∈ X

xTx. Since the constraints in X are the default
constraints, the solution of this problem is the EW portfolio. If X had extra constraints, the solution
would be the portfolio that satisfies all the constraints and, at the same time, keeps the weights as
equal as possible.

% Maximize the HH diversification (by minimizing the HH index)
diverseProb.Objective = x'*x;
% Solution that minimizes the HH index
[wHH,fHH] = solve(diverseProb,'options',opts);

The portfolio that minimizes the variance with the HH penalty is min
x ∈ X

xTΣx + λHHxTx.

% HH penalty parameter
lambdaHH = 1e-2;
% Variance + Herfindahl-Hirschman (HH) index
diverseProb.Objective = x'*p.AssetCovar*x + lambdaHH*(x'*x);
% Solution that accounts for risk and HH diversification
[wHHMix,fHHMix] = solve(diverseProb,'options',opts);

Plot the weights distribution for the minimum variance portfolio, the equal weight portfolio, and the
penalized strategy.

% Plot different strategies
plotAssetAllocationChanges(wMinVar,wHHMix.x,wHH.x)
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This plot shows how the penalized strategy returns weights that are between the minimum variance
portfolio and the EW portfolio. In fact, choosing λHH = 0 returns the minimum variance solution, and
as λHH → ∞ , the solution approaches the EW portfolio.

Most Diversified Portfolio (MDP)

The diversification index associated to the most diversified portfolio (MDP) is defined as

MDP x = − ∑
i = 1

n
σixi

where σi represents the standard deviation of asset i.

The MDP is the portfolio that maximizes the diversification ratio:

φ x = xTσ
xTΣx

The diversification ratio φ x  is equal to 1 if the portfolio is fully invested in one asset or if all assets
are perfectly correlated. For all other cases, φ x > 1. If φ x ≈ 1, there is no diversification, so the
goal is to find the portolio that maximizes φ x :

max
x ∈ X

σTx
xTΣx
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Instead of solving the nonlinear, nonconvex optimization problem above, the problem is rewritten as
an equivalent convex quadratic problem. The reformulation follows the same idea used to maximize
the Sharpe ratio (Cornuejols & Tütüncü [3 on page 4-0 ]). The equivalent quadratic problem results
in the following:

min
y ≥ 0, τ ≥ 0

yTΣy

s . t σTy = 1

∑
i = 1

n
yi = τ

where the negative of the MDP index appears as a constraint to the problem. Here, the MDP weights
are given by y

τ .

Unlike the HH index, the MDP goal is not to obtain a portfolio whose weights are evenly distributed
among all assets, but to obtain a portfolio whose selected (nonzero) assets have the same correlation
to the portfolio as a whole.

% MDP problem
MDPprob = optimproblem('ObjectiveSense','minimize');

% Variables
% Surrogate portfolio weights
y = optimvar('y',nX,1,'LowerBound',0); % y >= 0 (long-only portfolio)
% Auxiliary variable
tau = optimvar('tau',1,1,'LowerBound',0); % tau >= 0

% Constraints
% Sum of stds equal to one
sigma = sqrt(diag(p.AssetCovar));
MDPprob.Constraints.sigmaSumToOne = sigma'*y == 1;
% Sum of weights equal to tau
MDPprob.Constraints.sumToTau = sum(y) == tau;

% Objective
%   min y'*Sigma*y
MDPprob.Objective = y'*p.AssetCovar*y;

% Solve for the MDP
[wMDP,fMDP] = solve(MDPprob,'options',opts);
xMDP = wMDP.y/wMDP.tau;

The following code shows that there exists a value λMDP > 0 such that the MDP problem and the
problem with its penalized version are equivalent.The portfolio that minimizes the variance with the
MDP penalty is min

x ∈ X
xTΣx− λMDP σTx.

Define a MDP penalty parameter and solve for MDP.

% MDP penalty parameter
lambdaMDP = 1e-2;
% Variance + Most Diversified Portfolio (MDP)
diverseProb.Objective = x'*p.AssetCovar*x - lambdaMDP*(sigma'*x);
% Solution that accounts for risk and MDP diversification
[wMDPMix,fMDPMix] = solve(diverseProb,'options',opts);
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Plot the weights distribution for the minimum variance portfolio, the MDP, and the penalized strategy.

% Plot different strategies
plotAssetAllocationChanges(wMinVar,wMDPMix.x,xMDP)

In this plot, the penalized strategy weights are between the minimum variance portfolio and the MDP.
This result is the same as with the HH penalty where choosing λMDP = 0 returns the minimum
variance solution and values of λMDP ∈ 0, λMDP  return asset weights that range from the minimum
variance behavior to the MDP behavior.

Equal Risk Contribution (ERC) Portfolio

The diversification index associated with the equal risk contribution (ERC) portfolio is defined as

ERC x = − ∑
i = 1

n
ln xi

This index is related to a convex reformulation shown by Maillard [1 on page 4-0 ] that is used to
compute the ERC portfolio. The authors show that the ERC portfolio can be obtained by solving the
following optimization problem

min
y ≥ 0

yTΣ y

st . ∑
i = 1

n
ln xi ≥ c
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and defining x, the ERC portfolio with default constraints, as x = y
∑i yi

, where c > 0 can be any
constant.

The purpose of the ERC portfolio is to select the assets weights in such a way that the risk
contribution of each asset to the portfolio volatility is the same for all assets.

% ERC portfolio
ERCprob = optimproblem('ObjectiveSense','minimize');

% Variables
% Surrogate portfolio weights
y = optimvar('y',nX,1,'LowerBound',0); % y >= 0 (long-only portfolio)

% Constraints
% Log constraint
ERCprob.Constraints.logSumIneq = sum(log(y)) >= 1;

% Objective
%   min y'*Sigma*y
ERCprob.Objective = y'*p.AssetCovar*y;

% Solve a nonlinear problem for the ERC portfolio
opts = optimoptions('fmincon','Display','none'); % No output display
w0.y = wMinVar; % Define starting point for fmincon
[wERC,fERC] = solve(ERCprob,w0,'options',opts);
xERC = wERC.y/sum(wERC.y);

The portfolio that minimizes the variance with the ERC penalty is min
x ∈ X

xTΣx− λERC ∑
i = 1

n
ln xi .

Similar to the case for the MDP penalized formulation, there exists a λERC such that the ERC problem
and its penalized version are equivalent.

% ERC penalty parameter
lambdaERC = 3e-6; % lambdaERC is so small because the log of a number
                  % close to zero (the portfolio weights) is large.
% Variance + Equal Risk Contribution (ERC)
diverseProb.Objective = x'*p.AssetCovar*x - lambdaERC*sum(log(x));
% Solution that accounts for risk and ERC diversification
[wERCMix,fERCMix] = solve(diverseProb,wHH,'options',opts);

Plot the weights distribution for the minimum variance portfolio, the ERC, and the penalized strategy.

% Plot different strategies
plotAssetAllocationChanges(wMinVar,wERCMix.x,xERC)
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Comparable to the two diversification measures above, here the penalized strategy weights are
between the minimum variance portfolio and the ERC portfolio. Choosing λERC = 0 returns the
minimum variance solution and the values of λERC ∈ 0, λERC  return asset weights that range from
the minimum variance behavior to the ERC portfolio behavior.

Compare Diversification Strategies

Compute the number of assets that are selected in each portfolio. Assume that an asset is selected if
the weight associated to that asset is above a certain threshold.

% Build a weights table
varNames = {'MinVariance','MixedHH','HH','MixedMDP','MDP', ...
    'MixedERC','ERC'};
weightsTable = table(wMinVar,wHHMix.x,wHH.x,wMDPMix.x,xMDP, ...
    wERCMix.x,xERC,'VariableNames',varNames);
% Number of assets with nonzero weights
cutOff = 1e-3; % Weights below cut-off point are considered zero.
[reweightedTable,TnonZero] = tableWithNonZeroWeights(weightsTable, ...
    cutOff,varNames);
display(TnonZero)

TnonZero=1×7 table
                       MinVariance    MixedHH    HH     MixedMDP    MDP    MixedERC    ERC
                       ___________    _______    ___    ________    ___    ________    ___

    Nonzero weights        11           104      225       23       29       225       225
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As discussed above, the HH penalty goal is to obtain more evenly weighted portfolios. The portfolio
that maximizes the HH diversity (and corresponds to the EW portfolio when only the default
constraints are selected) has the largest number of assets selected and the weights of these assets
are closer together. This latter quality is observed in the following boxchart. Also, the strategy that
adds the HH index as a penalty function to the objective has a larger number of assets than the
minimum variance portfolio but less than the portfolio that maximizes HH diversity. The ERC portfolio
also selects all the assets because all weigths need to be nonzero in order to have some risk
contribution.

% Boxchart of portfolio's weights
figure;
matBoxPlot = reweightedTable.Variables;
matBoxPlot(matBoxPlot == 0) = NaN;
boxchart(matBoxPlot)
xticklabels(varNames)
title('Weights Distribution')
xlabel('Strategies')
ylabel('Weight')

This boxchart shows the spread of the assets' positive weights for the different portfolios. As
previously discussed, the weights of the portfolio that maximize the HH diversity are all the same. If
the portfolio had other types of constraints, the weights would not all be the same but they would
have the lowest variance. The ERC portfolio weights also have a small variance. In fact, you can
observe as the number of assets increases, the variance of the ERC portfolio weights becomes
smaller.
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The weights variability of the MDP is smaller than the variability of the minimum variance weights.
However, it is not necessarily true that the MDP's weights will have less variability than the minimum
variance weights because the goal of the MDP is not to obtain equally weighted assets, but to
distribute the correlation of each asset with its portfolio evenly.

% Compute and plot the risk contribution of each individual
% asset to the portfolio
riskContribution = portfolioRiskContribution(p.AssetCovar,...
    weightsTable.Variables);
% Remove small contributions
riskContribution(riskContribution < 1e-3) = NaN;

% Compare percent contribution to portofolio risk
boxchart(riskContribution)
xticklabels(varNames)
title('Percent Contributions to Portfolio Risk')
xlabel('Strategies')
ylabel('PCRs')

This boxchart shows the percent risk contribution of each asset to the total portfolio risk. The
percent risk contribution is computed as

PRC i =
xi Σx i
xTΣx

As expected, all the ERC portfolio assets have the same risk contribution to the portfolio. As
discussed after the weights distribution plot, if the problem had other types of constraints, the risk
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contribution of the ERC portfolio would not be the same for all assets but they would have the lowest
variance. Also, the behavior shown in this picture is similar to the behavior shown by the weights
distribution.

% Compute and plot the correlation of each individual asset to its
% portfolio
corrAsset2Port = correlationInfo(p.AssetCovar,...
    weightsTable.Variables);
% Boxplot of assets to portfolio correlations
figure
boxchart(corrAsset2Port)
xticklabels(varNames)
title('Correlation of Invdividual Assets to Their Portfolio')
xlabel('Strategies')
ylabel('Correlation')

This boxchart shows the distribution of the correlations of each asset with its respective portfolio.
The correlation of asset i to its portfolio is computed with the following formula:

ρiP =
Σx i

σi xTΣx

The MDP is the portfolio whose correlations are closer together and this is followed by the strategy
that uses the MDP penalty term. In fact, if the portfolio problem allowed negative weights, then all
the assets of the MDP would have the same correlation to its portfolio. Also, both the HH(EW) and
ERC portfolios have almost the same correlation variability.
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Local Functions
function [] = plotAssetAllocationChanges(wMinVar,wMix,wMaxDiv)
% Plots the weights' allocation from the strategies shown before 

figure
t = tiledlayout(1,3);
nexttile
bar(wMinVar')
axis([0 225 0 0.203])
title('Min Variance')
nexttile
bar(wMix')
axis([0 225 0 0.203])
title('Mixed Strategy')
nexttile
bar(wMaxDiv')
axis([0 225 0 0.203])
title('Max Diversity')
ylabel(t,'Asset Weight')
xlabel(t,'Asset Number')

end

function [weightsTable,TnonZero] = ...
    tableWithNonZeroWeights(weightsTable,cutOff,varNames)
% Creates a table with the number of nonzero weights for each strategy

% Select only meaningful weights
funSelect = @(x) (x >= cutOff).*x./sum(x(x >= cutOff));
weightsTable = varfun(funSelect,weightsTable);

% Number of assets with positive weights
funSum = @(x) sum(x > 0);
TnonZero = varfun(funSum,weightsTable);
TnonZero.Properties.VariableNames = varNames;
TnonZero.Properties.RowNames = {'Nonzero weights'};

end

function [corrAsset2Port] = correlationInfo(Sigma,portWeights)
% Returns a matrix with the correlation of each individual asset to its
% portfolio

nX = size(portWeights,1); % Number of assets
nP = size(portWeights,2); % Number of portfolios

auxM = eye(nX);
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corrAsset2Port = zeros(nX,nP);
for j = 1:nP
    % Portfolio's standard deviation
    sigmaPortfolio = sqrt(portWeights(:,j)'*Sigma*portWeights(:,j));
    for i = 1:nX
        % Assets's standard deviation
        sigmaAsset = sqrt(Sigma(i,i));
        % Asset to portfolio correlation
        corrAsset2Port(i,j) = (auxM(:,i)'*Sigma*portWeights(:,j))/...
            (sigmaAsset*sigmaPortfolio);
    end
end

end

function [riskContribution] = portfolioRiskContribution(Sigma,...
    portWeights)
% Returns a matrix with the risk contribution of each asset to
% the underlying portfolio.

nX = size(portWeights,1); % Number of assets
nP = size(portWeights,2); % Number of portfolios

riskContribution = zeros(nX,nP);
for i = 1:nP
    weights = portWeights(:,i);
    % Portfolio variance
    portVar = weights'*Sigma*weights;
    % Marginal constribution to portfoli risk (MCR)
    margRiskCont = weights.*(Sigma*weights)/sqrt(portVar);
    % Percent contribution to portfolio risk
    riskContribution(:,i) = margRiskCont/sqrt(portVar);
end

end

See Also
Portfolio | setBounds | addGroups | setAssetMoments | estimateAssetMoments |
estimateBounds | plotFrontier | estimateFrontierLimits | estimateFrontierByRisk |
estimatePortRisk

Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Working with Portfolio Constraints Using Defaults” on page 4-57
• “Validate the Portfolio Problem for Portfolio Object” on page 4-90
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-124
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Black-Litterman Portfolio Optimization” on page 4-204
• “Portfolio Optimization Against a Benchmark” on page 4-184
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• “Portfolio Optimization Examples” on page 4-141
• “Portfolio Optimization Using a Social Performance Measure” on page 4-246

More About
• “Portfolio Object” on page 4-19
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-17

External Websites
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
• MATLAB for Advanced Portfolio Construction and Stock Selection Models (30 min 28 sec)
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CVaR Portfolio Optimization Tools

• “Portfolio Optimization Theory” on page 5-2
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
• “Default Portfolio Problem” on page 5-14
• “PortfolioCVaR Object Workflow” on page 5-15
• “PortfolioCVaR Object” on page 5-16
• “Creating the PortfolioCVaR Object” on page 5-21
• “Common Operations on the PortfolioCVaR Object” on page 5-28
• “Setting Up an Initial or Current Portfolio” on page 5-32
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Working with a Riskless Asset” on page 5-44
• “Working with Transaction Costs” on page 5-45
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Working with 'Simple' Bound Constraints Using PortfolioCVaR Object” on page 5-53
• “Working with Budget Constraints Using PortfolioCVaR Object” on page 5-56
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-58
• “Working with Group Ratio Constraints Using PortfolioCVaR Object” on page 5-61
• “Working with Linear Equality Constraints Using PortfolioCVaR Object” on page 5-64
• “Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page 5-66
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

PortfolioCVaR Objects” on page 5-68
• “Working with Average Turnover Constraints Using PortfolioCVaR Object” on page 5-71
• “Working with One-Way Turnover Constraints Using PortfolioCVaR Object” on page 5-74
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Obtaining Endpoints of the Efficient Frontier” on page 5-84
• “Obtaining Efficient Portfolios for Target Returns” on page 5-87
• “Obtaining Efficient Portfolios for Target Risks” on page 5-90
• “Choosing and Controlling the Solver for PortfolioCVaR Optimizations” on page 5-93
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Plotting the Efficient Frontier for a PortfolioCVaR Object” on page 5-103
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-108
• “Working with Other Portfolio Objects” on page 5-110
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128
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Portfolio Optimization Theory
In this section...
“Portfolio Optimization Problems” on page 5-2
“Portfolio Problem Specification” on page 5-2
“Return Proxy” on page 5-3
“Risk Proxy” on page 5-4

Portfolio Optimization Problems
Portfolio optimization problems involve identifying portfolios that satisfy three criteria:

• Minimize a proxy for risk.
• Match or exceed a proxy for return.
• Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe. A portfolio
specifies either holdings or weights in each individual asset in the asset universe. The convention is
to specify portfolios in terms of weights, although the portfolio optimization tools work with holdings
as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The proxy for risk is
a function that characterizes either the variability or losses associated with portfolio choices. The
proxy for return is a function that characterizes either the gross or net benefits associated with
portfolio choices. The terms “risk” and “risk proxy” and “return” and “return proxy” are
interchangeable. The fundamental insight of Markowitz (see “Portfolio Optimization” on page A-5)
is that the goal of the portfolio choice problem is to seek minimum risk for a given level of return and
to seek maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called the efficient
frontier.

Portfolio Problem Specification
To specify a portfolio optimization problem, you need the following:

• Proxy for portfolio return (μ)
• Proxy for portfolio risk (σ)
• Set of feasible portfolios (X), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization problems:

• The Portfolio object supports mean-variance portfolio optimization (see Markowitz [46], [47] at
“Portfolio Optimization” on page A-5). This object has either gross or net portfolio returns as
the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any
combination of the specified constraints to form a portfolio set.

• The PortfolioCVaR object implements what is known as conditional value-at-risk portfolio
optimization (see Rockafellar and Uryasev [48], [49] at “Portfolio Optimization” on page A-5),
which is generally referred to as CVaR portfolio optimization. CVaR portfolio optimization works
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with the same return proxies and portfolio sets as mean-variance portfolio optimization but uses
conditional value-at-risk of portfolio returns as the risk proxy.

• The PortfolioMAD object implements what is known as mean-absolute deviation portfolio
optimization (see Konno and Yamazaki [50] at “Portfolio Optimization” on page A-5), which is
referred to as MAD portfolio optimization. MAD portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses mean-absolute
deviation portfolio returns as the risk proxy.

Return Proxy

The proxy for portfolio return is a function μ: X R on a portfolio set X ⊂ Rn that characterizes the
rewards associated with portfolio choices. Usually, the proxy for portfolio return has two general
forms, gross and net portfolio returns. Both portfolio return forms separate the risk-free rate r0 so
that the portfolio x ∈ X contains only risky assets.

Regardless of the underlying distribution of asset returns, a collection of S asset returns y1,...,yS has a
mean of asset returns

m = 1
S ∑s = 1

S
ys,

and (sample) covariance of asset returns

C = 1
S− 1 ∑s = 1

S
(ys−m)(ys−m)T .

These moments (or alternative estimators that characterize these moments) are used directly in
mean-variance portfolio optimization to form proxies for portfolio risk and return.

Gross Portfolio Returns

The gross portfolio return for a portfolio x ∈ X is

μ(x) = r0 + (m− r01)Tx,

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The properties in the Portfolio
object to specify gross portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m

Net Portfolio Returns

The net portfolio return for a portfolio x ∈ X is

μ(x) = r0 + (m− r01)Tx− bTmax 0, x− x0 − sTmax 0, x0− x ,
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where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

b is the proportional cost to purchase assets (n vector).

s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also. Though in this case, it is necessary to
incorporate prices into such costs. The properties in the Portfolio object to specify net portfolio
returns are:

• RiskFreeRate for r0

• AssetMean for m
• InitPort for x0

• BuyCost for b
• SellCost for s

Risk Proxy

The proxy for portfolio risk is a function σ: X R on a portfolio set X ⊂ Rn that characterizes the risks
associated with portfolio choices.

Variance

The variance of portfolio returns for a portfolio x ∈ X is

Variance x = xTCx

where C is the covariance of asset returns (n-by-n positive-semidefinite matrix). Covariance is a
measure of the degree to which returns on two assets move in tandem. A positive covariance means
that asset returns move together; a negative covariance means they vary inversely.

The property in the Portfolio object to specify the variance of portfolio returns is AssetCovar for
C.

Although the risk proxy in mean-variance portfolio optimization is the variance of portfolio returns,
the square root, which is the standard deviation of portfolio returns, is often reported and displayed.
Moreover, this quantity is often called the “risk” of the portfolio. For details, see Markowitz (“Portfolio
Optimization” on page A-5).

Conditional Value-at-Risk

The conditional value-at-risk for a portfolio x ∈ X, which is also known as expected shortfall, is
defined as

CVaRα x = 1
1− α ∫

f (x, y) ≥ VaRα(x)
f (x, y)p(y)dy,

where:

5 CVaR Portfolio Optimization Tools

5-4



α is the probability level such that 0 < α < 1.

f(x,y) is the loss function for a portfolio x and asset return y.

p(y) is the probability density function for asset return y.

VaRα is the value-at-risk of portfolio x at probability level α.

The value-at-risk is defined as

VaRα x = min γ:Pr f (x, Y) ≤ γ ≥ α .

An alternative formulation for CVaR has the form:

CVaRα(x) = VaRα x + 1
1− α ∫

Rn
max 0, (f (x, y)− VaRα(x)) p(y)dy

The choice for the probability level α is typically 0.9 or 0.95. Choosing α implies that the value-at-risk
VaRα(x) for portfolio x is the portfolio return such that the probability of portfolio returns falling
below this level is (1 –α). Given VaRα(x) for a portfolio x, the conditional value-at-risk of the portfolio
is the expected loss of portfolio returns above the value-at-risk return.

Note Value-at-risk is a positive value for losses so that the probability level α indicates the
probability that portfolio returns are below the negative of the value-at-risk.

To describe the probability distribution of returns, the PortfolioCVaR object takes a finite sample
of return scenarios ys, with s = 1,...,S. Each ys is an n vector that contains the returns for each of the
n assets under the scenario s. This sample of S scenarios is stored as a scenario matrix of size S-by-n.
Then, the risk proxy for CVaR portfolio optimization, for a given portfolio x ∈ X and α ∈ (0, 1), is
computed as

CVaRα(x) = VaRα(x) + 1
(1− α)S ∑s = 1

S
max 0, − ys

Tx− VaRα(x)

The value-at-risk, VaRα(x), is estimated whenever the CVaR is estimated. The loss function is
f (x, ys) = − ys

Tx, which is the portfolio loss under scenario s.

Under this definition, VaR and CVaR are sample estimators for VaR and CVaR based on the given
scenarios. Better scenario samples yield more reliable estimates of VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49], and Cornuejols and Tütüncü, [51], at
“Portfolio Optimization” on page A-5.

Mean Absolute-Deviation

The mean-absolute deviation (MAD) for a portfolio x ∈ X is defined as

MAD(x) = 1
S ∑s = 1

S
(ys−m)Tx

where:
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ys are asset returns with scenarios s = 1,...S (S collection of n vectors).

f(x,y) is the loss function for a portfolio x and asset return y.

m is the mean of asset returns (n vector).

such that

m = 1
S ∑s = 1

S
ys

For more information, see Konno and Yamazaki [50] at “Portfolio Optimization” on page A-5.

See Also
PortfolioCVaR

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
• “Default Portfolio Problem” on page 5-14
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Portfolio Set for Optimization Using PortfolioCVaR Object
The final element for a complete specification of a portfolio optimization problem is the set of feasible
portfolios, which is called a portfolio set. A portfolio set X ⊂ Rn is specified by construction as the
intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set
necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most
basic or “default” portfolio set requires portfolio weights to be nonnegative (using the lower-bound
constraint) and to sum to 1 (using the budget constraint). The most general portfolio set handled by
the portfolio optimization tools can have any of these constraints:

• Linear inequality constraints
• Linear equality constraints
• 'Simple' Bound constraints
• 'Conditional' Bond constraints
• Budget constraints
• Group constraints
• Group ratio constraints
• Average turnover constraints
• One-way turnover constraints
• Cardinality constraints

Linear Inequality Constraints
Linear inequality constraints are general linear constraints that model relationships among portfolio
weights that satisfy a system of inequalities. Linear inequality constraints take the form

AIx ≤ bI

where:

x is the portfolio (n vector).

AI is the linear inequality constraint matrix (nI-by-n matrix).

bI is the linear inequality constraint vector (nI vector).

n is the number of assets in the universe and nI is the number of constraints.

PortfolioCVaR object properties to specify linear inequality constraints are:

• AInequality for AI

• bInequality for bI

• NumAssets for n

The default is to ignore these constraints.
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Linear Equality Constraints
Linear equality constraints are general linear constraints that model relationships among portfolio
weights that satisfy a system of equalities. Linear equality constraints take the form

AEx = bE

where:

x is the portfolio (n vector).

AE is the linear equality constraint matrix (nE-by-n matrix).

bE is the linear equality constraint vector (nE vector).

n is the number of assets in the universe and nE is the number of constraints.

PortfolioCVaR object properties to specify linear equality constraints are:

• AEquality for AE

• bEquality for bE

• NumAssets for n

The default is to ignore these constraints.

'Simple' Bound Constraints
'Simple' Bound constraints are specialized linear constraints that confine portfolio weights to fall
either above or below specific bounds. Since every portfolio set must be bounded, it is often a good
practice, albeit not necessary, to set explicit bounds for the portfolio problem. To obtain explicit
bounds for a given portfolio set, use the estimateBounds function. Bound constraints take the form

lB ≤ x ≤ uB

where:

x is the portfolio (n vector).

lB is the lower-bound constraint (n vector).

uB is the upper-bound constraint (n vector).

n is the number of assets in the universe.

PortfolioCVaR object properties to specify bound constraints are:

• LowerBound for lB
• UpperBound for uB

• NumAssets for n

The default is to ignore these constraints.

The default portfolio optimization problem (see “Default Portfolio Problem” on page 5-14) has lB = 0
with uB set implicitly through a budget constraint.
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'Conditional' Bound Constraints
'Conditional' Bound constraints, also called semicontinuous constraints, are mixed-integer linear
constraints that confine portfolio weights to fall either above or below specific bounds if the asset is
selected; otherwise, the value of the asset is zero. Use setBounds to specify bound constraints with
a 'Conditional' BoundType. To mathematically formulate this type of constraints, a binary
variable vi is needed. vi = 0 indicates that asset i is not selected and vi indicates that the asset was
selected. Thus

livi ≤ xi ≤ uivi

where

x is the portfolio (n vector).

l is the conditional lower-bound constraint (n vector).

u is the conditional upper-bound constraint (n vector).

n is the number of assets in the universe.

PortfolioCVaR object properties to specify the bound constraint are:

• LowerBound for lB
• UpperBound for uB

• NumAssets for n

The default is to ignore this constraint.

Budget Constraints
Budget constraints are specialized linear constraints that confine the sum of portfolio weights to fall
either above or below specific bounds. The constraints take the form

lS ≤ 1Tx ≤ uS

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

lS is the lower-bound budget constraint (scalar).

uS is the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

PortfolioCVaR object properties to specify budget constraints are:

• LowerBudget for lS
• UpperBudget for uS

• NumAssets for n
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The default is to ignore this constraint.

The default portfolio optimization problem (see “Default Portfolio Problem” on page 5-14) has lS = uS
= 1, which means that the portfolio weights sum to 1. If the portfolio optimization problem includes
possible movements in and out of cash, the budget constraint specifies how far portfolios can go into
cash. For example, if lS = 0 and uS = 1, then the portfolio can have 0–100% invested in cash. If cash is
to be a portfolio choice, set RiskFreeRate (r0) to a suitable value (see “Portfolio Problem
Specification” on page 5-2 and “Working with a Riskless Asset” on page 5-44).

Group Constraints
Group constraints are specialized linear constraints that enforce “membership” among groups of
assets. The constraints take the form

lG ≤ Gx ≤ uG

where:

x is the portfolio (n vector).

lG is the lower-bound group constraint (nG vector).

uG is the upper-bound group constraint (nG vector).

G is the matrix of group membership indexes (nG-by-n matrix).

Each row of G identifies which assets belong to a group associated with that row. Each row contains
either 0s or 1s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not
part of the group.

PortfolioCVaR object properties to specify group constraints are:

• GroupMatrix for G
• LowerGroup for lG
• UpperGroup for uG

• NumAssets for n

The default is to ignore these constraints.

Group Ratio Constraints
Group ratio constraints are specialized linear constraints that enforce relationships among groups of
assets. The constraints take the form

lRi(GBx)i ≤ (GAx)i ≤ uRi(GBx)i

for i = 1,..., nR where:

x is the portfolio (n vector).

lR is the vector of lower-bound group ratio constraints (nR vector).

uR is the vector matrix of upper-bound group ratio constraints (nR vector).
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GA is the matrix of base group membership indexes (nR-by-n matrix).

GB is the matrix of comparison group membership indexes (nR-by-n matrix).

n is the number of assets in the universe and nR is the number of constraints.

Each row of GA and GB identifies which assets belong to a base and comparison group associated with
that row.

Each row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0 indicating
that the asset is not part of the group.

PortfolioCVaR object properties to specify group ratio constraints are:

• GroupA for GA

• GroupB for GB

• LowerRatio for lR
• UpperRatio for uR

• NumAssets for n

The default is to ignore these constraints.

Average Turnover Constraints
Turnover constraint is a linear absolute value constraint that ensures estimated optimal portfolios
differ from an initial portfolio by no more than a specified amount. Although portfolio turnover is
defined in many ways, the turnover constraints implemented in Financial Toolbox computes portfolio
turnover as the average of purchases and sales. Average turnover constraints take the form

1
21T x− x0 ≤ τ

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

x0 is the initial portfolio (n vector).

τ is the upper bound for turnover (scalar).

n is the number of assets in the universe.

PortfolioCVaR object properties to specify the average turnover constraint are:

• Turnover for τ
• InitPort for x0

• NumAssets for n

The default is to ignore this constraint.
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One-way Turnover Constraints
One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio
by no more than specified amounts according to whether the differences are purchases or sales. The
constraints take the forms

1T × max 0, x− x0 ≤ τB

1T × max 0, x0− x ≤ τS

where:

x is the portfolio (n vector)

1 is the vector of ones (n vector).

x0 is the Initial portfolio (n vector).

τB is the upper bound for turnover constraint on purchases (scalar).

τS is the upper bound for turnover constraint on sales (scalar).

To specify one-way turnover constraints, use the following properties in the Portfolio,
PortfolioCVaR, or PortfolioMAD object:

• BuyTurnover for τB

• SellTurnover for τS

• InitPort for x0

The default is to ignore this constraint.

Note The average turnover constraint (see “Average Turnover Constraints” on page 5-11) with τ is
not a combination of the one-way turnover constraints with τ = τB = τS.

Cardinality Constraints
Cardinality constraint limits the number of assets in the optimal allocation for an PortfolioCVaR
object. Use setMinMaxNumAssets to specify the 'MinNumAssets' and 'MaxNumAssets'
constraints. To mathematically formulate this type of constraints, a binary variable vi is needed. vi = 0
indicates that asset i is not selected and vi = 1 indicates that the asset was selected. Thus

MinNumAssets ≤ ∑
i = 1

NumAssets
vi ≤ MaxNumAssets

The default is to ignore this constraint.

See Also
PortfolioCVaR
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Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Default Portfolio Problem” on page 5-14
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Default Portfolio Problem
The default portfolio optimization problem has a risk and return proxy associated with a given
problem, and a portfolio set that specifies portfolio weights to be nonnegative and to sum to 1. The
lower bound combined with the budget constraint is sufficient to ensure that the portfolio set is
nonempty, closed, and bounded. The default portfolio optimization problem characterizes a long-only
investor who is fully invested in a collection of assets.

• For mean-variance portfolio optimization, it is sufficient to set up the default problem. After
setting up the problem, data in the form of a mean and covariance of asset returns are then used
to solve portfolio optimization problems.

• For conditional value-at-risk portfolio optimization, the default problem requires the additional
specification of a probability level that must be set explicitly. Generally, “typical” values for this
level are 0.90 or 0.95. After setting up the problem, data in the form of scenarios of asset returns
are then used to solve portfolio optimization problems.

• For MAD portfolio optimization, it is sufficient to set up the default problem. After setting up the
problem, data in the form of scenarios of asset returns are then used to solve portfolio
optimization problems.

See Also
PortfolioCVaR

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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PortfolioCVaR Object Workflow
The PortfolioCVaR object workflow for creating and modeling a CVaR portfolio is:

1 Create a CVaR Portfolio.

Create a PortfolioCVaR object for conditional value-at-risk (CVaR) portfolio optimization. For
more information, see “Creating the PortfolioCVaR Object” on page 5-21.

2 Define asset returns and scenarios.

Evaluate scenarios for portfolio asset returns, including assets with missing data and financial
time series data. For more information, see “Asset Returns and Scenarios Using PortfolioCVaR
Object” on page 5-35.

3 Specify the CVaR Portfolio Constraints.

Define the constraints for portfolio assets such as linear equality and inequality, bound, budget,
group, group ratio, turnover constraints, 'Conditional' BoundType, and MinNumAssets,
MaxNumAssets constraints. For more information, see “Working with CVaR Portfolio Constraints
Using Defaults” on page 5-49 and “Working with 'Conditional' BoundType, MinNumAssets, and
MaxNumAssets Constraints Using PortfolioCVaR Objects” on page 5-68.

4 Validate the CVaR Portfolio.

Identify errors for the portfolio specification. For more information, see “Validate the CVaR
Portfolio Problem” on page 5-77.

5 Estimate the efficient portfolios and frontiers.

Analyze the efficient portfolios and efficient frontiers for a CVaR portfolio. For more information,
see “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81 and
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100.

6 Postprocess the results.

Use the efficient portfolios and efficient frontiers results to set up trades. For more information,
see “Postprocessing Results to Set Up Tradable Portfolios” on page 5-108.

See Also

Related Examples
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “Portfolio Optimization Theory” on page 5-2

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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PortfolioCVaR Object

In this section...
“PortfolioCVaR Object Properties and Functions” on page 5-16
“Working with PortfolioCVaR Objects” on page 5-16
“Setting and Getting Properties” on page 5-17
“Displaying PortfolioCVaR Objects” on page 5-17
“Saving and Loading PortfolioCVaR Objects” on page 5-17
“Estimating Efficient Portfolios and Frontiers” on page 5-17
“Arrays of PortfolioCVaR Objects” on page 5-18
“Subclassing PortfolioCVaR Objects” on page 5-19
“Conventions for Representation of Data” on page 5-19

PortfolioCVaR Object Properties and Functions
The PortfolioCVaR object implements conditional value-at-risk (CVaR) portfolio optimization. Every
property and function of the PortfolioCVaR object is public, although some properties and
functions are hidden. See PortfolioCVaR for the properties and functions of a PortfolioCVaR
object. The PortfolioCVaR object is a value object where every instance of the object is a distinct
version of the object. Since the PortfolioCVaR object is also a MATLAB object, it inherits the
default functions associated with MATLAB objects.

Working with PortfolioCVaR Objects
The PortfolioCVaR object and its functions are an interface for conditional value-at-risk portfolio
optimization. So, almost everything you do with the PortfolioCVaR object can be done using the
functions. The basic workflow is:

1 Design your portfolio problem.
2 Use PortfolioCVaR to create the PortfolioCVaR object or use the various set functions to set

up your portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose your
computations. Since MATLAB features are part of a PortfolioCVaR object, you can save and load
objects from your workspace and create and manipulate arrays of objects. After settling on a
problem, which, in the case of CVaR portfolio optimization, means that you have either scenarios,
data, or moments for asset returns, a probability level, and a collection of constraints on your
portfolios, use PortfolioCVaR to set the properties for the PortfolioCVaR object.

PortfolioCVaR lets you create an object from scratch or update an existing object. Since the
PortfolioCVaR object is a value object, it is easy to create a basic object, then use functions to
build upon the basic object to create new versions of the basic object. This is useful to compare a
basic problem with alternatives derived from the basic problem. For details, see “Creating the
PortfolioCVaR Object” on page 5-21.
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Setting and Getting Properties
You can set properties of a PortfolioCVaR object using either the PortfolioCVaR object or
various set functions.

Note Although you can also set properties directly, it is not recommended since error-checking is not
performed when you set a property directly.

The PortfolioCVaR object supports setting properties with name-value pair arguments such that
each argument name is a property and each value is the value to assign to that property. For example,
to set the LowerBound, Budget, and ProbabilityLevel properties in an existing PortfolioCVaR
object p, use the syntax:
p = PortfolioCVaR(p,'LowerBound', 0, 'Budget', 1, 'ProbabilityLevel', 0.95);

In addition to the PortfolioCVaR object, which lets you set individual properties one at a time,
groups of properties are set in a PortfolioCVaR object with various “set” and “add” functions. For
example, to set up an average turnover constraint, use the setTurnover function to specify the
bound on portfolio turnover and the initial portfolio. To get individual properties from a
PortfolioCVaR object, obtain properties directly or use an assortment of “get” functions that obtain
groups of properties from a PortfolioCVaR object. The PortfolioCVaR object and set functions
have several useful features:

• The PortfolioCVaR object and set functions try to determine the dimensions of your problem
with either explicit or implicit inputs.

• The PortfolioCVaR object and set functions try to resolve ambiguities with default choices.
• The PortfolioCVaR object and set functions perform scalar expansion on arrays when possible.
• The CVaR functions try to diagnose and warn about problems.

Displaying PortfolioCVaR Objects
The PortfolioCVaR object uses the default display functions provided by MATLAB, where display
and disp display a PortfolioCVaR object and its properties with or without the object variable
name.

Saving and Loading PortfolioCVaR Objects
Save and load PortfolioCVaR objects using the MATLAB save and load commands.

Estimating Efficient Portfolios and Frontiers
Estimating efficient portfolios and efficient frontiers is the primary purpose of the CVaR portfolio
optimization tools. An efficient portfolio is the portfolios that satisfy the criteria of minimum risk for a
given level of return and maximum return for a given level of risk. A collection of “estimate” and
“plot” functions provide ways to explore the efficient frontier. The “estimate” functions obtain either
efficient portfolios or risk and return proxies to form efficient frontiers. At the portfolio level, a
collection of functions estimates efficient portfolios on the efficient frontier with functions to obtain
efficient portfolios:
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• At the endpoints of the efficient frontier
• That attain targeted values for return proxies
• That attain targeted values for risk proxies
• Along the entire efficient frontier

These functions also provide purchases and sales needed to shift from an initial or current portfolio to
each efficient portfolio. At the efficient frontier level, a collection of functions plot the efficient
frontier and estimate either risk or return proxies for efficient portfolios on the efficient frontier. You
can use the resultant efficient portfolios or risk and return proxies in subsequent analyses.

Arrays of PortfolioCVaR Objects
Although all functions associated with a PortfolioCVaR object are designed to work on a scalar
PortfolioCVaR object, the array capabilities of MATLAB enables you to set up and work with arrays
of PortfolioCVaR objects. The easiest way to do this is with the repmat function. For example, to
create a 3-by-2 array of PortfolioCVaR objects:

p = repmat(PortfolioCVaR, 3, 2);
disp(p)

disp(p)
  3×2 PortfolioCVaR array with properties:

    BuyCost
    SellCost
    RiskFreeRate
    ProbabilityLevel
    Turnover
    BuyTurnover
    SellTurnover
    NumScenarios
    Name
    NumAssets
    AssetList
    InitPort
    AInequality
    bInequality
    AEquality
    bEquality
    LowerBound
    UpperBound
    LowerBudget
    UpperBudget
    GroupMatrix
    LowerGroup
    UpperGroup
    GroupA
    GroupB
    LowerRatio
    UpperRatio
    MinNumAssets
    MaxNumAssets
    BoundType

After setting up an array of PortfolioCVaR objects, you can work on individual PortfolioCVaR
objects in the array by indexing. For example:
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p(i,j) = PortfolioCVaR(p(i,j), ... );

This example calls PortfolioCVaR for the (i,j) element of a matrix of PortfolioCVaR objects in
the variable p.

If you set up an array of PortfolioCVaR objects, you can access properties of a particular
PortfolioCVaR object in the array by indexing so that you can set the lower and upper bounds lb
and ub for the (i,j,k) element of a 3-D array of PortfolioCVaR objects with

p(i,j,k) = setBounds(p(i,j,k), lb, ub);

and, once set, you can access these bounds with

[lb, ub] = getBounds(p(i,j,k));

PortfolioCVaR object functions work on only one PortfolioCVaR object at a time.

Subclassing PortfolioCVaR Objects
You can subclass the PortfolioCVaR object to override existing functions or to add new properties
or functions. To do so, create a derived class from the PortfolioCVaR class. This gives you all the
properties and functions of the PortfolioCVaR class along with any new features that you choose to
add to your subclassed object. The PortfolioCVaR class is derived from an abstract class called
AbstractPortfolio. Because of this, you can also create a derived class from
AbstractPortfolio that implements an entirely different form of portfolio optimization using
properties and functions of the AbstractPortfolio class.

Conventions for Representation of Data
The CVaR portfolio optimization tools follow these conventions regarding the representation of
different quantities associated with portfolio optimization:

• Asset returns or prices for scenarios are in matrix form with samples for a given asset going down
the rows and assets going across the columns. In the case of prices, the earliest dates must be at
the top of the matrix, with increasing dates going down.

• Portfolios are in vector or matrix form with weights for a given portfolio going down the rows and
distinct portfolios going across the columns.

• Constraints on portfolios are formed in such a way that a portfolio is a column vector.
• Portfolio risks and returns are either scalars or column vectors (for multiple portfolio risks and

returns).

See Also
PortfolioCVaR

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128
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More About
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Creating the PortfolioCVaR Object
In this section...
“Syntax” on page 5-21
“PortfolioCVaR Problem Sufficiency” on page 5-21
“PortfolioCVaR Function Examples” on page 5-22

To create a fully specified CVaR portfolio optimization problem, instantiate the PortfolioCVaR
object using PortfolioCVaR. For information on the workflow when using PortfolioCVaR objects,
see “PortfolioCVaR Object Workflow” on page 5-15.

Syntax
Use PortfolioCVaR to create an instance of an object of the PortfolioCVaR class. You can use
PortfolioCVaR object in several ways. To set up a portfolio optimization problem in a
PortfolioCVaR object, the simplest syntax is:

p = PortfolioCVaR;

This syntax creates a PortfolioCVaR object, p, such that all object properties are empty.

The PortfolioCVaR object also accepts collections of argument name-value pair arguments for
properties and their values. The PortfolioCVaR object accepts inputs for public properties with the
general syntax:

    p = PortfolioCVaR('property1', value1, 'property2', value2, ... );

If a PortfolioCVaR object already exists, the syntax permits the first (and only the first argument)
of PortfolioCVaR to be an existing object with subsequent argument name-value pair arguments
for properties to be added or modified. For example, given an existing PortfolioCVaR object in p,
the general syntax is:

p = PortfolioCVaR(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In addition, several
properties can be specified with alternative argument names (see “Shortcuts for Property Names” on
page 5-25). The PortfolioCVaR object tries to detect problem dimensions from the inputs and,
once set, subsequent inputs can undergo various scalar or matrix expansion operations that simplify
the overall process to formulate a problem. In addition, a PortfolioCVaR object is a value object so
that, given portfolio p, the following code creates two objects, p and q, that are distinct:

q = PortfolioCVaR(p, ...)

PortfolioCVaR Problem Sufficiency
A CVaR portfolio optimization problem is completely specified with the PortfolioCVaR object if the
following three conditions are met:

• You must specify a collection of asset returns or prices known as scenarios such that all scenarios
are finite asset returns or prices. These scenarios are meant to be samples from the underlying
probability distribution of asset returns. This condition can be satisfied by the setScenarios
function or with several canned scenario simulation functions.
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• The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and
bounded. You can satisfy this condition using an extensive collection of properties that define
different types of constraints to form a set of feasible portfolios. Since such sets must be bounded,
either explicit or implicit constraints can be imposed and several tools, such as the
estimateBounds function, provide ways to ensure that your problem is properly formulated.

• You must specify a probability level to locate the level of tail loss above which the conditional
value-at-risk is to be minimized. This condition can be satisfied by the setProbabilityLevel
function.

Although the general sufficient conditions for CVaR portfolio optimization go beyond the first
three conditions, the PortfolioCVaR object handles all these additional conditions.

PortfolioCVaR Function Examples
If you create a PortfolioCVaR object, p, with no input arguments, you can display it using disp:

p = PortfolioCVaR;
disp(p)

PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: []
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: []
          UpperBound: []
         LowerBudget: []
         UpperBudget: []
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: []

The approaches listed provide a way to set up a portfolio optimization problem with the
PortfolioCVaR object. The custom set functions offer additional ways to set and modify collections
of properties in the PortfolioCVaR object.
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Using the PortfolioCVaR Function for a Single-Step Setup

You can use the PortfolioCVaR object to directly set up a “standard” portfolio optimization
problem. Given scenarios of asset returns in the variable AssetScenarios, this problem is
completely specified as follows:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR('Scenarios', AssetScenarios, ...
'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1, ...
'ProbabilityLevel', 0.95)

p = 

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: 0.9500
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: 20000
                Name: []
           NumAssets: 4
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [4×1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: []

The LowerBound property value undergoes scalar expansion since AssetScenarios provides the
dimensions of the problem.

You can use dot notation with the function plotFrontier.

p.plotFrontier
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Using the PortfolioCVaR Function with a Sequence of Steps

An alternative way to accomplish the same task of setting up a “standard” CVaR portfolio
optimization problem, given AssetScenarios variable is:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = PortfolioCVaR(p, 'LowerBound', 0);
p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = setProbabilityLevel(p, 0.95);

plotFrontier(p)

5 CVaR Portfolio Optimization Tools

5-24



This way works because the calls to the are in this particular order. In this case, the call to initialize
AssetScenarios provides the dimensions for the problem. If you were to do this step last, you
would have to explicitly dimension the LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = PortfolioCVaR(p, 'LowerBound', zeros(size(m)));
p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = setProbabilityLevel(p, 0.95);
p = setScenarios(p, AssetScenarios);

Note If you did not specify the size of LowerBound but, instead, input a scalar argument, the
PortfolioCVaR object assumes that you are defining a single-asset problem and produces an error
at the call to set asset scenarios with four assets.

Shortcuts for Property Names

The PortfolioCVaR object has shorter argument names that replace longer argument names
associated with specific properties of the PortfolioCVaR object. For example, rather than enter
'ProbabilityLevel', the PortfolioCVaR object accepts the case-insensitive name 'plevel' to
set the ProbabilityLevel property in a PortfolioCVaR object. Every shorter argument name
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corresponds with a single property in the PortfolioCVaR object. The one exception is the
alternative argument name 'budget', which signifies both the LowerBudget and UpperBudget
properties. When 'budget' is used, then the LowerBudget and UpperBudget properties are set to
the same value to form an equality budget constraint.

Shortcuts for Property Names
Shortcut Argument Name Equivalent Argument / Property Name
ae AEquality
ai AInequality
assetnames or assets AssetList
be bEquality
bi bInequality
budget UpperBudget and LowerBudget
group GroupMatrix
lb LowerBound
n or num NumAssets
level, problevel, or plevel ProbabilityLevel
rfr RiskFreeRate
scenario or assetscenarios Scenarios
ub UpperBound

For example, this call to the PortfolioCVaR object uses these shortcuts for properties:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR('scenario', AssetScenarios, 'lb', 0, 'budget', 1, 'plevel', 0.95);
plotFrontier(p)

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly using dot notation, however no error-
checking is done on your inputs:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
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p = setScenarios(p, AssetScenarios);
p.ProbabilityLevel = 0.95;

p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));

plotFrontier(p)

Note Scenarios cannot be assigned directly using dot notation to a PortfolioCVaR object.
Scenarios must always be set through either the PortfolioCVaR object, the setScenarios
function, or any of the scenario simulation functions.

See Also
PortfolioCVaR | estimateBounds

Related Examples
• “Common Operations on the PortfolioCVaR Object” on page 5-28
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Common Operations on the PortfolioCVaR Object
In this section...
“Naming a PortfolioCVaR Object” on page 5-28
“Configuring the Assets in the Asset Universe” on page 5-28
“Setting Up a List of Asset Identifiers” on page 5-28
“Truncating and Padding Asset Lists” on page 5-30

Naming a PortfolioCVaR Object
To name a PortfolioCVaR object, use the Name property. Name is informational and has no effect on
any portfolio calculations. If the Name property is nonempty, Name is the title for the efficient frontier
plot generated by plotFrontier. For example, if you set up an asset allocation fund, you could
name the PortfolioCVaR object Asset Allocation Fund:

p = PortfolioCVaR('Name','Asset Allocation Fund');
disp(p.Name)

Asset Allocation Fund

Configuring the Assets in the Asset Universe
The fundamental quantity in the PortfolioCVaR object is the number of assets in the asset
universe. This quantity is maintained in the NumAssets property. Although you can set this property
directly, it is usually derived from other properties such as the number of assets in the scenarios or
the initial portfolio. In some instances, the number of assets may need to be set directly. This example
shows how to set up a PortfolioCVaR object that has four assets:

p = PortfolioCVaR('NumAssets', 4);
disp(p.NumAssets)

4

After setting the NumAssets property, you cannot modify it (unless no other properties are set that
depend on NumAssets). The only way to change the number of assets in an existing PortfolioCVaR
object with a known number of assets is to create a new PortfolioCVaR object.

Setting Up a List of Asset Identifiers
When working with portfolios, you must specify a universe of assets. Although you can perform a
complete analysis without naming the assets in your universe, it is helpful to have an identifier
associated with each asset as you create and work with portfolios. You can create a list of asset
identifiers as a cell vector of character vectors in the property AssetList. You can set up the list
using the next two methods.

Setting Up Asset Lists Using the PortfolioCVaR Function

Suppose that you have a PortfolioCVaR object, p, with assets with symbols 'AA'', 'BA', 'CAT',
'DD', and 'ETR'. You can create a list of these asset symbols in the object using the
PortfolioCVaR object:
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p = PortfolioCVaR('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList)

'AA'    'BA'    'CAT'    'DD'    'ETR'

Notice that the property AssetList is maintained as a cell array that contains character vectors,
and that it is necessary to pass a cell array into the PortfolioCVaR object to set AssetList. In
addition, notice that the property NumAssets is set to 5 based on the number of symbols used to
create the asset list:

disp(p.NumAssets)

5

Setting Up Asset Lists Using the setAssetList Function

You can also specify a list of assets using the setAssetList function. Given the list of asset symbols
'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:

p = PortfolioCVaR;
p = setAssetList(p, { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList)

 'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList also enables you to enter symbols directly as a comma-separated list without creating
a cell array of character vectors. For example, given the list of assets symbols 'AA', 'BA', 'CAT',
'DD', and 'ETR', use setAssetList:

p = PortfolioCVaR;
p = setAssetList(p, 'AA', 'BA', 'CAT', 'DD', 'ETR');
disp(p.AssetList)

'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList has many additional features to create lists of asset identifiers. If you use
setAssetList with just a PortfolioCVaR object, it creates a default asset list according to the
name specified in the hidden public property defaultforAssetList (which is 'Asset' by default).
The number of asset names created depends on the number of assets in the property NumAssets. If
NumAssets is not set, then NumAssets is assumed to be 1.

For example, if a PortfolioCVaR object p is created with NumAssets = 5, then this code fragment
shows the default naming behavior:

p = PortfolioCVaR('numassets',5);
p = setAssetList(p);
disp(p.AssetList)

'Asset1'    'Asset2'    'Asset3'    'Asset4'    'Asset5'

Suppose that your assets are, for example, ETFs and you change the hidden property
defaultforAssetList to 'ETF', you can then create a default list for ETFs:

p = PortfolioCVaR('numassets',5);
p.defaultforAssetList = 'ETF'; 
p = setAssetList(p);
disp(p.AssetList)

'ETF1'    'ETF2'    'ETF3'    'ETF4'    'ETF5'
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Truncating and Padding Asset Lists
If the NumAssets property is already set and you pass in too many or too few identifiers, the
PortfolioCVaR object, and the setAssetList function truncate or pad the list with numbered
default asset names that use the name specified in the hidden public property
defaultforAssetList. If the list is truncated or padded, a warning message indicates the
discrepancy. For example, assume that you have a PortfolioCVaR object with five ETFs and you
only know the first three CUSIPs '921937835', '922908769', and '922042775'. Use this syntax
to create an asset list that pads the remaining asset identifiers with numbered 'UnknownCUSIP'
placeholders:
p = PortfolioCVaR('numassets',5);
p.defaultforAssetList = 'UnknownCUSIP';
p = setAssetList(p, '921937835', '922908769', '922042775');
disp(p.AssetList)

Warning: Input list of assets has 2 too few identifiers. Padding with numbered assets. 
> In PortfolioCVaR.setAssetList at 118 
    '921937835'    '922908769'    '922042775'    'UnknownCUSIP4'    'UnknownCUSIP5'

Alternatively, suppose that you have too many identifiers and need only the first four assets. This
example illustrates truncation of the asset list using the PortfolioCVaR object:
p = PortfolioCVaR('numassets',4);
p = PortfolioCVaR(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });
disp(p.AssetList)

Warning: AssetList has 1 too many identifiers. Using first 4 assets. 
> In PortfolioCVaR.checkarguments at 399
  In PortfolioCVaR.PortfolioCVaR>PortfolioCVaR.PortfolioCVaR at 195 
    'AGG'    'EEM'    'MDY'    'SPY'

The hidden public property uppercaseAssetList is a Boolean flag to specify whether to convert
asset names to uppercase letters. The default value for uppercaseAssetList is false. This
example shows how to use the uppercaseAssetList flag to force identifiers to be uppercase
letters:

p = PortfolioCVaR;
p.uppercaseAssetList = true;
p = setAssetList(p, { 'aa', 'ba', 'cat', 'dd', 'etr' });
disp(p.AssetList)

'AA'    'BA'    'CAT'    'DD'    'ETR'

See Also
PortfolioCVaR | setAssetList | setInitPort | estimateBounds | checkFeasibility

Related Examples
• “Setting Up an Initial or Current Portfolio” on page 5-32
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
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• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Setting Up an Initial or Current Portfolio
In many applications, creating a new optimal portfolio requires comparing the new portfolio with an
initial or current portfolio to form lists of purchases and sales. The PortfolioCVaR object property
InitPort lets you identify an initial or current portfolio. The initial portfolio also plays an essential
role if you have either transaction costs or turnover constraints. The initial portfolio need not be
feasible within the constraints of the problem. This can happen if the weights in a portfolio have
shifted such that some constraints become violated. To check if your initial portfolio is feasible, use
the checkFeasibility function described in “Validating CVaR Portfolios” on page 5-78. Suppose
that you have an initial portfolio in x0, then use the PortfolioCVaR object to set up an initial
portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = PortfolioCVaR('InitPort', x0);
disp(p.InitPort)

  0.3000
  0.2000
  0.2000
       0

As with all array properties, you can set InitPort with scalar expansion. This is helpful to set up an
equally weighted initial portfolio of, for example, 10 assets:

p = PortfolioCVaR('NumAssets', 10, 'InitPort', 1/10);
disp(p.InitPort)

 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000

To clear an initial portfolio from your PortfolioCVaR object, use either the PortfolioCVaR object
or the setInitPort function with an empty input for the InitPort property. If transaction costs or
turnover constraints are set, it is not possible to clear the InitPort property in this way. In this
case, to clear InitPort, first clear the dependent properties and then clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the number of
assets if you want to use scalar expansion. For example, given an initial portfolio in x0, use
setInitPort to set the InitPort property:

p = PortfolioCVaR;
x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setInitPort(p, x0);
disp(p.InitPort)

 0.3000
 0.2000
 0.2000
      0

5 CVaR Portfolio Optimization Tools

5-32



To create an equally weighted portfolio of four assets, use setInitPort:

p = PortfolioCVaR;
p = setInitPort(p, 1/4, 4);
disp(p.InitPort)

 0.2500
 0.2500
 0.2500
 0.2500

PortfolioCVaR object functions that work with either transaction costs or turnover constraints also
depend on the InitPort property. So, the set functions for transaction costs or turnover constraints
permit the assignment of a value for the InitPort property as part of their implementation. For
details, see “Working with Average Turnover Constraints Using PortfolioCVaR Object” on page 5-71,
“Working with One-Way Turnover Constraints Using PortfolioCVaR Object” on page 5-74, and
“Working with Transaction Costs” on page 5-45. If either transaction costs or turnover constraints
are used, then the InitPort property must have a nonempty value. Absent a specific value assigned
through the PortfolioCVaR object or various set functions, the PortfolioCVaR object sets
InitPort to 0 and warns if BuyCost, SellCost, or Turnover properties are set. This example
shows what happens if you specify an average turnover constraint with an initial portfolio:

p = PortfolioCVaR('Turnover', 0.3, 'InitPort', [ 0.3; 0.2; 0.2; 0.0 ]);
disp(p.InitPort)

 0.3000
 0.2000
 0.2000
      0

In contrast, this example shows what happens if an average turnover constraint is specified without
an initial portfolio:

p = PortfolioCVaR('Turnover', 0.3);
disp(p.InitPort)

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints specified.
Will set NumAssets = 1 and InitPort = 0. 
> In PortfolioCVaR.checkarguments at 322
  In PortfolioCVaR.PortfolioCVaR>PortfolioCVaR.PortfolioCVaR at 195 
     0

See Also
PortfolioCVaR | setAssetList | setInitPort | estimateBounds | checkFeasibility

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Common Operations on the PortfolioCVaR Object” on page 5-28
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128
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More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Asset Returns and Scenarios Using PortfolioCVaR Object
In this section...
“How Stochastic Optimization Works” on page 5-35
“What Are Scenarios?” on page 5-35
“Setting Scenarios Using the PortfolioCVaR Function” on page 5-36
“Setting Scenarios Using the setScenarios Function” on page 5-37
“Estimating the Mean and Covariance of Scenarios” on page 5-37
“Simulating Normal Scenarios” on page 5-38
“Simulating Normal Scenarios from Returns or Prices” on page 5-38
“Simulating Normal Scenarios with Missing Data” on page 5-39
“Simulating Normal Scenarios from Time Series Data” on page 5-40
“Simulating Normal Scenarios with Mean and Covariance” on page 5-42

How Stochastic Optimization Works
The CVaR of a portfolio is a conditional expectation. (For the definition of the CVaR function, see
“Risk Proxy” on page 5-4.) Therefore, the CVaR portfolio optimization problem is a stochastic
optimization problem. Given a sample of scenarios, the conditional expectation that defines the
sample CVaR of the portfolio can be expressed as a finite sum, a weighted average of losses. The
weights of the losses depend on their relative magnitude; for a confidence level α, only the worst (1 −
α) x 100% losses get a positive weight. As a function of the portfolio weights, the CVaR of the
portfolio is a convex function (see [48], [49] Rockafellar & Uryasev at “Portfolio Optimization” on
page A-5). It is also a nonsmooth function, but its edges are less sharp as the sample size increases.

There are reformulations of the CVaR portfolio optimization problem (see [48], [49] at Rockafellar &
Uryasev) that result in a linear programming problem, which can be solved either with standard
linear programming techniques or with stochastic programming solvers. The PortfolioCVaR object,
however, does not reformulate the problem in such a manner. The PortfolioCVaR object computes
the CVaR as a nonlinear function. The convexity of the CVaR, as a function of the portfolio weights
and the dull edges when the number of scenarios is large, make the CVaR portfolio optimization
problem tractable, in practice, for certain nonlinear programming solvers, such as fmincon from
Optimization Toolbox. The problem can also be solved using a cutting-plane method (see Kelley [45]
at “Portfolio Optimization” on page A-5). For more information, see Algorithms section of
setSolver. To learn more about the workflow when using PortfolioCVaR objects, see
“PortfolioCVaR Object Workflow” on page 5-15.

What Are Scenarios?
Since conditional value-at-risk portfolio optimization works with scenarios of asset returns to perform
the optimization, several ways exist to specify and simulate scenarios. In many applications with
CVaR portfolio optimization, asset returns may have distinctly nonnormal probability distributions
with either multiple modes, binning of returns, truncation of distributions, and so forth. In other
applications, asset returns are modeled as the result of various simulation methods that might
include Monte-Carlo simulation, quasi-random simulation, and so forth. Often, the underlying
probability distribution for risk factors may be multivariate normal but the resultant transformations
are sufficiently nonlinear to result in distinctively nonnormal asset returns.
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For example, this occurs with bonds and derivatives. In the case of bonds with a nonzero probability
of default, such scenarios would likely include asset returns that are −100% to indicate default and
some values slightly greater than −100% to indicate recovery rates.

Although the PortfolioCVaR object has functions to simulate multivariate normal scenarios from
either data or moments (simulateNormalScenariosByData and
simulateNormalScenariosByMoments), the usual approach is to specify scenarios directly from
your own simulation functions. These scenarios are entered directly as a matrix with a sample for all
assets across each row of the matrix and with samples for an asset down each column of the matrix.
The architecture of the CVaR portfolio optimization tools references the scenarios through a function
handle so scenarios that have been set cannot be accessed directly as a property of the
PortfolioCVaR object.

Setting Scenarios Using the PortfolioCVaR Function
Suppose that you have a matrix of scenarios in the AssetScenarios variable. The scenarios are set
through the PortfolioCVaR object with:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR('Scenarios', AssetScenarios);

disp(p.NumAssets)
disp(p.NumScenarios)

4

20000

Notice that the PortfolioCVaR object determines and fixes the number of assets in NumAssets and
the number of scenarios in NumScenarios based on the scenario’s matrix. You can change the
number of scenarios by calling the PortfolioCVaR object with a different scenario matrix. However,
once the NumAssets property has been set in the object, you cannot enter a scenario matrix with a
different number of assets. The getScenarios function lets you recover scenarios from a
PortfolioCVaR object. You can also obtain the mean and covariance of your scenarios using
estimateScenarioMoments.

Although not recommended for the casual user, an alternative way exists to recover scenarios by
working with the function handle that points to scenarios in the PortfolioCVaR object. To access
some or all the scenarios from a PortfolioCVaR object, the hidden property
localScenarioHandle is a function handle that points to a function to obtain scenarios that have
already been set. To get scenarios directly from a PortfolioCVaR object p, use

scenarios = p.localScenarioHandle([], []);

and to obtain a subset of scenarios from rows startrow to endrow, use

5 CVaR Portfolio Optimization Tools

5-36



scenarios = p.localScenarioHandle(startrow, endrow);

where 1 ≤ startrow ≤ endrow ≤ numScenarios.

Setting Scenarios Using the setScenarios Function
You can also set scenarios using setScenarios. For example, given the mean and covariance of
asset returns in the variables m and C, the asset moment properties can be set:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);

disp(p.NumAssets)
disp(p.NumScenarios)

4

20000

Estimating the Mean and Covariance of Scenarios
The estimateScenarioMoments function obtains estimates for the mean and covariance of
scenarios in a PortfolioCVaR object.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
[mean, covar] = estimateScenarioMoments(p)

mean =

    0.0043
    0.0085
    0.0098
    0.0153
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covar =

    0.0005    0.0003    0.0002    0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0049    0.0029
    0.0000    0.0010    0.0029    0.0102

Simulating Normal Scenarios
As a convenience, the two functions (simulateNormalScenariosByData and
simulateNormalScenariosByMoments) exist to simulate scenarios from data or moments under
an assumption that they are distributed as multivariate normal random asset returns.

Simulating Normal Scenarios from Returns or Prices
Given either return or price data, use the function simulateNormalScenariosByData to simulate
multivariate normal scenarios. Either returns or prices are stored as matrices with samples going
down the rows and assets going across the columns. In addition, returns or prices can be stored in a
table or timetable (see “Simulating Normal Scenarios from Time Series Data” on page 5-40). To
illustrate using simulateNormalScenariosByData, generate random samples of 120 observations
of asset returns for four assets from the mean and covariance of asset returns in the variables m and
C with portsim. The default behavior of portsim creates simulated data with estimated mean and
covariance identical to the input moments m and C. In addition to a return series created by portsim
in the variable X, a price series is created in the variable Y:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];
C = [ 0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);
Y = ret2tick(X);

Note Portfolio optimization requires that you use total returns and not just price returns. So,
“returns” should be total returns and “prices” should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence of examples
demonstrates equivalent ways to simulate multivariate normal scenarios for the PortfolioCVaR
object. Assume a PortfolioCVaR object created in p that uses the asset returns in X uses
simulateNormalScenariosByData:

p = PortfolioCVaR;
p = simulateNormalScenariosByData(p, X, 20000);

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0043
    0.0083
    0.0102
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    0.1507

passetcovar =

    0.0053    0.0003    0.0002    0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0049    0.0028
    0.0000    0.0010    0.0028    0.0101

The moments that you obtain from this simulation will likely differ from the moments listed here
because the scenarios are random samples from the estimated multivariate normal probability
distribution of the input returns X.

The default behavior of simulateNormalScenariosByData is to work with asset returns. If,
instead, you have asset prices as in the variable Y, simulateNormalScenariosByData accepts a
name-value pair argument name 'DataFormat' with a corresponding value set to 'prices' to
indicate that the input to the function is in the form of asset prices and not returns (the default value
for the 'DataFormat' argument is 'returns'). This example simulates scenarios with the asset
price data in Y for the PortfolioCVaR object q:
p = PortfolioCVaR;
p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices');

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0043
    0.0084
    0.0094
    0.1490

passetcovar =

    0.0054    0.0004    0.0001   -0.0000
    0.0004    0.0024    0.0016    0.0009
    0.0001    0.0016    0.0048    0.0028
   -0.0000    0.0009    0.0028    0.0100

Simulating Normal Scenarios with Missing Data
Often when working with multiple assets, you have missing data indicated by NaN values in your
return or price data. Although “Multivariate Normal Regression” on page 9-2 goes into detail about
regression with missing data, the simulateNormalScenariosByData function has a name-value
pair argument name 'MissingData' that indicates with a Boolean value whether to use the missing
data capabilities of Financial Toolbox. The default value for 'MissingData' is false which removes
all samples with NaN values. If, however, 'MissingData' is set to true,
simulateNormalScenariosByData uses the ECM algorithm to estimate asset moments. This
example shows how this works on price data with missing values:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];
C = [ 0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];
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X = portsim(m', C, 120);
Y = ret2tick(X);
Y(1:20,1) = NaN;
Y(1:12,4) = NaN;

Notice that the prices above in Y have missing values in the first and fourth series.
p = PortfolioCVaR;
p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices');

q = PortfolioCVaR;
q = simulateNormalScenariosByData(q, Y, 20000, 'dataformat', 'prices', 'missingdata', true);

[passetmean, passetcovar] = estimateScenarioMoments(p)
[qassetmean, qassetcovar] = estimateScenarioMoments(q)

passetmean =

    0.0020
    0.0074
    0.0078
    0.1476

passetcovar =

    0.0055    0.0003   -0.0001   -0.0003
    0.0003    0.0024    0.0019    0.0012
   -0.0001    0.0019    0.0050    0.0028
   -0.0003    0.0012    0.0028    0.0101

qassetmean =

    0.0024
    0.0085
    0.0106
    0.1482

qassetcovar =

    0.0071    0.0004   -0.0001   -0.0004
    0.0004    0.0032    0.0022    0.0012
   -0.0001    0.0022    0.0063    0.0034
   -0.0004    0.0012    0.0034    0.0127

The first PortfolioCVaR object, p, contains scenarios obtained from price data in Y where NaN
values are discarded and the second PortfolioCVaR object, q, contains scenarios obtained from
price data in Y that accommodate missing values. Each time you run this example, you get different
estimates for the moments in p and q.

Simulating Normal Scenarios from Time Series Data
The simulateNormalScenariosByData function implicitly works with matrices of data or data in a
table or timetable object using the same rules for whether the data are returns or prices. To
illustrate, use array2timetable to create a timetable for 14 assets from CAPMuniverse and the
use the timetable to simulate scenarios for PortfolioCVaR.
load CAPMuniverse
time = datetime(Dates,'ConvertFrom','datenum');
stockTT = array2timetable(Data,'RowTimes',time, 'VariableNames', Assets);
stockTT.Properties
% Notice that GOOG has missing data, because it was not listed before Aug 2004
head(stockTT, 5)

ans = 
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  TimetableProperties with properties:

             Description: ''
                UserData: []
          DimensionNames: {'Time'  'Variables'}
           VariableNames: {'AAPL'  'AMZN'  'CSCO'  'DELL'  'EBAY'  'GOOG'  'HPQ'  'IBM'  'INTC'  'MSFT'  'ORCL'  'YHOO'  'MARKET'  'CASH'}
    VariableDescriptions: {}
           VariableUnits: {}
      VariableContinuity: []
                RowTimes: [1471×1 datetime]
               StartTime: 03-Jan-2000
              SampleRate: NaN
                TimeStep: NaN
        CustomProperties: No custom properties are set.
      Use addprop and rmprop to modify CustomProperties.

ans =

  5×14 timetable

       Time          AAPL         AMZN         CSCO         DELL         EBAY       GOOG       HPQ          IBM         INTC         MSFT         ORCL         YHOO        MARKET         CASH   
    ___________    _________    _________    _________    _________    _________    ____    _________    _________    _________    _________    _________    _________    _________    __________

    03-Jan-2000     0.088805       0.1742     0.008775    -0.002353      0.12829    NaN       0.03244     0.075368      0.05698    -0.001627     0.054078     0.097784    -0.012143    0.00020522
    04-Jan-2000    -0.084331     -0.08324     -0.05608     -0.08353    -0.093805    NaN     -0.075613    -0.033966    -0.046667    -0.033802      -0.0883    -0.067368     -0.03166    0.00020339
    05-Jan-2000     0.014634     -0.14877    -0.003039     0.070984     0.066875    NaN     -0.006356      0.03516     0.008199     0.010567    -0.052837    -0.073363     0.011443    0.00020376
    06-Jan-2000    -0.086538    -0.060072    -0.016619    -0.038847    -0.012302    NaN     -0.063688    -0.017241     -0.05824    -0.033477    -0.058824     -0.10307     0.011743    0.00020266
    07-Jan-2000     0.047368     0.061013       0.0587    -0.037708    -0.000964    NaN      0.028416    -0.004386      0.04127     0.013091     0.076771      0.10609      0.02393    0.00020157

Use the 'MissingData' option offered by PortfolioCVaR to account for the missing data.
p = PortfolioCVaR;
p = simulateNormalScenariosByData(p, stockTT, 20000 ,'missingdata',true);
[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0012
    0.0007
   -0.0005
   -0.0000
    0.0016
    0.0043
   -0.0001
    0.0000
    0.0001
   -0.0002
    0.0000
    0.0004
    0.0001
    0.0001

passetcovar =

    0.0013    0.0005    0.0006    0.0005    0.0006    0.0003    0.0005    0.0003    0.0006    0.0004    0.0005    0.0006    0.0002   -0.0000
    0.0005    0.0024    0.0007    0.0005    0.0010    0.0005    0.0005    0.0003    0.0006    0.0004    0.0006    0.0011    0.0002   -0.0000
    0.0006    0.0007    0.0013    0.0006    0.0007    0.0004    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008    0.0002   -0.0000
    0.0005    0.0005    0.0006    0.0009    0.0006    0.0002    0.0005    0.0003    0.0006    0.0004    0.0005    0.0006    0.0002   -0.0000
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    0.0006    0.0010    0.0007    0.0006    0.0018    0.0007    0.0005    0.0003    0.0006    0.0005    0.0007    0.0011    0.0002   -0.0000
    0.0003    0.0005    0.0004    0.0002    0.0007    0.0013    0.0002    0.0002    0.0002    0.0002    0.0003    0.0011    0.0001   -0.0000
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0002    0.0010    0.0003    0.0005    0.0003    0.0005    0.0006    0.0002   -0.0000
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0002    0.0004    0.0004    0.0002    0.0000
    0.0006    0.0006    0.0008    0.0006    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007    0.0002   -0.0000
    0.0004    0.0004    0.0005    0.0004    0.0005    0.0002    0.0003    0.0002    0.0005    0.0006    0.0004    0.0005    0.0002   -0.0000
    0.0005    0.0006    0.0008    0.0005    0.0007    0.0003    0.0005    0.0004    0.0007    0.0004    0.0014    0.0007    0.0002   -0.0000
    0.0006    0.0011    0.0008    0.0006    0.0011    0.0011    0.0006    0.0004    0.0007    0.0005    0.0007    0.0020    0.0002   -0.0000
    0.0002    0.0002    0.0002    0.0002    0.0002    0.0001    0.0002    0.0002    0.0002    0.0002    0.0002    0.0002    0.0001   -0.0000
   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000

Use the name-value input 'DataFormat' to handle return or price data and 'MissingData' to
ignore or use samples with missing values. In addition, simulateNormalScenariosByData
extracts asset names or identifiers from a table or timetable if the argument 'GetAssetList' is
set to true (the default value is false). If the 'GetAssetList' value is true, the identifiers are
used to set the AssetList property of the PortfolioCVaR object. Thus, repeating the formation of
the PortfolioCVaR object p from the previous example with the 'GetAssetList' flag set to true
extracts the column names from the timetable object:
p = simulateNormalScenariosByData(p, stockTT, 20000 ,'missingdata',true, 'GetAssetList', true);
disp(p.AssetList)

 'AAPL'    'AMZN'    'CSCO'    'DELL'    'EBAY'    'GOOG'    'HPQ'    'IBM'    'INTC'    'MSFT'    'ORCL'    'YHOO'    'MARKET'    'CASH'

If you set the'GetAssetList' flag set to true and your input data is in a matrix,
simulateNormalScenariosByData uses the default labeling scheme from setAssetList as
described in “Setting Up a List of Asset Identifiers” on page 5-28.

Simulating Normal Scenarios with Mean and Covariance
Given the mean and covariance of asset returns, use the simulateNormalScenariosByMoments
function to simulate multivariate normal scenarios. The mean can be either a row or column vector
and the covariance matrix must be a symmetric positive-semidefinite matrix. Various rules for scalar
expansion apply. To illustrate using simulateNormalScenariosByMoments, start with moments in
m and C and generate 20,000 scenarios:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];
C = [ 0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];

p = PortfolioCVaR;
p = simulateNormalScenariosByMoments(p, m, C, 20000);
[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0049
    0.0083
    0.0101
    0.1503

passetcovar =

    0.0053    0.0003    0.0002   -0.0000
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    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0047    0.0028
   -0.0000    0.0010    0.0028    0.0101

simulateNormalScenariosByMoments performs scalar expansion on arguments for the moments
of asset returns. If NumAssets has not already been set, a scalar argument is interpreted as a scalar
with NumAssets set to 1. simulateNormalScenariosByMoments provides an additional optional
argument to specify the number of assets so that scalar expansion works with the correct number of
assets. In addition, if either a scalar or vector is input for the covariance of asset returns, a diagonal
matrix is formed such that a scalar expands along the diagonal and a vector becomes the diagonal.

See Also
PortfolioCVaR | setCosts | setProbabilityLevel | setScenarios | estimatePortVaR |
simulateNormalScenariosByMoments | simulateNormalScenariosByData

Related Examples
• “Working with a Riskless Asset” on page 5-44
• “Working with Transaction Costs” on page 5-45
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with a Riskless Asset
The PortfolioCVaR object has a separate RiskFreeRate property that stores the rate of return of
a riskless asset. Thus, you can separate your universe into a riskless asset and a collection of risky
assets. For example, assume that your riskless asset has a return in the scalar variable r0, then the
property for the RiskFreeRate is set using the PortfolioCVaR object:

r0 = 0.01/12;

p = PortfolioCVaR;
p = PortfolioCVaR('RiskFreeRate', r0);
disp(p.RiskFreeRate)

8.3333e-04

Note If your portfolio problem has a budget constraint such that your portfolio weights must sum to
1, then the riskless asset is irrelevant.

See Also
PortfolioCVaR | setCosts | setProbabilityLevel | setScenarios | estimatePortVaR |
simulateNormalScenariosByMoments | simulateNormalScenariosByData

Related Examples
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Working with Transaction Costs” on page 5-45
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with Transaction Costs
The difference between net and gross portfolio returns is transaction costs. The net portfolio return
proxy has distinct proportional costs to purchase and to sell assets which are maintained in the
PortfolioCVaR object properties BuyCost and SellCost. Transaction costs are in units of total
return and, as such, are proportional to the price of an asset so that they enter the model for net
portfolio returns in return form. For example, suppose that you have a stock currently priced $40 and
your usual transaction costs are 5 cents per share. Then the transaction cost for the stock is 0.05/40
= 0.00125 (as defined in “Net Portfolio Returns” on page 5-3). Costs are entered as positive values
and credits are entered as negative values.

Setting Transaction Costs Using the PortfolioCVaR Function
To set up transaction costs, you must specify an initial or current portfolio in the InitPort property.
If the initial portfolio is not set when you set up the transaction cost properties, InitPort is 0. The
properties for transaction costs can be set using the PortfolioCVaR object. For example, assume
that purchase and sale transaction costs are in the variables bc and sc and an initial portfolio is in
the variable x0, then transaction costs are set:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = PortfolioCVaR('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort)

     5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

Setting Transaction Costs Using the setCosts Function
You can also set the properties for transaction costs using setCosts. Assume that you have the same
costs and initial portfolio as in the previous example. Given a PortfolioCVaR object p with an initial
portfolio already set, use setCosts to set up transaction costs:
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bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR('InitPort', x0);
p = setCosts(p, bc, sc);
        
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort) 

    5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

You can also set up the initial portfolio's InitPort value as an optional argument to setCosts so
that the following is an equivalent way to set up transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR;
p = setCosts(p, bc, sc, x0);
        
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort)

    5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
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    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

Setting Transaction Costs with Scalar Expansion
Both the PortfolioCVaR object and setCosts function implement scalar expansion on the
arguments for transaction costs and the initial portfolio. If the NumAssets property is already set in
the PortfolioCVaR object, scalar arguments for these properties are expanded to have the same
value across all dimensions. In addition, setCosts lets you specify NumAssets as an optional final
argument. For example, assume that you have an initial portfolio x0 and you want to set common
transaction costs on all assets in your universe. You can set these costs in any of these equivalent
ways:
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = PortfolioCVaR('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = PortfolioCVaR('InitPort', x0);
p = setCosts(p, 0.002, 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = PortfolioCVaR;
p = setCosts(p, 0.002, 0.002, x0);

To clear costs from your PortfolioCVaR object, use either the PortfolioCVaR object or setCosts
with empty inputs for the properties to be cleared. For example, you can clear sales costs from the
PortfolioCVaR object p in the previous example:

p = PortfolioCVaR(p, 'SellCost', []);

See Also
PortfolioCVaR | setCosts | setProbabilityLevel | setScenarios | estimatePortVaR |
simulateNormalScenariosByMoments | simulateNormalScenariosByData

Related Examples
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Working with a Riskless Asset” on page 5-44
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
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• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with CVaR Portfolio Constraints Using Defaults
The final element for a complete specification of a portfolio optimization problem is the set of feasible
portfolios, which is called a portfolio set. A portfolio set X ⊂ Rn is specified by construction as the
intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set
necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most
basic or “default” portfolio set requires portfolio weights to be nonnegative (using the lower-bound
constraint) and to sum to 1 (using the budget constraint). For information on the workflow when
using PortfolioCVaR objects, see “PortfolioCVaR Object Workflow” on page 5-15.

Setting Default Constraints for Portfolio Weights Using PortfolioCVaR
Object
The “default” CVaR portfolio problem has two constraints on portfolio weights:

• Portfolio weights must be nonnegative.
• Portfolio weights must sum to 1.

Implicitly, these constraints imply that portfolio weights are no greater than 1, although this is a
superfluous constraint to impose on the problem.

Setting Default Constraints Using the PortfolioCVaR Function

Given a portfolio optimization problem with NumAssets = 20 assets, use the PortfolioCVaR object
to set up a default problem and explicitly set bounds and budget constraints:

p = PortfolioCVaR('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);
disp(p)

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: 20
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [20x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []

 Working with CVaR Portfolio Constraints Using Defaults

5-49



          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []

Setting Default Constraints Using the setDefaultConstraints Function

An alternative approach is to use the setDefaultConstraints function. If the number of assets is
already known in a PortfolioCVaR object, use setDefaultConstraints with no arguments to set
up the necessary bound and budget constraints. Suppose that you have 20 assets to set up the
portfolio set for a default problem:

p = PortfolioCVaR('NumAssets', 20);
p = setDefaultConstraints(p);
disp(p)

   PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: 20
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [20×1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: [20×1 categorical]

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as an optional
argument to form a portfolio set for a default problem. Suppose that you have 20 assets:

p = PortfolioCVaR;
p = setDefaultConstraints(p, 20);
disp(p)
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 PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: 20
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [20×1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: [20×1 categorical]

See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Working with 'Simple' Bound Constraints Using PortfolioCVaR Object” on page 5-53
• “Working with Budget Constraints Using PortfolioCVaR Object” on page 5-56
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-58
• “Working with Group Ratio Constraints Using PortfolioCVaR Object” on page 5-61
• “Working with Linear Equality Constraints Using PortfolioCVaR Object” on page 5-64
• “Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page 5-66
• “Working with Average Turnover Constraints Using PortfolioCVaR Object” on page 5-71
• “Working with One-Way Turnover Constraints Using PortfolioCVaR Object” on page 5-74
• “Creating the PortfolioCVaR Object” on page 5-21
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
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• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with 'Simple' Bound Constraints Using PortfolioCVaR
Object

'Simple' bound constraints are optional linear constraints that maintain upper and lower bounds on
portfolio weights (see “'Simple' Bound Constraints” on page 5-8). Although every portfolio set must
be bounded, it is not necessary to specify a portfolio set with explicit bound constraints. For example,
you can create a portfolio set with an implicit upper bound constraint or a portfolio set with average
turnover constraints. The bound constraints have properties LowerBound for the lower-bound
constraint and UpperBound for the upper-bound constraint. Set default values for these constraints
using the setDefaultConstraints function (see “Setting Default Constraints for Portfolio Weights
Using Portfolio Object” on page 4-57).

Setting 'Simple' Bounds Using the PortfolioCVaR Function
The properties for bound constraints are set through the PortfolioCVaR object. Suppose that you
have a balanced fund with stocks that can range from 50% to 75% of your portfolio and bonds that
can range from 25% to 50% of your portfolio. The bound constraints for a balanced fund are set with:

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];
p = PortfolioCVaR('LowerBound', lb, 'UpperBound', ub, 'BoundType', 'Simple');
disp(p.NumAssets)
disp(p.LowerBound)
disp(p.UpperBound)

 2

 0.5000
 0.2500

 0.7500
 0.5000

To continue with this example, you must set up a budget constraint. For details, see “Working with
Budget Constraints Using Portfolio Object” on page 4-64.

Setting 'Simple' Bounds Using the setBounds Function
You can also set the properties for bound constraints using setBounds. Suppose that you have a
balanced fund with stocks that can range from 50% to 75% of your portfolio and bonds that can range
from 25% to 50% of your portfolio. Given a PortfolioCVaR object p, use setBounds to set the
bound constraints:

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];
p = PortfolioCVaR;
p = setBounds(p, lb, ub,'BoundType', 'Simple');
disp(p.NumAssets)
disp(p.LowerBound)
disp(p.UpperBound)

  2

  0.5000
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  0.2500

  0.7500
  0.5000

Setting 'Simple' Bounds Using the PortfolioCVaR Function or
setBounds Function
Both the PortfolioCVaR object and setBounds function implement scalar expansion on either the
LowerBound or UpperBound properties. If the NumAssets property is already set in the
PortfolioCVaR object, scalar arguments for either property expand to have the same value across
all dimensions. In addition, setBounds lets you specify NumAssets as an optional argument.
Suppose that you have a universe of 500 assets and you want to set common bound constraints on all
assets in your universe. Specifically, you are a long-only investor and want to hold no more than 5% of
your portfolio in any single asset. You can set these bound constraints in any of these equivalent
ways:
p = PortfolioCVaR('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05,'BoundType', 'Simple');

or

p = PortfolioCVaR('NumAssets', 500);
p = setBounds(p, 0, 0.05,'BoundType','Simple');

or

p = PortfolioCVaR;
p = setBounds(p, 0, 0.05, 500,'BoundType','Simple');

To clear bound constraints from your PortfolioCVaR object, use either the PortfolioCVaR object
or setBounds with empty inputs for the properties to be cleared. For example, to clear the upper-
bound constraint from the PortfolioCVaR object p in the previous example:

p = PortfolioCVaR(p, 'UpperBound', []);

See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets

Constraints” on page 4-133
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

PortfolioCVaR Objects” on page 5-68
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• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with Budget Constraints Using PortfolioCVaR Object
The budget constraint is an optional linear constraint that maintains upper and lower bounds on the
sum of portfolio weights (see “Budget Constraints” on page 5-9). Budget constraints have properties
LowerBudget for the lower budget constraint and UpperBudget for the upper budget constraint. If
you set up a CVaR portfolio optimization problem that requires portfolios to be fully invested in your
universe of assets, you can set LowerBudget to be equal to UpperBudget. These budget constraints
can be set with default values equal to 1 using setDefaultConstraints (see “Setting Default
Constraints Using the PortfolioCVaR Function” on page 5-49).

Setting Budget Constraints Using the PortfolioCVaR Function
The properties for the budget constraint can also be set using the PortfolioCVaR object. Suppose
that you have an asset universe with many risky assets and a riskless asset and you want to ensure
that your portfolio never holds more than 1% cash, that is, you want to ensure that you are 99–100%
invested in risky assets. The budget constraint for this portfolio can be set with:

p = PortfolioCVaR('LowerBudget', 0.99, 'UpperBudget', 1);
disp(p.LowerBudget)
disp(p.UpperBudget)

 0.9900

1

Setting Budget Constraints Using the setBudget Function
You can also set the properties for a budget constraint using setBudget. Suppose that you have a
fund that permits up to 10% leverage which means that your portfolio can be from 100% to 110%
invested in risky assets. Given a PortfolioCVaR object p, use setBudget to set the budget
constraints:

p = PortfolioCVaR;
p = setBudget(p, 1, 1.1);
disp(p.LowerBudget)
disp(p.UpperBudget)

 1

 1.1000

If you were to continue with this example, then set the RiskFreeRate property to the borrowing
rate to finance possible leveraged positions. For details on the RiskFreeRate property, see “Working
with a Riskless Asset” on page 5-44. To clear either bound for the budget constraint from your
PortfolioCVaR object, use either the PortfolioCVaR object or setBudget with empty inputs for
the properties to be cleared. For example, clear the upper-budget constraint from the
PortfolioCVaR object p in the previous example with:

p = PortfolioCVaR(p, 'UpperBudget', []);

See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover
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Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with Group Constraints Using PortfolioCVaR Object
Group constraints are optional linear constraints that group assets together and enforce bounds on
the group weights (see “Group Constraints” on page 5-10). Although the constraints are implemented
as general constraints, the usual convention is to form a group matrix that identifies membership of
each asset within a specific group with Boolean indicators (either true or false or with 1 or 0) for
each element in the group matrix. Group constraints have properties GroupMatrix for the group
membership matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for
the upper-bound constraint on groups.

Setting Group Constraints Using the PortfolioCVaR Function
The properties for group constraints are set through the PortfolioCVaR object. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets constitute no more than
30% of your portfolio, then you can set group constraints:

G = [ 1 1 1 0 0 ];
p = PortfolioCVaR('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.UpperGroup)

5

1     1     1     0     0

0.3000

The group matrix G can also be a logical matrix so that the following code achieves the same result.

G = [ true true true false false ];
p = PortfolioCVaR('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.UpperGroup)

5

1     1     1     0     0

0.3000

Setting Group Constraints Using the setGroups and addGroups
Functions
You can also set the properties for group constraints using setGroups. Suppose that you have a
portfolio of five assets and want to ensure that the first three assets constitute no more than 30% of
your portfolio. Given a PortfolioCVaR object p, use setGroups to set the group constraints:

G = [ true true true false false ];
p = PortfolioCVaR;
p = setGroups(p, G, [], 0.3);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.UpperGroup)
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5

1     1     1     0     0

0.3000

In this example, you would set the LowerGroup property to be empty ([]).

Suppose that you want to add another group constraint to make odd-numbered assets constitute at
least 20% of your portfolio. Set up an augmented group matrix and introduce infinite bounds for
unconstrained group bounds or use the addGroups function to build up group constraints. For this
example, create another group matrix for the second group constraint:
p = PortfolioCVaR;
G = [ true true true false false ];    % group matrix for first group constraint
p = setGroups(p, G, [], 0.3);
G = [ true false true false true ];    % group matrix for second group constraint
p = addGroups(p, G, 0.2);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.LowerGroup)
disp(p.UpperGroup)

 5

1     1     1     0     0
1     0     1     0     1

  -Inf
0.2000

0.3000
  Inf

addGroups determines which bounds are unbounded so you only need to focus on the constraints
that you want to set.

The PortfolioCVaR object, setGroups, and addGroups implement scalar expansion on either the
LowerGroup or UpperGroup properties based on the dimension of the group matrix in the property
GroupMatrix. Suppose that you have a universe of 30 assets with 6 asset classes such that assets 1–
5, assets 6–12, assets 13–18, assets 19–22, assets 23–27, and assets 28–30 constitute each of your
asset classes and you want each asset class to fall from 0% to 25% of your portfolio. Let the following
group matrix define your groups and scalar expansion define the common bounds on each group:
p = PortfolioCVaR;
G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));
p = setGroups(p, G, 0, 0.25);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.LowerGroup)
disp(p.UpperGroup)

30

  Columns 1 through 16

     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     1     1     1     1     1     1     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     1     1     1     1
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 17 through 30

     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0
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     1     1     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     1     1     1     1     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     1     1     1     1     1     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     1     1     1

     0
     0
     0
     0
     0
     0

    0.2500
    0.2500
    0.2500
    0.2500
    0.2500
    0.2500

See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with Group Ratio Constraints Using PortfolioCVaR
Object

Group ratio constraints are optional linear constraints that maintain bounds on proportional
relationships among groups of assets (see “Group Ratio Constraints” on page 5-10). Although the
constraints are implemented as general constraints, the usual convention is to specify a pair of group
matrices that identify membership of each asset within specific groups with Boolean indicators
(either true or false or with 1 or 0) for each element in each of the group matrices. The goal is to
ensure that the ratio of a base group compared to a comparison group fall within specified bounds.
Group ratio constraints have properties:

• GroupA for the base membership matrix
• GroupB for the comparison membership matrix
• LowerRatio for the lower-bound constraint on the ratio of groups
• UpperRatio for the upper-bound constraint on the ratio of groups

Setting Group Ratio Constraints Using the PortfolioCVaR Function
The properties for group ratio constraints are set using PortfolioCVaR object. For example, assume
that you want the ratio of financial to nonfinancial companies in your portfolios to never go above
50%. Suppose that you have six assets with three financial companies (assets 1–3) and three
nonfinancial companies (assets 4–6). To set group ratio constraints:
GA = [ 1 1 1 0 0 0 ];    % financial companies
GB = [ 0 0 0 1 1 1 ];    % nonfinancial companies
p = PortfolioCVaR('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Group matrices GA and GB in this example can be logical matrices with true and false elements
that yield the same result:
GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = PortfolioCVaR('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000
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Setting Group Ratio Constraints Using the setGroupRatio and
addGroupRatio Functions
You can also set the properties for group ratio constraints using setGroupRatio. For example,
assume that you want the ratio of financial to nonfinancial companies in your portfolios to never go
above 50%. Suppose that you have six assets with three financial companies (assets 1–3) and three
nonfinancial companies (assets 4–6). Given a PortfolioCVaR object p, use setGroupRatio to set
the group constraints:
GA = [ true true true false false false ];   % financial companies
GB = [ false false false true true true ];   % nonfinancial companies
p = PortfolioCVaR;
p = setGroupRatio(p, GA, GB, [], 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

In this example, you would set the LowerRatio property to be empty ([]).

Suppose that you want to add another group ratio constraint to ensure that the weights in odd-
numbered assets constitute at least 20% of the weights in nonfinancial assets your portfolio. You can
set up augmented group ratio matrices and introduce infinite bounds for unconstrained group ratio
bounds, or you can use the addGroupRatio function to build up group ratio constraints. For this
example, create another group matrix for the second group constraint:
p = PortfolioCVaR;
GA = [ true true true false false false ];   % financial companies
GB = [ false false false true true true ];   % nonfinancial companies
p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];   % odd-numbered companies
GB = [ false false false true true true ];   % nonfinancial companies
p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.LowerRatio)
disp(p.UpperRatio)

 6

1     1     1     0     0     0
1     0     1     0     1     0

0     0     0     1     1     1
0     0     0     1     1     1

  -Inf
0.2000

0.5000
  Inf
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Notice that addGroupRatio determines which bounds are unbounded so you only need to focus on
the constraints you want to set.

The PortfolioCVaR object, setGroupRatio, and addGroupRatio implement scalar expansion on
either the LowerRatio or UpperRatio properties based on the dimension of the group matrices in
GroupA and GroupB properties.

See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with Linear Equality Constraints Using PortfolioCVaR
Object

Linear equality constraints are optional linear constraints that impose systems of equalities on
portfolio weights (see “Linear Equality Constraints” on page 5-8). Linear equality constraints have
properties AEquality, for the equality constraint matrix, and bEquality, for the equality constraint
vector.

Setting Linear Equality Constraints Using the PortfolioCVaR Function
The properties for linear equality constraints are set using the PortfolioCVaR object. Suppose that
you have a portfolio of five assets and want to ensure that the first three assets are 50% of your
portfolio. To set this constraint:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioCVaR('AEquality', A, 'bEquality', b);
disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0

0.5000

Setting Linear Equality Constraints Using the setEquality and
addEquality Functions
You can also set the properties for linear equality constraints using setEquality. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets are 50% of your portfolio.
Given a PortfolioCVaR object p, use setEquality to set the linear equality constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioCVaR;
p = setEquality(p, A, b);
disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear equality constraint to ensure that the last three assets
also constitute 50% of your portfolio. You can set up an augmented system of linear equalities or use
addEquality to build up linear equality constraints. For this example, create another system of
equalities:

p = PortfolioCVaR;
A = [ 1 1 1 0 0 ];    % first equality constraint
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b = 0.5;
p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % second equality constraint
b = 0.5;
p = addEquality(p, A, b);

disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0
0     0     1     1     1

0.5000
0.5000

The PortfolioCVaR object, setEquality, and addEquality implement scalar expansion on the
bEquality property based on the dimension of the matrix in the AEquality property.

See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

 Working with Linear Equality Constraints Using PortfolioCVaR Object

5-65

https://www.mathworks.com/videos/analyzing-investment-strategies-with-cvar-portfolio-optimization-in-matlab-81942.html


Working with Linear Inequality Constraints Using
PortfolioCVaR Object

Linear inequality constraints are optional linear constraints that impose systems of inequalities on
portfolio weights (see “Linear Inequality Constraints” on page 5-7). Linear inequality constraints have
properties AInequality for the inequality constraint matrix, and bInequality for the inequality
constraint vector.

Setting Linear Inequality Constraints Using the PortfolioCVaR Function
The properties for linear inequality constraints are set using the PortfolioCVaR object. Suppose
that you have a portfolio of five assets and you want to ensure that the first three assets are no more
than 50% of your portfolio. To set up these constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioCVaR('AInequality', A, 'bInequality', b);
disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0

0.5000

Setting Linear Inequality Constraints Using the setInequality and
addInequality Functions
You can also set the properties for linear inequality constraints using setInequality. Suppose that
you have a portfolio of five assets and you want to ensure that the first three assets constitute no
more than 50% of your portfolio. Given a PortfolioCVaR object p, use setInequality to set the
linear inequality constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioCVaR;
p = setInequality(p, A, b);
disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear inequality constraint to ensure that the last three assets
constitute at least 50% of your portfolio. You can set up an augmented system of linear inequalities or
use the addInequality function to build up linear inequality constraints. For this example, create
another system of inequalities:
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p = PortfolioCVaR;
A = [ 1 1 1 0 0 ];    % first inequality constraint
b = 0.5;
p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint
b = -0.5;
p = addInequality(p, A, b);

disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0
0     0    -1    -1    -1

0.5000
-0.5000

The PortfolioCVaR object, setInequality, and addInequality implement scalar expansion on
the bInequality property based on the dimension of the matrix in the AInequality property.

See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with 'Conditional' BoundType, MinNumAssets, and
MaxNumAssets Constraints Using PortfolioCVaR Objects

When any one, or any combination of 'Conditional' BoundType, MinNumAssets, or
MaxNumAssets constraints are active, the portfolio problem is formulated by adding NumAssets
binary variables, where 0 indicates not invested, and 1 is invested. For example, to explain the
'Conditional' BoundType and MinNumAssets and MaxNumAssets constraints, assume that your
portfolio has a universe of 100 assets that you want to invest:

• 'Conditional' BoundType (also known as semicontinuous constraints), set by setBounds, is
often used in situations where you do not want to invest small values. A standard example is a
portfolio optimization problem where many small allocations are not attractive because of
transaction costs. Instead, you prefer fewer instruments in the portfolio with larger allocations.
This situation can be handled using'Conditional' BoundType constraints for a
PortfolioCVaR object.

For example, the weight you invest in each asset is either 0 or between [0.01, 0.5]. Generally,
a semicontinuous variable x is a continuous variable between bounds [lb, ub] that also can
assume the value 0, where lb > 0, lb ≤ ub. Applying this to portfolio optimization requires that
very small or large positions should be avoided, that is values that fall in (0, lb) or are more than
ub.

• MinNumAssets and MaxNumAssets (also known as cardinality constraints), set by
setMinMaxNumAssets, limit the number of assets in a PortfolioCVaR object. For example, if
you have 100 assets in your portfolio and you want the number of assets allocated in the portfolio
to be from 40 through 60. Using MinNumAssets and MaxNumAssets you can limit the number of
assets in the optimized portfolio, which allows you to limit transaction and operational costs or to
create an index tracking portfolio.

Setting 'Conditional' BoundType Constraints Using the setBounds
Function
Use setBounds with a 'conditional' BoundType to set xi = 0 or 0.02 <= xi <= 0.5 for all
i=1,...NumAssets:

p = PortfolioCVaR;
p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3)

p = 

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: 3
           AssetList: []
            InitPort: []
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         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [3×1 double]
          UpperBound: [3×1 double]
         LowerBudget: []
         UpperBudget: []
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: [3×1 categorical]

Setting the Limits on the Number of Assets Invested Using the
setMinMaxNumAssets Function
You can also set the MinNumAssets and MaxNumAssets properties to define a limit on the number of
assets invested using setMinMaxNumAssets. For example, by setting
MinNumAssets=MaxNumAssets=2, only two of the three assets are invested in the portfolio.

p = PortfolioCVaR;
p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3)
p = setMinMaxNumAssets(p, 2, 2) 

 p = 

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: 3
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [3×1 double]
          UpperBound: [3×1 double]
         LowerBudget: []
         UpperBudget: []
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
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              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: 2
        MaxNumAssets: 2
           BoundType: [3×1 categorical]

See Also
PortfolioCVaR | setBounds | setMinMaxNumAssets | setDefaultConstraints | setBounds |
setBudget | setGroups | setGroupRatio | setEquality | setInequality | setTurnover |
setOneWayTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Working with 'Simple' Bound Constraints Using PortfolioCVaR Object” on page 5-53
• “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets

Constraints” on page 4-133
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with Average Turnover Constraints Using
PortfolioCVaR Object

The turnover constraint is an optional linear absolute value constraint (see “Average Turnover
Constraints” on page 5-11) that enforces an upper bound on the average of purchases and sales. The
turnover constraint can be set using the PortfolioCVaR object or the setTurnover function. The
turnover constraint depends on an initial or current portfolio, which is assumed to be zero if not set
when the turnover constraint is set. The turnover constraint has properties Turnover, for the upper
bound on average turnover, and InitPort, for the portfolio against which turnover is computed.

Setting Average Turnover Constraints Using the PortfolioCVaR
Function
The properties for the turnover constraints are set using the PortfolioCVaR object. Suppose that
you have an initial portfolio of 10 assets in a variable x0 and you want to ensure that average
turnover is no more than 30%. To set this turnover constraint:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = PortfolioCVaR('Turnover', 0.3, 'InitPort', x0);
disp(p.NumAssets)
disp(p.Turnover)
disp(p.InitPort)

10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

Note if the NumAssets or InitPort properties are not set before or when the turnover constraint is
set, various rules are applied to assign default values to these properties (see “Setting Up an Initial or
Current Portfolio” on page 5-32).

Setting Average Turnover Constraints Using the setTurnover Function
You can also set properties for portfolio turnover using setTurnover to specify both the upper
bound for average turnover and an initial portfolio. Suppose that you have an initial portfolio of 10
assets in a variable x0 and want to ensure that average turnover is no more than 30%. Given a
PortfolioCVaR object p, use setTurnover to set the turnover constraint with and without the
initial portfolio being set previously:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioCVaR('InitPort', x0);
p = setTurnover(p, 0.3);

disp(p.NumAssets)
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disp(p.Turnover)
disp(p.InitPort)

10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioCVaR;
p = setTurnover(p, 0.3, x0);
disp(p.NumAssets)
disp(p.Turnover)
disp(p.InitPort)

10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

setTurnover implements scalar expansion on the argument for the initial portfolio. If the
NumAssets property is already set in the PortfolioCVaR object, a scalar argument for InitPort
expands to have the same value across all dimensions. In addition, setTurnover lets you specify
NumAssets as an optional argument. To clear turnover from your PortfolioCVaR object, use the
PortfolioCVaR object or setTurnover with empty inputs for the properties to be cleared.

See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
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• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with One-Way Turnover Constraints Using
PortfolioCVaR Object

One-way turnover constraints are optional constraints (see “One-way Turnover Constraints” on page
5-12) that enforce upper bounds on net purchases or net sales. One-way turnover constraints can be
set using the PortfolioCVaR object or the setOneWayTurnover function. One-way turnover
constraints depend upon an initial or current portfolio, which is assumed to be zero if not set when
the turnover constraints are set. One-way turnover constraints have properties BuyTurnover, for the
upper bound on net purchases, SellTurnover, for the upper bound on net sales, and InitPort, for
the portfolio against which turnover is computed.

Setting One-Way Turnover Constraints Using the PortfolioCVaR
Function
The Properties for the one-way turnover constraints are set using the PortfolioCVaR object.
Suppose that you have an initial portfolio with 10 assets in a variable x0 and you want to ensure that
turnover on purchases is no more than 30% and turnover on sales is no more than 20% of the initial
portfolio. To set these turnover constraints:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = PortfolioCVaR('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);
disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort)

    10

    0.3000

    0.2000

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

If the NumAssets or InitPort properties are not set before or when the turnover constraint is set,
various rules are applied to assign default values to these properties (see “Setting Up an Initial or
Current Portfolio” on page 5-32).

Setting Turnover Constraints Using the setOneWayTurnover Function
You can also set properties for portfolio turnover using setOneWayTurnover to specify to the upper
bounds for turnover on purchases (BuyTurnover) and sales (SellTurnover) and an initial portfolio.
Suppose that you have an initial portfolio of 10 assets in a variable x0 and want to ensure that
turnover on purchases is no more than 30% and that turnover on sales is no more than 20% of the
initial portfolio. Given a PortfolioCVaR object p, use setOneWayTurnover to set the turnover
constraints with and without the initial portfolio being set previously:
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x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioCVaR('InitPort', x0);
p = setOneWayTurnover(p, 0.3, 0.2);

disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort)

    10

    0.3000

    0.2000

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioCVaR;
p = setOneWayTurnover(p, 0.3, 0.2, x0);
disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort)

    10

    0.3000

    0.2000

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

setOneWayTurnover implements scalar expansion on the argument for the initial portfolio. If the
NumAssets property is already set in the PortfolioCVaR object, a scalar argument for InitPort
expands to have the same value across all dimensions. In addition, setOneWayTurnover lets you
specify NumAssets as an optional argument. To remove one-way turnover from your
PortfolioCVaR object, use thePortfolioCVaR object or setOneWayTurnover with empty inputs
for the properties to be cleared.
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See Also
PortfolioCVaR | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Validate the CVaR Portfolio Problem” on page 5-77
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Validate the CVaR Portfolio Problem
In this section...
“Validating a CVaR Portfolio Set” on page 5-77
“Validating CVaR Portfolios” on page 5-78

Sometimes, you may want to validate either your inputs to, or outputs from, a portfolio optimization
problem. Although most error checking that occurs during the problem setup phase catches most
difficulties with a portfolio optimization problem, the processes to validate CVaR portfolio sets and
portfolios are time consuming and are best done offline. So, the portfolio optimization tools have
specialized functions to validate CVaR portfolio sets and portfolios. For information on the workflow
when using PortfolioCVaR objects, see “PortfolioCVaR Object Workflow” on page 5-15.

Validating a CVaR Portfolio Set
Since it is necessary and sufficient that your CVaR portfolio set must be a nonempty, closed, and
bounded set to have a valid portfolio optimization problem, the estimateBounds function lets you
examine your portfolio set to determine if it is nonempty and, if nonempty, whether it is bounded.
Suppose that you have the following CVaR portfolio set which is an empty set because the initial
portfolio at 0 is too far from a portfolio that satisfies the budget and turnover constraint:

p = PortfolioCVaR('NumAssets', 3, 'Budget', 1);
p = setTurnover(p, 0.3, 0);

If a CVaR portfolio set is empty, estimateBounds returns NaN bounds and sets the isbounded flag
to []:

[lb, ub, isbounded] = estimateBounds(p)

lb =

   NaN
   NaN
   NaN

ub =

   NaN
   NaN
   NaN

isbounded =

     []

Suppose that you create an unbounded CVaR portfolio set as follows:

p = PortfolioCVaR('AInequality', [1 -1; 1 1 ], 'bInequality', 0);
[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf
  -Inf
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ub =

  1.0e-008 *

   -0.3712
       Inf

isbounded =

     0

In this case, estimateBounds returns (possibly infinite) bounds and sets the isbounded flag to
false. The result shows which assets are unbounded so that you can apply bound constraints as
necessary.

Finally, suppose that you created a CVaR portfolio set that is both nonempty and bounded.
estimateBounds not only validates the set, but also obtains tighter bounds which are useful if you
are concerned with the actual range of portfolio choices for individual assets in your portfolio set:
p = PortfolioCVaR;
p = setBudget(p, 1,1);
p = setBounds(p, [ -0.1; 0.2; 0.3; 0.2 ], [ 0.5; 0.3; 0.9; 0.8 ]);
        
[lb, ub, isbounded] = estimateBounds(p)

lb =

   -0.1000
    0.2000
    0.3000
    0.2000

ub =

    0.3000
    0.3000
    0.7000
    0.6000

isbounded =

     1

In this example, all but the second asset has tighter upper bounds than the input upper bound
implies.

Validating CVaR Portfolios
Given a CVaR portfolio set specified in a PortfolioCVaR object, you often want to check if specific
portfolios are feasible with respect to the portfolio set. This can occur with, for example, initial
portfolios and with portfolios obtained from other procedures. The checkFeasibility function
determines whether a collection of portfolios is feasible. Suppose that you perform the following
portfolio optimization and want to determine if the resultant efficient portfolios are feasible relative
to a modified problem.

First, set up a problem in the PortfolioCVaR object p, estimate efficient portfolios in pwgt, and
then confirm that these portfolios are feasible relative to the initial problem:
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m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

Next, set up a different portfolio problem that starts with the initial problem with an additional a
turnover constraint and an equally weighted initial portfolio:

q = setTurnover(p, 0.3, 0.25);
checkFeasibility(q, pwgt)

ans =

     0     0     0     1     1     0     0     0     0     0

In this case, only two of the 10 efficient portfolios from the initial problem are feasible relative to the
new problem in PortfolioCVaR object q. Solving the second problem using checkFeasibility
demonstrates that the efficient portfolio for PortfolioCVaR object q is feasible relative to the initial
problem:

qwgt = estimateFrontier(q);
checkFeasibility(p, qwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

See Also
PortfolioCVaR | estimateBounds | checkFeasibility

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
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• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Estimate Efficient Portfolios for Entire Frontier for
PortfolioCVaR Object

There are two ways to look at a portfolio optimization problem that depends on what you are trying to
do. One goal is to estimate efficient portfolios and the other is to estimate efficient frontiers. This
section focuses on the former goal and “Estimate Efficient Frontiers for PortfolioCVaR Object” on
page 5-100 focuses on the latter goal. For information on the workflow when using PortfolioCVaR
objects, see “PortfolioCVaR Object Workflow” on page 5-15.

Obtaining Portfolios Along the Entire Efficient Frontier
The most basic way to obtain optimal portfolios is to obtain points over the entire range of the
efficient frontier. Given a portfolio optimization problem in a PortfolioCVaR object, the
estimateFrontier function computes efficient portfolios spaced evenly according to the return
proxy from the minimum to maximum return efficient portfolios. The number of portfolios estimated
is controlled by the hidden property defaultNumPorts which is set to 10. A different value for the
number of portfolios estimated is specified as input to estimateFrontier. This example shows the
default number of efficient portfolios over the entire range of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);
disp(pwgt)

Columns 1 through 8

    0.8670    0.7046    0.5421    0.3825    0.2236    0.0570    0.0000    0.0000
    0.0413    0.1193    0.1963    0.2667    0.3392    0.4159    0.3392    0.1753
    0.0488    0.0640    0.0811    0.1012    0.1169    0.1427    0.1568    0.1754
    0.0429    0.1120    0.1806    0.2496    0.3203    0.3844    0.5040    0.6493

  Columns 9 through 10

    0.0000    0.0000
    0.0230    0.0000
    0.1777    0.0000
    0.7993    1.0000 

If you want only four portfolios in the previous example:

pwgt = estimateFrontier(p, 4);

disp(pwgt)

0.8670    0.3825    0.0000    0.0000
0.0413    0.2667    0.3392    0.0000
0.0488    0.1012    0.1568    0.0000
0.0429    0.2496    0.5040    1.0000

Starting from the initial portfolio, estimateFrontier also returns purchases and sales to get from
your initial portfolio to each efficient portfolio on the efficient frontier. For example, given an initial
portfolio in pwgt0, you can obtain purchases and sales:
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pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

  Columns 1 through 8

    0.8670    0.7046    0.5421    0.3825    0.2236    0.0570    0.0000    0.0000
    0.0413    0.1193    0.1963    0.2667    0.3392    0.4159    0.3392    0.1753
    0.0488    0.0640    0.0811    0.1012    0.1169    0.1427    0.1568    0.1754
    0.0429    0.1120    0.1806    0.2496    0.3203    0.3844    0.5040    0.6493

  Columns 9 through 10

    0.0000    0.0000
    0.0230    0.0000
    0.1777    0.0000
    0.7993    1.0000

pbuy =

  Columns 1 through 8

    0.5670    0.4046    0.2421    0.0825         0         0         0         0
         0         0         0         0    0.0392    0.1159    0.0392         0
         0         0         0         0         0         0         0         0
         0    0.0120    0.0806    0.1496    0.2203    0.2844    0.4040    0.5493

  Columns 9 through 10

         0         0
         0         0
         0         0
    0.6993    0.9000

psell =

  Columns 1 through 8

         0         0         0         0    0.0764    0.2430    0.3000    0.3000
    0.2587    0.1807    0.1037    0.0333         0         0         0    0.1247
    0.1512    0.1360    0.1189    0.0988    0.0831    0.0573    0.0432    0.0246
    0.0571         0         0         0         0         0         0         0

  Columns 9 through 10

    0.3000    0.3000
    0.2770    0.3000
    0.0223    0.2000
         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
PortfolioCVaR | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver

Related Examples
• “Obtaining Endpoints of the Efficient Frontier” on page 5-84
• “Obtaining Efficient Portfolios for Target Returns” on page 5-87
• “Obtaining Efficient Portfolios for Target Risks” on page 5-90
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• “Obtaining CVaR Portfolio Risks and Returns” on page 5-100
• “Obtaining Portfolio Standard Deviation and VaR” on page 5-101
• “Plotting the Efficient Frontier for a PortfolioCVaR Object” on page 5-103
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Obtaining Endpoints of the Efficient Frontier
Often, you might be interested in the endpoint portfolios for the efficient frontier. Suppose that you
want to determine the range of returns from minimum to maximum to refine a search for a portfolio
with a specific target return. Use the estimateFrontierLimits function to obtain the endpoint
portfolios:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);
pwgt = estimateFrontierLimits(p);

disp(pwgt)

0.8646    0.0000
0.0470    0.0000
0.0414    0.0000
0.0470    1.0000

Note The endpoints of the efficient frontier depend upon the Scenarios in the PortfolioCVaR
object. If you change the Scenarios, you are likely to obtain different endpoints.

Starting from an initial portfolio, estimateFrontierLimits also returns purchases and sales to get
from the initial portfolio to the endpoint portfolios on the efficient frontier. For example, given an
initial portfolio in pwgt0, you can obtain purchases and sales:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierLimits(p);
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display(pwgt)
display(pbuy)
display(psell)

pwgt =

    0.8624    0.0000
    0.0513    0.0000
    0.0452    0.0000
    0.0411    1.0000

pbuy =

    0.5624         0
         0         0
         0         0
         0    0.9000

psell =

         0    0.3000
    0.2487    0.3000
    0.1548    0.2000
    0.0589         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
PortfolioCVaR | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
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• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Obtaining Efficient Portfolios for Target Returns
To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn
function accepts one or more target portfolio returns and obtains efficient portfolios with the
specified returns. For example, assume that you have a universe of four assets where you want to
obtain efficient portfolios with target portfolio returns of 7%, 10%, and 12%:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierByReturn(p, [0.07,  0.10, .12]);
display(pwgt)

pwgt =

    0.7526    0.3773    0.1306
    0.1047    0.3079    0.4348
    0.0662    0.1097    0.1426
    0.0765    0.2051    0.2920

Sometimes, you can request a return for which no efficient portfolio exists. Based on the previous
example, suppose that you want a portfolio with a 4% return (which is the return of the first asset). A
portfolio that is fully invested in the first asset, however, is inefficient. estimateFrontierByReturn
warns if your target returns are outside the range of efficient portfolio returns and replaces it with
the endpoint portfolio of the efficient frontier closest to your target return:
 pwgt = estimateFrontierByReturn(p, [0.04]);

Warning: One or more target return values are outside the feasible range [
0.066388, 0.178834 ].
    Will return portfolios associated with endpoints of the range for these values. 
> In PortfolioCVaR.estimateFrontierByReturn at 93 

The best way to avoid this situation is to bracket your target portfolio returns with
estimateFrontierLimits and estimatePortReturn (see “Obtaining Endpoints of the Efficient
Frontier” on page 5-84 and “Obtaining CVaR Portfolio Risks and Returns” on page 5-100).

pret = estimatePortReturn(p, p.estimateFrontierLimits);

display(pret)

pret =

    0.0664
    0.1788

This result indicates that efficient portfolios have returns that range from 6.5% to 17.8%. Note, your
results for these examples may be different due to the random generation of scenarios.
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If you have an initial portfolio, estimateFrontierByReturn also returns purchases and sales to get
from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial
portfolio in pwgt0, to obtain purchases and sales with target returns of 7%, 10%, and 12%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierByReturn(p, [0.07,  0.10, .12]);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

    0.7526    0.3773    0.1306
    0.1047    0.3079    0.4348
    0.0662    0.1097    0.1426
    0.0765    0.2051    0.2920

pbuy =

    0.4526    0.0773         0
         0    0.0079    0.1348
         0         0         0
         0    0.1051    0.1920

psell =

         0         0    0.1694
    0.1953         0         0
    0.1338    0.0903    0.0574
    0.0235         0         0

If you do not have an initial portfolio, the purchase and sale weights assume that your initial portfolio
is 0.

See Also
PortfolioCVaR | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128
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More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Obtaining Efficient Portfolios for Target Risks
To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio risks and obtains efficient portfolios with the specified
risks. Suppose that you have a universe of four assets where you want to obtain efficient portfolios
with target portfolio risks of 12%, 14%, and 16%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);

pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt)

pwgt =

    0.3594    0.2524    0.1543
    0.3164    0.3721    0.4248
    0.1044    0.1193    0.1298
    0.2199    0.2563    0.2910

Sometimes, you can request a risk for which no efficient portfolio exists. Based on the previous
example, suppose that you want a portfolio with 6% risk (individual assets in this universe have risks
ranging from 7% to 42.5%). It turns out that a portfolio with 6% risk cannot be formed with these
four assets. estimateFrontierByRisk warns if your target risks are outside the range of efficient
portfolio risks and replaces it with the endpoint of the efficient frontier closest to your target risk:

pwgt = estimateFrontierByRisk(p, 0.06)

Warning: One or more target risk values are outside the feasible range [
0.0735749, 0.436667 ].
    Will return portfolios associated with endpoints of the range for these values. 
> In PortfolioCVaR.estimateFrontierByRisk at 80 

pwgt =

    0.7899
    0.0856
    0.0545
    0.0700

The best way to avoid this situation is to bracket your target portfolio risks with
estimateFrontierLimits and estimatePortRisk (see “Obtaining Endpoints of the Efficient
Frontier” on page 5-84 and “Obtaining CVaR Portfolio Risks and Returns” on page 5-100).

prsk = estimatePortRisk(p, p.estimateFrontierLimits);

display(prsk)

prsk =
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    0.0736
    0.4367

This result indicates that efficient portfolios have risks that range from 7% to 42.5%. Note, your
results for these examples may be different due to the random generation of scenarios.

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases and sales to get
from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial
portfolio in pwgt0, you can obtain purchases and sales from the example with target risks of 12%,
14%, and 16%:

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

    0.3594    0.2524    0.1543
    0.3164    0.3721    0.4248
    0.1044    0.1193    0.1298
    0.2199    0.2563    0.2910

pbuy =

    0.0594         0         0
    0.0164    0.0721    0.1248
         0         0         0
    0.1199    0.1563    0.1910

psell =

         0    0.0476    0.1457
         0         0         0
    0.0956    0.0807    0.0702
         0         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
PortfolioCVaR | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
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• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Choosing and Controlling the Solver for PortfolioCVaR
Optimizations

When solving portfolio optimizations for a PortfolioCVaR object, you are solving nonlinear
optimization problems with either nonlinear objective or nonlinear constraints. You can use
'TrustRegionCP' (default), 'ExtendedCP', or 'cuttingplane' solvers that implement Kelley’s
cutting plane method (see Kelley [45] at “Portfolio Optimization” on page A-5). Alternatively, you
can use fmincon and all variations of fmincon from Optimization Toolbox are supported. When
using fmincon as the solverType, 'sqp' is the default algorithm for fmincon.

Using 'TrustRegionCP', 'ExtendedCP', and 'cuttingplane' SolverTypes
The 'TrustRegionCP', 'ExtendedCP', and 'cuttingplane' solvers have options to control the
number iterations and stopping tolerances. Moreover, these solvers use linprog as the master
solver, and all linprog options are supported using optimoptions structures. All these options are
set using setSolver.

For example, you can use setSolver to increase the number of iterations for 'TrustRegionCP':

p = PortfolioCVaR;
p = setSolver(p, 'TrustRegionCP', 'MaxIterations', 2000);
display(p.solverType)
display(p.solverOptions)

trustregioncp
                MaxIterations: 2000
         AbsoluteGapTolerance: 1.0000e-07
         RelativeGapTolerance: 1.0000e-05
       NonlinearScalingFactor: 1000
       ObjectiveScalingFactor: 1000
          MasterSolverOptions: [1×1 optim.options.Linprog]
                      Display: 'off'
                CutGeneration: 'basic'
     MaxIterationsInactiveCut: 30
           ActiveCutTolerance: 1.0000e-07
                  ShrinkRatio: 0.7500
    TrustRegionStartIteration: 2
                   DeltaLimit: 1

To change the master solver algorithm to 'interior-point', with no display, use setSolver to
modify 'MasterSolverOptions':
p = PortfolioCVaR;
options = optimoptions('linprog','Algorithm','interior-point','Display','off');
p = setSolver(p,'TrustRegionCP','MasterSolverOptions',options);
display(p.solverType)
display(p.solverOptions)
display(p.solverOptions.MasterSolverOptions.Algorithm)
display(p.solverOptions.MasterSolverOptions.Display)

trustregioncp
                MaxIterations: 1000
         AbsoluteGapTolerance: 1.0000e-07
         RelativeGapTolerance: 1.0000e-05
       NonlinearScalingFactor: 1000
       ObjectiveScalingFactor: 1000
          MasterSolverOptions: [1×1 optim.options.Linprog]
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                      Display: 'off'
                CutGeneration: 'basic'
     MaxIterationsInactiveCut: 30
           ActiveCutTolerance: 1.0000e-07
                  ShrinkRatio: 0.7500
    TrustRegionStartIteration: 2
                   DeltaLimit: 1

interior-point
off

Using 'fmincon' SolverType
Unlike Optimization Toolbox which uses the interior-point algorithm as the default algorithm for
fmincon, the portfolio optimization for a PortfolioCVaR object uses the sqp algorithm. For details
about fmincon and constrained nonlinear optimization algorithms and options, see “Constrained
Nonlinear Optimization Algorithms”.

To modify fmincon options for CVaR portfolio optimizations, use setSolver to set the hidden
properties solverType and solverOptions to specify and control the solver. (Note that you can
see the default options by creating a dummy PortfolioCVaR object, using p = PortfolioCVaR
and then type p.solverOptions.) Since these solver properties are hidden, you cannot set them
using the PortfolioCVaR object. The default for the fmincon solver is to use the sqp algorithm
objective function, gradients turned on, and no displayed output, so you do not need to use
setSolver to specify the sqp algorithm.
p = PortfolioCVaR;
p = setSolver(p, 'fmincon');
display(p.solverOptions)

fmincon options:

   Options used by current Algorithm ('sqp'):
   (Other available algorithms: 'active-set', 'interior-point', 'sqp-legacy', 'trust-region-reflective')

   Set properties:
                    Algorithm: 'sqp'
          ConstraintTolerance: 1.0000e-08
                      Display: 'off'
          OptimalityTolerance: 1.0000e-08
    SpecifyConstraintGradient: 1
     SpecifyObjectiveGradient: 1
                StepTolerance: 1.0000e-08

   Default properties:
               CheckGradients: 0
     FiniteDifferenceStepSize: 'sqrt(eps)'
         FiniteDifferenceType: 'forward'
       MaxFunctionEvaluations: '100*numberOfVariables'
                MaxIterations: 400
               ObjectiveLimit: -1.0000e+20
                    OutputFcn: []
                      PlotFcn: []
                 ScaleProblem: 0
                     TypicalX: 'ones(numberOfVariables,1)'
                  UseParallel: 0 
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If you want to specify additional options associated with the fmincon solver, setSolver accepts
these options as name-value pair arguments. For example, if you want to use fmincon with the
'active-set' algorithm and with no displayed output, use setSolver with:
p = PortfolioCVaR;
p = setSolver(p, 'fmincon','Algorithm','active-set','Display','off');
display(p.solverOptions.Algorithm)
display(p.solverOptions.Display)

active-set
off

Alternatively, setSolver accepts an optimoptions object from Optimization Toolbox as the second
argument. For example, you can change the algorithm to 'trust-region-reflective' with no
displayed output as follows:
p = PortfolioCVaR;
options = optimoptions('fmincon','Algorithm','trust-region-reflective', 'Display', 'off');
p = setSolver(p, 'fmincon', options);
display(p.solverOptions.Algorithm)
display(p.solverOptions.Display)

trust-region-reflective
off

Using the Mixed Integer Nonlinear Programming (MINLP) Solver
The mixed integer nonlinear programming (MINLP) solver, configured using setSolverMINLP,
enables you to specify associated solver options for portfolio optimization for a PortfolioCVaR
object. The MINLP solver is used when any one, or any combination of 'Conditional' BoundType,
MinNumAssets, or MaxNumAssets constraints are active. In this case, the portfolio problem is
formulated by adding NumAssets binary variables, where 0 indicates not invested, and 1 is invested.
For more information on using 'Conditional' BoundType, see setBounds. For more information
on specifying MinNumAssets and MaxNumAssets, see setMinMaxNumAssets.

When using the estimate functions with a PortfolioCVaR object where 'Conditional'
BoundType, MinNumAssets, or MaxNumAssets constraints are active, the mixed integer nonlinear
programming (MINLP) solver is automatically used.

Solver Guidelines for PortfolioCVaR Objects
The following table provides guidelines for using setSolver and setSolverMINLP.
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PortfolioCVaR
Problem

PortfolioCVaR
Function

Type of
Optimization
Problem

Main Solver Helper Solver

PortfolioCVaR
without active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByRisk

Optimizing a
portfolio for a
certain risk level
introduces a
nonlinear
constraint.
Therefore, this
problem has a
linear objective
with linear and
nonlinear
constraints.

'TrustRegionCP
', 'ExtendedCP',
'fmincon', or
'cuttingplane'
using setSolver

'linprog' using
setSolver

PortfolioCVaR
without active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByReturn

Nonlinear
objective with
linear constraints

'TrustRegionCP
', 'ExtendedCP',
'fmincon', or
'cuttingplane'
using setSolver

'linprog' using
setSolver

PortfolioCVaR
without active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erLimits

Nonlinear or linear
objective with
linear constraints

For ‘min’:
nonlinear
objective,
'TrustRegionCP
', 'ExtendedCP',
'fmincon', or
'cuttingplane'
using setSolver

For ‘max’: linear
objective,
'linprog' using
setSolver

Not applicable
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PortfolioCVaR
Problem

PortfolioCVaR
Function

Type of
Optimization
Problem

Main Solver Helper Solver

PortfolioCVaR with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByRisk

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'fmincon' is used
when the
estimate
functions reduce
the problem into
NLP. This solver is
configured through
setSolver.

PortfolioCVaR with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByReturn

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'fmincon' is used
when the
estimate
functions reduce
the problem into
NLP. This solver is
configured through
setSolver
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PortfolioCVaR
Problem

PortfolioCVaR
Function

Type of
Optimization
Problem

Main Solver Helper Solver

PortfolioCVaR with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erLimits

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'fmincon' is used
when the
estimate
functions reduce
the problem into
NLP. This solver is
configured through
setSolver

See Also
PortfolioCVaR | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver | setSolverMINLP

Related Examples
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

Portfolio Objects” on page 4-78
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External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Estimate Efficient Frontiers for PortfolioCVaR Object
In this section...
“Obtaining CVaR Portfolio Risks and Returns” on page 5-100
“Obtaining Portfolio Standard Deviation and VaR” on page 5-101

Whereas “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
focused on estimation of efficient portfolios, this section focuses on the estimation of efficient
frontiers. For information on the workflow when using PortfolioCVaR objects, see “PortfolioCVaR
Object Workflow” on page 5-15.

Obtaining CVaR Portfolio Risks and Returns
Given any portfolio and, in particular, efficient portfolios, the functions estimatePortReturn and
estimatePortRisk provide estimates for the return (or return proxy), risk (or the risk proxy). Each
function has the same input syntax but with different combinations of outputs. Suppose that you have
this following portfolio optimization problem that gave you a collection of portfolios along the
efficient frontier in pwgt:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);
pwgt = estimateFrontier(p);

Note Remember that the risk proxy for CVaR portfolio optimization is CVaR.

Given pwgt0 and pwgt, use the portfolio risk and return estimation functions to obtain risks and
returns for your initial portfolio and the portfolios on the efficient frontier:

prsk0 = estimatePortRisk(p, pwgt0);
pret0 = estimatePortReturn(p, pwgt0);
prsk = estimatePortRisk(p, pwgt);
pret = estimatePortReturn(p, pwgt);

You obtain these risks and returns:

display(prsk0)
display(pret0)
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display(prsk)
display(pret)

prsk0 =

    0.0591

pret0 =

    0.0067

prsk =

    0.0414
    0.0453
    0.0553
    0.0689
    0.0843
    0.1006
    0.1193
    0.1426
    0.1689
    0.1969

pret =

    0.0050
    0.0060
    0.0070
    0.0080
    0.0089
    0.0099
    0.0109
    0.0119
    0.0129
    0.0139

Obtaining Portfolio Standard Deviation and VaR
The PortfolioCVaR object has functions to compute standard deviations of portfolio returns and the
value-at-risk of portfolios with the functions estimatePortStd and estimatePortVaR. These
functions work with any portfolios, not necessarily efficient portfolios. For example, the following
example obtains five portfolios (pwgt) on the efficient frontier and also has an initial portfolio in
pwgt0. Various portfolio statistics are computed that include the return, risk, standard deviation, and
value-at-risk. The listed estimates are for the initial portfolio in the first row followed by estimates for
each of the five efficient portfolios in subsequent rows.

m = [ 0.0042; 0.0083; 0.01; 0.15 ];
C = [ 0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
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p = PortfolioCVaR('initport', pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);

pwgt = estimateFrontier(p, 5);

pret = estimatePortReturn(p, [pwgt0, pwgt]);
prsk = estimatePortRisk(p, [pwgt0, pwgt]);
pstd = estimatePortStd(p, [pwgt0, pwgt]);
pvar = estimatePortVaR(p, [pwgt0, pwgt]);

[pret, prsk, pstd, pvar]

ans =

    0.0207    0.0464    0.0381    0.0283
    0.1009    0.0214    0.0699   -0.0109
    0.1133    0.0217    0.0772   -0.0137
    0.1256    0.0226    0.0849   -0.0164
    0.1380    0.0240    0.0928   -0.0182
    0.1503    0.0262    0.1011   -0.0197

See Also
PortfolioCVaR | estimatePortReturn | plotFrontier | estimatePortStd |
estimatePortVaR

Related Examples
• “Plotting the Efficient Frontier for a PortfolioCVaR Object” on page 5-103
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-108
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Plotting the Efficient Frontier for a PortfolioCVaR Object
The plotFrontier function creates a plot of the efficient frontier for a given portfolio optimization
problem. This function accepts several types of inputs and generates a plot with an optional
possibility to output the estimates for portfolio risks and returns along the efficient frontier.
plotFrontier has four different ways that it can be used. In addition to a plot of the efficient
frontier, if you have an initial portfolio in the InitPort property, plotFrontier also displays the
return versus risk of the initial portfolio on the same plot. If you have a well-posed portfolio
optimization problem set up in a PortfolioCVaR object and you use plotFrontier, you get a plot
of the efficient frontier with the default number of portfolios on the frontier (the default number is
currently 10 and is maintained in the hidden property defaultNumPorts). This example illustrates a
typical use of plotFrontier to create a new plot:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

plotFrontier(p)

The Name property appears as the title of the efficient frontier plot if you set it in the
PortfolioCVaR object. Without an explicit name, the title on the plot would be “Efficient Frontier.”
If you want to obtain a specific number of portfolios along the efficient frontier, use plotFrontier
with the number of portfolios that you want. Suppose that you have the PortfolioCVaR object from
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the previous example and you want to plot 20 portfolios along the efficient frontier and to obtain 20
risk and return values for each portfolio:

[prsk, pret] = plotFrontier(p, 20);
display([pret, prsk])

ans =

    0.0051    0.0406
    0.0056    0.0414
    0.0061    0.0437
    0.0066    0.0471
    0.0071    0.0515
    0.0076    0.0567
    0.0082    0.0624
    0.0087    0.0687
    0.0092    0.0753
    0.0097    0.0821
    0.0102    0.0891
    0.0107    0.0962
    0.0112    0.1044
    0.0117    0.1142
    0.0122    0.1251
    0.0127    0.1369
    0.0133    0.1496
    0.0138    0.1628
    0.0143    0.1766
    0.0148    0.1907
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Plotting Existing Efficient Portfolios
If you already have efficient portfolios from any of the "estimateFrontier" functions (see “Estimate
Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81), pass them into
plotFrontier directly to plot the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p, 20);
plotFrontier(p, pwgt)

Plotting Existing Efficient Portfolio Risks and Returns
If you already have efficient portfolio risks and returns, you can use the interface to plotFrontier
to pass them into plotFrontier to obtain a plot of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
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AssetScenarios = mvnrnd(m, C, 20000);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);

pret= estimatePortReturn(p, pwgt);
prsk = estimatePortRisk(p, pwgt);

plotFrontier(p, prsk, pret)

See Also
PortfolioCVaR | estimatePortReturn | plotFrontier | estimatePortStd |
estimatePortVaR

Related Examples
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-108
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
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• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Postprocessing Results to Set Up Tradable Portfolios
After obtaining efficient portfolios or estimates for expected portfolio risks and returns, use your
results to set up trades to move toward an efficient portfolio. For information on the workflow when
using PortfolioCVaR objects, see “PortfolioCVaR Object Workflow” on page 5-15.

Setting Up Tradable Portfolios
Suppose that you set up a portfolio optimization problem and obtained portfolios on the efficient
frontier. Use the dataset object from Statistics and Machine Learning Toolbox to form a blotter that
lists your portfolios with the names for each asset. For example, suppose that you want to obtain five
portfolios along the efficient frontier. You can set up a blotter with weights multiplied by 100 to view
the allocations for each portfolio:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR;
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = setInitPort(p, pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);
display(Blotter)

Blotter = 

                          Port1     Port2     Port3     Port4     Port5     
    Bonds                  78.84    43.688    8.3448         0    1.2501e-12
    Large-Cap Equities    9.3338    29.131    48.467    23.602    9.4219e-13
    Small-Cap Equities    4.8843    8.1284    12.419    16.357     8.281e-14
    Emerging Equities     6.9419    19.053    30.769    60.041           100

Note Your results may differ from this result due to the simulation of scenarios.

This result indicates that you would invest primarily in bonds at the minimum-risk/minimum-return
end of the efficient frontier (Port1), and that you would invest completely in emerging equity at the
maximum-risk/maximum-return end of the efficient frontier (Port5). You can also select a particular
efficient portfolio, for example, suppose that you want a portfolio with 15% risk and you add purchase
and sale weights outputs obtained from the “estimateFrontier” functions to set up a trade blotter:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR;
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);
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p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, 0.15);

Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...
{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);
display(Blotter)

Blotter = 

                          Initial    Weight    Purchases    Sales 
    Bonds                 30         15.036         0       14.964
    Large-Cap Equities    30         45.357    15.357            0
    Small-Cap Equities    20         12.102         0       7.8982
    Emerging Equities     10         27.505    17.505            0

If you have prices for each asset (in this example, they can be ETFs), add them to your blotter and
then use the tools of the dataset object to obtain shares and shares to be traded.

See Also
PortfolioCVaR | estimateScenarioMoments | checkFeasibility

Related Examples
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Working with Other Portfolio Objects
The PortfolioCVaR object is for CVaR portfolio optimization. The Portfolio object is for mean-
variance portfolio optimization. Sometimes, you might want to examine portfolio optimization
problems according to different combinations of return and risk proxies. A common example is that
you want to do a CVaR portfolio optimization and then want to work primarily with moments of
portfolio returns. Suppose that you set up a CVaR portfolio optimization problem with:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR;
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = setInitPort(p, pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);

To work with the same problem in a mean-variance framework, you can use the scenarios from the
PortfolioCVaR object to set up a Portfolio object so that p contains a CVaR optimization
problem and q contains a mean-variance optimization problem based on the same data.

q = Portfolio('AssetList', p.AssetList);
q = estimateAssetMoments(q, p.getScenarios);
q = setDefaultConstraints(q);

pwgt = estimateFrontier(p);
qwgt = estimateFrontier(q);

Since each object has a different risk proxy, it is not possible to compare results side by side. To
obtain means and standard deviations of portfolio returns, you can use the functions associated with
each object to obtain:

pret = estimatePortReturn(p, pwgt);
pstd = estimatePortStd(p, pwgt);
qret = estimatePortReturn(q, qwgt);
qstd = estimatePortStd(q, qwgt);

[pret, qret]
[pstd, qstd]

ans =

    0.0665    0.0585
    0.0787    0.0716
    0.0910    0.0848
    0.1033    0.0979
    0.1155    0.1111
    0.1278    0.1243
    0.1401    0.1374
    0.1523    0.1506
    0.1646    0.1637
    0.1769    0.1769

ans =

5 CVaR Portfolio Optimization Tools

5-110



    0.0797    0.0774
    0.0912    0.0835
    0.1095    0.0995
    0.1317    0.1217
    0.1563    0.1472
    0.1823    0.1746
    0.2135    0.2059
    0.2534    0.2472
    0.2985    0.2951
    0.3499    0.3499

To produce comparable results, you can use the returns or risks from one portfolio optimization as
target returns or risks for the other portfolio optimization.

qwgt = estimateFrontierByReturn(q, pret);
qret = estimatePortReturn(q, qwgt);
qstd = estimatePortStd(q, qwgt);

[pret, qret]
[pstd, qstd]

ans =

    0.0665    0.0665
    0.0787    0.0787
    0.0910    0.0910
    0.1033    0.1033
    0.1155    0.1155
    0.1278    0.1278
    0.1401    0.1401
    0.1523    0.1523
    0.1646    0.1646
    0.1769    0.1769

ans =

    0.0797    0.0797
    0.0912    0.0912
    0.1095    0.1095
    0.1317    0.1317
    0.1563    0.1563
    0.1823    0.1823
    0.2135    0.2135
    0.2534    0.2534
    0.2985    0.2985
    0.3499    0.3499

Now it is possible to compare standard deviations of portfolio returns from either type of portfolio
optimization.

See Also
PortfolioCVaR | Portfolio
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Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15
• “Portfolio Object Workflow” on page 4-17

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Troubleshooting CVaR Portfolio Optimization Results

PortfolioCVaR Object Destroyed When Modifying
If a PortfolioCVaR object is destroyed when modifying, remember to pass an existing object into
the PortfolioCVaR object if you want to modify it, otherwise it creates a new object. See “Creating
the PortfolioCVaR Object” on page 5-21 for details.

Matrix Incompatibility and "Non-Conformable" Errors
If you get matrix incompatibility or "non-conformable" errors, the representation of data in the tools
follows a specific set of basic rules described in “Conventions for Representation of Data” on page 5-
19.

CVaR Portfolio Optimization Warns About “Max Iterations”
If the 'cuttingplane' solver displays the following warning:
Warning: Max iterations reached. Consider modifying the solver options, or using fmincon. 
> In @PortfolioCVaR\private\cvar_cuttingplane_solver at 255
  In @PortfolioCVaR\private\cvar_optim_min_risk at 85
  In PortfolioCVaR.estimateFrontier at 69

this warning indicates that some of the reported efficient portfolios may not be accurate enough.

This warning is usually related to portfolios in the lower-left end of the efficient frontier. The cutting
plane solver may have gotten very close to the solution, but there may be too many portfolios with
very similar risks and returns in that neighborhood, and the solver runs out of iterations before
reaching the desired accuracy.

To correct this problem, you can use setSolver to make any of these changes:

• Increase the maximum number of iterations ('MaxIter').
• Relax the stopping tolerances ('AbsTol' and/or 'RelTol').
• Use a different master solver algorithm ('MasterSolverOptions').
• Alternatively, you can try the 'fmincon' solver.

When the default maximum number of iterations of the 'cuttingplane' solver is reached, the
solver usually needs many more iterations to reach the accuracy required by the default stopping
tolerances. You may want to combine increasing the number of iterations (e.g., multiply by 5) with
relaxing the stopping tolerances (e.g., multiply by 10 or 100). Since the CVaR is a stochastic
optimization problem, the accuracy of the solution is relative to the scenario sample, so a looser
stopping tolerance may be acceptable. Keep in mind that the solution time may increase significantly
when you increase the number of iterations. For example, doubling the number of iterations more
than doubles the solution time. Sometimes using a different master solver (e.g., switching to
'interior-point' if you are using the default 'simplex') can get the 'cuttingplane' solver to
converge without changing the maximum number of iterations.

Alternatively, the 'fmincon' solver may be faster than the 'cuttingplane' solver for problems
where cutting plane reaches the maximum number of iterations.
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CVaR Portfolio Optimization Errors with “Could Not Solve” Message
If the 'cuttingplane' solver generates the following error:
Error using cvar_cuttingplane_solver (line 251)
Could not solve the problem. Consider modifying the solver options, or using fmincon.

Error in cvar_optim_by_return (line 100)
        [x,~,~,exitflag] = cvar_cuttingplane_solver(...

Error in PortfolioCVaR/estimateFrontier (line 80)
    pwgt = cvar_optim_by_return(obj, r(2:end-1), obj.NumAssets, ...

this error means that the master solver failed to solve one of the master problems. The error may be
due to numerical instability or other problem-specific situation.

To correct this problem, you can use setSolver to make any of these changes:

• Modify the master solver options ('MasterSolverOptions'), for example, change the algorithm
('Algorithm') or the termination tolerance ('TolFun').

• Alternatively, you can try the 'fmincon' solver.

Missing Data Estimation Fails
If asset return data has missing or NaN values, the simulateNormalScenariosByData function
with the 'missingdata' flag set to true may fail with either too many iterations or a singular
covariance. To correct this problem, consider this:

• If you have asset return data with no missing or NaN values, you can compute a covariance matrix
that may be singular without difficulties. If you have missing or NaN values in your data, the
supported missing data feature requires that your covariance matrix must be positive-definite,
that is, nonsingular.

• simulateNormalScenariosByData uses default settings for the missing data estimation
procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with either the
ECM estimation functions such as ecmnmle or with your own functions.

cvar_optim_transform Errors
If you obtain optimization errors such as:
Error using cvar_optim_transform (line 276)
Portfolio set appears to be either empty or unbounded. Check constraints.

Error in PortfolioCVaR/estimateFrontier (line 64)
    [AI, bI, AE, bE, lB, uB, f0, f, x0] = cvar_optim_transform(obj);

or

Error using cvar_optim_transform (line 281)
Cannot obtain finite lower bounds for specified portfolio set.

Error in PortfolioCVaR/estimateFrontier (line 64)
    [AI, bI, AE, bE, lB, uB, f0, f, x0] = cvar_optim_transform(obj);

Since the portfolio optimization tools require a bounded portfolio set, these errors (and similar
errors) can occur if your portfolio set is either empty and, if nonempty, unbounded. Specifically, the
portfolio optimization algorithm requires that your portfolio set have at least a finite lower bound.
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The best way to deal with these problems is to use the validation functions in “Validate the CVaR
Portfolio Problem” on page 5-77. Specifically, use estimateBounds to examine your portfolio set,
and use checkFeasibility to ensure that your initial portfolio is either feasible and, if infeasible,
that you have sufficient turnover to get from your initial portfolio to the portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover and gradually
reduce to the value that you want.

Efficient Portfolios Do Not Make Sense
If you obtain efficient portfolios that, do not seem to make sense, this can happen if you forget to set
specific constraints or you set incorrect constraints. For example, if you allow portfolio weights to fall
between 0 and 1 and do not set a budget constraint, you can get portfolios that are 100% invested in
every asset. Although it may be hard to detect, the best thing to do is to review the constraints you
have set with display of the PortfolioCVaR object. If you get portfolios with 100% invested in each
asset, you can review the display of your object and quickly see that no budget constraint is set. Also,
you can use estimateBounds and checkFeasibility to determine if the bounds for your portfolio
set make sense and to determine if the portfolios you obtained are feasible relative to an independent
formulation of your portfolio set.

See Also
PortfolioCVaR | estimateScenarioMoments | checkFeasibility

Related Examples
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-108
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets

Constraints” on page 4-133
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Hedging Using CVaR Portfolio Optimization” on page 5-116
• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

 Troubleshooting CVaR Portfolio Optimization Results

5-115

https://www.mathworks.com/videos/analyzing-investment-strategies-with-cvar-portfolio-optimization-in-matlab-81942.html


Hedging Using CVaR Portfolio Optimization
This example shows how to model two hedging strategies using CVaR portfolio optimization with a
PortfolioCVaR object. First, you simulate the price movements of a stock by using a gbm object
with simByEuler. Then you use CVaR portfolio optimization to estimate the efficient frontier of the
portfolios for the returns at the horizon date. Finally, you compare the CVaR portfolio to a mean-
variance portfolio to demonstrate the differences between these two types of risk measures.

Monte Carlo Simulation of Asset Scenarios

Scenarios are required to define and evaluate the CVaR portfolio. These scenarios can be generated
in multiple ways, as well as obtained from historical observations. This example uses a Monte Carlo
simulation of a geometric Brownian motion to generate the scenarios. The Monte Carlo simulation
produces trials of a stock price after one year. These stock prices provide the returns of five different
investment strategies that define the assets in the CVaR portfolio. This scenario generation strategy
can be further generalized to simulations with more stocks, instruments, and strategies.

Define a stock profile.

% Price at time 0
Price_0 = 200;

% Drift (annualized)
Drift = 0.08;

% Volatility (annualized)
Vol = 0.4;

% Valuation date
Valuation = datetime(2012,1,1);

% Investment horizon date
Horizon = datetime(2013,1,1);

% Risk-free rate
RiskFreeRate = 0.03;

Simulate the price movements of the stock from the valuation date to the horizon date using a gbm
object with simByEuler.

% Number of trials for the Monte Carlo simulation
NTRIALS = 100000;

% Length (in years) of the simulation
T = date2time(Valuation, Horizon, 1, 1);

% Number of periods per trial (approximately 100 periods per year)
NPERIODS = round(100*T);

% Length (in years) of each time step per period
dt = T/NPERIODS;

% Instantiate the gbm object
StockGBM = gbm(Drift, Vol, 'StartState', Price_0);

% Run the simulation
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Paths = StockGBM.simByEuler(NPERIODS, 'NTRIALS', NTRIALS, ...
    'DeltaTime', dt, 'Antithetic', true);

Plot the simulation of the stock. For efficiency, plot only some scenarios.

plot(squeeze(Paths(:,:,1:500)));
title('Simulation of a Stock');
xlabel('Time');
ylabel('Price');

Calculate the prices of different put options using a Black-Scholes model with the blsprice function.

% Put option with strike at 50% of current underlying price
Strike50 = 0.50*Price_0;
[~, Put50] = blsprice(Price_0, Strike50, RiskFreeRate, T, Vol);

% Put option with strike at 75% of current underlying price
Strike75 = 0.75*Price_0;
[~, Put75] = blsprice(Price_0, Strike75, RiskFreeRate, T, Vol);

% Put option with strike at 90% of current underlying price
Strike90 = 0.90*Price_0;
[~, Put90] = blsprice(Price_0, Strike90, RiskFreeRate, T, Vol);

% Put option with strike at 95% of current underlying price
Strike95 = 0.95*Price_0; % Same as strike
[~, Put95] = blsprice(Price_0, Strike95, RiskFreeRate, T, Vol);
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The goal is to find the efficient portfolio frontier for the returns at the horizon date. Hence, obtain the
scenarios from the trials of the Monte Carlo simulation at the end of the simulation period.

Price_T = squeeze(Paths(end, 1, :));

Generate the scenario matrix using five strategies. The first strategy is a stock-only strategy; the rest
of the strategies are the stock hedged with put options at different strike price levels. To compute the
returns from the prices obtained by the Monte Carlo simulation for the stock-only strategy, divide the
change in the stock price (Price_T - Price_0) by the initial price Price_0. To compute the
returns of the stock with different put options, first compute the "observed price" at the horizon date,
that is, the stock price with the acquired put option taken into account. If the stock price at the
horizon date is less than the strike price, the observed price is the strike price. Otherwise, the
observed price is the true stock price. This observed price is represented by the formula

Observed price = max PriceT, Strike .

You can then compute the "initial cost" of the stock with the put option, which is given by the initial
stock price Price_0 plus the price of the put option. Finally, to compute the return of the put option
strategies, divide the observed price minus the initial cost by the initial cost.

AssetScenarios = zeros(NTRIALS, 5);

% Strategy 1: Stock only
AssetScenarios(:, 1) = (Price_T - Price_0) ./ Price_0;

% Strategy 2: Put option cover at 50%
AssetScenarios(:, 2) = (max(Price_T, Strike50) - (Price_0 + Put50)) ./ ...
    (Price_0 + Put50);

% Strategy 2: Put option cover at 75%
AssetScenarios(:, 3) = (max(Price_T, Strike75) - (Price_0 + Put75)) ./ ...
    (Price_0 + Put75);

% Strategy 2: Put option cover at 90%
AssetScenarios(:, 4) = (max(Price_T, Strike90) - (Price_0 + Put90)) ./ ...
    (Price_0 + Put90);

% Strategy 2: Put option cover at 95%
AssetScenarios(:, 5) = (max(Price_T, Strike95) - (Price_0 + Put95)) ./ ...
    (Price_0 + Put95);

The portfolio weights associated with each of the five assets previously defined represent the
percentage of the total weatlh to invest in each strategy. For example, consider a portfolio with the
weights [0.5 0 0.5 0]. The weights indicate that the best allocation is to invest 50% in the stock-
only strategy and the remaining 50% in a put option at 75%.

Plot the distribution of the returns for the stock-only strategy and the put option at the 95% strategy.
Notice that the returns are not normally distributed. For a mean-variance portfolio, a lack of
symmetry in the plotted returns usually indicates poor mean-variance portfolio performance since
variance, as a risk measure, is not sensitive to skewed distributions.

% Create histogram
figure;

% Stock only
subplot(2,1,1);
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histogram(AssetScenarios(:,1),'Normalization','probability')
title('Stock-Only Distribution')
xlabel('Return')
ylabel('Relative Probability')

% Put option cover
subplot(2,1,2);
histogram(AssetScenarios(:,2),'Normalization','probability')
title('Put Option at 95% Distribution')
xlabel('Return')
ylabel('Relative Probability')

CVaR Efficient Frontier

Create a PortfolioCVaR object using the AssetScenarios from the simulation.

p = PortfolioCVaR('Name','CVaR Portfolio Five Hedging Levels',...
   'AssetList',{'Stock','Hedge50','Hedge75','Hedge90','Hedge95'},...
   'Scenarios', AssetScenarios, 'LowerBound', 0, ...
   'Budget', 1, 'ProbabilityLevel', 0.95);

% Estimate the efficient frontier to obtain portfolio weights
pwgt = estimateFrontier(p);

% Plot the efficient frontier
figure;
plotFrontier(p, pwgt);
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CVaR and Mean-Variance Efficient Frontier Comparison

Create the Portfolio object. Use AssetScenarios from the simulation to estimate the assets
moments. Notice that, unlike for the PortfolioCVaR object, only an estimate of the assets moments
is required to fully specify a mean-variance portfolio.

pmv = Portfolio('Name','Mean-Variance Portfolio Five Hedging Levels',...
   'AssetList',{'Stock','Hedge50','Hedge75','Hedge90','Hedge95'});
pmv = estimateAssetMoments(pmv, AssetScenarios);
pmv = setDefaultConstraints(pmv);

% Estimate the efficient frontier to obtain portfolio weights
pwgtmv = estimateFrontier(pmv);

% Plot the efficient frontier
figure;
plotFrontier(pmv, pwgtmv);
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Select a target return. In this case, the target return is the midpoint return on the CVaR portfolio
efficient frontier.

% Achievable levels of return
pretlimits = estimatePortReturn(p, estimateFrontierLimits(p));
TargetRet = mean(pretlimits); % Target half way up the frontier

Plot the efficient CVaR portfolio for the return TargetRet on the CVaR efficient frontier.

% Obtain risk level at target return
pwgtTarget = estimateFrontierByReturn(p,TargetRet); % CVaR efficient portfolio
priskTarget = estimatePortRisk(p,pwgtTarget);

% Plot point onto CVaR efficient frontier
figure;
plotFrontier(p,pwgt);
hold on
scatter(priskTarget,TargetRet,[],'filled');
hold off
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Plot the efficient CVaR portfolio for the return TargetRet on the mean-variance efficient frontier.
Notice that the efficient CVaR portfolio is below the mean-variance efficient frontier.

% Obtain the variance for the efficient CVaR portfolio
pmvretTarget = estimatePortReturn(pmv,pwgtTarget); % Should be TargetRet
pmvriskTarget = estimatePortRisk(pmv,pwgtTarget);  % Risk proxy is variance

% Plot efficient CVaR portfolio onto mean-variance frontier
figure;
plotFrontier(pmv,pwgtmv);
hold on
scatter(pmvriskTarget,pmvretTarget,[],'filled');
hold off
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Plot the efficient mean-variance portfolio for the return TargetRet on the CVaR efficient frontier.
Notice that the efficient mean-variance portfolio is below the CVaR efficient frontier.

% Obtain the mean-variance efficient portfolio at target return
pwgtmvTarget = estimateFrontierByReturn(pmv,TargetRet);

% Obtain the CVaR risk for the mean-variance efficient portfolio
pretTargetCVaR = estimatePortReturn(p,pwgtmvTarget); % Should be TargetRet
priskTargetCVaR = estimatePortRisk(p,pwgtmvTarget);  % Risk proxy is CVaR

% Plot mean-variance efficient portfolio onto the CVaR frontier
figure;
plotFrontier(p,pwgt);
hold on
scatter(priskTargetCVaR,pretTargetCVaR,[],'filled');
hold off
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Since mean-variance and CVaR are two different risk measures, this example illustrates that the
efficient portfolio for one type of risk measure is not efficient for the other.

CVaR and Mean-Variance Portfolio Weights Comparison

Examine the portfolio weights of the porfolios that make up each efficient frontier to obtain a more
detailed comparison between the mean-variance and CVaR efficient frontiers.

Plot the weights associated with the mean-variance portfolio efficient frontier.

% Plot the mean-variance portfolio weights
figure;
area(pwgtmv');
legend(pmv.AssetList);
axis([1 10 0 1])
title('Mean-Variance Portfolio Weights Five Hedging Levels');
xlabel('Portfolios from Minimum(1) to Maximum(10) Return');
ylabel('Contribution of each Asset');
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The weights associated with the mean-variance portfolios on the efficient frontier use only two
strategies, 'Stock' and 'Hedge95'. This behavior is an effect of the correlations among the five
assets in the portfolio. Because the correlations between the assests are close to 1, the standard
deviation of the portfolio is almost a linear combination of the standard deviation of the assets.
Hence, because assets with larger returns are associated with assets with larger variance, a linear
combination of only the assets with the smallest and largest returns is observed in the efficient
frontier.

Plot the weights associated with the CVaR portfolio efficient frontier.

% Plot the CVaR portfolio weights
figure;
area(pwgt');
legend(p.AssetList);
axis([1 10 0 1])
title('CVaR Portfolio Weights Five Hedging Levels');
xlabel('Portfolios from Minimum(1) to Maximum(10) Return');
ylabel('Contribution of each Asset');
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For both types of portfolios, mean-variance and CVaR, the portfolio with the maximum expected
return is the one that allocates all the weight to the stock-only strategy. This makes sense because no
put options are acquired, which translates into larger returns. Also, the portfolio with minimum
variance is the same for both risk measures. This portfolio is the one that allocates everything to
'Hedge95' because that strategy limits the possible losses the most. The real differences between
the two types of porfolios are observed for the return levels between the minimum and maximum.
There, in contrast to the efficient portfolios obtained using variance as the measure of risk, the
weights of the CVaR portfolios range among all five possible strategies.

See Also
PortfolioCVaR | getScenarios | setScenarios | estimateScenarioMoments |
simulateNormalScenariosByMoments | simulateNormalScenariosByData | setCosts |
checkFeasibility

Related Examples
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
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• “Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio” on page 5-128

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio
Create a PortfolioCVaR object and incorporate a list of assets from CAPMUniverse.mat. Use
simulateNormalScenariosByData to simulate the scenarios for each of the assets. These portfolio
constraints require fully invested long-only portfolios (nonnegative weights that must sum to 1).

rng(1) % Set the seed for reproducibility.
load CAPMuniverse

p = PortfolioCVaR('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);
p = setProbabilityLevel(p, 0.95);
p = setDefaultConstraints(p);
disp(p)

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: 0.9500
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: 20000
                Name: []
           NumAssets: 12
           AssetList: {1x12 cell}
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [12x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: [12x1 categorical]

To obtain the portfolio that maximizes the reward-to-risk ratio (which is equivalent to the Sharpe ratio
for mean-variance portfolios), search on the efficient frontier iteratively for the porfolio that
minimizes the negative of the reward-to-risk ratio:

− portfolio return− risk free rate
portfolio CVaR .

To do so, use the sratio function, defined in the Local Functions on page 5-0  section, to return
the negative reward-to-risk ratio for a target return. Then, pass this function to fminbnd. fminbnd
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iterates through the possible return values and evaluates their associated reward-to-risk ratio.
fminbnd returns the optimal return for which the maximum reward-to-risk ratio is achieved (or that
minimizes the negative of the reward-to-risk ratio).

% Obtain the minimum and maximum returns of the portfolio.
pwgtLimits = estimateFrontierLimits(p);
retLimits = estimatePortReturn(p,pwgtLimits);
minret = retLimits(1);
maxret = retLimits(2);

% Search on the frontier iteratively. Find the return that minimizes the
% negative of the reward-to-risk ratio.
fhandle = @(ret) iterative_local_obj(ret,p);
options = optimset('Display', 'off', 'TolX', 1.0e-8);
optret = fminbnd(fhandle, minret, maxret, options);

% Obtain the portfolio weights associated with the return that achieves
% the maximum reward-to-risk ratio.
pwgt = estimateFrontierByReturn(p,optret)

pwgt = 12×1

    0.0885
         0
         0
         0
         0
    0.9115
         0
         0
         0
         0
      ⋮

Use plotFrontier to plot the efficient frontier and estimatePortRisk to estimate the maximum
reward-to-risk ratio portfolio.

plotFrontier(p);
hold on
% Compute the risk level for the maximum reward-to-risk ratio portfolio.
optrsk = estimatePortRisk(p,pwgt);
scatter(optrsk,optret,50,'red','filled')
hold off
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Local Functions

This local function that computes the negative of the reward-to-risk ratio for a target return level.

function sratio = iterative_local_obj(ret, obj)
% Set the objective function to the negative of the reward-to-risk ratio.

risk = estimatePortRisk(obj,estimateFrontierByReturn(obj,ret));

if ~isempty(obj.RiskFreeRate)
    sratio = -(ret - obj.RiskFreeRate)/risk;
else
    sratio = -ret/risk;
end

end

See Also
PortfolioCVaR | getScenarios | setScenarios | estimateScenarioMoments |
simulateNormalScenariosByMoments | simulateNormalScenariosByData | setCosts |
checkFeasibility

Related Examples
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-113
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• “Creating the PortfolioCVaR Object” on page 5-21
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
• “Hedging Using CVaR Portfolio Optimization” on page 5-116

More About
• “PortfolioCVaR Object” on page 5-16
• “Portfolio Optimization Theory” on page 5-2
• “PortfolioCVaR Object Workflow” on page 5-15

External Websites
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)
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MAD Portfolio Optimization Tools

• “Portfolio Optimization Theory” on page 6-2
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7
• “Default Portfolio Problem” on page 6-14
• “PortfolioMAD Object Workflow” on page 6-15
• “PortfolioMAD Object” on page 6-16
• “Creating the PortfolioMAD Object” on page 6-21
• “Common Operations on the PortfolioMAD Object” on page 6-28
• “Setting Up an Initial or Current Portfolio” on page 6-32
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
• “Working with a Riskless Asset” on page 6-43
• “Working with Transaction Costs” on page 6-44
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Working with 'Simple' Bound Constraints Using PortfolioMAD Object” on page 6-52
• “Working with Budget Constraints Using PortfolioMAD Object” on page 6-55
• “Working with Group Constraints Using PortfolioMAD Object” on page 6-57
• “Working with Group Ratio Constraints Using PortfolioMAD Object” on page 6-60
• “Working with Linear Equality Constraints Using PortfolioMAD Object” on page 6-63
• “Working with Linear Inequality Constraints Using PortfolioMAD Object” on page 6-65
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

PortfolioMAD Objects” on page 6-67
• “Working with Average Turnover Constraints Using PortfolioMAD Object” on page 6-70
• “Working with One-Way Turnover Constraints Using PortfolioMAD Object” on page 6-73
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Obtaining Endpoints of the Efficient Frontier” on page 6-83
• “Obtaining Efficient Portfolios for Target Returns” on page 6-85
• “Obtaining Efficient Portfolios for Target Risks” on page 6-88
• “Choosing and Controlling the Solver for PortfolioMAD Optimizations” on page 6-91
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Plotting the Efficient Frontier for a PortfolioMAD Object” on page 6-100
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-105
• “Working with Other Portfolio Objects” on page 6-107
• “Troubleshooting MAD Portfolio Optimization Results” on page 6-110

6



Portfolio Optimization Theory
In this section...
“Portfolio Optimization Problems” on page 6-2
“Portfolio Problem Specification” on page 6-2
“Return Proxy” on page 6-3
“Risk Proxy” on page 6-4

Portfolio Optimization Problems
Portfolio optimization problems involve identifying portfolios that satisfy three criteria:

• Minimize a proxy for risk.
• Match or exceed a proxy for return.
• Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe. A portfolio
specifies either holdings or weights in each individual asset in the asset universe. The convention is
to specify portfolios in terms of weights, although the portfolio optimization tools work with holdings
as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The proxy for risk is
a function that characterizes either the variability or losses associated with portfolio choices. The
proxy for return is a function that characterizes either the gross or net benefits associated with
portfolio choices. The terms “risk” and “risk proxy” and “return” and “return proxy” are
interchangeable. The fundamental insight of Markowitz (see “Portfolio Optimization” on page A-5)
is that the goal of the portfolio choice problem is to seek minimum risk for a given level of return and
to seek maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called the efficient
frontier.

Portfolio Problem Specification
To specify a portfolio optimization problem, you need the following:

• Proxy for portfolio return (μ)
• Proxy for portfolio risk (Σ)
• Set of feasible portfolios (X), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization problems:

• The Portfolio object supports mean-variance portfolio optimization (see Markowitz [46], [47] at
“Portfolio Optimization” on page A-5). This object has either gross or net portfolio returns as
the return proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any
combination of the specified constraints to form a portfolio set.

• The PortfolioCVaR object implements what is known as conditional value-at-risk portfolio
optimization (see Rockafellar and Uryasev [48], [49] at “Portfolio Optimization” on page A-5),
which is generally referred to as CVaR portfolio optimization. CVaR portfolio optimization works
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with the same return proxies and portfolio sets as mean-variance portfolio optimization but uses
conditional value-at-risk of portfolio returns as the risk proxy.

• The PortfolioMAD object implements what is known as mean-absolute deviation portfolio
optimization (see Konno and Yamazaki [50] at “Portfolio Optimization” on page A-5), which is
generally referred to as MAD portfolio optimization. MAD portfolio optimization works with the
same return proxies and portfolio sets as mean-variance portfolio optimization but uses mean-
absolute deviation portfolio returns as the risk proxy.

Return Proxy

The proxy for portfolio return is a function μ: X R on a portfolio set X ⊂ Rn that characterizes the
rewards associated with portfolio choices. Usually, the proxy for portfolio return has two general
forms, gross and net portfolio returns. Both portfolio return forms separate the risk-free rate r0 so
that the portfolio x ∈ X contains only risky assets.

Regardless of the underlying distribution of asset returns, a collection of S asset returns y1,...,yS has a
mean of asset returns

m = 1
S ∑s = 1

S
ys,

and (sample) covariance of asset returns

C = 1
S− 1 ∑s = 1

S
(ys−m)(ys−m)T .

These moments (or alternative estimators that characterize these moments) are used directly in
mean-variance portfolio optimization to form proxies for portfolio risk and return.

Gross Portfolio Returns

The gross portfolio return for a portfolio x ∈ X is

μ(x) = r0 + (m− r01)Tx,

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The properties in the Portfolio
object to specify gross portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m

Net Portfolio Returns

The net portfolio return for a portfolio x ∈ X is

μ(x) = r0 + (m− r01)Tx− bTmax 0, x− x0 − sTmax 0, x0− x ,
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where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

b is the proportional cost to purchase assets (n vector).

s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also. Though in this case, it is necessary to
incorporate prices into such costs. The properties in the Portfolio object to specify net portfolio
returns are:

• RiskFreeRate for r0

• AssetMean for m
• InitPort for x0

• BuyCost for b
• SellCost for s

Risk Proxy

The proxy for portfolio risk is a function σ: X R on a portfolio set X ⊂ Rn that characterizes the risks
associated with portfolio choices.

Variance

The variance of portfolio returns for a portfolio x ∈ X is

Variance x = xTCx

where C is the covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is AssetCovar for
C.

Although the risk proxy in mean-variance portfolio optimization is the variance of portfolio returns,
the square root, which is the standard deviation of portfolio returns, is often reported and displayed.
Moreover, this quantity is often called the “risk” of the portfolio. For details, see Markowitz [46], [47]
at (“Portfolio Optimization” on page A-5).

Conditional Value-at-Risk

The conditional value-at-risk for a portfolio x ∈ X, which is also known as expected shortfall, is
defined as

CVaRα x = 1
1− α ∫

f (x, y) ≥ VaRα(x)
f (x, y)p(y)dy,

where:

α is the probability level such that 0 < α < 1.
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f(x,y) is the loss function for a portfolio x and asset return y.

p(y) is the probability density function for asset return y.

VaRα is the value-at-risk of portfolio x at probability level α.

The value-at-risk is defined as

VaRα x = min γ:Pr f (x, Y) ≤ γ ≥ α .

An alternative formulation for CVaR has the form:

CVaRα(x) = VaRα x + 1
1− α ∫

Rn
max 0, (f (x, y)− VaRα(x)) p(y)dy

The choice for the probability level α is typically 0.9 or 0.95. Choosing α implies that the value-at-risk
VaRα(x) for portfolio x is the portfolio return such that the probability of portfolio returns falling
below this level is (1 –α). Given VaRα(x) for a portfolio x, the conditional value-at-risk of the portfolio
is the expected loss of portfolio returns above the value-at-risk return.

Note Value-at-risk is a positive value for losses so that the probability level α indicates the
probability that portfolio returns are below the negative of the value-at-risk.

To describe the probability distribution of returns, the PortfolioCVaR object takes a finite sample
of return scenarios ys, with s = 1,...,S. Each ys is an n vector that contains the returns for each of the
n assets under the scenario s. This sample of S scenarios is stored as a scenario matrix of size S-by-n.
Then, the risk proxy for CVaR portfolio optimization, for a given portfolio x ∈ X and α ∈ (0, 1), is
computed as

CVaRα(x) = VaRα(x) + 1
(1− α)S ∑s = 1

S
max 0, − ys

Tx− VaRα(x)

The value-at-risk, VaRα(x), is estimated whenever the CVaR is estimated. The loss function is
f (x, ys) = − ys

Tx, which is the portfolio loss under scenario s.

Under this definition, VaR and CVaR are sample estimators for VaR and CVaR based on the given
scenarios. Better scenario samples yield more reliable estimates of VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49], and Cornuejols and Tütüncü, [51], at
“Portfolio Optimization” on page A-5.

Mean Absolute-Deviation

The mean-absolute deviation (MAD) for a portfolio x ∈ X is defined as

MAD(x) = 1
S ∑s = 1

S
(ys−m)Tx

where:

ys are asset returns with scenarios s = 1,...S (S collection of n vectors).
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f(x,y) is the loss function for a portfolio x and asset return y.

m is the mean of asset returns (n vector).

such that

m = 1
S ∑s = 1

S
ys

For more information, see Konno and Yamazaki [50] at “Portfolio Optimization” on page A-5.

See Also
Portfolio | PortfolioCVaR | PortfolioMAD

Related Examples
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7
• “Default Portfolio Problem” on page 6-14
• “PortfolioMAD Object Workflow” on page 6-15
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Portfolio Set for Optimization Using PortfolioMAD Object
The final element for a complete specification of a portfolio optimization problem is the set of feasible
portfolios, which is called a portfolio set. A portfolio set X ⊂ Rn is specified by construction as the
intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set
necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most
basic or “default” portfolio set requires portfolio weights to be nonnegative (using the lower-bound
constraint) and to sum to 1 (using the budget constraint). The most general portfolio set handled by
the portfolio optimization tools can have any of these constraints:

• Linear inequality constraints
• Linear equality constraints
• 'Simple' Bound constraints
• 'Conditional' Bond constraints
• Budget constraints
• Group constraints
• Group ratio constraints
• Average turnover constraints
• One-way turnover constraints
• Cardinality constraints

Linear Inequality Constraints
Linear inequality constraints are general linear constraints that model relationships among portfolio
weights that satisfy a system of inequalities. Linear inequality constraints take the form

AIx ≤ bI

where:

x is the portfolio (n vector).

AI is the linear inequality constraint matrix (nI-by-n matrix).

bI is the linear inequality constraint vector (nI vector).

n is the number of assets in the universe and nI is the number of constraints.

PortfolioMAD object properties to specify linear inequality constraints are:

• AInequality for AI

• bInequality for bI

• NumAssets for n

The default is to ignore these constraints.
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Linear Equality Constraints
Linear equality constraints are general linear constraints that model relationships among portfolio
weights that satisfy a system of equalities. Linear equality constraints take the form

AEx = bE

where:

x is the portfolio (n vector).

AE is the linear equality constraint matrix (nE-by-n matrix).

bE is the linear equality constraint vector (nE vector).

n is the number of assets in the universe and nE is the number of constraints.

PortfolioMAD object properties to specify linear equality constraints are:

• AEquality for AE

• bEquality for bE

• NumAssets for n

The default is to ignore these constraints.

'Simple' Bound Constraints
'Simple' Bound constraints are specialized linear constraints that confine portfolio weights to fall
either above or below specific bounds. Since every portfolio set must be bounded, it is often a good
practice, albeit not necessary, to set explicit bounds for the portfolio problem. To obtain explicit
bounds for a given portfolio set, use the estimateBounds function. Bound constraints take the form

lB ≤ x ≤ uB

where:

x is the portfolio (n vector).

lB is the lower-bound constraint (n vector).

uB is the upper-bound constraint (n vector).

n is the number of assets in the universe.

PortfolioMAD object properties to specify bound constraints are:

• LowerBound for lB
• UpperBound for uB

• NumAssets for n

The default is to ignore these constraints.

The default portfolio optimization problem (see “Default Portfolio Problem” on page 6-14) has lB = 0
with uB set implicitly through a budget constraint.
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'Conditional' Bound Constraints
'Conditional' Bound constraints, also called semicontinuous constraints, are mixed-integer linear
constraints that confine portfolio weights to fall either above or below specific bounds if the asset is
selected; otherwise, the value of the asset is zero. Use setBounds to specify bound constraints with
a 'Conditional' BoundType. To mathematically formulate this type of constraints, a binary
variable vi is needed. vi = 0 indicates that asset i is not selected and vi indicates that the asset was
selected. Thus

livi ≤ xi ≤ uivi

where

x is the portfolio (n vector).

l is the conditional lower-bound constraint (n vector).

u is the conditional upper-bound constraint (n vector).

n is the number of assets in the universe.

PortfolioMAD object properties to specify the bound constraint are:

• LowerBound for lB
• UpperBound for uB

• NumAssets for n

The default is to ignore this constraint.

Budget Constraints
Budget constraints are specialized linear constraints that confine the sum of portfolio weights to fall
either above or below specific bounds. The constraints take the form

lS ≤ 1Tx ≤ uS

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

lS is the lower-bound budget constraint (scalar).

uS is the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

PortfolioMAD object properties to specify budget constraints are:

• LowerBudget for lS
• UpperBudget for uS

• NumAssets for n
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The default is to ignore this constraint.

The default portfolio optimization problem (see “Default Portfolio Problem” on page 6-14) has lS = uS
= 1, which means that the portfolio weights sum to 1. If the portfolio optimization problem includes
possible movements in and out of cash, the budget constraint specifies how far portfolios can go into
cash. For example, if lS = 0 and uS = 1, then the portfolio can have 0–100% invested in cash. If cash is
to be a portfolio choice, set RiskFreeRate (r0) to a suitable value (see “Return Proxy” on page 6-3
and “Working with a Riskless Asset” on page 6-43).

Group Constraints
Group constraints are specialized linear constraints that enforce “membership” among groups of
assets. The constraints take the form

lG ≤ Gx ≤ uG

where:

x is the portfolio (n vector).

lG is the lower-bound group constraint (nG vector).

uG is the upper-bound group constraint (nG vector).

G is the matrix of group membership indexes (nG-by-n matrix).

Each row of G identifies which assets belong to a group associated with that row. Each row contains
either 0s or 1s with 1 indicating that an asset is part of the group or 0 indicating that the asset is not
part of the group.

PortfolioMAD object properties to specify group constraints are:

• GroupMatrix for G
• LowerGroup for lG
• UpperGroup for uG

• NumAssets for n

The default is to ignore these constraints.

Group Ratio Constraints
Group ratio constraints are specialized linear constraints that enforce relationships among groups of
assets. The constraints take the form

lRi(GBx)i ≤ (GAx)i ≤ uRi(GBx)i

for i = 1,..., nR where:

x is the portfolio (n vector).

lR is the vector of lower-bound group ratio constraints (nR vector).

uR is the vector matrix of upper-bound group ratio constraints (nR vector).
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GA is the matrix of base group membership indexes (nR-by-n matrix).

GB is the matrix of comparison group membership indexes (nR-by-n matrix).

n is the number of assets in the universe and nR is the number of constraints.

Each row of GA and GB identifies which assets belong to a base and comparison group associated with
that row.

Each row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0 indicating
that the asset is not part of the group.

PortfolioMAD object properties to specify group ratio constraints are:

• GroupA for GA

• GroupB for GB

• LowerRatio for lR
• UpperRatio for uR

• NumAssets for n

The default is to ignore these constraints.

Average Turnover Constraints
Turnover constraint is a linear absolute value constraint that ensures estimated optimal portfolios
differ from an initial portfolio by no more than a specified amount. Although portfolio turnover is
defined in many ways, the turnover constraints implemented in Financial Toolbox compute portfolio
turnover as the average of purchases and sales. Average turnover constraints take the form

1
21T x− x0 ≤ τ

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

x0 is the initial portfolio (n vector).

τ is the upper bound for turnover (scalar).

n is the number of assets in the universe.

PortfolioMAD object properties to specify the average turnover constraint are:

• Turnover for τ
• InitPort for x0

• NumAssets for n

The default is to ignore this constraint.
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One-way Turnover Constraints
One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio
by no more than specified amounts according to whether the differences are purchases or sales. The
constraints take the forms

1T × max 0, x− x0 ≤ τB

1T × max 0, x0− x ≤ τS

where:

x is the portfolio (n vector)

1 is the vector of ones (n vector).

x0 is the Initial portfolio (n vector).

τB is the upper bound for turnover constraint on purchases (scalar).

τS is the upper bound for turnover constraint on sales (scalar).

To specify one-way turnover constraints, use the following properties in the PortfolioMAD object:

• BuyTurnover for τB

• SellTurnover for τS

• InitPort for x0

The default is to ignore this constraint.

Note The average turnover constraint (see “Working with Average Turnover Constraints Using
PortfolioMAD Object” on page 6-70) with τ is not a combination of the one-way turnover constraints
with τ = τB = τS.

Cardinality Constraints
Cardinality constraint limits the number of assets in the optimal allocation for an PortfolioMAD
object. Use setMinMaxNumAssets to specify the 'MinNumAssets' and 'MaxNumAssets'
constraints. To mathematically formulate this type of constraints, a binary variable vi is needed. vi = 0
indicates that asset i is not selected and vi = 1 indicates that the asset was selected. Thus

MinNumAssets ≤ ∑
i = 1

NumAssets
vi ≤ MaxNumAssets

The default is to ignore this constraint.

See Also
Portfolio | PortfolioCVaR | PortfolioMAD
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Related Examples
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48

More About
• “PortfolioMAD Object” on page 6-16
• “Default Portfolio Problem” on page 6-14
• “PortfolioMAD Object Workflow” on page 6-15
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Default Portfolio Problem
The default portfolio optimization problem has a risk and return proxy associated with a given
problem, and a portfolio set that specifies portfolio weights to be nonnegative and to sum to 1. The
lower bound combined with the budget constraint is sufficient to ensure that the portfolio set is
nonempty, closed, and bounded. The default portfolio optimization problem characterizes a long-only
investor who is fully invested in a collection of assets.

• For mean-variance portfolio optimization, it is sufficient to set up the default problem. After
setting up the problem, data in the form of a mean and covariance of asset returns are then used
to solve portfolio optimization problems.

• For conditional value-at-risk portfolio optimization, the default problem requires the additional
specification of a probability level that must be set explicitly. Generally, “typical” values for this
level are 0.90 or 0.95. After setting up the problem, data in the form of scenarios of asset returns
are then used to solve portfolio optimization problems.

• For MAD portfolio optimization, it is sufficient to set up the default problem. After setting up the
problem, data in the form of scenarios of asset returns are then used to solve portfolio
optimization problems.

See Also
Portfolio | PortfolioCVaR | PortfolioMAD

Related Examples
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7
• “PortfolioMAD Object Workflow” on page 6-15
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PortfolioMAD Object Workflow
The PortfolioMAD object workflow for creating and modeling a MAD portfolio is:

1 Create a MAD Portfolio.

Create a PortfolioMAD object for mean-absolute deviation (MAD) portfolio optimization. For
more information, see “Creating the PortfolioMAD Object” on page 6-21.

2 Define asset returns and scenarios.

Evaluate scenarios for portfolio asset returns, including assets with missing data and financial
time series data. For more information, see “Asset Returns and Scenarios Using PortfolioMAD
Object” on page 6-34.

3 Specify the MAD Portfolio Constraints.

Define the constraints for portfolio assets such as linear equality and inequality, bound, budget,
group, group ratio, and turnover constraints, 'Conditional' BoundType, and MinNumAssets,
MaxNumAssets constraints. For more information, see “Working with MAD Portfolio Constraints
Using Defaults” on page 6-48 and “Working with 'Conditional' BoundType, MinNumAssets, and
MaxNumAssets Constraints Using PortfolioMAD Objects” on page 6-67.

4 Validate the MAD Portfolio.

Identify errors for the portfolio specification. For more information, see “Validate the MAD
Portfolio Problem” on page 6-76.

5 Estimate the efficient portfolios and frontiers.

Analyze the efficient portfolios and efficient frontiers for a portfolio. For more information, see
“Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
and “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97.

6 Postprocess the results.

Use the efficient portfolios and efficient frontiers results to set up trades. For more information,
see “Postprocessing Results to Set Up Tradable Portfolios” on page 6-105.

See Also

More About
• “Portfolio Optimization Theory” on page 6-2
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PortfolioMAD Object

In this section...
“PortfolioMAD Object Properties and Functions” on page 6-16
“Working with PortfolioMAD Objects” on page 6-16
“Setting and Getting Properties” on page 6-17
“Displaying PortfolioMAD Objects” on page 6-17
“Saving and Loading PortfolioMAD Objects” on page 6-17
“Estimating Efficient Portfolios and Frontiers” on page 6-17
“Arrays of PortfolioMAD Objects” on page 6-18
“Subclassing PortfolioMAD Objects” on page 6-19
“Conventions for Representation of Data” on page 6-19

PortfolioMAD Object Properties and Functions
The PortfolioMAD object implements mean absolute-deviation (MAD) portfolio optimization and is
derived from the abstract class AbstractPortfolio. Every property and function of the
PortfolioMAD object is public, although some properties and functions are hidden. The
PortfolioMAD object is a value object where every instance of the object is a distinct version of the
object. Since the PortfolioMAD object is also a MATLAB object, it inherits the default functions
associated with MATLAB objects.

Working with PortfolioMAD Objects
The PortfolioMAD object and its functions are an interface for mean absolute-deviation portfolio
optimization. So, almost everything you do with the PortfolioMAD object can be done using the
functions. The basic workflow is:

1 Design your portfolio problem.
2 Use PortfolioMAD to create the PortfolioMAD object or use the various set functions to set

up your portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose your
computations. Since MATLAB features are part of a PortfolioMAD object, you can save and load
objects from your workspace and create and manipulate arrays of objects. After settling on a
problem, which, in the case of MAD portfolio optimization, means that you have either scenarios,
data, or moments for asset returns, and a collection of constraints on your portfolios, use
PortfolioMAD to set the properties for the PortfolioMAD object.

PortfolioMAD lets you create an object from scratch or update an existing object. Since the
PortfolioMAD object is a value object, it is easy to create a basic object, then use functions to build
upon the basic object to create new versions of the basic object. This is useful to compare a basic
problem with alternatives derived from the basic problem. For details, see “Creating the
PortfolioMAD Object” on page 6-21.
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Setting and Getting Properties
You can set properties of a PortfolioMAD object using either PortfolioMAD or various set
functions.

Note Although you can also set properties directly, it is not recommended since error-checking is not
performed when you set a property directly.

The PortfolioMAD object supports setting properties with name-value pair arguments such that
each argument name is a property and each value is the value to assign to that property. For example,
to set the LowerBound and Budget properties in an existing PortfolioMAD object p, use the
syntax:

p = PortfolioMAD(p,'LowerBound', 0,'Budget',1);

In addition to the PortfolioMAD object, which lets you set individual properties one at a time,
groups of properties are set in a PortfolioMAD object with various “set” and “add” functions. For
example, to set up an average turnover constraint, use the setTurnover function to specify the
bound on portfolio turnover and the initial portfolio. To get individual properties from a
PortfolioMAD object, obtain properties directly or use an assortment of “get” functions that obtain
groups of properties from a PortfolioMAD object. The PortfolioMAD object and set functions
have several useful features:

• The PortfolioMAD object and set functions try to determine the dimensions of your problem
with either explicit or implicit inputs.

• The PortfolioMAD object and set functions try to resolve ambiguities with default choices.
• The PortfolioMAD object and set functions perform scalar expansion on arrays when possible.
• The PortfolioMAD functions try to diagnose and warn about problems.

Displaying PortfolioMAD Objects
The PortfolioMAD object uses the default display function provided by MATLAB, where display
and disp display a PortfolioMAD object and its properties with or without the object variable
name.

Saving and Loading PortfolioMAD Objects
Save and load PortfolioMAD objects using the MATLAB save and load commands.

Estimating Efficient Portfolios and Frontiers
Estimating efficient portfolios and efficient frontiers is the primary purpose of the MAD portfolio
optimization tools. Anefficient portfolio is the portfolios that satisfy the criteria of minimum risk for a
given level of return and maximum return for a given level of risk. A collection of “estimate” and
“plot” functions provide ways to explore the efficient frontier. The “estimate” functions obtain either
efficient portfolios or risk and return proxies to form efficient frontiers. At the portfolio level, a
collection of functions estimates efficient portfolios on the efficient frontier with functions to obtain
efficient portfolios:
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• At the endpoints of the efficient frontier
• That attain targeted values for return proxies
• That attain targeted values for risk proxies
• Along the entire efficient frontier

These functions also provide purchases and sales needed to shift from an initial or current portfolio to
each efficient portfolio. At the efficient frontier level, a collection of functions plot the efficient
frontier and estimate either risk or return proxies for efficient portfolios on the efficient frontier. You
can use the resultant efficient portfolios or risk and return proxies in subsequent analyses.

Arrays of PortfolioMAD Objects
Although all functions associated with a PortfolioMAD object are designed to work on a scalar
PortfolioMAD object, the array capabilities of MATLAB enable you to set up and work with arrays of
PortfolioMAD objects. The easiest way to do this is with the repmat function. For example, to
create a 3-by-2 array of PortfolioMAD objects:

p = repmat(PortfolioMAD, 3, 2);
disp(p)

3×2 PortfolioMAD array with properties:

    BuyCost
    SellCost
    RiskFreeRate
    Turnover
    BuyTurnover
    SellTurnover
    NumScenarios
    Name
    NumAssets
    AssetList
    InitPort
    AInequality
    bInequality
    AEquality
    bEquality
    LowerBound
    UpperBound
    LowerBudget
    UpperBudget
    GroupMatrix
    LowerGroup
    UpperGroup
    GroupA
    GroupB
    LowerRatio
    UpperRatio
    MinNumAssets
    MaxNumAssets
    BoundType

After setting up an array of PortfolioMAD objects, you can work on individual PortfolioMAD
objects in the array by indexing. For example:

p(i,j) = PortfolioMAD(p(i,j), ... );
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This example calls PortfolioMAD for the (i,j) element of a matrix of PortfolioMAD objects in the
variable p.

If you set up an array of PortfolioMAD objects, you can access properties of a particular
PortfolioMAD object in the array by indexing so that you can set the lower and upper bounds lb
and ub for the (i,j,k) element of a 3-D array of PortfolioMAD objects with

p(i,j,k) = setBounds(p(i,j,k),lb, ub);

and, once set, you can access these bounds with

[lb, ub] = getBounds(p(i,j,k));

PortfolioMAD object functions work on only one PortfolioMAD object at a time.

Subclassing PortfolioMAD Objects
You can subclass the PortfolioMAD object to override existing functions or to add new properties or
functions. To do so, create a derived class from the PortfolioMAD class. This gives you all the
properties and functions of the PortfolioMAD class along with any new features that you choose to
add to your subclassed object. ThePortfolioMAD class is derived from an abstract class called
AbstractPortfolio. Because of this, you can also create a derived class from
AbstractPortfolio that implements an entirely different form of portfolio optimization using
properties and functions of theAbstractPortfolio class.

Conventions for Representation of Data
The MAD portfolio optimization tools follow these conventions regarding the representation of
different quantities associated with portfolio optimization:

• Asset returns or prices for scenarios are in matrix form with samples for a given asset going down
the rows and assets going across the columns. In the case of prices, the earliest dates must be at
the top of the matrix, with increasing dates going down.

• Portfolios are in vector or matrix form with weights for a given portfolio going down the rows and
distinct portfolios going across the columns.

• Constraints on portfolios are formed in such a way that a portfolio is a column vector.
• Portfolio risks and returns are either scalars or column vectors (for multiple portfolio risks and

returns).

See Also
PortfolioMAD

Related Examples
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48

More About
• “Portfolio Optimization Theory” on page 6-2
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• “PortfolioMAD Object Workflow” on page 6-15
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Creating the PortfolioMAD Object
In this section...
“Syntax” on page 6-21
“PortfolioMAD Problem Sufficiency” on page 6-21
“PortfolioMAD Function Examples” on page 6-22

To create a fully specified MAD portfolio optimization problem, instantiate the PortfolioMAD object
using PortfolioMAD. For information on the workflow when using PortfolioMAD objects, see
“PortfolioMAD Object Workflow” on page 6-15.

Syntax
Use PortfolioMAD to create an instance of an object of the PortfolioMAD class. You can use the
PortfolioMAD object in several ways. To set up a portfolio optimization problem in a
PortfolioMAD object, the simplest syntax is:

p = PortfolioMAD;

This syntax creates a PortfolioMAD object, p, such that all object properties are empty.

The PortfolioMAD object also accepts collections of argument name-value pair arguments for
properties and their values. The PortfolioMAD object accepts inputs for public properties with the
general syntax:

    p = PortfolioMAD('property1', value1, 'property2', value2, ... );

If a PortfolioMAD object already exists, the syntax permits the first (and only the first argument) of
PortfolioMAD to be an existing object with subsequent argument name-value pair arguments for
properties to be added or modified. For example, given an existing PortfolioMAD object in p, the
general syntax is:

p = PortfolioMAD(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In addition, several
properties can be specified with alternative argument names (see “Shortcuts for Property Names” on
page 6-25). The PortfolioMAD object tries to detect problem dimensions from the inputs and, once
set, subsequent inputs can undergo various scalar or matrix expansion operations that simplify the
overall process to formulate a problem. In addition, a PortfolioMAD object is a value object so that,
given portfolio p, the following code creates two objects, p and q, that are distinct:

q = PortfolioMAD(p, ...)

PortfolioMAD Problem Sufficiency
A MAD portfolio optimization problem is completely specified with the PortfolioMAD object if the
following three conditions are met:

• You must specify a collection of asset returns or prices known as scenarios such that all scenarios
are finite asset returns or prices. These scenarios are meant to be samples from the underlying
probability distribution of asset returns. This condition can be satisfied by the setScenarios
function or with several canned scenario simulation functions.
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• The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and
bounded. You can satisfy this condition using an extensive collection of properties that define
different types of constraints to form a set of feasible portfolios. Since such sets must be bounded,
either explicit or implicit constraints can be imposed and several tools, such as the
estimateBounds function, provide ways to ensure that your problem is properly formulated.

Although the general sufficient conditions for MAD portfolio optimization go beyond these
conditions, the PortfolioMAD object handles all these additional conditions.

PortfolioMAD Function Examples
If you create a PortfolioMAD object, p, with no input arguments, you can display it using disp:

p = PortfolioMAD;
disp(p)

 PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: []
            Name: []
       NumAssets: []
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: []
      UpperBound: []
     LowerBudget: []
     UpperBudget: []
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: []

The approaches listed provide a way to set up a portfolio optimization problem with the
PortfolioMAD object. The custom set functions offer additional ways to set and modify collections of
properties in the PortfolioMAD object.

Using the PortfolioMAD Function for a Single-Step Setup

You can use the PortfolioMAD object to directly set up a “standard” portfolio optimization problem.
Given scenarios of asset returns in the variable AssetScenarios, this problem is completely
specified as follows:
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m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('Scenarios', AssetScenarios, ...
'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1)

p = 

  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: 20000
            Name: []
       NumAssets: 4
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [4×1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: []

The LowerBound property value undergoes scalar expansion since AssetScenarios provides the
dimensions of the problem.

You can use dot notation with the function plotFrontier.

p.plotFrontier
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Using the PortfolioMAD Function with a Sequence of Steps

An alternative way to accomplish the same task of setting up a “standard” MAD portfolio optimization
problem, given AssetScenarios variable is:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = PortfolioMAD(p, 'LowerBound', 0);
p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);

plotFrontier(p);
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This way works because the calls to the PortfolioMAD object are in this particular order. In this
case, the call to initialize AssetScenarios provides the dimensions for the problem. If you were to
do this step last, you would have to explicitly dimension the LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = PortfolioMAD(p, 'LowerBound', zeros(size(m)));
p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = setScenarios(p, AssetScenarios);

Note If you did not specify the size of LowerBound but, instead, input a scalar argument, the
PortfolioMAD object assumes that you are defining a single-asset problem and produces an error at
the call to set asset scenarios with four assets.

Shortcuts for Property Names

The PortfolioMAD object has shorter argument names that replace longer argument names
associated with specific properties of the PortfolioMAD object. For example, rather than enter
'AInequality', the PortfolioMAD object accepts the case-insensitive name 'ai' to set the
AInequality property in a PortfolioMAD object. Every shorter argument name corresponds with
a single property in the PortfolioMAD object. The one exception is the alternative argument name
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'budget', which signifies both the LowerBudget and UpperBudget properties. When 'budget' is
used, then the LowerBudget and UpperBudget properties are set to the same value to form an
equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name
ae AEquality
ai AInequality
assetnames or assets AssetList
be bEquality
bi bInequality
budget UpperBudget and LowerBudget
group GroupMatrix
lb LowerBound
n or num NumAssets
rfr RiskFreeRate
scenario or assetscenarios Scenarios
ub UpperBound

For example, this call to PortfolioMAD uses these shortcuts for properties:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('scenario', AssetScenarios, 'lb', 0, 'budget', 1);
plotFrontier(p);

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly using dot notation, however no error-
checking is done on your inputs:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);
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p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));

plotFrontier(p);

Note Scenarios cannot be assigned directly using dot notation to a PortfolioMAD object. Scenarios
must always be set through either the PortfolioMAD object, the setScenarios function, or any of
the scenario simulation functions.

See Also
PortfolioMAD | estimateBounds

Related Examples
• “Common Operations on the PortfolioMAD Object” on page 6-28
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Common Operations on the PortfolioMAD Object
In this section...
“Naming a PortfolioMAD Object” on page 6-28
“Configuring the Assets in the Asset Universe” on page 6-28
“Setting Up a List of Asset Identifiers” on page 6-28
“Truncating and Padding Asset Lists” on page 6-30

Naming a PortfolioMAD Object
To name a PortfolioMAD object, use the Name property. Name is informational and has no effect on
any portfolio calculations. If the Name property is nonempty, Name is the title for the efficient frontier
plot generated by plotFrontier. For example, if you set up an asset allocation fund, you could
name the PortfolioMAD object Asset Allocation Fund:

p = PortfolioMAD('Name','Asset Allocation Fund');
disp(p.Name);
Asset Allocation Fund

Configuring the Assets in the Asset Universe
The fundamental quantity in the PortfolioMAD object is the number of assets in the asset universe.
This quantity is maintained in the NumAssets property. Although you can set this property directly, it
is usually derived from other properties such as the number of assets in the scenarios or the initial
portfolio. In some instances, the number of assets may need to be set directly. This example shows
how to set up a PortfolioMAD object that has four assets:

p = PortfolioMAD('NumAssets', 4);
disp(p.NumAssets)

4

After setting the NumAssets property, you cannot modify it (unless no other properties are set that
depend on NumAssets). The only way to change the number of assets in an existing PortfolioMAD
object with a known number of assets is to create a new PortfolioMAD object.

Setting Up a List of Asset Identifiers
When working with portfolios, you must specify a universe of assets. Although you can perform a
complete analysis without naming the assets in your universe, it is helpful to have an identifier
associated with each asset as you create and work with portfolios. You can create a list of asset
identifiers as a cell vector of character vectors in the property AssetList. You can set up the list
using the next two methods.

Setting Up Asset Lists Using the PortfolioMAD Function

Suppose that you have a PortfolioMAD object, p, with assets with symbols 'AA'', 'BA', 'CAT',
'DD', and 'ETR'. You can create a list of these asset symbols in the object using PortfolioMAD:

p = PortfolioMAD('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList)
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'AA'    'BA'    'CAT'    'DD'    'ETR'

Notice that the property AssetList is maintained as a cell array that contains character vectors,
and that it is necessary to pass a cell array into PortfolioMAD to set AssetList. In addition, notice
that the property NumAssets is set to 5 based on the number of symbols used to create the asset list:

disp(p.NumAssets)

5

Setting Up Asset Lists Using the setAssetList Function

You can also specify a list of assets using the setAssetList function. Given the list of asset symbols
'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:

p = PortfolioMAD;
p = setAssetList(p, { 'AA', 'BA', 'CAT', 'DD', 'ETR' });
disp(p.AssetList)

 'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList also enables you to enter symbols directly as a comma-separated list without creating
a cell array of character vectors. For example, given the list of assets symbols 'AA', 'BA', 'CAT',
'DD', and 'ETR', use setAssetList:

p = PortfolioMAD;
p = setAssetList(p, 'AA', 'BA', 'CAT', 'DD', 'ETR');
disp(p.AssetList)

 'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList has many additional features to create lists of asset identifiers. If you use
setAssetList with just a PortfolioMAD object, it creates a default asset list according to the
name specified in the hidden public property defaultforAssetList (which is 'Asset' by default).
The number of asset names created depends on the number of assets in the property NumAssets. If
NumAssets is not set, then NumAssets is assumed to be 1.

For example, if a PortfolioMAD object p is created with NumAssets = 5, then this code fragment
shows the default naming behavior:

p = PortfolioMAD('numassets',5);
p = setAssetList(p);
disp(p.AssetList)

'Asset1'    'Asset2'    'Asset3'    'Asset4'    'Asset5'

Suppose that your assets are, for example, ETFs and you change the hidden property
defaultforAssetList to 'ETF', you can then create a default list for ETFs:

p = PortfolioMAD('numassets',5);
p.defaultforAssetList = 'ETF'; 
p = setAssetList(p);
disp(p.AssetList)

'ETF1'    'ETF2'    'ETF3'    'ETF4'    'ETF5'
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Truncating and Padding Asset Lists
If the NumAssets property is already set and you pass in too many or too few identifiers, the
PortfolioMAD object, and the setAssetList function truncate or pad the list with numbered
default asset names that use the name specified in the hidden public property
defaultforAssetList. If the list is truncated or padded, a warning message indicates the
discrepancy. For example, assume that you have a PortfolioMAD object with five ETFs and you only
know the first three CUSIPs '921937835', '922908769', and '922042775'. Use this syntax to
create an asset list that pads the remaining asset identifiers with numbered 'UnknownCUSIP'
placeholders:
p = PortfolioMAD('numassets',5);
p.defaultforAssetList = 'UnknownCUSIP';
p = setAssetList(p, '921937835', '922908769', '922042775');
disp(p.AssetList)

Warning: Input list of assets has 2 too few identifiers. Padding with numbered
assets. 
> In PortfolioMAD.setAssetList at 121 
  Columns 1 through 4

    '921937835'    '922908769'    '922042775'    'UnknownCUSIP4'

  Column 5

    'UnknownCUSIP5'

Alternatively, suppose that you have too many identifiers and need only the first four assets. This
example illustrates truncation of the asset list using the PortfolioMAD object:
p = PortfolioMAD('numassets',4);
p = PortfolioMAD(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });
disp(p.AssetList)

Warning: AssetList has 1 too many identifiers. Using first 4 assets. 
> In PortfolioMAD.checkarguments at 410
  In PortfolioMAD.PortfolioMAD>PortfolioMAD.PortfolioMAD at 187 
    'AGG'    'EEM'    'MDY'    'SPY'

The hidden public property uppercaseAssetList is a Boolean flag to specify whether to convert
asset names to uppercase letters. The default value for uppercaseAssetList is false. This
example shows how to use the uppercaseAssetList flag to force identifiers to be uppercase
letters:

p = PortfolioMAD;
p.uppercaseAssetList = true;
p = setAssetList(p, { 'aa', 'ba', 'cat', 'dd', 'etr' });
disp(p.AssetList)

'AA'    'BA'    'CAT'    'DD'    'ETR'

See Also
PortfolioMAD | setAssetList | setInitPort | estimateBounds | checkFeasibility

Related Examples
• “Setting Up an Initial or Current Portfolio” on page 6-32
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
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More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Setting Up an Initial or Current Portfolio
In many applications, creating a new optimal portfolio requires comparing the new portfolio with an
initial or current portfolio to form lists of purchases and sales. The PortfolioMAD object property
InitPort lets you identify an initial or current portfolio. The initial portfolio also plays an essential
role if you have either transaction costs or turnover constraints. The initial portfolio need not be
feasible within the constraints of the problem. This can happen if the weights in a portfolio have
shifted such that some constraints become violated. To check if your initial portfolio is feasible, use
thecheckFeasibility function described in “Validating MAD Portfolios” on page 6-77. Suppose
that you have an initial portfolio in x0, then use the PortfolioMAD object to set up an initial
portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = PortfolioMAD('InitPort', x0);
disp(p.InitPort)

 0.3000
 0.2000
 0.2000
      0

As with all array properties, you can set InitPort with scalar expansion. This is helpful to set up an
equally weighted initial portfolio of, for example, 10 assets:

p = PortfolioMAD('NumAssets', 10, 'InitPort', 1/10);
disp(p.InitPort)

0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000
 0.1000

To clear an initial portfolio from your PortfolioMAD object, use either the PortfolioMAD object or
the setInitPort function with an empty input for the InitPort property. If transaction costs or
turnover constraints are set, it is not possible to clear the InitPort property in this way. In this
case, to clear InitPort, first clear the dependent properties and then clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the number of
assets if you want to use scalar expansion. For example, given an initial portfolio in x0, use
setInitPort to set the InitPort property:

p = PortfolioMAD;
x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setInitPort(p, x0);
disp(p.InitPort)

 0.3000
 0.2000
 0.2000
      0
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To create an equally weighted portfolio of four assets, use setInitPort:

p = PortfolioMAD;
p = setInitPort(p, 1/4, 4);
disp(p.InitPort)

 0.2500
 0.2500
 0.2500
 0.2500

PortfolioMAD object functions that work with either transaction costs or turnover constraints also
depend on the InitPort property. So, the set functions for transaction costs or turnover constraints
permit the assignment of a value for the InitPort property as part of their implementation. For
details, see “Working with Average Turnover Constraints Using PortfolioMAD Object” on page 6-70,
“Working with One-Way Turnover Constraints Using PortfolioMAD Object” on page 6-73, and
“Working with Transaction Costs” on page 6-44. If either transaction costs or turnover constraints
are used, then the InitPort property must have a nonempty value. Absent a specific value assigned
through the PortfolioMAD object or various set functions, the PortfolioMAD object sets
InitPort to 0 and warns if BuyCost, SellCost, or Turnover properties are set. This example
shows what happens if you specify an average turnover constraint with an initial portfolio:

p = PortfolioMAD('Turnover', 0.3, 'InitPort', [ 0.3; 0.2; 0.2; 0.0 ]);
disp(p.InitPort)

 0.3000
 0.2000
 0.2000
      0

In contrast, this example shows what happens if an average turnover constraint is specified without
an initial portfolio:
p = PortfolioMAD('Turnover', 0.3);
disp(p.InitPort)

Warning: InitPort and NumAssets are empty and either transaction costs or
turnover constraints specified. Will set NumAssets = 1 and InitPort = 0. 
> In PortfolioMAD.checkarguments at 446
  In PortfolioMAD.PortfolioMAD>PortfolioMAD.PortfolioMAD at 190 
     0

See Also
PortfolioMAD | setAssetList | setInitPort | estimateBounds | checkFeasibility

Related Examples
• “Common Operations on the PortfolioMAD Object” on page 6-28
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Asset Returns and Scenarios Using PortfolioMAD Object
In this section...
“How Stochastic Optimization Works” on page 6-34
“What Are Scenarios?” on page 6-34
“Setting Scenarios Using the PortfolioMAD Function” on page 6-35
“Setting Scenarios Using the setScenarios Function” on page 6-36
“Estimating the Mean and Covariance of Scenarios” on page 6-36
“Simulating Normal Scenarios” on page 6-37
“Simulating Normal Scenarios from Returns or Prices” on page 6-37
“Simulating Normal Scenarios with Missing Data” on page 6-38
“Simulating Normal Scenarios from Time Series Data” on page 6-39
“Simulating Normal Scenarios for Mean and Covariance” on page 6-41

How Stochastic Optimization Works
The MAD of a portfolio is mean-absolute deviation. For the definition of the MAD function, see “Risk
Proxy” on page 6-4. Although analytic solutions for MAD exist for a few probability distributions, an
alternative is to compute the expectation for MAD with samples from the probability distribution of
asset returns. These samples are called scenarios and, given a collection of scenarios, the portfolio
optimization problem becomes a stochastic optimization problem.

As a function of the portfolio weights, the MAD of the portfolio is a convex non-smooth function (see
Konno and Yamazaki [50] at “Portfolio Optimization” on page A-5). The PortfolioMAD object
computes MAD as this nonlinear function which can be handled by the solver fmincon Optimization
Toolbox. The nonlinear programming solver fmincon has several algorithms that can be selected
with the setSolver function, the two algorithms that work best in practice are 'sqp' and
'active-set'.

There are reformulations of the MAD portfolio optimization problem (see Konno and Yamazaki [50] at
“Portfolio Optimization” on page A-5) that result in a linear programming problem, which can be
solved either with standard linear programming techniques or with stochastic programming solvers.
The PortfolioMAD object, however, does not reformulate the problem in such a manner. The
PortfolioMAD object computes the MAD as a nonlinear function. The convexity of the MAD, as a
function of the portfolio weights and the dull edges when the number of scenarios is large, make the
MAD portfolio optimization problem tractable, in practice, for certain nonlinear programming solvers,
such as fmincon from Optimization Toolbox. To learn more about the workflow when using
PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-15.

What Are Scenarios?
Since mean absolute deviation portfolio optimization works with scenarios of asset returns to perform
the optimization, several ways exist to specify and simulate scenarios. In many applications with MAD
portfolio optimization, asset returns may have distinctly nonnormal probability distributions with
either multiple modes, binning of returns, truncation of distributions, and so forth. In other
applications, asset returns are modeled as the result of various simulation methods that might
include Monte-Carlo simulation, quasi-random simulation, and so forth. Often, the underlying

6 MAD Portfolio Optimization Tools

6-34



probability distribution for risk factors may be multivariate normal but the resultant transformations
are sufficiently nonlinear to result in distinctively nonnormal asset returns.

For example, this occurs with bonds and derivatives. In the case of bonds with a nonzero probability
of default, such scenarios would likely include asset returns that are −100% to indicate default and
some values slightly greater than −100% to indicate recovery rates.

Although the PortfolioMAD object has functions to simulate multivariate normal scenarios from
either data or moments (simulateNormalScenariosByData and
simulateNormalScenariosByMoments), the usual approach is to specify scenarios directly from
your own simulation functions. These scenarios are entered directly as a matrix with a sample for all
assets across each row of the matrix and with samples for an asset down each column of the matrix.
The architecture of the MAD portfolio optimization tools references the scenarios through a function
handle so scenarios that have been set cannot be accessed directly as a property of the
PortfolioMAD object.

Setting Scenarios Using the PortfolioMAD Function
Suppose that you have a matrix of scenarios in the AssetScenarios variable. The scenarios are set
through the PortfolioMAD object with:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('Scenarios', AssetScenarios);

disp(p.NumAssets)
disp(p.NumScenarios)

4

20000

Notice that the PortfolioMAD object determines and fixes the number of assets in NumAssets and
the number of scenarios in NumScenarios based on the scenario’s matrix. You can change the
number of scenarios by calling the PortfolioMAD object with a different scenario matrix. However,
once the NumAssets property has been set in the object, you cannot enter a scenario matrix with a
different number of assets. The getScenarios function lets you recover scenarios from a
PortfolioMAD object. You can also obtain the mean and covariance of your scenarios using
estimateScenarioMoments.

Although not recommended for the casual user, an alternative way exists to recover scenarios by
working with the function handle that points to scenarios in the PortfolioMAD object. To access
some or all the scenarios from a PortfolioMAD object, the hidden property localScenarioHandle
is a function handle that points to a function to obtain scenarios that have already been set. To get
scenarios directly from a PortfolioMAD object p, use
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scenarios = p.localScenarioHandle([], []);

and to obtain a subset of scenarios from rows startrow to endrow, use

scenarios = p.localScenarioHandle(startrow, endrow);

where 1 ≤ startrow ≤ endrow ≤ numScenarios.

Setting Scenarios Using the setScenarios Function
You can also set scenarios using setScenarios. For example, given the mean and covariance of
asset returns in the variables m and C, the asset moment properties can be set:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);

disp(p.NumAssets)
disp(p.NumScenarios)

4

20000

Estimating the Mean and Covariance of Scenarios
The estimateScenarioMoments function obtains estimates for the mean and covariance of
scenarios in a PortfolioMAD object.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
[mean, covar] = estimateScenarioMoments(p)

mean =

    0.0044

6 MAD Portfolio Optimization Tools

6-36



    0.0084
    0.0108
    0.0155

covar =

    0.0005    0.0003    0.0002   -0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0047    0.0028
   -0.0000    0.0010    0.0028    0.0103

Simulating Normal Scenarios
As a convenience, the two functions (simulateNormalScenariosByData and
simulateNormalScenariosByMoments) exist to simulate scenarios from data or moments under
an assumption that they are distributed as multivariate normal random asset returns.

Simulating Normal Scenarios from Returns or Prices
Given either return or price data, use the simulateNormalScenariosByData function to simulate
multivariate normal scenarios. Either returns or prices are stored as matrices with samples going
down the rows and assets going across the columns. In addition, returns or prices can be stored in a
table or timetable (see “Simulating Normal Scenarios from Time Series Data” on page 6-39). To
illustrate using simulateNormalScenariosByData, generate random samples of 120 observations
of asset returns for four assets from the mean and covariance of asset returns in the variables m and
C with portsim. The default behavior of portsim creates simulated data with estimated mean and
covariance identical to the input moments m and C. In addition to a return series created by portsim
in the variable X, a price series is created in the variable Y:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];
C = [ 0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);
Y = ret2tick(X);

Note Portfolio optimization requires that you use total returns and not just price returns. So,
“returns” should be total returns and “prices” should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence of examples
demonstrates equivalent ways to simulate multivariate normal scenarios for the PortfolioMAD
object. Assume a PortfolioMAD object created in p that uses the asset returns in X uses
simulateNormalScenariosByData:

p = PortfolioMAD;
p = simulateNormalScenariosByData(p, X, 20000);

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =
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    0.0033
    0.0085
    0.0095
    0.1503

passetcovar =

    0.0055    0.0004    0.0002    0.0001
    0.0004    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0049    0.0028
    0.0001    0.0010    0.0028    0.0102

The moments that you obtain from this simulation will likely differ from the moments listed here
because the scenarios are random samples from the estimated multivariate normal probability
distribution of the input returns X.

The default behavior of simulateNormalScenariosByData is to work with asset returns. If,
instead, you have asset prices as in the variable Y, simulateNormalScenariosByData accepts a
name-value pair argument name 'DataFormat' with a corresponding value set to 'prices' to
indicate that the input to the function is in the form of asset prices and not returns (the default value
for the 'DataFormat' argument is 'returns'). This example simulates scenarios with the asset
price data in Y for the PortfolioMAD object q:
p = PortfolioMAD;
p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices');

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0043
    0.0083
    0.0099
    0.1500

passetcovar =

    0.0053    0.0003    0.0001    0.0002
    0.0003    0.0024    0.0017    0.0010
    0.0001    0.0017    0.0047    0.0027
    0.0002    0.0010    0.0027    0.0100

Simulating Normal Scenarios with Missing Data
Often when working with multiple assets, you have missing data indicated by NaN values in your
return or price data. Although “Multivariate Normal Regression” on page 9-2 goes into detail about
regression with missing data, the simulateNormalScenariosByData function has a name-value
pair argument name 'MissingData' that indicates with a Boolean value whether to use the missing
data capabilities of Financial Toolbox. The default value for 'MissingData' is false which removes
all samples with NaN values. If, however, 'MissingData' is set to true,
simulateNormalScenariosByData uses the ECM algorithm to estimate asset moments. This
example shows how this works on price data with missing values:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];
C = [ 0.005333 0.00034 0.00016 0;
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0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);
Y = ret2tick(X);
Y(1:20,1) = NaN;
Y(1:12,4) = NaN;

Notice that the prices above in Y have missing values in the first and fourth series.
p = PortfolioMAD;
p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices');

q = PortfolioMAD;
q = simulateNormalScenariosByData(q, Y, 20000, 'dataformat', 'prices', 'missingdata', true);

[passetmean, passetcovar] = estimateScenarioMoments(p)
[qassetmean, qassetcovar] = estimateScenarioMoments(q)

passetmean =

    0.0095
    0.0103
    0.0124
    0.1505

passetcovar =

    0.0054    0.0000   -0.0005   -0.0006
    0.0000    0.0021    0.0015    0.0010
   -0.0005    0.0015    0.0046    0.0026
   -0.0006    0.0010    0.0026    0.0100

qassetmean =

    0.0092
    0.0082
    0.0094
    0.1463

qassetcovar =

    0.0071   -0.0000   -0.0006   -0.0006
   -0.0000    0.0032    0.0023    0.0015
   -0.0006    0.0023    0.0064    0.0036
   -0.0006    0.0015    0.0036    0.0133

The first PortfolioMAD object, p, contains scenarios obtained from price data in Y where NaN values
are discarded and the second PortfolioMAD object, q, contains scenarios obtained from price data
in Y that accommodate missing values. Each time you run this example, you get different estimates
for the moments in p and q.

Simulating Normal Scenarios from Time Series Data
The simulateNormalScenariosByData function accepts asset returns or prices stored in table or
timetable. The simulateNormalScenariosByData function implicitly works with matrices of
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data or data in a table or timetable object using the same rules for whether the data are returns or
prices. To illustrate, use array2timetable to create a timetable for 14 assets from CAPMuniverse
and the use the timetable to simulate scenarios for PortfolioCVaR.
load CAPMuniverse
time = datetime(Dates,'ConvertFrom','datenum');
stockTT = array2timetable(Data,'RowTimes',time, 'VariableNames', Assets);
stockTT.Properties
% Notice that GOOG has missing data, because it was not listed before Aug 2004
head(stockTT, 5)

ans = 

  TimetableProperties with properties:

             Description: ''
                UserData: []
          DimensionNames: {'Time'  'Variables'}
           VariableNames: {'AAPL'  'AMZN'  'CSCO'  'DELL'  'EBAY'  'GOOG'  'HPQ'  'IBM'  'INTC'  'MSFT'  'ORCL'  'YHOO'  'MARKET'  'CASH'}
    VariableDescriptions: {}
           VariableUnits: {}
      VariableContinuity: []
                RowTimes: [1471×1 datetime]
               StartTime: 03-Jan-2000
              SampleRate: NaN
                TimeStep: NaN
        CustomProperties: No custom properties are set.
      Use addprop and rmprop to modify CustomProperties.

ans =

  5×14 timetable

       Time          AAPL         AMZN         CSCO         DELL         EBAY       GOOG       HPQ          IBM         INTC         MSFT         ORCL         YHOO        MARKET         CASH   
    ___________    _________    _________    _________    _________    _________    ____    _________    _________    _________    _________    _________    _________    _________    __________

    03-Jan-2000     0.088805       0.1742     0.008775    -0.002353      0.12829    NaN       0.03244     0.075368      0.05698    -0.001627     0.054078     0.097784    -0.012143    0.00020522
    04-Jan-2000    -0.084331     -0.08324     -0.05608     -0.08353    -0.093805    NaN     -0.075613    -0.033966    -0.046667    -0.033802      -0.0883    -0.067368     -0.03166    0.00020339
    05-Jan-2000     0.014634     -0.14877    -0.003039     0.070984     0.066875    NaN     -0.006356      0.03516     0.008199     0.010567    -0.052837    -0.073363     0.011443    0.00020376
    06-Jan-2000    -0.086538    -0.060072    -0.016619    -0.038847    -0.012302    NaN     -0.063688    -0.017241     -0.05824    -0.033477    -0.058824     -0.10307     0.011743    0.00020266
    07-Jan-2000     0.047368     0.061013       0.0587    -0.037708    -0.000964    NaN      0.028416    -0.004386      0.04127     0.013091     0.076771      0.10609      0.02393    0.00020157

Use the 'MissingData' option offered by PortfolioMAD to account for the missing data.
p = PortfolioMAD;
p = simulateNormalScenariosByData(p, stockTT, 20000 ,'missingdata',true);
[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0017
    0.0013
    0.0005
    0.0001
    0.0019
    0.0049
    0.0003
    0.0003
    0.0006
   -0.0001
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    0.0005
    0.0011
    0.0002
    0.0001

passetcovar =

    0.0014    0.0005    0.0006    0.0006    0.0006    0.0003    0.0005    0.0003    0.0006    0.0004    0.0005    0.0007    0.0002   -0.0000
    0.0005    0.0025    0.0007    0.0005    0.0010    0.0005    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012    0.0002   -0.0000
    0.0006    0.0007    0.0013    0.0006    0.0007    0.0004    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008    0.0002   -0.0000
    0.0006    0.0005    0.0006    0.0009    0.0006    0.0002    0.0005    0.0003    0.0006    0.0004    0.0005    0.0006    0.0002   -0.0000
    0.0006    0.0010    0.0007    0.0006    0.0018    0.0007    0.0005    0.0003    0.0006    0.0005    0.0007    0.0011    0.0002    0.0000
    0.0003    0.0005    0.0004    0.0002    0.0007    0.0013    0.0002    0.0002    0.0002    0.0002    0.0003    0.0011    0.0001   -0.0000
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0002    0.0010    0.0003    0.0005    0.0003    0.0005    0.0006    0.0002   -0.0000
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0002    0.0004    0.0004    0.0002   -0.0000
    0.0006    0.0006    0.0008    0.0006    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007    0.0002   -0.0000
    0.0004    0.0004    0.0005    0.0004    0.0005    0.0002    0.0003    0.0002    0.0005    0.0006    0.0004    0.0005    0.0002   -0.0000
    0.0005    0.0006    0.0008    0.0005    0.0007    0.0003    0.0005    0.0004    0.0007    0.0004    0.0014    0.0008    0.0002   -0.0000
    0.0007    0.0012    0.0008    0.0006    0.0011    0.0011    0.0006    0.0004    0.0007    0.0005    0.0008    0.0020    0.0002   -0.0000
    0.0002    0.0002    0.0002    0.0002    0.0002    0.0001    0.0002    0.0002    0.0002    0.0002    0.0002    0.0002    0.0001   -0.0000
   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000

Use the name-value input 'DataFormat' to handle return or price data and 'MissingData' to
ignore or use samples with missing values. In addition, simulateNormalScenariosByData
extracts asset names or identifiers from a table or timetable if the argument 'GetAssetList' is
set to true (the default value is false). If the 'GetAssetList' value is true, the identifiers are
used to set the AssetList property of the PortfolioMAD object. Thus, repeating the formation of
the PortfolioMAD object p from the previous example with the 'GetAssetList' flag set to true
extracts the column names from the timetable object:
p = simulateNormalScenariosByData(p, stockTT, 20000 ,'missingdata',true, 'GetAssetList', true);
disp(p.AssetList)

 'AAPL'    'AMZN'    'CSCO'    'DELL'    'EBAY'    'GOOG'    'HPQ'    'IBM'    'INTC'    'MSFT'    'ORCL'    'YHOO'    'MARKET'    'CASH'

If you set the'GetAssetList' flag set to true and your input data is in a matrix,
simulateNormalScenariosByData uses the default labeling scheme from setAssetList as
described in “Setting Up a List of Asset Identifiers” on page 5-28.

Simulating Normal Scenarios for Mean and Covariance
Given the mean and covariance of asset returns, use the simulateNormalScenariosByMoments
function to simulate multivariate normal scenarios. The mean can be either a row or column vector
and the covariance matrix must be a symmetric positive-semidefinite matrix. Various rules for scalar
expansion apply. To illustrate using simulateNormalScenariosByMoments, start with moments in
m and C and generate 20,000 scenarios:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];
C = [ 0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];

p = PortfolioMAD;
p = simulateNormalScenariosByMoments(p, m, C, 20000);
[passetmean, passetcovar] = estimateScenarioMoments(p)
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passetmean =

    0.0040
    0.0084
    0.0105
    0.1513

passetcovar =

    0.0053    0.0003    0.0002    0.0001
    0.0003    0.0024    0.0017    0.0009
    0.0002    0.0017    0.0048    0.0028
    0.0001    0.0009    0.0028    0.0102

simulateNormalScenariosByMoments performs scalar expansion on arguments for the moments
of asset returns. If NumAssets has not already been set, a scalar argument is interpreted as a scalar
with NumAssets set to 1. simulateNormalScenariosByMoments provides an additional optional
argument to specify the number of assets so that scalar expansion works with the correct number of
assets. In addition, if either a scalar or vector is input for the covariance of asset returns, a diagonal
matrix is formed such that a scalar expands along the diagonal and a vector becomes the diagonal.

See Also
PortfolioMAD | setCosts | setScenarios | simulateNormalScenariosByMoments |
simulateNormalScenariosByData

Related Examples
• “Working with a Riskless Asset” on page 6-43
• “Working with Transaction Costs” on page 6-44
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with a Riskless Asset
The PortfolioMAD object has a separate RiskFreeRate property that stores the rate of return of a
riskless asset. Thus, you can separate your universe into a riskless asset and a collection of risky
assets. For example, assume that your riskless asset has a return in the scalar variable r0, then the
property for the RiskFreeRate is set using the PortfolioMAD object:

r0 = 0.01/12;

p = PortfolioMAD;
p = PortfolioMAD('RiskFreeRate', r0);
disp(p.RiskFreeRate)

 8.3333e-04

Note If your portfolio problem has a budget constraint such that your portfolio weights must sum to
1, then the riskless asset is irrelevant.

See Also
PortfolioMAD | setCosts | setScenarios | simulateNormalScenariosByMoments |
simulateNormalScenariosByData

Related Examples
• “Working with Transaction Costs” on page 6-44
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with Transaction Costs
The difference between net and gross portfolio returns is transaction costs. The net portfolio return
proxy has distinct proportional costs to purchase and to sell assets which are maintained in the
PortfolioMAD object properties BuyCost and SellCost. Transaction costs are in units of total
return and, as such, are proportional to the price of an asset so that they enter the model for net
portfolio returns in return form. For example, suppose that you have a stock currently priced $40 and
your usual transaction costs are 5 cents per share. Then the transaction cost for the stock is 0.05/40
= 0.00125 (as defined in “Net Portfolio Returns” on page 6-3). Costs are entered as positive values
and credits are entered as negative values.

Setting Transaction Costs Using the PortfolioMAD Function
To set up transaction costs, you must specify an initial or current portfolio in the InitPort property.
If the initial portfolio is not set when you set up the transaction cost properties, InitPort is 0. The
properties for transaction costs can be set using the PortfolioMAD object. For example, assume that
purchase and sale transaction costs are in the variables bc and sc and an initial portfolio is in the
variable x0, then transaction costs are set:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = PortfolioMAD('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort)

    5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

Setting Transaction Costs Using the setCosts Function
You can also set the properties for transaction costs using setCosts. Assume that you have the same
costs and initial portfolio as in the previous example. Given a PortfolioMAD object p with an initial
portfolio already set, use setCosts to set up transaction costs:
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bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD('InitPort', x0);
p = setCosts(p, bc, sc);
        
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort)

    5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

You can also set up the initial portfolio's InitPort value as an optional argument to setCosts so
that the following is an equivalent way to set up transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD;
p = setCosts(p, bc, sc, x0);
        
disp(p.NumAssets)
disp(p.BuyCost)
disp(p.SellCost)
disp(p.InitPort)

    5

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

    0.0013
    0.0070
    0.0013
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    0.0013
    0.0024

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

Setting Transaction Costs with Scalar Expansion
Both the PortfolioMAD object and setCosts function implement scalar expansion on the
arguments for transaction costs and the initial portfolio. If the NumAssets property is already set in
the PortfolioMAD object, scalar arguments for these properties are expanded to have the same
value across all dimensions. In addition, setCosts lets you specify NumAssets as an optional final
argument. For example, assume that you have an initial portfolio x0 and you want to set common
transaction costs on all assets in your universe. You can set these costs in any of these equivalent
ways:
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = PortfolioMAD('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = PortfolioMAD('InitPort', x0);
p = setCosts(p, 0.002, 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = PortfolioMAD;
p = setCosts(p, 0.002, 0.002, x0);

To clear costs from your PortfolioMAD object, use either thePortfolioMAD object or setCosts
with empty inputs for the properties to be cleared. For example, you can clear sales costs from the
PortfolioMAD object p in the previous example:

p = PortfolioMAD(p, 'SellCost', []);

See Also
PortfolioMAD | setCosts | setScenarios | simulateNormalScenariosByMoments |
simulateNormalScenariosByData

Related Examples
• “Working with a Riskless Asset” on page 6-43
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
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• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with MAD Portfolio Constraints Using Defaults
The final element for a complete specification of a portfolio optimization problem is the set of feasible
portfolios, which is called a portfolio set. A portfolio set X ⊂ Rn is specified by construction as the
intersection of sets formed by a collection of constraints on portfolio weights. A portfolio set
necessarily and sufficiently must be a nonempty, closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions. The most
basic or “default” portfolio set requires portfolio weights to be nonnegative (using the lower-bound
constraint) and to sum to 1 (using the budget constraint). For information on the workflow when
using PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-15.

Setting Default Constraints for Portfolio Weights Using PortfolioMAD
Object
The “default” MAD portfolio problem has two constraints on portfolio weights:

• Portfolio weights must be nonnegative.
• Portfolio weights must sum to 1.

Implicitly, these constraints imply that portfolio weights are no greater than 1, although this is a
superfluous constraint to impose on the problem.

Setting Default Constraints Using the PortfolioMAD Function

Given a portfolio optimization problem with NumAssets = 20 assets, use the PortfolioMAD object
to set up a default problem and explicitly set bounds and budget constraints:

p = PortfolioMAD('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);
disp(p)

  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: []
            Name: []
       NumAssets: 20
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [20×1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
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      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: []

Setting Default Constraints Using the setDefaultConstraints Function

An alternative approach is to use the setDefaultConstraints function. If the number of assets is
already known in a PortfolioMAD object, use setDefaultConstraints with no arguments to set
up the necessary bound and budget constraints. Suppose that you have 20 assets to set up the
portfolio set for a default problem:

p = PortfolioMAD('NumAssets', 20);
p = setDefaultConstraints(p);
disp(p)

 PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: []
            Name: []
       NumAssets: 20
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [20×1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: [20×1 categorical]

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as an optional
argument to form a portfolio set for a default problem. Suppose that you have 20 assets:

p = PortfolioMAD;
p = setDefaultConstraints(p, 20);
disp(p)
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PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: []
            Name: []
       NumAssets: 20
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [20×1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: [20×1 categorical]

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Working with 'Simple' Bound Constraints Using PortfolioMAD Object” on page 6-52
• “Working with Budget Constraints Using PortfolioMAD Object” on page 6-55
• “Working with Group Constraints Using PortfolioMAD Object” on page 6-57
• “Working with Group Ratio Constraints Using PortfolioMAD Object” on page 6-60
• “Working with Linear Equality Constraints Using PortfolioMAD Object” on page 6-63
• “Working with Linear Inequality Constraints Using PortfolioMAD Object” on page 6-65
• “Working with Average Turnover Constraints Using PortfolioMAD Object” on page 6-70
• “Working with One-Way Turnover Constraints Using PortfolioMAD Object” on page 6-73
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
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• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with 'Simple' Bound Constraints Using PortfolioMAD
Object

'Simple' bound constraints are optional linear constraints that maintain upper and lower bounds on
portfolio weights (see “'Simple' Bound Constraints” on page 6-8). Although every portfolio set must
be bounded, it is not necessary to specify a portfolio set with explicit bound constraints. For example,
you can create a portfolio set with an implicit upper bound constraint or a portfolio set with average
turnover constraints. The bound constraints have properties LowerBound for the lower-bound
constraint and UpperBound for the upper-bound constraint. Set default values for these constraints
using the setDefaultConstraints function (see “Setting Default Constraints for Portfolio Weights
Using Portfolio Object” on page 4-57).

Setting 'Simple' Bounds Using the PortfolioMAD Function
The properties for bound constraints are set through the PortfolioMAD object. Suppose that you
have a balanced fund with stocks that can range from 50% to 75% of your portfolio and bonds that
can range from 25% to 50% of your portfolio. The bound constraints for a balanced fund are set with:

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];
p = PortfolioMAD('LowerBound', lb, 'UpperBound', ub, 'BoundType', 'Simple');
disp(p.NumAssets)
disp(p.LowerBound)
disp(p.UpperBound)

 2

 0.5000
 0.2500

 0.7500
 0.5000

To continue with this example, you must set up a budget constraint. For details, see “Working with
Budget Constraints Using Portfolio Object” on page 4-64.

Setting 'Simple' Bounds Using the setBounds Function
You can also set the properties for bound constraints using setBounds. Suppose that you have a
balanced fund with stocks that can range from 50% to 75% of your portfolio and bonds that can range
from 25% to 50% of your portfolio. Given a PortfolioMAD object p, use setBounds to set the bound
constraints:

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];
p = PortfolioMAD;
p = setBounds(p, lb, ub,'BoundType', 'Simple');
disp(p.NumAssets)
disp(p.LowerBound)
disp(p.UpperBound)

  2

  0.5000
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  0.2500

  0.7500
  0.5000

Setting 'Simple' Bounds Using the PortfolioMAD Function or
setBounds Function
Both the PortfolioMAD object and setBounds function implement scalar expansion on either the
LowerBound or UpperBound properties. If the NumAssets property is already set in the
PortfolioMAD object, scalar arguments for either property expand to have the same value across all
dimensions. In addition, setBounds lets you specify NumAssets as an optional argument. Suppose
that you have a universe of 500 assets and you want to set common bound constraints on all assets in
your universe. Specifically, you are a long-only investor and want to hold no more than 5% of your
portfolio in any single asset. You can set these bound constraints in any of these equivalent ways:
p = PortfolioMAD('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05,'BoundType', 'Simple');

or

p = PortfolioMAD('NumAssets', 500);
p = setBounds(p, 0, 0.05,'BoundType','Simple');

or

p = PortfolioMAD;
p = setBounds(p, 0, 0.05, 500,'BoundType','Simple');

To clear bound constraints from your PortfolioMAD object, use either the PortfolioMAD object or
setBounds with empty inputs for the properties to be cleared. For example, to clear the upper-bound
constraint from the PortfolioMAD object p in the previous example:

p = PortfolioMAD(p, 'UpperBound', []);

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets

Constraints” on page 4-133
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

PortfolioMAD Objects” on page 6-67
• “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets

Constraints” on page 4-133
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More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with Budget Constraints Using PortfolioMAD Object
The budget constraint is an optional linear constraint that maintains upper and lower bounds on the
sum of portfolio weights (see “Budget Constraints” on page 5-9). Budget constraints have properties
LowerBudget for the lower budget constraint and UpperBudget for the upper budget constraint. If
you set up a MAD portfolio optimization problem that requires portfolios to be fully invested in your
universe of assets, you can set LowerBudget to be equal to UpperBudget. These budget constraints
can be set with default values equal to 1 using setDefaultConstraints (see “Setting Default
Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48).

Setting Budget Constraints Using the PortfolioMAD Function
The properties for the budget constraint can also be set using the PortfolioMAD object. Suppose
that you have an asset universe with many risky assets and a riskless asset and you want to ensure
that your portfolio never holds more than 1% cash, that is, you want to ensure that you are 99–100%
invested in risky assets. The budget constraint for this portfolio can be set with:

p = PortfolioMAD('LowerBudget', 0.99, 'UpperBudget', 1);
disp(p.LowerBudget)
disp(p.UpperBudget)

 0.9900

1

Setting Budget Constraints Using the setBudget Function
You can also set the properties for a budget constraint using setBudget. Suppose that you have a
fund that permits up to 10% leverage which means that your portfolio can be from 100% to 110%
invested in risky assets. Given a PortfolioMAD object p, use setBudget to set the budget
constraints:

p = PortfolioMAD;
p = setBudget(p, 1, 1.1);
disp(p.LowerBudget)
disp(p.UpperBudget)

 1

 1.1000

If you were to continue with this example, then set the RiskFreeRate property to the borrowing
rate to finance possible leveraged positions. For details on the RiskFreeRate property, see “Working
with a Riskless Asset” on page 6-43. To clear either bound for the budget constraint from your
PortfolioMAD object, use either the PortfolioMAD object or setBudget with empty inputs for the
properties to be cleared. For example, clear the upper-budget constraint from the PortfolioMAD
object p in the previous example with:

p = PortfolioMAD(p, 'UpperBudget', []);

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover
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Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with Group Constraints Using PortfolioMAD Object
Group constraints are optional linear constraints that group assets together and enforce bounds on
the group weights (see “Group Constraints” on page 6-10). Although the constraints are implemented
as general constraints, the usual convention is to form a group matrix that identifies membership of
each asset within a specific group with Boolean indicators (either true or false or with 1 or 0) for
each element in the group matrix. Group constraints have properties GroupMatrix for the group
membership matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for the
upper-bound constraint on groups.

Setting Group Constraints Using the PortfolioMAD Function
The properties for group constraints are set through the PortfolioMAD object. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets constitute no more than
30% of your portfolio, then you can set group constraints:

G = [ 1 1 1 0 0 ];
p = PortfolioMAD('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.UpperGroup)

5

1     1     1     0     0

0.3000

The group matrix G can also be a logical matrix so that the following code achieves the same result.

G = [ true true true false false ];
p = PortfolioMAD('GroupMatrix', G, 'UpperGroup', 0.3);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.UpperGroup)

5

1     1     1     0     0

0.3000

Setting Group Constraints Using the setGroups and addGroups
Functions
You can also set the properties for group constraints using setGroups. Suppose that you have a
portfolio of five assets and want to ensure that the first three assets constitute no more than 30% of
your portfolio. Given a PortfolioMAD object p, use setGroups to set the group constraints:

G = [ true true true false false ];
p = PortfolioMAD;
p = setGroups(p, G, [], 0.3);
disp(p.NumAssets);
disp(p.GroupMatrix);
disp(p.UpperGroup);
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5

1     1     1     0     0

0.3000

In this example, you would set the LowerGroup property to be empty ([]).

Suppose that you want to add another group constraint to make odd-numbered assets constitute at
least 20% of your portfolio. Set up an augmented group matrix and introduce infinite bounds for
unconstrained group bounds or use the addGroups function to build up group constraints. For this
example, create another group matrix for the second group constraint:
p = PortfolioMAD;
G = [ true true true false false ];    % group matrix for first group constraint
p = setGroups(p, G, [], 0.3);
G = [ true false true false true ];    % group matrix for second group constraint
p = addGroups(p, G, 0.2);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.LowerGroup)
disp(p.UpperGroup)

 5

1     1     1     0     0
1     0     1     0     1

  -Inf
0.2000

0.3000
  Inf

addGroups determines which bounds are unbounded so you only need to focus on the constraints
that you want to set.

The PortfolioMAD object, setGroups, and addGroups implement scalar expansion on either the
LowerGroup or UpperGroup properties based on the dimension of the group matrix in the property
GroupMatrix. Suppose that you have a universe of 30 assets with 6 asset classes such that assets 1–
5, assets 6–12, assets 13–18, assets 19–22, assets 23–27, and assets 28–30 constitute each of your
asset classes and you want each asset class to fall from 0% to 25% of your portfolio. Let the following
group matrix define your groups and scalar expansion define the common bounds on each group:
p = PortfolioMAD;
G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));
p = setGroups(p, G, 0, 0.25);
disp(p.NumAssets)
disp(p.GroupMatrix)
disp(p.LowerGroup)
disp(p.UpperGroup)

30

  Columns 1 through 13

     1     1     1     1     1     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     1     1     1     1     1     1     0
     0     0     0     0     0     0     0     0     0     0     0     0     1
     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 14 through 26

     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0
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     1     1     1     1     1     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     1     1     1     0     0     0     0
     0     0     0     0     0     0     0     0     0     1     1     1     1
     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 27 through 30

     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     1     0     0     0
     0     1     1     1

     0
     0
     0
     0
     0
     0

    0.2500
    0.2500
    0.2500
    0.2500
    0.2500
    0.2500

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with Group Ratio Constraints Using PortfolioMAD
Object

Group ratio constraints are optional linear constraints that maintain bounds on proportional
relationships among groups of assets (see “Group Ratio Constraints” on page 6-10). Although the
constraints are implemented as general constraints, the usual convention is to specify a pair of group
matrices that identify membership of each asset within specific groups with Boolean indicators
(either true or false or with 1 or 0) for each element in each of the group matrices. The goal is to
ensure that the ratio of a base group compared to a comparison group fall within specified bounds.
Group ratio constraints have properties:

• GroupA for the base membership matrix
• GroupB for the comparison membership matrix
• LowerRatio for the lower-bound constraint on the ratio of groups
• UpperRatio for the upper-bound constraint on the ratio of groups

Setting Group Ratio Constraints Using the PortfolioMAD Function
The properties for group ratio constraints are set using PortfolioMAD object. For example, assume
that you want the ratio of financial to nonfinancial companies in your portfolios to never go above
50%. Suppose that you have six assets with three financial companies (assets 1–3) and three
nonfinancial companies (assets 4–6). To set group ratio constraints:
GA = [ 1 1 1 0 0 0 ];    % financial companies
GB = [ 0 0 0 1 1 1 ];    % nonfinancial companies
p = PortfolioMAD('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Group matrices GA and GB in this example can be logical matrices with true and false elements
that yield the same result:
GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = PortfolioMAD('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000
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Setting Group Ratio Constraints Using the setGroupRatio and
addGroupRatio Functions
You can also set the properties for group ratio constraints using setGroupRatio. For example,
assume that you want the ratio of financial to nonfinancial companies in your portfolios to never go
above 50%. Suppose that you have six assets with three financial companies (assets 1–3) and three
nonfinancial companies (assets 4–6). Given a PortfolioMAD object p, use setGroupRatio to set the
group constraints:
GA = [ true true true false false false ];   % financial companies
GB = [ false false false true true true ];   % nonfinancial companies
p = PortfolioMAD;
p = setGroupRatio(p, GA, GB, [], 0.5);
disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.UpperRatio)

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

In this example, you would set the LowerRatio property to be empty ([]).

Suppose that you want to add another group ratio constraint to ensure that the weights in odd-
numbered assets constitute at least 20% of the weights in nonfinancial assets your portfolio. You can
set up augmented group ratio matrices and introduce infinite bounds for unconstrained group ratio
bounds, or you can use the addGroupRatio function to build up group ratio constraints. For this
example, create another group matrix for the second group constraint:
p = PortfolioMAD;
GA = [ true true true false false false ];   % financial companies
GB = [ false false false true true true ];   % nonfinancial companies
p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];   % odd-numbered companies
GB = [ false false false true true true ];   % nonfinancial companies
p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets)
disp(p.GroupA)
disp(p.GroupB)
disp(p.LowerRatio)
disp(p.UpperRatio)

6

1     1     1     0     0     0
1     0     1     0     1     0

0     0     0     1     1     1
0     0     0     1     1     1

  -Inf
0.2000

0.5000
  Inf
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Notice that addGroupRatio determines which bounds are unbounded so you only need to focus on
the constraints you want to set.

ThePortfolioMAD object, setGroupRatio, and addGroupRatio implement scalar expansion on
either the LowerRatio or UpperRatio properties based on the dimension of the group matrices in
GroupA and GroupB properties.

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with Linear Equality Constraints Using PortfolioMAD
Object

Linear equality constraints are optional linear constraints that impose systems of equalities on
portfolio weights (see “Linear Equality Constraints” on page 6-8). Linear equality constraints have
properties AEquality, for the equality constraint matrix, and bEquality, for the equality constraint
vector.

Setting Linear Equality Constraints Using the PortfolioMAD Function
The properties for linear equality constraints are set using the PortfolioMAD object. Suppose that
you have a portfolio of five assets and want to ensure that the first three assets are 50% of your
portfolio. To set this constraint:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD('AEquality', A, 'bEquality', b);
disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0

0.5000

Setting Linear Equality Constraints Using the setEquality and
addEquality Functions
You can also set the properties for linear equality constraints using setEquality. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets are 50% of your portfolio.
Given a PortfolioMAD object p, use setEquality to set the linear equality constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD;
p = setEquality(p, A, b);
disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear equality constraint to ensure that the last three assets
also constitute 50% of your portfolio. You can set up an augmented system of linear equalities or use
addEquality to build up linear equality constraints. For this example, create another system of
equalities:

p = PortfolioMAD;
A = [ 1 1 1 0 0 ];    % first equality constraint
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b = 0.5;
p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % second equality constraint
b = 0.5;
p = addEquality(p, A, b);

disp(p.NumAssets)
disp(p.AEquality)
disp(p.bEquality)

5

1     1     1     0     0
0     0     1     1     1

0.5000
0.5000

The PortfolioMAD object, setEquality, and addEquality implement scalar expansion on the
bEquality property based on the dimension of the matrix in the AEquality property.

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with Linear Inequality Constraints Using PortfolioMAD
Object

Linear inequality constraints are optional linear constraints that impose systems of inequalities on
portfolio weights (see “Linear Inequality Constraints” on page 6-7). Linear inequality constraints have
properties AInequality for the inequality constraint matrix, and bInequality for the inequality
constraint vector.

Setting Linear Inequality Constraints Using the PortfolioMAD Function
The properties for linear inequality constraints are set using the PortfolioMAD object. Suppose that
you have a portfolio of five assets and you want to ensure that the first three assets are no more than
50% of your portfolio. To set up these constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD('AInequality', A, 'bInequality', b);
disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0

0.5000

Setting Linear Inequality Constraints Using the setInequality and
addInequality Functions
You can also set the properties for linear inequality constraints using setInequality. Suppose that
you have a portfolio of five assets and you want to ensure that the first three assets constitute no
more than 50% of your portfolio. Given a PortfolioMAD object p, use setInequality to set the
linear inequality constraints:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD;
p = setInequality(p, A, b);
disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear inequality constraint to ensure that the last three assets
constitute at least 50% of your portfolio. You can set up an augmented system of linear inequalities or
use the addInequality function to build up linear inequality constraints. For this example, create
another system of inequalities:
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p = PortfolioMAD;
A = [ 1 1 1 0 0 ];    % first inequality constraint
b = 0.5;
p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint
b = -0.5;
p = addInequality(p, A, b);

disp(p.NumAssets)
disp(p.AInequality)
disp(p.bInequality)

5

1     1     1     0     0
0     0    -1    -1    -1

0.5000
-0.5000

The PortfolioMAD object, setInequality, and addInequality implement scalar expansion on
the bInequality property based on the dimension of the matrix in the AInequality property.

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with 'Conditional' BoundType, MinNumAssets, and
MaxNumAssets Constraints Using PortfolioMAD Objects

When any one, or any combination of 'Conditional' BoundType, MinNumAssets, or
MaxNumAssets constraints are active, the portfolio problem is formulated by adding NumAssets
binary variables, where 0 indicates not invested, and 1 is invested. For example, to explain the
'Conditional' BoundType and MinNumAssets and MaxNumAssets constraints, assume that your
portfolio has a universe of 100 assets that you want to invest:

• 'Conditional' BoundType (also known as semicontinuous constraints), set by setBounds, is
often used in situations where you do not want to invest small values. A standard example is a
portfolio optimization problem where many small allocations are not attractive because of
transaction costs. Instead, you prefer fewer instruments in the portfolio with larger allocations.
This situation can be handled using'Conditional' BoundType constraints for a PortfolioMAD
object.

For example, the weight you invest in each asset is either 0 or between [0.01, 0.5]. Generally,
a semicontinuous variable x is a continuous variable between bounds [lb, ub] that also can
assume the value 0, where lb > 0, lb ≤ ub. Applying this to portfolio optimization requires that
very small or large positions should be avoided, that is values that fall in (0, lb) or are more than
ub.

• MinNumAssets and MaxNumAssets (also known as cardinality constraints), set by
setMinMaxNumAssets, limit the number of assets in a PortfolioMAD object. For example, if you
have 100 assets in your portfolio and you want the number of assets allocated in the portfolio to
be from 40 through 60. Using MinNumAssets and MaxNumAssets you can limit the number of
assets in the optimized portfolio, which allows you to limit transaction and operational costs or to
create an index tracking portfolio.

Setting 'Conditional' BoundType Constraints Using the setBounds
Function
Use setBounds with a 'conditional' BoundType to set xi = 0 or 0.02 <= xi <= 0.5 for all
i=1,...NumAssets:

p = PortfolioMAD;
p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3)  

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: []
       AssetCovar: []
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 3
        AssetList: []
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         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [3×1 double]
       UpperBound: [3×1 double]
      LowerBudget: []
      UpperBudget: []
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
        BoundType: [3×1 categorical]
     MinNumAssets: []
     MaxNumAssets: []

Setting the Limits on the Number of Assets Invested Using the
setMinMaxNumAssets Function
You can also set the MinNumAssets and MaxNumAssets properties to define a limit on the number of
assets invested using setMinMaxNumAssets. For example, by setting
MinNumAssets=MaxNumAssets=2, only two of the three assets are invested in the portfolio.

p = PortfolioMAD;
p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3)  
p = setMinMaxNumAssets(p, 2, 2)

 p = 

  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: []
            Name: []
       NumAssets: 3
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [3×1 double]
      UpperBound: [3×1 double]
     LowerBudget: []
     UpperBudget: []
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
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          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: 2
    MaxNumAssets: 2
       BoundType: [3×1 categorical]

See Also
PortfolioMAD | setBounds | setMinMaxNumAssets | setDefaultConstraints | setBounds |
setBudget | setGroups | setGroupRatio | setEquality | setInequality | setTurnover |
setOneWayTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Working with 'Simple' Bound Constraints Using PortfolioMAD Object” on page 6-52
• “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets

Constraints” on page 4-133
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with Average Turnover Constraints Using
PortfolioMAD Object

The turnover constraint is an optional linear absolute value constraint (see “Average Turnover
Constraints” on page 6-11) that enforces an upper bound on the average of purchases and sales. The
turnover constraint can be set using the PortfolioMAD object or the setTurnover function. The
turnover constraint depends on an initial or current portfolio, which is assumed to be zero if not set
when the turnover constraint is set. The turnover constraint has properties Turnover, for the upper
bound on average turnover, and InitPort, for the portfolio against which turnover is computed.

Setting Average Turnover Constraints Using the PortfolioMAD
Function
The properties for the turnover constraints are set using the PortfolioMAD object. Suppose that you
have an initial portfolio of 10 assets in a variable x0 and you want to ensure that average turnover is
no more than 30%. To set this turnover constraint:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = PortfolioMAD('Turnover', 0.3, 'InitPort', x0);
disp(p.NumAssets)
disp(p.Turnover)
disp(p.InitPort)

10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

Note if the NumAssets or InitPort properties are not set before or when the turnover constraint is
set, various rules are applied to assign default values to these properties (see “Setting Up an Initial or
Current Portfolio” on page 6-32).

Setting Average Turnover Constraints Using the setTurnover Function
You can also set properties for portfolio turnover using setTurnover to specify both the upper
bound for average turnover and an initial portfolio. Suppose that you have an initial portfolio of 10
assets in a variable x0 and want to ensure that average turnover is no more than 30%. Given a
PortfolioMAD object p, use setTurnover to set the turnover constraint with and without the initial
portfolio being set previously:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioMAD('InitPort', x0);
p = setTurnover(p, 0.3);

disp(p.NumAssets)
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disp(p.Turnover)
disp(p.InitPort)

10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioMAD;
p = setTurnover(p, 0.3, x0);
disp(p.NumAssets)
disp(p.Turnover)
disp(p.InitPort)

10

0.3000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

setTurnover implements scalar expansion on the argument for the initial portfolio. If the
NumAssets property is already set in the PortfolioMAD object, a scalar argument for InitPort
expands to have the same value across all dimensions. In addition, setTurnover lets you specify
NumAssets as an optional argument. To clear turnover from your PortfolioMAD object, use the
PortfolioMAD object or setTurnover with empty inputs for the properties to be cleared.

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
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• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with One-Way Turnover Constraints Using
PortfolioMAD Object

One-way turnover constraints are optional constraints (see “One-way Turnover Constraints” on page
6-12) that enforce upper bounds on net purchases or net sales. One-way turnover constraints can be
set using the PortfolioMAD object or the setOneWayTurnover function. One-way turnover
constraints depend upon an initial or current portfolio, which is assumed to be zero if not set when
the turnover constraints are set. One-way turnover constraints have properties BuyTurnover, for the
upper bound on net purchases, SellTurnover, for the upper bound on net sales, and InitPort, for
the portfolio against which turnover is computed.

Setting One-Way Turnover Constraints Using the PortfolioMAD
Function
The Properties for the one-way turnover constraints are set using the PortfolioMAD object. Suppose
that you have an initial portfolio with 10 assets in a variable x0 and you want to ensure that turnover
on purchases is no more than 30% and turnover on sales is no more than 20% of the initial portfolio.
To set these turnover constraints:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = PortfolioMAD('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);
disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort)

10

0.3000

0.2000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000 

If the NumAssets or InitPort properties are not set before or when the turnover constraint is set,
various rules are applied to assign default values to these properties (see “Setting Up an Initial or
Current Portfolio” on page 6-32).

Setting Turnover Constraints Using the setOneWayTurnover Function
You can also set properties for portfolio turnover using setOneWayTurnover to specify to the upper
bounds for turnover on purchases (BuyTurnover) and sales (SellTurnover) and an initial portfolio.
Suppose that you have an initial portfolio of 10 assets in a variable x0 and want to ensure that
turnover on purchases is no more than 30% and that turnover on sales is no more than 20% of the
initial portfolio. Given a PortfolioMAD object p, use setOneWayTurnover to set the turnover
constraints with and without the initial portfolio being set previously:
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x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioMAD('InitPort', x0);
p = setOneWayTurnover(p, 0.3, 0.2);

disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort)

or

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = PortfolioMAD;
p = setOneWayTurnover(p, 0.3, 0.2, x0);
disp(p.NumAssets)
disp(p.BuyTurnover)
disp(p.SellTurnover)
disp(p.InitPort)

10

0.3000

0.2000

0.1200
0.0900
0.0800
0.0700
0.1000
0.1000
0.1500
0.1100
0.0800
0.1000

setOneWayTurnover implements scalar expansion on the argument for the initial portfolio. If the
NumAssets property is already set in the PortfolioMAD object, a scalar argument for InitPort
expands to have the same value across all dimensions. In addition, setOneWayTurnover lets you
specify NumAssets as an optional argument. To remove one-way turnover from your PortfolioMAD
object, use the PortfolioMAD object or setOneWayTurnover with empty inputs for the properties
to be cleared.

See Also
PortfolioMAD | setDefaultConstraints | setBounds | setBudget | setGroups |
setGroupRatio | setEquality | setInequality | setTurnover | setOneWayTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
• “Creating the PortfolioMAD Object” on page 6-21
• “Validate the MAD Portfolio Problem” on page 6-76
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
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More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Validate the MAD Portfolio Problem
In this section...
“Validating a MAD Portfolio Set” on page 6-76
“Validating MAD Portfolios” on page 6-77

Sometimes, you may want to validate either your inputs to, or outputs from, a portfolio optimization
problem. Although most error checking that occurs during the problem setup phase catches most
difficulties with a portfolio optimization problem, the processes to validate MAD portfolio sets and
portfolios are time consuming and are best done offline. So, the portfolio optimization tools have
specialized functions to validate MAD portfolio sets and portfolios. For information on the workflow
when using PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-15.

Validating a MAD Portfolio Set
Since it is necessary and sufficient that your MAD portfolio set must be a nonempty, closed, and
bounded set to have a valid portfolio optimization problem, the estimateBounds function lets you
examine your portfolio set to determine if it is nonempty and, if nonempty, whether it is bounded.
Suppose that you have the following MAD portfolio set which is an empty set because the initial
portfolio at 0 is too far from a portfolio that satisfies the budget and turnover constraint:

p = PortfolioMAD('NumAssets', 3, 'Budget', 1);
p = setTurnover(p, 0.3, 0);

If a MAD portfolio set is empty, estimateBounds returns NaN bounds and sets the isbounded flag
to []:

[lb, ub, isbounded] = estimateBounds(p)

lb =

   NaN
   NaN
   NaN

ub =

   NaN
   NaN
   NaN

isbounded =

     []

Suppose that you create an unbounded MAD portfolio set as follows:

p = PortfolioMAD('AInequality', [1 -1; 1 1 ], 'bInequality', 0);
[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf
  -Inf
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ub =

  1.0e-008 *

   -0.3712
       Inf

isbounded =

     0

In this case, estimateBounds returns (possibly infinite) bounds and sets the isbounded flag to
false. The result shows which assets are unbounded so that you can apply bound constraints as
necessary.

Finally, suppose that you created a PortfolioMAD object that is both nonempty and bounded.
estimateBounds not only validates the set, but also obtains tighter bounds which are useful if you
are concerned with the actual range of portfolio choices for individual assets in your portfolio:
p = PortfolioMAD;
p = setBudget(p, 1,1);
p = setBounds(p, [ -0.1; 0.2; 0.3; 0.2 ], [ 0.5; 0.3; 0.9; 0.8 ]);
        
[lb, ub, isbounded] = estimateBounds(p)

lb =

   -0.1000
    0.2000
    0.3000
    0.2000

ub =

    0.3000
    0.3000
    0.7000
    0.6000

isbounded =

     1

In this example, all but the second asset has tighter upper bounds than the input upper bound
implies.

Validating MAD Portfolios
Given a MAD portfolio set specified in a PortfolioMAD object, you often want to check if specific
portfolios are feasible with respect to the portfolio set. This can occur with, for example, initial
portfolios and with portfolios obtained from other procedures. The checkFeasibility function
determines whether a collection of portfolios is feasible. Suppose that you perform the following
portfolio optimization and want to determine if the resultant efficient portfolios are feasible relative
to a modified problem.

First, set up a problem in the PortfolioMAD object p, estimate efficient portfolios in pwgt, and then
confirm that these portfolios are feasible relative to the initial problem:
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m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

Next, set up a different portfolio problem that starts with the initial problem with an additional a
turnover constraint and an equally weighted initial portfolio:

q = setTurnover(p, 0.3, 0.25);
checkFeasibility(q, pwgt)

ans =

     0     0     1     1     1     0     0     0     0     0

In this case, only two of the 10 efficient portfolios from the initial problem are feasible relative to the
new problem in PortfolioMAD object q. Solving the second problem using checkFeasibility
demonstrates that the efficient portfolio for PortfolioMAD object q is feasible relative to the initial
problem:

qwgt = estimateFrontier(q);
checkFeasibility(p, qwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

See Also
PortfolioMAD | estimateBounds | checkFeasibility

Related Examples
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
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More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Estimate Efficient Portfolios Along the Entire Frontier for
PortfolioMAD Object

There are two ways to look at a portfolio optimization problem that depends on what you are trying to
do. One goal is to estimate efficient portfolios and the other is to estimate efficient frontiers. This
section focuses on the former goal and “Estimate Efficient Frontiers for PortfolioMAD Object” on
page 6-97 focuses on the latter goal. For information on the workflow when using PortfolioMAD
objects, see “PortfolioMAD Object Workflow” on page 6-15.

Obtaining Portfolios Along the Entire Efficient Frontier
The most basic way to obtain optimal portfolios is to obtain points over the entire range of the
efficient frontier. Given a portfolio optimization problem in a PortfolioMAD object, the
estimateFrontier function computes efficient portfolios spaced evenly according to the return
proxy from the minimum to maximum return efficient portfolios. The number of portfolios estimated
is controlled by the hidden property defaultNumPorts which is set to 10. A different value for the
number of portfolios estimated is specified as input to estimateFrontier. This example shows the
default number of efficient portfolios over the entire range of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
pwgt = estimateFrontier(p);
disp(pwgt)

 Columns 1 through 8

    0.8907    0.7289    0.5614    0.3946    0.2257    0.0612         0    0.0000
    0.0330    0.1163    0.2119    0.3042    0.3998    0.4876    0.4400    0.3125
    0.0420    0.0469    0.0472    0.0505    0.0534    0.0580    0.0374    0.0018
    0.0343    0.1079    0.1794    0.2507    0.3211    0.3933    0.5226    0.6857

  Columns 9 through 10

    0.0000    0.0000
    0.1570    0.0000
    0.0000    0.0000
    0.8430    1.0000

If you want only four portfolios in the previous example:

pwgt = estimateFrontier(p, 4);

disp(pwgt)

  0.8907    0.3946         0    0.0000
  0.0330    0.3042    0.4401    0.0000
  0.0420    0.0505    0.0373    0.0000
  0.0343    0.2507    0.5227    1.0000

Starting from the initial portfolio, estimateFrontier also returns purchases and sales to get from
your initial portfolio to each efficient portfolio on the efficient frontier. For example, given an initial
portfolio in pwgt0, you can obtain purchases and sales:
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pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

  Columns 1 through 8

    0.8907    0.7289    0.5614    0.3946    0.2257    0.0612         0    0.0000
    0.0330    0.1163    0.2119    0.3042    0.3998    0.4876    0.4400    0.3125
    0.0420    0.0469    0.0472    0.0505    0.0534    0.0580    0.0374    0.0018
    0.0343    0.1079    0.1794    0.2507    0.3211    0.3933    0.5226    0.6857

  Columns 9 through 10

    0.0000    0.0000
    0.1570    0.0000
    0.0000    0.0000
    0.8430    1.0000

pbuy =

  Columns 1 through 8

    0.5907    0.4289    0.2614    0.0946         0         0         0         0
         0         0         0    0.0042    0.0998    0.1876    0.1400    0.0125
         0         0         0         0         0         0         0         0
         0    0.0079    0.0794    0.1507    0.2211    0.2933    0.4226    0.5857

  Columns 9 through 10

         0         0
         0         0
         0         0
    0.7430    0.9000

psell =

  Columns 1 through 8

         0         0         0         0    0.0743    0.2388    0.3000    0.3000
    0.2670    0.1837    0.0881         0         0         0         0         0
    0.1580    0.1531    0.1528    0.1495    0.1466    0.1420    0.1626    0.1982
    0.0657         0         0         0         0         0         0         0

  Columns 9 through 10

    0.3000    0.3000
    0.1430    0.3000
    0.2000    0.2000
         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
PortfolioMAD | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver

Related Examples
• “Obtaining Endpoints of the Efficient Frontier” on page 6-83
• “Obtaining Efficient Portfolios for Target Returns” on page 6-85
• “Obtaining Efficient Portfolios for Target Risks” on page 6-88
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• “Obtaining MAD Portfolio Risks and Returns” on page 6-97
• “Obtaining the PortfolioMAD Standard Deviation” on page 6-98
• “Plotting the Efficient Frontier for a PortfolioMAD Object” on page 6-100
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Obtaining Endpoints of the Efficient Frontier
Often, you might be interested in the endpoint portfolios for the efficient frontier. Suppose that you
want to determine the range of returns from minimum to maximum to refine a search for a portfolio
with a specific target return. Use the estimateFrontierLimits function to obtain the endpoint
portfolios:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);

disp(pwgt)

  0.8875    0.0000
  0.0373    0.0000
  0.0386    0.0000
  0.0366    1.0000

Note The endpoints of the efficient frontier depend upon the Scenarios in the PortfolioMAD object.
If you change the Scenarios, you are likely to obtain different endpoints.

Starting from an initial portfolio, estimateFrontierLimits also returns purchases and sales to get
from the initial portfolio to the endpoint portfolios on the efficient frontier. For example, given an
initial portfolio in pwgt0, you can obtain purchases and sales:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierLimits(p);
    
display(pwgt)
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display(pbuy)
display(psell)

pwgt =

    0.8927    0.0000
    0.0334    0.0000
    0.0422    0.0000
    0.0317    1.0000

pbuy =

    0.5927         0
         0         0
         0         0
         0    0.9000

psell =

         0    0.3000
    0.2666    0.3000
    0.1578    0.2000
    0.0683         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
PortfolioMAD | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver

Related Examples
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Obtaining Efficient Portfolios for Target Returns
To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn
function accepts one or more target portfolio returns and obtains efficient portfolios with the
specified returns. For example, assume that you have a universe of four assets where you want to
obtain efficient portfolios with target portfolio returns of 7%, 10%, and 12%:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.07,  0.10, .12]);
display(pwgt)

pwgt =

    0.7537    0.3899    0.1478
    0.1113    0.2934    0.4136
    0.0545    0.1006    0.1319
    0.0805    0.2161    0.3066

Sometimes, you can request a return for which no efficient portfolio exists. Based on the previous
example, suppose that you want a portfolio with a 4% return (which is the return of the first asset). A
portfolio that is fully invested in the first asset, however, is inefficient. estimateFrontierByReturn
warns if your target returns are outside the range of efficient portfolio returns and replaces it with
the endpoint portfolio of the efficient frontier closest to your target return:
 pwgt = estimateFrontierByReturn(p, [0.04]);

Warning: One or more target return values are outside the feasible range [
0.0591121, 0.182542 ].
    Will return portfolios associated with endpoints of the range for these values. 
> In PortfolioMAD.estimateFrontierByReturn at 90 

The best way to avoid this situation is to bracket your target portfolio returns with
estimateFrontierLimits and estimatePortReturn (see “Obtaining Endpoints of the Efficient
Frontier” on page 6-83 and “Obtaining MAD Portfolio Risks and Returns” on page 6-97).

pret = estimatePortReturn(p, p.estimateFrontierLimits);

display(pret)

pret =

    0.0591
    0.1825

This result indicates that efficient portfolios have returns that range from 6.5% to 17.8%. Note, your
results for these examples may be different due to the random generation of scenarios.
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If you have an initial portfolio, estimateFrontierByReturn also returns purchases and sales to get
from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial
portfolio in pwgt0, to obtain purchases and sales with target returns of 7%, 10%, and 12%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierByReturn(p, [0.07,  0.10, .12]);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

    0.7537    0.3899    0.1478
    0.1113    0.2934    0.4136
    0.0545    0.1006    0.1319
    0.0805    0.2161    0.3066

pbuy =

    0.4537    0.0899         0
         0         0    0.1136
         0         0         0
         0    0.1161    0.2066

psell =

         0         0    0.1522
    0.1887    0.0066         0
    0.1455    0.0994    0.0681
    0.0195         0         0

If you do not have an initial portfolio, the purchase and sale weights assume that your initial portfolio
is 0.

See Also
PortfolioMAD | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver

Related Examples
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
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• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Obtaining Efficient Portfolios for Target Risks
To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio risks and obtains efficient portfolios with the specified
risks. Suppose that you have a universe of four assets where you want to obtain efficient portfolios
with target portfolio risks of 12%, 14%, and 16%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt)

pwgt =

    0.2102    0.0621         0
    0.3957    0.4723    0.4305
    0.1051    0.1204    0.1291
    0.2889    0.3452    0.4404

Sometimes, you can request a risk for which no efficient portfolio exists. Based on the previous
example, suppose that you want a portfolio with 6% risk (individual assets in this universe have risks
ranging from 7% to 42.5%). It turns out that a portfolio with 6% risk cannot be formed with these
four assets. estimateFrontierByRisk warns if your target risks are outside the range of efficient
portfolio risks and replaces it with the endpoint of the efficient frontier closest to your target risk:
pwgt = estimateFrontierByRisk(p, 0.06)

Warning: One or more target risk values are outside the feasible range [
0.0610574, 0.278711 ].
    Will return portfolios associated with endpoints of the range for these values. 
> In PortfolioMAD.estimateFrontierByRisk at 82 

pwgt =

    0.8867
    0.0396
    0.0404
    0.0332

The best way to avoid this situation is to bracket your target portfolio risks with
estimateFrontierLimits and estimatePortRisk (see “Obtaining Endpoints of the Efficient
Frontier” on page 6-83 and “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97).

prsk = estimatePortRisk(p, p.estimateFrontierLimits);

display(prsk)

prsk =

    0.0611
    0.2787
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This result indicates that efficient portfolios have risks that range from 7% to 42.5%. Note, your
results for these examples may be different due to the random generation of scenarios.

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases and sales to get
from your initial portfolio to the target portfolios on the efficient frontier. For example, given an initial
portfolio in pwgt0, you can obtain purchases and sales from the example with target risks of 12%,
14%, and 16%:

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt)
display(pbuy)
display(psell)

pwgt =

    0.2102    0.0621         0
    0.3957    0.4723    0.4305
    0.1051    0.1204    0.1291
    0.2889    0.3452    0.4404

pbuy =

         0         0         0
    0.0957    0.1723    0.1305
         0         0         0
    0.1889    0.2452    0.3404

psell =

    0.0898    0.2379    0.3000
         0         0         0
    0.0949    0.0796    0.0709
         0         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your initial
portfolio is 0.

See Also
PortfolioMAD | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver

Related Examples
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
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More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Choosing and Controlling the Solver for PortfolioMAD
Optimizations

When solving portfolio optimizations for a PortfolioMAD object, you are solving nonlinear
optimization problems with either nonlinear objective or nonlinear constraints. You can use
'TrustRegionCP' (default) or 'ExtendedCP' solvers that implement Kelley’s cutting plane method
(see Kelley [45] at “Portfolio Optimization” on page A-5). Alternatively, you can use fmincon and
all variations of fmincon from Optimization Toolbox are supported. When using fmincon as the
solverType, 'sqp' is the default algorithm for fmincon.

Using 'TrustRegionCP' and 'ExtendedCP' SolverTypes
The 'TrustRegionCP' and 'ExtendedCP' solvers have options to control the number iterations
and stopping tolerances. Moreover, these solvers use linprog as the master solver, and all linprog
options are supported using optimoptions structures. All these options are set using setSolver.

For example, you can use setSolver to increase the number of iterations for 'TrustRegionCP':

p = PortfolioMAD;
p = setSolver(p, 'TrustRegionCP', 'MaxIterations', 2000);
display(p.solverType)
display(p.solverOptions)

trustregioncp
                MaxIterations: 2000
         AbsoluteGapTolerance: 1.0000e-07
         RelativeGapTolerance: 1.0000e-05
       NonlinearScalingFactor: 1000
       ObjectiveScalingFactor: 1000
          MasterSolverOptions: [1×1 optim.options.Linprog]
                      Display: 'off'
                CutGeneration: 'basic'
     MaxIterationsInactiveCut: 30
           ActiveCutTolerance: 1.0000e-07
                  ShrinkRatio: 0.7500
    TrustRegionStartIteration: 2
                   DeltaLimit: 1

To change the master solver algorithm to 'interior-point', with no display, use setSolver to
modify 'MasterSolverOptions':
p = PortfolioMAD;
options = optimoptions('linprog','Algorithm','interior-point','Display','off');
p = setSolver(p,'TrustRegionCP','MasterSolverOptions',options);
display(p.solverType)
display(p.solverOptions)
display(p.solverOptions.MasterSolverOptions.Algorithm)
display(p.solverOptions.MasterSolverOptions.Display)

trustregioncp
                MaxIterations: 1000
         AbsoluteGapTolerance: 1.0000e-07
         RelativeGapTolerance: 1.0000e-05
       NonlinearScalingFactor: 1000
       ObjectiveScalingFactor: 1000
          MasterSolverOptions: [1×1 optim.options.Linprog]
                      Display: 'off'
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                CutGeneration: 'basic'
     MaxIterationsInactiveCut: 30
           ActiveCutTolerance: 1.0000e-07
                  ShrinkRatio: 0.7500
    TrustRegionStartIteration: 2
                   DeltaLimit: 1

interior-point
off

Using 'fmincon' SolverType
Unlike Optimization Toolbox which uses the 'interior-point' algorithm as the default algorithm
for fmincon, the portfolio optimization for a PortfolioMAD object uses the 'sqp' algorithm as the
default. For details about fmincon and constrained nonlinear optimization algorithms and options,
see “Constrained Nonlinear Optimization Algorithms”.

To modify fmincon options for MAD portfolio optimizations, use setSolver to set the hidden
properties solverType and solverOptions to specify and control the solver. Since these solver
properties are hidden, you cannot set them using the PortfolioMAD object. The default for the
fmincon solver is the 'sqb' algorithm and no displayed output, so you do not need to use
setSolver to specify the 'sqp' algorithm for fmincon.
p = PortfolioMAD;
p = setSolver(p, 'fmincon');
display(p.solverOptions.Algorithm)
display(p.solverOptions.Display)

sqp
off

If you want to specify additional options associated with the fmincon solver, setSolver accepts
these options as name-value pair arguments. For example, if you want to use fmincon with the
'active-set' algorithm and with displayed output, use setSolver with:
p = PortfolioMAD;
p = setSolver(p, 'fmincon', 'Algorithm', 'active-set', 'Display', 'final');
display(p.solverOptions)

fmincon options:

   Options used by current Algorithm ('active-set'):
   (Other available algorithms: 'interior-point', 'sqp', 'sqp-legacy', 'trust-region-reflective')

   Set properties:
                    Algorithm: 'active-set'
                      Display: 'final'

   Default properties:
               CheckGradients: 0
          ConstraintTolerance: 1.0000e-06
     FiniteDifferenceStepSize: 'sqrt(eps)'
         FiniteDifferenceType: 'forward'
            FunctionTolerance: 1.0000e-06
       MaxFunctionEvaluations: '100*numberOfVariables'
                MaxIterations: 400
          OptimalityTolerance: 1.0000e-06
                    OutputFcn: []
                      PlotFcn: []
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    SpecifyConstraintGradient: 0
     SpecifyObjectiveGradient: 0
                StepTolerance: 1.0000e-06
                     TypicalX: 'ones(numberOfVariables,1)'
                  UseParallel: 0

Alternatively, the setSolver function accepts an optimoptions object as the second argument. For
example, you can change the algorithm to 'active-set' with no displayed output as follows:
p = PortfolioMAD;
options = optimoptions('fmincon', 'Algorithm', 'active-set', 'Display', 'off');
p = setSolver(p, 'fmincon', options);
display(p.solverOptions.Algorithm)
display(p.solverOptions.Display)

active-set
off

Using the Mixed Integer Nonlinear Programming (MINLP) Solver
The mixed integer nonlinear programming (MINLP) solver, configured using setSolverMINLP,
enables you to specify associated solver options for portfolio optimization for a PortfolioMAD
object. The MINLP solver is used when any one, or any combination of 'Conditional' BoundType,
MinNumAssets, or MaxNumAssets constraints are active, the portfolio problem is formulated by
adding NumAssets binary variables, where 0 indicates not invested, and 1 is invested. For more
information on using 'Conditional' BoundType, see setBounds. For more information on
specifying MinNumAssets and MaxNumAssets, see setMinMaxNumAssets.

When using the estimate functions with a PortfolioMAD object where 'Conditional'
BoundType, MinNumAssets, or MaxNumAssets constraints are active, the mixed integer nonlinear
programming (MINLP) solver is automatically used.

Solver Guidelines for PortfolioMAD Objects
The following table provides guidelines for using setSolver and setSolverMINLP.

PortfolioMAD
Problem

PortfolioMAD
Function

Type of
Optimization
Problem

Main Solver Helper Solver

PortfolioMAD
without active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByRisk

Optimizing a
portfolio for a
certain risk level
introduces a
nonlinear
constraint.
Therefore, this
problem has a
linear objective
with linear and
nonlinear
constraints.

'TrustRegionCP
', 'ExtendedCP',
or 'fmincon'
using setSolver

'linprog' using
setSolver

 Choosing and Controlling the Solver for PortfolioMAD Optimizations

6-93



PortfolioMAD
Problem

PortfolioMAD
Function

Type of
Optimization
Problem

Main Solver Helper Solver

PortfolioMAD
without active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByReturn

Nonlinear
objective with
linear constraints

'TrustRegionCP
', 'ExtendedCP',
or 'fmincon'
using setSolver

'linprog' using
setSolver

PortfolioMAD
without active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erLimits

Nonlinear or linear
objective with
linear constraints

For ‘min’:
nonlinear
objective,
'TrustRegionCP
', 'ExtendedCP',
or 'fmincon'
using setSolver

For ‘max’: linear
objective,
'linprog' using
setSolver

Not applicable

PortfolioMAD with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByRisk

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'fmincon' is used
when the
estimate
functions reduce
the problem into
NLP. This solver is
configured through
setSolver.
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PortfolioMAD
Problem

PortfolioMAD
Function

Type of
Optimization
Problem

Main Solver Helper Solver

PortfolioMAD with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erByReturn

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'fmincon' is used
when the
estimate
functions reduce
the problem into
NLP. This solver is
configured through
setSolver

PortfolioMAD with
active
'Conditional'
BoundType,
MinNumAssets,
and
MaxNumAssets

estimateFronti
erLimits

The problem is
formulated by
introducing
NumAssets binary
variables to
indicate whether
the corresponding
asset is invested or
not. Therefore, it
requires a mixed
integer nonlinear
programming
solver. Three types
of MINLP solvers
are offered, see
setSolverMINLP.

Mixed integer
nonlinear
programming
solver (MINLP)
using
setSolverMINLP

'fmincon' is used
when the
estimate
functions reduce
the problem into
NLP. This solver is
configured through
setSolver

See Also
PortfolioMAD | estimateFrontier | estimateFrontierLimits |
estimateFrontierByReturn | estimatePortReturn | estimateFrontierByRisk |
estimatePortRisk | estimateFrontierByRisk | setSolver | setSolverMINLP

Related Examples
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
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• “Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
• “Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using

Portfolio Objects” on page 4-78
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Estimate Efficient Frontiers for PortfolioMAD Object

In this section...
“Obtaining MAD Portfolio Risks and Returns” on page 6-97
“Obtaining the PortfolioMAD Standard Deviation” on page 6-98

Whereas “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-
80 focused on estimation of efficient portfolios, this section focuses on the estimation of efficient
frontiers. For information on the workflow when using PortfolioMAD objects, see “PortfolioMAD
Object Workflow” on page 6-15.

Obtaining MAD Portfolio Risks and Returns
Given any portfolio and, in particular, efficient portfolios, the functions estimatePortReturn and
estimatePortRisk provide estimates for the return (or return proxy), risk (or the risk proxy). Each
function has the same input syntax but with different combinations of outputs. Suppose that you have
this following portfolio optimization problem that gave you a collection of portfolios along the
efficient frontier in pwgt:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);
pwgt = estimateFrontier(p)

pwgt =

  Columns 1 through 8

    0.8954    0.7264    0.5573    0.3877    0.2176    0.0495    0.0000         0
    0.0310    0.1239    0.2154    0.3081    0.4028    0.4924    0.4069    0.2386
    0.0409    0.0524    0.0660    0.0792    0.0907    0.1047    0.1054    0.1132
    0.0328    0.0973    0.1613    0.2250    0.2890    0.3534    0.4877    0.6482

  Columns 9 through 10

         0    0.0000
    0.0694    0.0000
    0.1221    0.0000
    0.8084    1.0000

Note Remember that the risk proxy for MAD portfolio optimization is mean-absolute deviation.
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Given pwgt0 and pwgt, use the portfolio risk and return estimation functions to obtain risks and
returns for your initial portfolio and the portfolios on the efficient frontier:

prsk0 = estimatePortRisk(p, pwgt0);
pret0 = estimatePortReturn(p, pwgt0);
prsk = estimatePortRisk(p, pwgt);
pret = estimatePortReturn(p, pwgt);
display(prsk0)
display(pret0)
display(prsk)
display(pret)

You obtain these risks and returns:

prsk0 =

    0.0256

pret0 =

    0.0072

prsk =

    0.0178
    0.0193
    0.0233
    0.0286
    0.0348
    0.0414
    0.0489
    0.0584
    0.0692
    0.0809

pret =

    0.0047
    0.0059
    0.0072
    0.0084
    0.0096
    0.0108
    0.0120
    0.0133
    0.0145
    0.0157

Obtaining the PortfolioMAD Standard Deviation
The PortfolioMAD object has a function to compute standard deviations of portfolio returns,
estimatePortStd. This function works with any portfolios, not necessarily efficient portfolios. For
example, the following example obtains five portfolios (pwgt) on the efficient frontier and also has an
initial portfolio in pwgt0. Various portfolio statistics are computed that include the return, risk, and
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standard deviation. The listed estimates are for the initial portfolio in the first row followed by
estimates for each of the five efficient portfolios in subsequent rows.

m = [ 0.0042; 0.0083; 0.01; 0.15 ];
C = [ 0.005333 0.00034 0.00016 0;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD('initport', pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 5);

pret = estimatePortReturn(p, [pwgt0, pwgt]);
prsk = estimatePortRisk(p, [pwgt0, pwgt]);
pstd = estimatePortStd(p, [pwgt0, pwgt]);

[pret, prsk, pstd]

ans =

    0.0212    0.0305    0.0381
    0.0187    0.0326    0.0407
    0.0514    0.0369    0.0462
    0.0841    0.0484    0.0607
    0.1168    0.0637    0.0796
    0.1495    0.0807    0.1009

See Also
PortfolioMAD | estimatePortReturn | plotFrontier | estimatePortStd

Related Examples
• “Plotting the Efficient Frontier for a PortfolioMAD Object” on page 6-100
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-105

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Plotting the Efficient Frontier for a PortfolioMAD Object
The plotFrontier function creates a plot of the efficient frontier for a given portfolio optimization
problem. This function accepts several types of inputs and generates a plot with an optional
possibility to output the estimates for portfolio risks and returns along the efficient frontier.
plotFrontier has four different ways that it can be used. In addition to a plot of the efficient
frontier, if you have an initial portfolio in the InitPort property, plotFrontier also displays the
return versus risk of the initial portfolio on the same plot. If you have a well-posed portfolio
optimization problem set up in a PortfolioMAD object and you use plotFrontier, you get a plot of
the efficient frontier with the default number of portfolios on the frontier (the default number is 10
and is maintained in the hidden property defaultNumPorts). This example illustrates a typical use
of plotFrontier to create a new plot:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

plotFrontier(p)

The Name property appears as the title of the efficient frontier plot if you set it in the PortfolioMAD
object. Without an explicit name, the title on the plot would be “Efficient Frontier.” If you want to
obtain a specific number of portfolios along the efficient frontier, use plotFrontier with the
number of portfolios that you want. Suppose that you have the PortfolioMAD object from the
previous example and you want to plot 20 portfolios along the efficient frontier and to obtain 20 risk
and return values for each portfolio:
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[prsk, pret] = plotFrontier(p, 20);
display([pret, prsk])

ans =

    0.0049    0.0176
    0.0054    0.0179
    0.0058    0.0189
    0.0063    0.0205
    0.0068    0.0225
    0.0073    0.0248
    0.0078    0.0274
    0.0083    0.0302
    0.0088    0.0331
    0.0093    0.0361
    0.0098    0.0392
    0.0103    0.0423
    0.0108    0.0457
    0.0112    0.0496
    0.0117    0.0539
    0.0122    0.0586
    0.0127    0.0635
    0.0132    0.0687
    0.0137    0.0744
    0.0142    0.0806

Plotting Existing Efficient Portfolios
If you already have efficient portfolios from any of the "estimateFrontier" functions (see “Estimate
Efficient Frontiers for PortfolioMAD Object” on page 6-97), pass them into plotFrontier directly to
plot the efficient frontier:
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m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 20);
plotFrontier(p, pwgt)

Plotting Existing Efficient Portfolio Risks and Returns
If you already have efficient portfolio risks and returns, you can use the interface to plotFrontier
to pass them into plotFrontier to obtain a plot of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
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pwgt = estimateFrontier(p);

pret= estimatePortReturn(p, pwgt)
prsk = estimatePortRisk(p, pwgt)

plotFrontier(p, prsk, pret)

pret =

    0.0590
    0.0723
    0.0857
    0.0991
    0.1124
    0.1258
    0.1391
    0.1525
    0.1658
    0.1792

prsk =

    0.0615
    0.0664
    0.0795
    0.0976
    0.1184
    0.1408
    0.1663
    0.1992
    0.2368
    0.2787
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See Also
PortfolioMAD | estimatePortReturn | plotFrontier | estimatePortStd

Related Examples
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-105

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Postprocessing Results to Set Up Tradable Portfolios
After obtaining efficient portfolios or estimates for expected portfolio risks and returns, use your
results to set up trades to move toward an efficient portfolio. For information on the workflow when
using PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-15.

Setting Up Tradable Portfolios
Suppose that you set up a portfolio optimization problem and obtained portfolios on the efficient
frontier. Use the dataset object from Statistics and Machine Learning Toolbox to form a blotter that
lists your portfolios with the names for each asset. For example, suppose that you want to obtain five
portfolios along the efficient frontier. You can set up a blotter with weights multiplied by 100 to view
the allocations for each portfolio:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD;
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = setInitPort(p, pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);
display(Blotter)

Blotter = 

                          Port1     Port2     Port3     Port4     Port5     
    Bonds                 88.154    50.867    13.611         0    1.0609e-12
    Large-Cap Equities    4.0454    22.571    41.276     23.38    7.9362e-13
    Small-Cap Equities    4.2804    9.3108    14.028    17.878    6.4823e-14
    Emerging Equities     3.5202    17.252    31.084    58.743           100

Note Your results may differ from this result due to the simulation of scenarios.

This result indicates that you would invest primarily in bonds at the minimum-risk/minimum-return
end of the efficient frontier (Port1), and that you would invest completely in emerging equity at the
maximum-risk/maximum-return end of the efficient frontier (Port5). You can also select a particular
efficient portfolio, for example, suppose that you want a portfolio with 15% risk and you add purchase
and sale weights outputs obtained from the “estimateFrontier” functions to set up a trade blotter:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD;
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
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p = p.setDefaultConstraints;

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, 0.15);

Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...
{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);
display(Blotter)

Blotter = 

                          Initial    Weight        Purchases    Sales 
    Bonds                 30         6.0364e-18         0           30
    Large-Cap Equities    30             50.179    20.179            0
    Small-Cap Equities    20              13.43         0       6.5696
    Emerging Equities     10             36.391    26.391            0

If you have prices for each asset (in this example, they can be ETFs), add them to your blotter and
then use the tools of the dataset object to obtain shares and shares to be traded.

See Also
PortfolioMAD | estimateScenarioMoments | checkFeasibility

Related Examples
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Working with Other Portfolio Objects
The PortfolioMAD object is for MAD portfolio optimization. The PortfolioCVaR object is for CVaR
portfolio optimization. The Portfolio object is for mean-variance portfolio optimization. Sometimes,
you might want to examine portfolio optimization problems according to different combinations of
return and risk proxies. A common example is that you want to do a MAD portfolio optimization and
then want to work primarily with moments of portfolio returns. Suppose that you set up a MAD
portfolio optimization problem with:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD;
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = setInitPort(p, pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);

To work with the same problem in a mean-variance framework, you can use the scenarios from the
PortfolioMAD object to set up a Portfolio object so that p contains a MAD optimization problem and
q contains a mean-variance optimization problem based on the same data.

q = Portfolio('AssetList', p.AssetList);
q = estimateAssetMoments(q, p.getScenarios);
q = setDefaultConstraints(q);

pwgt = estimateFrontier(p);
qwgt = estimateFrontier(q);

Since each object has a different risk proxy, it is not possible to compare results side by side. To
obtain means and standard deviations of portfolio returns, you can use the functions associated with
each object to obtain:

pret = estimatePortReturn(p, pwgt);
pstd = estimatePortStd(p, pwgt);
qret = estimatePortReturn(q, qwgt);
qstd = estimatePortStd(q, qwgt);

[pret, qret]
[pstd, qstd]

ans =

    0.0592    0.0590
    0.0730    0.0728
    0.0868    0.0867
    0.1006    0.1005
    0.1145    0.1143
    0.1283    0.1282
    0.1421    0.1420
    0.1559    0.1558
    0.1697    0.1697
    0.1835    0.1835

ans =
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    0.0767    0.0767
    0.0829    0.0828
    0.0989    0.0987
    0.1208    0.1206
    0.1461    0.1459
    0.1732    0.1730
    0.2042    0.2040
    0.2453    0.2452
    0.2929    0.2928
    0.3458    0.3458

To produce comparable results, you can use the returns or risks from one portfolio optimization as
target returns or risks for the other portfolio optimization.

qwgt = estimateFrontierByReturn(q, pret);
qret = estimatePortReturn(q, qwgt);
qstd = estimatePortStd(q, qwgt);

[pret, qret]
[pstd, qstd]

ans =

    0.0592    0.0592
    0.0730    0.0730
    0.0868    0.0868
    0.1006    0.1006
    0.1145    0.1145
    0.1283    0.1283
    0.1421    0.1421
    0.1559    0.1559
    0.1697    0.1697
    0.1835    0.1835

ans =

    0.0767    0.0767
    0.0829    0.0829
    0.0989    0.0989
    0.1208    0.1208
    0.1461    0.1461
    0.1732    0.1732
    0.2042    0.2042
    0.2453    0.2453
    0.2929    0.2929
    0.3458    0.3458

Now it is possible to compare standard deviations of portfolio returns from either type of portfolio
optimization.

See Also
PortfolioMAD | Portfolio
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Related Examples
• “Creating the Portfolio Object” on page 4-24
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15

 Working with Other Portfolio Objects

6-109



Troubleshooting MAD Portfolio Optimization Results

PortfolioMAD Object Destroyed When Modifying
If a PortfolioMAD object is destroyed when modifying, remember to pass an existing object into the
PortfolioMAD object if you want to modify it, otherwise it creates a new object. See “Creating the
PortfolioMAD Object” on page 6-21 for details.

Matrix Incompatibility and "Non-Conformable" Errors
If you get matrix incompatibility or "non-conformable" errors, the representation of data in the tools
follows a specific set of basic rules described in “Conventions for Representation of Data” on page 6-
19.

Missing Data Estimation Fails
If asset return data has missing or NaN values, the simulateNormalScenariosByData function
with the 'missingdata' flag set to true may fail with either too many iterations or a singular
covariance. To correct this problem, consider this:

• If you have asset return data with no missing or NaN values, you can compute a covariance matrix
that may be singular without difficulties. If you have missing or NaN values in your data, the
supported missing data feature requires that your covariance matrix must be positive-definite,
that is, nonsingular.

• simulateNormalScenariosByData uses default settings for the missing data estimation
procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with either the
ECM estimation functions such as ecmnmle or with your own functions.

mad_optim_transform Errors
If you obtain optimization errors such as:
Error using mad_optim_transform (line 276)
Portfolio set appears to be either empty or unbounded. Check constraints.

Error in PortfolioMAD/estimateFrontier (line 64)
    [AI, bI, AE, bE, lB, uB, f0, f, x0] = mad_optim_transform(obj);

or
Error using mad_optim_transform (line 281)
Cannot obtain finite lower bounds for specified portfolio set.

Error in PortfolioMAD/estimateFrontier (line 64)
    [AI, bI, AE, bE, lB, uB, f0, f, x0] = mad_optim_transform(obj);

Since the portfolio optimization tools require a bounded portfolio set, these errors (and similar
errors) can occur if your portfolio set is either empty and, if nonempty, unbounded. Specifically, the
portfolio optimization algorithm requires that your portfolio set have at least a finite lower bound.
The best way to deal with these problems is to use the validation methods in “Validate the MAD
Portfolio Problem” on page 6-76. Specifically, use estimateBounds to examine your portfolio set,
and use checkFeasibility to ensure that your initial portfolio is either feasible and, if infeasible,
that you have sufficient turnover to get from your initial portfolio to the portfolio set.
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Tip To correct this problem, try solving your problem with larger values for turnover and gradually
reduce to the value that you want.

Efficient Portfolios Do Not Make Sense
If you obtain efficient portfolios that, do not seem to make sense, this can happen if you forget to set
specific constraints or you set incorrect constraints. For example, if you allow portfolio weights to fall
between 0 and 1 and do not set a budget constraint, you can get portfolios that are 100% invested in
every asset. Although it may be hard to detect, the best thing to do is to review the constraints you
have set with display of the PortfolioMAD object. If you get portfolios with 100% invested in each
asset, you can review the display of your object and quickly see that no budget constraint is set. Also,
you can use estimateBounds and checkFeasibility to determine if the bounds for your portfolio
set make sense and to determine if the portfolios you obtained are feasible relative to an independent
formulation of your portfolio set.

See Also
PortfolioMAD | estimateScenarioMoments | checkFeasibility

Related Examples
• “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets

Constraints” on page 4-133
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-105
• “Creating the PortfolioMAD Object” on page 6-21
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-48
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

More About
• “PortfolioMAD Object” on page 6-16
• “Portfolio Optimization Theory” on page 6-2
• “PortfolioMAD Object Workflow” on page 6-15
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Investment Performance Metrics

• “Performance Metrics Overview” on page 7-2
• “Performance Metrics Illustration” on page 7-3
• “Using the Sharpe Ratio” on page 7-5
• “Using the Information Ratio” on page 7-7
• “Using Tracking Error” on page 7-9
• “Using Risk-Adjusted Return” on page 7-10
• “Using Sample and Expected Lower Partial Moments” on page 7-12
• “Using Maximum and Expected Maximum Drawdown” on page 7-14
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Performance Metrics Overview

Performance Metrics Types
Sharpe first proposed a ratio of excess return to total risk as an investment performance metric.
Subsequent work by Sharpe, Lintner, and Mossin extended these ideas to entire asset markets in
what is called the Capital Asset Pricing Model (CAPM). Since the development of the CAPM, various
investment performance metrics has evolved.

This section presents four types of investment performance metrics:

• The first type of metrics is absolute investment performance metrics that are called “classic”
metrics since they are based on the CAPM. They include the Sharpe ratio, the information ratio,
and tracking error. To compute the Sharpe ratio from data, use sharpe to calculate the ratio for
one or more asset return series. To compute the information ratio and associated tracking error,
use inforatio to calculate these quantities for one or more asset return series.

• The second type of metrics is relative investment performance metrics to compute risk-adjusted
returns. These metrics are also based on the CAPM and include Beta, Jensen's Alpha, the Security
Market Line (SML), Modigliani and Modigliani Risk-Adjusted Return, and the Graham-Harvey
measures. To calculate risk-adjusted alpha and return, use portalpha.

• The third type of metrics is alternative investment performance metrics based on lower partial
moments. To calculate lower partial moments, use lpm for sample lower partial moments and
elpm for expected lower partial moments.

• The fourth type of metrics is performance metrics based on maximum drawdown and expected
maximum drawdown. Drawdown is the peak to trough decline during a specific record period of
an investment or fund. To calculate maximum or expected maximum drawdowns, use
maxdrawdown and emaxdrawdown.

See Also
sharpe | inforatio | portalpha | lpm | elpm | maxdrawdown | emaxdrawdown | ret2tick |
tick2ret

Related Examples
• “Using the Sharpe Ratio” on page 7-5
• “Using the Information Ratio” on page 7-7
• “Using Tracking Error” on page 7-9
• “Using Risk-Adjusted Return” on page 7-10
• “Using Sample and Expected Lower Partial Moments” on page 7-12
• “Using Maximum and Expected Maximum Drawdown” on page 7-14
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Performance Metrics Illustration
To illustrate the functions for investment performance metrics, you work with three financial time
series objects using performance data for:

• An actively managed, large-cap value mutual fund
• A large-cap market index
• 90-day Treasury bills

The data is monthly total return prices that cover a span of five years.

The following plot illustrates the performance of each series in terms of total returns to an initial $1
invested at the start of this 5-year period:

load FundMarketCash
plot(TestData)
hold on
title('\bfFive-Year Total Return Performance');
legend('Fund','Market','Cash','Location','SouthEast');
hold off

The mean (Mean) and standard deviation (Sigma) of returns for each series are

Returns = tick2ret(TestData);
Assets
Mean = mean(Returns)
Sigma = std(Returns, 1)

which gives the following result:

Assets = 
    'Fund'    'Market'    'Cash'
Mean =
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    0.0038    0.0030    0.0017
Sigma =
    0.0229    0.0389    0.0009

Note Functions for investment performance metrics use total return price and total returns. To
convert between total return price and total returns, use ret2tick and tick2ret.

See Also
sharpe | inforatio | portalpha | lpm | elpm | maxdrawdown | emaxdrawdown | ret2tick |
tick2ret

Related Examples
• “Using the Sharpe Ratio” on page 7-5
• “Using the Information Ratio” on page 7-7
• “Using Tracking Error” on page 7-9
• “Using Risk-Adjusted Return” on page 7-10
• “Using Sample and Expected Lower Partial Moments” on page 7-12
• “Using Maximum and Expected Maximum Drawdown” on page 7-14
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Using the Sharpe Ratio

In this section...
“Introduction” on page 7-5
“Sharpe Ratio” on page 7-5

Introduction
The Sharpe ratio is the ratio of the excess return of an asset divided by the asset's standard deviation
of returns. The Sharpe ratio has the form:

(Mean − Riskless) / Sigma

Here Mean is the mean of asset returns, Riskless is the return of a riskless asset, and Sigma is the
standard deviation of asset returns. A higher Sharpe ratio is better than a lower Sharpe ratio. A
negative Sharpe ratio indicates “anti-skill” since the performance of the riskless asset is superior. For
more information, see sharpe.

Sharpe Ratio
To compute the Sharpe ratio, the mean return of the cash asset is used as the return for the riskless
asset. Thus, given asset return data and the riskless asset return, the Sharpe ratio is calculated with

load FundMarketCash 
Returns = tick2ret(TestData);
Riskless = mean(Returns(:,3))
Sharpe = sharpe(Returns, Riskless)

which gives the following result:

Riskless =
    0.0017
Sharpe =
    0.0886    0.0315         0

The Sharpe ratio of the example fund is significantly higher than the Sharpe ratio of the market. As is
demonstrated with portalpha, this translates into a strong risk-adjusted return. Since the Cash
asset is the same as Riskless, it makes sense that its Sharpe ratio is 0. The Sharpe ratio was
calculated with the mean of cash returns. It can also be calculated with the cash return series as
input for the riskless asset

Sharpe = sharpe(Returns, Returns(:,3))

which gives the following result:

Sharpe =
    0.0886    0.0315         0

When using the Portfolio object, you can use the estimateMaxSharpeRatio function to estimate
an efficient portfolio that maximizes the Sharpe ratio. For more information, see “Efficient Portfolio
That Maximizes Sharpe Ratio” on page 4-106.
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See Also
sharpe | inforatio | portalpha | lpm | elpm | maxdrawdown | emaxdrawdown | ret2tick |
tick2ret | Portfolio

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Information Ratio” on page 7-7
• “Using Tracking Error” on page 7-9
• “Using Risk-Adjusted Return” on page 7-10
• “Using Sample and Expected Lower Partial Moments” on page 7-12
• “Using Maximum and Expected Maximum Drawdown” on page 7-14
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Using the Information Ratio
In this section...
“Introduction” on page 7-7
“Information Ratio” on page 7-7

Introduction
Although originally called the “appraisal ratio” by Treynor and Black, the information ratio is the
ratio of relative return to relative risk (known as “tracking error”). Whereas the Sharpe ratio looks at
returns relative to a riskless asset, the information ratio is based on returns relative to a risky
benchmark which is known colloquially as a “bogey.” Given an asset or portfolio of assets with
random returns designated by Asset and a benchmark with random returns designated by
Benchmark, the information ratio has the form:

Mean(Asset − Benchmark) / Sigma (Asset − Benchmark)

Here Mean(Asset − Benchmark) is the mean of Asset minus Benchmark returns, and
Sigma(Asset - Benchmark) is the standard deviation of Asset minus Benchmark returns. A
higher information ratio is considered better than a lower information ratio. For more information,
see inforatio.

Information Ratio
To calculate the information ratio using the example data, the mean return of the market series is
used as the return of the benchmark. Thus, given asset return data and the riskless asset return,
compute the information ratio with

load FundMarketCash 
Returns = tick2ret(TestData);
Benchmark = Returns(:,2);
InfoRatio = inforatio(Returns, Benchmark)

which gives the following result:

InfoRatio =
    0.0432       NaN   -0.0315

Since the market series has no risk relative to itself, the information ratio for the second series is
undefined (which is represented as NaN in MATLAB software). Its standard deviation of relative
returns in the denominator is 0.

See Also
sharpe | inforatio | portalpha | lpm | elpm | maxdrawdown | emaxdrawdown | ret2tick |
tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-5
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• “Using Tracking Error” on page 7-9
• “Using Risk-Adjusted Return” on page 7-10
• “Using Sample and Expected Lower Partial Moments” on page 7-12
• “Using Maximum and Expected Maximum Drawdown” on page 7-14
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Using Tracking Error

In this section...
“Introduction” on page 7-9
“Tracking Error” on page 7-9

Introduction
Given an asset or portfolio of assets and a benchmark, the relative standard deviation of returns
between the asset or portfolio of assets and the benchmark is called tracking error.

Tracking Error
The function inforatio computes tracking error and returns it as a second argument

load FundMarketCash 
Returns = tick2ret(TestData);
Benchmark = Returns(:,2);
[InfoRatio, TrackingError] = inforatio(Returns, Benchmark)

which gives the following results:

InfoRatio =
    0.0432       NaN   -0.0315
TrackingError =
    0.0187         0    0.0390

Tracking error, also know as active risk, measures the volatility of active returns. Tracking error is a
useful measure of performance relative to a benchmark since it is in units of asset returns. For
example, the tracking error of 1.87% for the fund relative to the market in this example is reasonable
for an actively managed, large-cap value fund.

See Also
sharpe | inforatio | portalpha | lpm | elpm | maxdrawdown | emaxdrawdown | ret2tick |
tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-5
• “Using the Information Ratio” on page 7-7
• “Using Risk-Adjusted Return” on page 7-10
• “Using Sample and Expected Lower Partial Moments” on page 7-12
• “Using Maximum and Expected Maximum Drawdown” on page 7-14
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Using Risk-Adjusted Return
In this section...
“Introduction” on page 7-10
“Risk-Adjusted Return” on page 7-10

Introduction
Risk-adjusted return either shifts the risk (which is the standard deviation of returns) of a portfolio to
match the risk of a market portfolio or shifts the risk of a market portfolio to match the risk of a fund.
According to the Capital Asset Pricing Model (CAPM), the market portfolio and a riskless asset are
points on a Security Market Line (SML). The return of the resultant shifted portfolio, levered or
unlevered, to match the risk of the market portfolio, is the risk-adjusted return. The SML provides
another measure of risk-adjusted return, since the difference in return between the fund and the
SML, return at the same level of risk.

Risk-Adjusted Return
Given our example data with a fund, a market, and a cash series, you can calculate the risk-adjusted
return and compare it with the fund and market's mean returns

load FundMarketCash 
Returns = tick2ret(TestData);
Fund = Returns(:,1);
Market = Returns(:,2);
Cash = Returns(:,3);
MeanFund = mean(Fund)
MeanMarket = mean(Market)

[MM, aMM] = portalpha(Fund, Market, Cash, 'MM')
[GH1, aGH1] = portalpha(Fund, Market, Cash, 'gh1')
[GH2, aGH2] = portalpha(Fund, Market, Cash, 'gh2')
[SML, aSML] = portalpha(Fund, Market, Cash, 'sml')

which gives the following results:

MeanFund =

    0.0038

MeanMarket =

    0.0030

MM =

    0.0022

aMM =

    0.0052

GH1 =

7 Investment Performance Metrics

7-10



    0.0013

aGH1 =

    0.0025

GH2 =

    0.0022

aGH2 =

    0.0052

SML =

    0.0013

aSML =

    0.0025

Since the fund's risk is much less than the market's risk, the risk-adjusted return of the fund is much
higher than both the nominal fund and market returns.

See Also
sharpe | inforatio | portalpha | lpm | elpm | maxdrawdown | emaxdrawdown | ret2tick |
tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-5
• “Using the Information Ratio” on page 7-7
• “Using Tracking Error” on page 7-9
• “Using Sample and Expected Lower Partial Moments” on page 7-12
• “Using Maximum and Expected Maximum Drawdown” on page 7-14
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Using Sample and Expected Lower Partial Moments
In this section...
“Introduction” on page 7-12
“Sample Lower Partial Moments” on page 7-12
“Expected Lower Partial Moments” on page 7-13

Introduction
Use lower partial moments to examine what is colloquially known as “downside risk.” The main idea
of the lower partial moment framework is to model moments of asset returns that fall below a
minimum acceptable level of return. To compute lower partial moments from data, use lpm to
calculate lower partial moments for multiple asset return series and for multiple moment orders. To
compute expected values for lower partial moments under several assumptions about the distribution
of asset returns, use elpm to calculate lower partial moments for multiple assets and for multiple
orders.

Sample Lower Partial Moments
The following example demonstrates lpm to compute the zero-order, first-order, and second-order
lower partial moments for the three time series, where the mean of the third time series is used to
compute MAR (minimum acceptable return) with the so-called risk-free rate.

load FundMarketCash 
Returns = tick2ret(TestData);
Assets
MAR = mean(Returns(:,3))
LPM = lpm(Returns, MAR, [0 1 2])

which gives the following results:

Assets = 
    'Fund'    'Market'    'Cash'
MAR =
    0.0017
LPM =
    0.4333    0.4167    0.6167
    0.0075    0.0140    0.0004
    0.0003    0.0008    0.0000

The first row of LPM contains zero-order lower partial moments of the three series. The fund and
market index fall below MAR about 40% of the time and cash returns fall below its own mean about
60% of the time.

The second row contains first-order lower partial moments of the three series. The fund and market
have large average shortfall returns relative to MAR by 75 and 140 basis points per month. On the
other hand, cash underperforms MAR by about only four basis points per month on the downside.

The third row contains second-order lower partial moments of the three series. The square root of
these quantities provides an idea of the dispersion of returns that fall below the MAR. The market
index has a much larger variation on the downside when compared to the fund.
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Expected Lower Partial Moments
To compare realized values with expected values, use elpm to compute expected lower partial
moments based on the mean and standard deviations of normally distributed asset returns. The elpm
function works with the mean and standard deviations for multiple assets and multiple orders.

load FundMarketCash
Returns = tick2ret(TestData);
MAR = mean(Returns(:,3))
Mean = mean(Returns)
Sigma = std(Returns, 1)
Assets
ELPM = elpm(Mean, Sigma, MAR, [0 1 2])

which gives the following results:

Assets = 
    'Fund'    'Market'    'Cash'
ELPM =
    0.4647    0.4874    0.5000
    0.0082    0.0149    0.0004
    0.0002    0.0007    0.0000

Based on the moments of each asset, the expected values for lower partial moments imply better than
expected performance for the fund and market and worse than expected performance for cash. This
function works with either degenerate or nondegenerate normal random variables. For example, if
cash were truly riskless, its standard deviation would be 0. You can examine the difference in average
shortfall.

RisklessCash = elpm(Mean(3), 0, MAR, 1)

which gives the following result:

RisklessCash =
     0

See Also
sharpe | inforatio | portalpha | lpm | elpm | maxdrawdown | emaxdrawdown | ret2tick |
tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-5
• “Using the Information Ratio” on page 7-7
• “Using Tracking Error” on page 7-9
• “Using Risk-Adjusted Return” on page 7-10
• “Using Maximum and Expected Maximum Drawdown” on page 7-14
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Using Maximum and Expected Maximum Drawdown
Introduction
Maximum drawdown is the maximum decline of a series, measured as return, from a peak to a nadir
over a period of time. Although additional metrics exist that are used in the hedge fund and
commodity trading communities (see Pederson and Rudholm-Alfvin [20] in “Bibliography” on page A-
2), the original definition and subsequent implementation of these metrics is not yet standardized.

It is possible to compute analytically the expected maximum drawdown for a Brownian motion with
drift (see Magdon-Ismail, Atiya, Pratap, and Abu-Mostafa [16] “Bibliography” on page A-2). These
results are used to estimate the expected maximum drawdown for a series that approximately follows
a geometric Brownian motion.

Use maxdrawdown and emaxdrawdown to calculate the maximum and expected maximum
drawdowns.

Maximum Drawdown
This example demonstrates how to compute the maximum drawdown (MaxDD) using example data
with a fund, a market, and a cash series:

load FundMarketCash
MaxDD = maxdrawdown(TestData)

which gives the following results:

MaxDD =
    0.1658    0.3381         0

The maximum drop in the given time period is 16.58% for the fund series and 33.81% for the market.
There is no decline in the cash series, as expected, because the cash account never loses value.

maxdrawdown can also return the indices (MaxDDIndex) of the maximum drawdown intervals for
each series in an optional output argument:

[MaxDD, MaxDDIndex] = maxdrawdown(TestData)

which gives the following results:

MaxDD =

    0.1658    0.3381         0

MaxDDIndex =

     2     2   NaN
    18    18   NaN

The first two series experience their maximum drawdowns from the second to the 18th month in the
data. The indices for the third series are NaNs because it never has a drawdown.

The 16.58% value loss from month 2 to month 18 for the fund series is verified using the reported
indices:
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Start = MaxDDIndex(1,:);
End = MaxDDIndex(2,:);
(TestData(Start(1),1) - TestData(End(1),1))/TestData(Start(1),1)

ans =

    0.1658

Although the maximum drawdown is measured in terms of returns, maxdrawdown can measure the
drawdown in terms of absolute drop in value, or in terms of log-returns. To contrast these alternatives
more clearly, you can work with the fund series assuming, an initial investment of 50 dollars:

Fund50 = 50*TestData(:,1);
plot(Fund50);
title('\bfFive-Year Fund Performance, Initial Investment 50 usd');
xlabel('Months');
ylabel('Value of Investment');

First, compute the standard maximum drawdown, which coincides with the results above because
returns are independent of the initial amounts invested:

MaxDD50Ret = maxdrawdown(Fund50)

MaxDD50Ret =

    0.1658

Next, compute the maximum drop in value, using the arithmetic argument:

[MaxDD50Arith, Ind50Arith] = maxdrawdown(Fund50,'arithmetic')

MaxDD50Arith =

    8.4285
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Ind50Arith =

     2
    18

The value of this investment is $50.84 in month 2, but by month 18 the value is down to $42.41, a
drop of $8.43. This is the largest loss in dollar value from a previous high in the given time period. In
this case, the maximum drawdown period, 2nd to 18th month, is the same independently of whether
drawdown is measured as return or as dollar value loss.

Finally, you can compute the maximum decline based on log-returns using the geometric argument.
In this example, the log-returns result in a maximum drop of 18.13%, again from the second to the
18th month, not far from the 16.58% obtained using standard returns.

[MaxDD50LogRet, Ind50LogRet] = maxdrawdown(Fund50,'geometric')

MaxDD50LogRet =

    0.1813

Ind50LogRet =

     2
    18

Note, the last measure is equivalent to finding the arithmetic maximum drawdown for the log of the
series:

MaxDD50LogRet2 = maxdrawdown(log(Fund50),'arithmetic')

MaxDD50LogRet2 =

    0.1813

Expected Maximum Drawdown
This example demonstrates using the log-return moments of the fund to compute the expected
maximum drawdown (EMaxDD) and then compare it with the realized maximum drawdown (MaxDD).

load FundMarketCash
logReturns = log(TestData(2:end,:) ./ TestData(1:end - 1,:));
Mu = mean(logReturns(:,1));
Sigma = std(logReturns(:,1),1);
T = size(logReturns,1);

MaxDD = maxdrawdown(TestData(:,1),'geometric')
EMaxDD = emaxdrawdown(Mu, Sigma, T)

which gives the following results:

MaxDD =

    0.1813
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EMaxDD =

    0.1545

The drawdown observed in this time period is above the expected maximum drawdown. There is no
contradiction here. The expected maximum drawdown is not an upper bound on the maximum losses
from a peak, but an estimate of their average, based on a geometric Brownian motion assumption.

See Also
sharpe | inforatio | portalpha | lpm | elpm | maxdrawdown | emaxdrawdown | ret2tick |
tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-5
• “Using the Information Ratio” on page 7-7
• “Using Tracking Error” on page 7-9
• “Using Risk-Adjusted Return” on page 7-10
• “Using Sample and Expected Lower Partial Moments” on page 7-12
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Credit Risk Analysis

• “Estimation of Transition Probabilities” on page 8-2
• “Forecasting Corporate Default Rates” on page 8-20
• “Credit Quality Thresholds” on page 8-43
• “About Credit Scorecards” on page 8-47
• “Credit Scorecard Modeling Workflow” on page 8-51
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Estimation of Transition Probabilities
In this section...
“Introduction” on page 8-2
“Estimate Transition Probabilities” on page 8-2
“Estimate Transition Probabilities for Different Rating Scales” on page 8-4
“Working with a Transition Matrix Containing NR Rating” on page 8-5
“Estimate Point-in-Time and Through-the-Cycle Probabilities” on page 8-9
“Estimate t-Year Default Probabilities” on page 8-11
“Estimate Bootstrap Confidence Intervals” on page 8-12
“Group Credit Ratings” on page 8-13
“Work with Nonsquare Matrices” on page 8-14
“Remove Outliers” on page 8-15
“Estimate Probabilities for Different Segments” on page 8-16
“Work with Large Datasets” on page 8-17

Introduction
Credit ratings rank borrowers according to their credit worthiness. Though this ranking is, in itself,
useful, institutions are also interested in knowing how likely it is that borrowers in a particular rating
category will be upgraded or downgraded to a different rating, and especially, how likely it is that
they will default.

Transition probabilities offer one way to characterize the past changes in credit quality of obligors
(typically firms), and are cardinal inputs to many risk management applications. Financial Toolbox
software supports the estimation of transition probabilities using both cohort and duration (also
known as hazard rate or intensity) approaches using transprob and related functions.

Note The sample dataset used throughout this section is simulated using a single transition matrix.
No attempt is made to match historical trends in transition rates.

Estimate Transition Probabilities
The Data_TransProb.mat file contains sample credit ratings data.

load Data_TransProb
data(1:10,:)  

ans = 

        ID            Date         Rating
    __________    _____________    ______

    '00010283'    '10-Nov-1984'    'CCC' 
    '00010283'    '12-May-1986'    'B'   
    '00010283'    '29-Jun-1988'    'CCC' 
    '00010283'    '12-Dec-1991'    'D'   
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    '00013326'    '09-Feb-1985'    'A'   
    '00013326'    '24-Feb-1994'    'AA'  
    '00013326'    '10-Nov-2000'    'BBB' 
    '00014413'    '23-Dec-1982'    'B'   
    '00014413'    '20-Apr-1988'    'BB'  
    '00014413'    '16-Jan-1998'    'B'    

The sample data is formatted as a cell array with three columns. Each row contains an ID (column 1),
a date (column 2), and a credit rating (column 3). The assigned credit rating corresponds to the
associated ID on the associated date. All information corresponding to the same ID must be stored in
contiguous rows. In this example, IDs, dates, and ratings are stored in character vector format, but
you also can enter them in numeric format.

In this example, the simplest calling syntax for transprob passes the nRecords-by-3 cell array as
the only input argument. The default startDate and endDate are the earliest and latest dates in the
data. The default estimation algorithm is the duration method and one-year transition probabilities
are estimated:
transMat0 = transprob(data)

transMat0 =

93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
 1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
 0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
 0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
 0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
 0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
 0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
      0         0         0         0         0         0         0  100.0000

Provide explicit start and end dates, otherwise, the estimation window for two different datasets can
differ, and the estimates might not be comparable. From this point, assume that the time window of
interest is the five-year period from the end of 1995 to the end of 2000. For comparisons, compute
the estimates for this time window. First use the duration algorithm (default option), and then the
cohort algorithm explicitly set.
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
transMat1 = transprob(data,'startDate',startDate,'endDate',endDate)
transMat2 = transprob(data,'startDate',startDate,'endDate',endDate,...
'algorithm','cohort')

transMat1 =

90.6236    7.9051    1.0314    0.4123    0.0210    0.0020    0.0003    0.0043
 4.4780   89.5558    4.5298    1.1225    0.2284    0.0094    0.0009    0.0754
 0.3983    6.1164   87.0641    5.4801    0.7637    0.0892    0.0050    0.0832
 0.1029    0.8572   10.7918   83.0204    3.9971    0.7001    0.1313    0.3992
 0.1043    0.3745    2.2962   14.0954   78.9840    3.0013    0.0463    1.0980
 0.0113    0.0544    0.7055    3.2925   15.4350   75.5988    1.8166    3.0860
 0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484
      0         0         0         0         0         0         0  100.0000

transMat2 =

90.1554    8.5492    0.9067    0.3886         0         0         0         0
 4.9512   88.5221    5.1763    1.0503    0.2251         0         0    0.0750
 0.2770    6.6482   86.2188    6.0942    0.6233    0.0693         0    0.0693
 0.0794    0.8737   11.6759   81.6521    4.3685    0.7943    0.1589    0.3971
 0.1002    0.4008    1.9038   15.4309   77.8557    3.4068         0    0.9018
      0         0    0.2262    2.4887   17.4208   74.2081    2.2624    3.3937
      0         0    0.7576    1.5152    6.0606   10.6061   75.0000    6.0606
      0         0         0         0         0         0         0  100.0000

By default, the cohort algorithm internally gets yearly snapshots of the credit ratings, but the
number of snapshots per year is definable using the parameter/value pair snapsPerYear. To get the
estimates using quarterly snapshots:
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transMat3 = transprob(data,'startDate',startDate,'endDate',endDate,...
'algorithm','cohort','snapsPerYear',4)

transMat3 =

90.4765    8.0881    1.0072    0.4069    0.0164    0.0015    0.0002    0.0032
 4.5949   89.3216    4.6489    1.1239    0.2276    0.0074    0.0007    0.0751
 0.3747    6.3158   86.7380    5.6344    0.7675    0.0856    0.0040    0.0800
 0.0958    0.7967   11.0441   82.6138    4.1906    0.7230    0.1372    0.3987
 0.1028    0.3571    2.3312   14.4954   78.4276    3.1489    0.0383    1.0987
 0.0084    0.0399    0.6465    3.0962   16.0789   75.1300    1.9044    3.0956
 0.0031    0.0125    0.1445    1.8759    6.2613   10.7022   75.6300    5.3705
      0         0         0         0         0         0         0  100.0000

Both duration and cohort compute one-year transition probabilities by default, but the time
interval for the transitions is definable using the parameter/value pair transInterval. For example,
to get the two-year transition probabilities using the cohort algorithm with the same snapshot
periodicity and estimation window:
transMat4 = transprob(data,'startDate',startDate,'endDate',endDate,...
'algorithm','cohort','snapsPerYear',4,'transInterval',2)

transMat4 =

82.2358   14.6092    2.2062    0.8543    0.0711    0.0074    0.0011    0.0149
 8.2803   80.4584    8.3606    2.2462    0.4665    0.0316    0.0030    0.1533
 0.9604   11.1975   76.1729    9.7284    1.5322    0.2044    0.0162    0.1879
 0.2483    2.0903   18.8440   69.5145    6.9601    1.2966    0.2329    0.8133
 0.2129    0.8713    5.4893   23.5776   62.6438    4.9464    0.1390    2.1198
 0.0378    0.1895    1.7679    7.2875   24.9444   57.1783    2.8816    5.7132
 0.0154    0.0716    0.6576    4.2157   11.4465   16.3455   57.4078    9.8399
      0         0         0         0         0         0         0  100.0000

Estimate Transition Probabilities for Different Rating Scales
The dataset data from Data_TransProb.mat contains sample credit ratings using the default
rating scale {'AAA', 'AA','A', 'BBB', 'BB', 'B', 'CCC', 'D'}. It also contains the
dataset dataIGSG with ratings investment grade ('IG'), speculative grade ('SG'), and default
('D'). To estimate the transition matrix for this dataset, use the labels argument.

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
dataIGSG(1:10,:)
transMatIGSG = transprob(dataIGSG,'labels',{'IG','SG','D'},...
'startDate',startDate,'endDate',endDate)

ans = 

    '00011253'    '04-Apr-1983'    'IG'
    '00012751'    '17-Feb-1985'    'SG'
    '00012751'    '19-May-1986'    'D' 
    '00014690'    '17-Jan-1983'    'IG'
    '00012144'    '21-Nov-1984'    'IG'
    '00012144'    '25-Mar-1992'    'SG'
    '00012144'    '07-May-1994'    'IG'
    '00012144'    '23-Jan-2000'    'SG'
    '00012144'    '20-Aug-2001'    'IG'
    '00012937'    '07-Feb-1984'    'IG'

transMatIGSG =

   98.1986    1.5179    0.2835
    8.5396   89.4891    1.9713
         0         0  100.0000
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There is another dataset, dataIGSGnum, with the same information as dataIGSG, except the ratings
are mapped to a numeric scale where 'IG'=1, 'SG'=2, and 'D'=3. To estimate the transition matrix,
use the labels optional argument specifying the numeric scale as a cell array.
dataIGSGnum(1:10,:)
% Note {1,2,3} and num2cell(1:3) are equivalent; num2cell is convenient
% when the number of ratings is larger
transMatIGSGnum = transprob(dataIGSGnum,'labels',{1,2,3},...
'startDate',startDate,'endDate',endDate)

ans = 

    '00011253'    '04-Apr-1983'    [1]
    '00012751'    '17-Feb-1985'    [2]
    '00012751'    '19-May-1986'    [3]
    '00014690'    '17-Jan-1983'    [1]
    '00012144'    '21-Nov-1984'    [1]
    '00012144'    '25-Mar-1992'    [2]
    '00012144'    '07-May-1994'    [1]
    '00012144'    '23-Jan-2000'    [2]
    '00012144'    '20-Aug-2001'    [1]
    '00012937'    '07-Feb-1984'    [1]

transMatIGSGnum =

   98.1986    1.5179    0.2835
    8.5396   89.4891    1.9713
         0         0  100.0000

Any time the input dataset contains ratings not included in the default rating scale {'AAA', 'AA',
'A', 'BBB', 'BB', 'B', 'CCC', 'D'}, the full rating scale must be specified using the labels
optional argument. For example, if the dataset contains ratings 'AAA', ..., 'CCC, 'D', and
'NR' (not rated), use labels with this cell array {'AAA', 'AA',
'A','BBB','BB','B','CCC','D','NR'}.

Working with a Transition Matrix Containing NR Rating
This example demonstrates how 'NR' (not rated) ratings are handled by transprob, and how to get
transition matrix that use the 'NR' rating information for the estimation, but that do not show the
'NR' rating in the final transition probabilities.

The dataset data from Data_TransProb.mat contains sample credit ratings using the default
rating scale {'AAA', 'AA','A', 'BBB', 'BB', 'B', 'CCC', 'D'}.

load Data_TransProb
head(data,12)

ans =

  12×3 table

        ID            Date         Rating
    __________    _____________    ______

    '00010283'    '10-Nov-1984'    'CCC' 
    '00010283'    '12-May-1986'    'B'   
    '00010283'    '29-Jun-1988'    'CCC' 
    '00010283'    '12-Dec-1991'    'D'   
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    '00013326'    '09-Feb-1985'    'A'   
    '00013326'    '24-Feb-1994'    'AA'  
    '00013326'    '10-Nov-2000'    'BBB' 
    '00014413'    '23-Dec-1982'    'B'   
    '00014413'    '20-Apr-1988'    'BB'  
    '00014413'    '16-Jan-1998'    'B'   
    '00014413'    '25-Nov-1999'    'BB'  
    '00012126'    '17-Feb-1985'    'CCC' 

Replace a transition to 'B' with a transition to 'NR' for the first company. Note that there is a
subsequent transition from 'NR' to 'CCC'.

dataNR = data;
dataNR.Rating{2} = 'NR';
dataNR.Rating{7} = 'NR';

head(dataNR,12)

ans =

  12×3 table

        ID            Date         Rating
    __________    _____________    ______

    '00010283'    '10-Nov-1984'    'CCC' 
    '00010283'    '12-May-1986'    'NR'  
    '00010283'    '29-Jun-1988'    'CCC' 
    '00010283'    '12-Dec-1991'    'D'   
    '00013326'    '09-Feb-1985'    'A'   
    '00013326'    '24-Feb-1994'    'AA'  
    '00013326'    '10-Nov-2000'    'NR'  
    '00014413'    '23-Dec-1982'    'B'   
    '00014413'    '20-Apr-1988'    'BB'  
    '00014413'    '16-Jan-1998'    'B'   
    '00014413'    '25-Nov-1999'    'BB'  
    '00012126'    '17-Feb-1985'    'CCC' 

'NR' is treated as another rating. The transition matrix shows the estimated probability of
transitioning into and out of 'NR'. In this example, the transprob function uses the'cohort'
algorithm, and the 'NR' rating is treated as another rating. The same behavior exists when using the
transprob function with the 'duration' algorithm.

RatingsLabelsNR = {'AAA','AA','A','BBB','BB','B','CCC','D','NR'};
[MatrixNRCohort,TotalsNRCohort] = transprob(dataNR,...
   'Labels',RatingsLabelsNR,...
   'Algorithm','cohort');

fprintf('Transition probability, cohort, including NR:\n')
disp(array2table(MatrixNRCohort,'VariableNames',RatingsLabelsNR,...
   'RowNames',RatingsLabelsNR))

fprintf('Total transitions out of given rating, including 6 out of NR (5 NR->NR, 1 NR->CCC):\n')
disp(array2table(TotalsNRCohort.totalsVec,'VariableNames',RatingsLabelsNR))

Transition probability, cohort, including NR:
             AAA         AA          A          BBB         BB          B          CCC          D           NR   
           ________    _______    ________    _______    ________    ________    ________    ________    ________
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    AAA      93.135     5.9335     0.74557    0.15533    0.031066           0           0           0           0
    AA       1.7359      92.92      4.5446    0.58514     0.15604           0           0    0.039009    0.019505
    A       0.12683     2.9716      91.991     4.3124      0.4711    0.054358           0    0.072477           0
    BBB    0.021048    0.37887      5.0726     89.771      4.0413     0.46306    0.042096     0.21048           0
    BB     0.022099     0.1105     0.68508      6.232      88.376      3.6464     0.28729     0.64088           0
    B             0          0    0.076161    0.72353       7.997      86.215      2.7037      2.2848           0
    CCC           0          0           0    0.30936      1.8561      4.4857      80.897      12.374     0.07734
    D             0          0           0          0           0           0           0         100           0
    NR            0          0           0          0           0           0      16.667           0      83.333

Total transitions out of given rating, including 6 out of NR (5 NR->NR, 1 NR->CCC):
    AAA      AA      A      BBB      BB      B      CCC      D      NR
    ____    ____    ____    ____    ____    ____    ____    ____    __

    3219    5127    5519    4751    4525    2626    1293    4050    6 

To remove transitions to 'NR' from the transition matrix, you need to use the 'excludeLabels'
optional name-value input argument to transprob.

The 'labels' input to transprob may or may not include the label that needs to be excluded. In
the following example, the NR rating is removed from the labels for display purposes, but passing
RatingsLabelsNR to transprob would also work.

RatingsLabels = {'AAA','AA','A','BBB','BB','B','CCC','D'};

[MatrixCohort,TotalsCohort] = transprob(dataNR,'Labels',RatingsLabels,'ExcludeLabels','NR','Algorithm','cohort');

fprintf('Transition probability, cohort, after postprocessing to remove NR:\n')

Transition probability, cohort, after postprocessing to remove NR:

disp(array2table(MatrixCohort,'VariableNames',RatingsLabels,...
   'RowNames',RatingsLabels))

Transition probability, cohort, after postprocessing to remove NR:
             AAA         AA          A          BBB         BB          B          CCC          D    
           ________    _______    ________    _______    ________    ________    ________    ________

    AAA      93.135     5.9335     0.74557    0.15533    0.031066           0           0           0
    AA       1.7362     92.938      4.5455    0.58525     0.15607           0           0    0.039017
    A       0.12683     2.9716      91.991     4.3124      0.4711    0.054358           0    0.072477
    BBB    0.021048    0.37887      5.0726     89.771      4.0413     0.46306    0.042096     0.21048
    BB     0.022099     0.1105     0.68508      6.232      88.376      3.6464     0.28729     0.64088
    B             0          0    0.076161    0.72353       7.997      86.215      2.7037      2.2848
    CCC           0          0           0     0.3096      1.8576      4.4892       80.96      12.384
    D             0          0           0          0           0           0           0         100

Total transitions out of given rating, AA and CCC have one less than before:
    AAA      AA      A      BBB      BB      B      CCC      D  
    ____    ____    ____    ____    ____    ____    ____    ____

    3219    5126    5519    4751    4525    2626    1292    4050

fprintf('Total transitions out of given rating, AA and CCC have one less than before:\n')

Total transitions out of given rating, AA and CCC have one less than before

disp(array2table(TotalsCohort.totalsVec,'VariableNames',RatingsLabels))
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    AAA      AA      A      BBB      BB      B      CCC      D  
    ____    ____    ____    ____    ____    ____    ____    ____

    3219    5126    5519    4751    4525    2626    1292    4050

All transitions involving 'NR' are removed from the sample, but all other transitions are still used to
estimate the transition probabilities. In this example, the transition from 'NR' to 'CCC' has been
removed, as well as the transition from 'AA' to 'NR' (and five more transitions from 'NR' to 'NR').
That means the first company is still contributing transitions from'CCC' to 'CCC' for the estimation,
only the periods overlapping with the time this company spent in 'NR' have been removed from the
sample, and similarly for the other company.

This procedure is different from removing the 'NR' rows from the data itself.

For example, if you remove the 'NR' rows in this example, the first company seems to stay in its
initial rating of 'CCC' all the way from the initial date in 1984 to the default event in 1991. With the
previous approach, the estimation knows that the company transitioned out of 'CCC' at some point,
it knows it was not staying at 'CCC' all the time.

If the 'NR' row is removed for the second company, this company seems to have stayed in the sample
as an 'AA' company until the end of the sample. With the previous approach, the estimation knows
that this company stopped being an 'AA' earlier.

dataNR2 = dataNR;
dataNR2([2 7],:) = [];

head(dataNR2,12)

ans =

  12×3 table

        ID            Date         Rating
    __________    _____________    ______

    '00010283'    '10-Nov-1984'    'CCC' 
    '00010283'    '29-Jun-1988'    'CCC' 
    '00010283'    '12-Dec-1991'    'D'   
    '00013326'    '09-Feb-1985'    'A'   
    '00013326'    '24-Feb-1994'    'AA'  
    '00014413'    '23-Dec-1982'    'B'   
    '00014413'    '20-Apr-1988'    'BB'  
    '00014413'    '16-Jan-1998'    'B'   
    '00014413'    '25-Nov-1999'    'BB'  
    '00012126'    '17-Feb-1985'    'CCC' 
    '00012126'    '08-Mar-1989'    'D'   
    '00011692'    '11-May-1984'    'BB'  

If the 'NR' rows are removed, the transition matrices will be different. The probability of staying at
'CCC' goes slightly up, and so does the probability of staying at 'AA'.

The transition matrices will be different. The probability of staying at 'CCC' goes slightly up, and so
does the probability of staying at 'AA'.

[MatrixCohort2,TotalsCohort2] = transprob(dataNR2,...
   'Labels',RatingsLabels,...
   'Algorithm','cohort');
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fprintf('Transition probability, cohort, if NR rows are removed from data:\n')
disp(array2table(MatrixCohort2,'VariableNames',RatingsLabels,...
   'RowNames',RatingsLabels))

fprintf('Total transitions out of given rating, many more out of CCC and AA:\n')
disp(array2table(TotalsCohort2.totalsVec,'VariableNames',RatingsLabels))

Transition probability, cohort, if NR rows are removed from data:

disp(array2table(MatrixCohort2,'VariableNames',RatingsLabels,...
   'RowNames',RatingsLabels))

Transition probability, cohort, if NR rows are removed from data:
             AAA         AA          A          BBB         BB          B          CCC          D    
           ________    _______    ________    _______    ________    ________    ________    ________

    AAA      93.135     5.9335     0.74557    0.15533    0.031066           0           0           0
    AA       1.7346     92.945       4.541    0.58468     0.15592           0           0    0.038979
    A       0.12683     2.9716      91.991     4.3124      0.4711    0.054358           0    0.072477
    BBB    0.021048    0.37887      5.0726     89.771      4.0413     0.46306    0.042096     0.21048
    BB     0.022099     0.1105     0.68508      6.232      88.376      3.6464     0.28729     0.64088
    B             0          0    0.076161    0.72353       7.997      86.215      2.7037      2.2848
    CCC           0          0           0    0.30888      1.8533      4.4788      81.004      12.355
    D             0          0           0          0           0           0           0         100

fprintf('Total transitions out of given rating, many more out of CCC and AA:\n')

Total transitions out of given rating, many more out of CCC and AA:

disp(array2table(TotalsCohort2.totalsVec,'VariableNames',RatingsLabels))

    AAA      AA      A      BBB      BB      B      CCC      D  
    ____    ____    ____    ____    ____    ____    ____    ____

    3219    5131    5519    4751    4525    2626    1295    4050

Estimate Point-in-Time and Through-the-Cycle Probabilities
Transition probability estimates are sensitive to the length of the estimation window. When the
estimation window is small, the estimates only capture recent credit events, and these can change
significantly from one year to the next. These are called point-in-time (PIT) estimates. In contrast, a
large time window yields fairly stable estimates that average transition rates over a longer period of
time. These are called through-the-cycle (TTC) estimates.

The estimation of PIT probabilities requires repeated calls to transprob with a rolling estimation
window. Use transprobprep every time repeated calls to transprob are required.
transprobprep performs a preprocessing step on the raw dataset that is independent of the
estimation window. The benefits of transprobprep are greater as the number of repeated calls to
transprob increases. Also, the performance gains from transprobprep are more significant for
the cohort algorithm.
load Data_TransProb
prepData = transprobprep(data);

Years = 1991:2000;
nYears = length(Years);
nRatings = length(prepData.ratingsLabels);
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transMatPIT = zeros(nRatings,nRatings,nYears);
algorithm = 'duration';
sampleTotals(nYears,1) = struct('totalsVec',[],'totalsMat',[],...
'algorithm',algorithm);
for t = 1:nYears
   startDate = ['31-Dec-' num2str(Years(t)-1)];
   endDate = ['31-Dec-' num2str(Years(t))];
   [transMatPIT(:,:,t),sampleTotals(t)] = transprob(prepData,...
    'startDate',startDate,'endDate',endDate,'algorithm',algorithm);
end

Here is the PIT transition matrix for 1993. Recall that the sample dataset contains simulated credit
migrations so the PIT estimates in this example do not match actual historical transition rates.
transMatPIT(:,:,Years==1993)

ans =

   95.3193    4.5999    0.0802    0.0004    0.0002    0.0000    0.0000    0.0000
    2.0631   94.5931    3.3057    0.0254    0.0126    0.0002    0.0000    0.0000
    0.0237    2.1748   95.5901    1.4700    0.7284    0.0131    0.0000    0.0000
    0.0003    0.0372    3.2585   95.2914    1.3876    0.0250    0.0001    0.0000
    0.0000    0.0005    0.0657    3.8292   92.7474    3.3459    0.0111    0.0001
    0.0000    0.0001    0.0128    0.7977    8.0926   90.4897    0.5958    0.0113
    0.0000    0.0000    0.0005    0.0459    0.5026   11.1621   84.9315    3.3574
         0         0         0         0         0         0         0  100.0000

A structure array stores the sampleTotals optional output from transprob. The sampleTotals
structure contains summary information on the total time spent on each rating, and the number of
transitions out of each rating, for each year under consideration. For more information on the
sampleTotals structure, see transprob.

As an example, the sampleTotals structure for 1993 is used here. The total time spent on each
rating is stored in the totalsVec field of the structure. The total transitions out of each rating are
stored in the totalsMat field. A third field, algorithm, indicates the algorithm used to generate the
structure.
sampleTotals(Years==1993).totalsVec
sampleTotals(Years==1993).totalsMat
sampleTotals(Years==1993).algorithm

ans =

  144.4411  230.0356  262.2438  204.9671  246.1315  147.0767   54.9562  215.1479

ans =

     0     7     0     0     0     0     0     0
     5     0     8     0     0     0     0     0
     0     6     0     4     2     0     0     0
     0     0     7     0     3     0     0     0
     0     0     0    10     0     9     0     0
     0     0     0     1    13     0     1     0
     0     0     0     0     0     7     0     2
     0     0     0     0     0     0     0     0

ans =

duration

To get the TTC transition matrix, pass the sampleTotals structure array to transprobbytotals.
Internally, transprobbytotals aggregates the information in the sampleTotals structures to get
the total time spent on each rating over the 10 years considered in this example, and the total
number of transitions out of each rating during the same period. transprobbytotals uses the
aggregated information to get the TTC matrix, or average one-year transition matrix.
transMatTTC = transprobbytotals(sampleTotals)

transMatTTC =
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   92.8544    6.1068    0.7463    0.2761    0.0123    0.0009    0.0001    0.0032
    2.9399   92.2329    3.8394    0.7349    0.1676    0.0050    0.0004    0.0799
    0.2410    4.5963   90.3468    3.9572    0.6909    0.0521    0.0025    0.1133
    0.0530    0.4729    7.9221   87.2751    3.5075    0.4650    0.0791    0.2254
    0.0460    0.1636    1.1873    9.3442   85.4305    2.9520    0.1150    0.7615
    0.0031    0.0152    0.2608    1.5563   10.4468   83.8525    1.9771    1.8882
    0.0009    0.0041    0.0542    0.8378    2.9996    7.3614   82.4758    6.2662
         0         0         0         0         0         0         0  100.0000

The same TTC matrix could be obtained with a direct call to transprob, setting the estimation
window to the 10 years under consideration. But it is much more efficient to use the sampleTotals
structures, whenever they are available. (Note, for the duration algorithm, these alternative
workflows can result in small numerical differences in the estimates whenever leap years are part of
the sample.)

In “Estimate Transition Probabilities” on page 8-2, a 1-year transition matrix is estimated using the 5-
year time window from 1996 through 2000. This is another example of a TTC matrix and this can also
be computed using the sampleTotals structure array.
transprobbytotals(sampleTotals(Years>=1996&Years<=2000))

ans =

   90.6239    7.9048    1.0313    0.4123    0.0210    0.0020    0.0003    0.0043
    4.4776   89.5565    4.5294    1.1224    0.2283    0.0094    0.0009    0.0754
    0.3982    6.1159   87.0651    5.4797    0.7636    0.0892    0.0050    0.0832
    0.1029    0.8571   10.7909   83.0218    3.9968    0.7001    0.1313    0.3991
    0.1043    0.3744    2.2960   14.0947   78.9851    3.0012    0.0463    1.0980
    0.0113    0.0544    0.7054    3.2922   15.4341   75.6004    1.8165    3.0858
    0.0044    0.0189    0.1903    1.9742    6.2318   10.2332   75.9990    5.3482
         0         0         0         0         0         0         0  100.0000

Estimate t-Year Default Probabilities
By varying the start and end dates, the amount of data considered for the estimation is changed, but
the output still contains, by default, one-year transition probabilities. You can change the default
behavior by specifying the transInterval argument, as illustrated in “Estimate Transition
Probabilities” on page 8-2.

However, when t-year transition probabilities are required for a whole range of values of t, for
example, 1-year, 2-year, 3-year, 4-year, and 5-year transition probabilities, it is more efficient to call
transprob once to get the optional output sampleTotals. You can use the same sampleTotals
structure can be used to get the t-year transition matrix for any transition interval t. Given a
sampleTotals structure and a transition interval, you can get the corresponding transition matrix
by using transprobbytotals.

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';

[~,sampleTotals] = transprob(data,'startDate', ...
startDate, 'endDate',endDate);

DefProb = zeros(7,5);
for t = 1:5
   transMatTemp = transprobbytotals(sampleTotals,'transInterval',t);
   DefProb(:,t) = transMatTemp(1:7,8);
end
DefProb

DefProb =

    0.0043    0.0169    0.0377    0.0666    0.1033
    0.0754    0.1542    0.2377    0.3265    0.4213
    0.0832    0.1936    0.3276    0.4819    0.6536
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    0.3992    0.8127    1.2336    1.6566    2.0779
    1.0980    2.1189    3.0668    3.9468    4.7644
    3.0860    5.6994    7.9281    9.8418   11.4963
    5.3484    9.8053   13.5320   16.6599   19.2964

Estimate Bootstrap Confidence Intervals
transprob also returns the idTotals structure array which contains, for each ID, or company, the
total time spent on each rating, and the total transitions out of each rating. For more information on
the idTotals structure, see transprob. The idTotals structure is similar to the sampleTotals
structures (see “Estimate Point-in-Time and Through-the-Cycle Probabilities” on page 8-9), but
idTotals has the information at an ID level. Because most companies only migrate between few
ratings, the numeric arrays in idTotals are stored as sparse arrays to reduce memory
requirements.

You can use the idTotals structure array to estimate confidence intervals for the transition
probabilities using a bootstrapping procedure, as the following example demonstrates. To do this, call
transprob and keep the third output argument, idTotals. The idTotals fields are displayed for
the last company in the sample. Within the estimation window, this company spends almost a year as
'AA' and it is then upgraded to 'AAA'.
load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';

[transMat,~,idTotals] = transprob(data,...
   'startDate',startDate,'endDate',endDate);

% Total time spent on each rating
full(idTotals(end).totalsVec)
% Total transitions out of each rating
full(idTotals(end).totalsMat)
% Algorithm
idTotals(end).algorithm

ans =

    4.0820    0.9180         0         0         0         0         0         0

ans =

     0     0     0     0     0     0     0     0
     1     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0

ans =

duration

Next, use bootstrp from Statistics and Machine Learning Toolbox with transprobbytotals as the
bootstrap function and idTotals as the data to sample from. Each bootstrap sample corresponds to
a dataset made of companies sampled with replacement from the original data. However, you do not
have to draw companies from the original data, because a bootstrap idTotals sample contains all
the information required to compute the transition probabilities. transprobbytotals aggregates
all structures in each bootstrap idTotals sample and finds the corresponding transition matrix.

To estimate 95% confidence intervals for the transition matrix and display the probabilities of default
together with its upper and lower confidence bounds:
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PD = transMat(1:7,8);

bootstat = bootstrp(100,@(totals)transprobbytotals(totals),idTotals);
ci = prctile(bootstat,[2.5 97.5]); % 95% confidence
CIlower = reshape(ci(1,:),8,8);
CIupper = reshape(ci(2,:),8,8);
PD_LB = CIlower(1:7,8);
PD_UB = CIupper(1:7,8);

[PD_LB PD PD_UB]

ans =

    0.0004    0.0043    0.0106
    0.0028    0.0754    0.2192
    0.0126    0.0832    0.2180
    0.1659    0.3992    0.6617
    0.5703    1.0980    1.7260
    1.7264    3.0860    4.7602
    1.7678    5.3484    9.5055

Group Credit Ratings
Credit rating scales can be more or less granular. For example, there are ratings with qualifiers (such
as, 'AA+', 'BB-', and so on), whole ratings ('AA', 'BB', and so on), and investment or speculative
grade ('IG', 'SG') categories. Given a dataset with credit ratings at a more granular level,
transition probabilities for less granular categories can be of interest. For example, you might be
interested in a transition matrix for investment and speculative grades given a dataset with whole
ratings. Use transprobgrouptotals for this evaluation, as illustrated in the following examples.
The sample dataset data has whole credit ratings:

load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
data(1:5,:)

ans = 

    '00010283'    '10-Nov-1984'    'CCC'
    '00010283'    '12-May-1986'    'B'  
    '00010283'    '29-Jun-1988'    'CCC'
    '00010283'    '12-Dec-1991'    'D'  
    '00013326'    '09-Feb-1985'    'A'  

A call to transprob returns the transition matrix and totals structures for the eight ('AAA' to 'D')
whole credit ratings. The array with number of transitions out of each credit rating is displayed after
the call to transprob:
[transMat,sampleTotals,idTotals] = transprob(data,'startDate',startDate,...
'endDate',endDate);
sampleTotals.totalsMat

ans =

     0    67     7     3     0     0     0     0
    67     0    68    15     3     0     0     1
     4   101     0    93    11     1     0     1
     1     7   163     0    62    10     2     5
     1     3    16   168     0    37     0    11
     0     0     2    10    83     0    10    14
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     0     0     0     2     8    16     0     7
     0     0     0     0     0     0     0     0

Next, use transprobgrouptotals to group whole ratings into investment and speculative grades.
This function takes a totals structure as the first argument. The second argument indicates the edges
between rating categories. In this case, ratings 1 through 4 ('AAA' through 'BBB') correspond to
the first category ('IG'), ratings 5 through 7 ('BB' through 'CCC') to the second category ('SG'),
and rating 8 ('D') is a category of its own. transprobgrouptotals adds up the total time spent on
ratings that belong to the same category. For example, total times spent on 'AAA' through 'BBB' are
added up as the total time spent on 'IG'. transprobgrouptotals also adds up the total number of
transitions between any 'IG' rating and any 'SG' rating, for example, a credit migration from
'BBB' to 'BB'.

The grouped totals can then be passed to transprobbytotals to obtain the transition matrix for
investment and speculative grades. Both totalsMat and the new transition matrix are both 3-by-3,
corresponding to the grouped categories 'IG', 'SG', and 'D'.

sampleTotalsIGSG = transprobgrouptotals(sampleTotals,[4 7 8])
transMatIGSG = transprobbytotals(sampleTotalsIGSG)

sampleTotalsIGSG = 

    totalsVec: [4.8591e+003 1.5034e+003 1.1621e+003]
    totalsMat: [3x3 double]
    algorithm: 'duration'

transMatIGSG =

   98.1591    1.6798    0.1611
   12.3228   85.6961    1.9811
         0         0  100.0000

When a totals structure array is passed to transprobgrouptotals, this function groups each
structure in the array individually and preserves sparsity, if the fields in the input structures are
sparse. One way to exploit this feature is to compute confidence intervals for the investment grade
default rate and the speculative grade default rate (see also “Estimate Bootstrap Confidence
Intervals” on page 8-12).
PDIGSG = transMatIGSG(1:2,3);

idTotalsIGSG = transprobgrouptotals(idTotals,[4 7 8]);
bootstat = bootstrp(100,@(totals)transprobbytotals(totals),idTotalsIGSG);
ci = prctile(bootstat,[2.5 97.5]); % 95% confidence
CIlower = reshape(ci(1,:),3,3);
CIupper = reshape(ci(2,:),3,3);
PDIGSG_LB = CIlower(1:2,3);
PDIGSG_UB = CIupper(1:2,3);

[PDIGSG_LB PDIGSG PDIGSG_UB]

ans =

    0.0603    0.1611    0.2538
    1.3470    1.9811    2.6195

Work with Nonsquare Matrices
Transition probabilities and the number of transitions between ratings are usually reported without
the 'D' ('Default') row. For example, a credit report can contain the following table, indicating the
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number of issuers starting in each rating (first column), and the number of transitions between
ratings (remaining columns):

     Initial  AAA   AA    A  BBB   BB    B  CCC    D
  AAA     98   88    9    1    0    0    0    0    0
   AA    389    0  368   19    2    0    0    0    0
    A   1165    1   21 1087   56    0    0    0    0
  BBB   1435    0    2   89 1289   45    8    0    2
   BB    915    0    0    1   60  776   73    2    3
    B    867    0    0    1    7   88  715   39   17
  CCC    112    0    0    0    1    3   34   61   13

You can store the information in this table in a totals structure compatible with the cohort
algorithm. For more information on the cohort algorithm and the totals structure, see transprob.
The totalsMat field is a nonsquare array in this case.

% Define totals structure
totals.totalsVec = [98 389 1165 1435 915 867 112];
totals.totalsMat = [
   88    9    1    0    0    0    0    0;
    0  368   19    2    0    0    0    0;
    1   21 1087   56    0    0    0    0;
    0    2   89 1289   45    8    0    2;
    0    0    1   60  776   73    2    3;
    0    0    1    7   88  715   39   17;
    0    0    0    1    3   34   61   13];
totals.algorithm = 'cohort';

transprobbytotals and transprobgrouptotals accept totals inputs with nonsquare
totalsMat fields. To get the transition matrix corresponding to the previous table, and to group
ratings into investment and speculative grade with the corresponding matrix:
transMat = transprobbytotals(totals)

% Group into IG/SG and get IG/SG transition matrix
totalsIGSG = transprobgrouptotals(totals,[4 7]);
transMatIGSG = transprobbytotals(totalsIGSG)

transMat =

   89.7959    9.1837    1.0204         0         0         0         0         0
         0   94.6015    4.8843    0.5141         0         0         0         0
    0.0858    1.8026   93.3047    4.8069         0         0         0         0
         0    0.1394    6.2021   89.8258    3.1359    0.5575         0    0.1394
         0         0    0.1093    6.5574   84.8087    7.9781    0.2186    0.3279
         0         0    0.1153    0.8074   10.1499   82.4683    4.4983    1.9608
         0         0         0    0.8929    2.6786   30.3571   54.4643   11.6071

transMatIGSG =

   98.2183    1.7169    0.0648
    3.6959   94.5618    1.7423

Remove Outliers
The idTotals output from transprob can also be exploited to update the transition probability
estimates after removing some outlier information. For more information on idTotals, see
transprob. For example, if you know that the credit rating migration information for the 4th and
27th companies in the data have problems, you can remove those companies and efficiently update
the transition probabilities as follows:

load Data_TransProb
startDate = '31-Dec-1995';
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endDate = '31-Dec-2000';
[transMat,~,idTotals] = transprob(data,'startDate', ...
startDate, 'endDate',endDate);
transMat

transMat =

90.6236    7.9051    1.0314    0.4123    0.0210    0.0020    0.0003    0.0043
 4.4780   89.5558    4.5298    1.1225    0.2284    0.0094    0.0009    0.0754
 0.3983    6.1164   87.0641    5.4801    0.7637    0.0892    0.0050    0.0832
 0.1029    0.8572   10.7918   83.0204    3.9971    0.7001    0.1313    0.3992
 0.1043    0.3745    2.2962   14.0954   78.9840    3.0013    0.0463    1.0980
 0.0113    0.0544    0.7055    3.2925   15.4350   75.5988    1.8166    3.0860
 0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484
      0         0         0         0         0         0         0  100.0000

nIDs = length(idTotals);
keepInd = setdiff(1:nIDs,[4 27]);
transMatNoOutlier = transprobbytotals(idTotals(keepInd))

transMatNoOutlier =

90.6241    7.9067    1.0290    0.4124    0.0211    0.0020    0.0003    0.0043
 4.4917   89.5918    4.4779    1.1240    0.2288    0.0094    0.0009    0.0756
 0.3990    6.1220   87.0530    5.4841    0.7643    0.0893    0.0050    0.0833
 0.1030    0.8576   10.7909   83.0207    3.9971    0.7001    0.1313    0.3992
 0.1043    0.3746    2.2960   14.0955   78.9840    3.0013    0.0463    1.0980
 0.0113    0.0544    0.7054    3.2925   15.4350   75.5988    1.8166    3.0860
 0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484
      0         0         0         0         0         0         0  100.0000

Deciding which companies to remove is a case-by-case situation. Reasons to remove a company can
include a typo in one of the ratings histories, or an unusual migration between ratings whose impact
on the transition probability estimates must be measured. transprob does not reorder the
companies in any way. The ordering of companies in the input data is the same as the ordering in the
idTotals array.

Estimate Probabilities for Different Segments
You can use idTotals efficiently to get estimates over different segments of the sample. For more
information on idTotals, see transprob. For example, assume that the companies in the example
are grouped into three geographic regions and that the companies were grouped by geographic
regions previously, so that the first 340 companies correspond to the first region, the next 572
companies to the second region, and the rest to the third region. You can efficiently get transition
probabilities for each region as follows:
load Data_TransProb
startDate = '31-Dec-1995';
endDate = '31-Dec-2000';
[~,~,idTotals] = transprob(data,'startDate', ...
startDate, 'endDate',endDate);

n1 = 340;
n2 = 572;
transMatG1 = transprobbytotals(idTotals(1:n1))
transMatG2 = transprobbytotals(idTotals(n1+1:n1+n2))
transMatG3 = transprobbytotals(idTotals(n1+n2+1:end))

transMatG1 =

90.8299    7.6501    0.3178    1.1700    0.0255    0.0044    0.0021    0.0002
 4.3572   89.0262    5.7838    0.8039    0.0245    0.0029    0.0013    0.0001
 0.7066    6.7567   86.6320    5.4950    0.3721    0.0252    0.0101    0.0023
 0.0626    1.3688   10.3895   83.5022    3.6823    0.6466    0.3084    0.0396
 0.0256    0.7884    2.6970   13.7857   78.8321    2.8310    0.0561    0.9842
 0.0026    0.1095    0.4280    3.5204   21.1437   72.9230    1.6456    0.2273
 0.0005    0.0216    0.0730    0.4574    4.9586    4.2821   80.3062    9.9006
      0         0         0         0         0         0         0  100.0000

transMatG2 =
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90.5798    8.4877    0.8202    0.0884    0.0132    0.0011    0.0000    0.0096
 4.1999   90.0371    3.8657    1.4744    0.2144    0.0128    0.0001    0.1956
 0.3022    5.9869   86.7128    5.5526    1.0411    0.1902    0.0015    0.2127
 0.0204    0.5606   10.9342   82.9195    4.0123    0.7398    0.0059    0.8073
 0.0089    0.3338    2.1185   16.6496   76.2395    3.1241    0.0261    1.4995
 0.0013    0.0465    0.6710    2.4731   14.7281   76.7378    1.2993    4.0428
 0.0002    0.0080    0.0681    0.4598    4.1324    8.4380   80.9092    5.9843
      0         0         0         0         0         0         0  100.0000

transMatG3 =

90.5655    7.5408    1.5288    0.3369    0.0258    0.0015    0.0003    0.0004
 4.8073   89.3842    4.4865    0.9582    0.3509    0.0095    0.0009    0.0025
 0.3153    5.8771   87.6353    5.4101    0.7160    0.0322    0.0052    0.0088
 0.1995    0.8625   10.8682   82.8717    4.1423    0.6903    0.1565    0.2090
 0.2465    0.1091    2.1558   12.0289   81.5803    3.0057    0.0616    0.8122
 0.0227    0.0400    0.9380    4.3175   12.3632   75.9429    2.5766    3.7991
 0.0149    0.0180    0.3414    3.6918    8.1414   13.6010   70.7254    3.4661
      0         0         0         0         0         0         0  100.0000

Work with Large Datasets
This example shows how to aggregate estimates from two (or more) datasets. It is possible that two
datasets, coming from two different databases, must be considered for the estimation of the
transition probabilities. Also, if a dataset is too large and cannot be loaded into memory, the dataset
can be split into two (or more) datasets. In these cases, it is simple to apply transprob to each
individual dataset, and then get the final estimates corresponding to the aggregated data with a call
to transprobbytotals at the end.

For example, the dataset data is artificially split into two sections in this example. In practice the two
datasets would come from different files or databases. When aggregating multiple datasets, the
history of a company cannot be split across datasets. You can analyze that this condition is satisfied
for the arbitrarily chosen cut-off point.

load Data_TransProb

cutoff = 2099;
data(cutoff-5:cutoff,:)
data(cutoff+1:cutoff+6,:)

ans = 

    '00011166'    '24-Aug-1995'    'BBB'
    '00011166'    '25-Jan-1997'    'A'  
    '00011166'    '01-Feb-1998'    'AA' 
    '00014878'    '15-Mar-1983'    'B'  
    '00014878'    '21-Sep-1986'    'BB' 
    '00014878'    '17-Jan-1998'    'BBB'

ans = 

    '00012043'    '09-Feb-1985'    'BBB'
    '00012043'    '03-Jan-1988'    'A'  
    '00012043'    '15-Jan-1994'    'AAA'
    '00011157'    '24-Jun-1984'    'A'  
    '00011157'    '09-Dec-1999'    'BBB'
    '00011157'    '28-Mar-2001'    'A'  

When working with multiple datasets, it is important to set the start and end dates explicitly.
Otherwise, the estimation window differs for each dataset because the default start and end dates
used by transprob are the earliest and latest dates found in the input data.
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startDate = '31-Dec-1995';
endDate = '31-Dec-2000';

In practice, this is the point where you can read in the first dataset. Now, the dataset is already
obtained. Call transprob with the first dataset and the explicit start and end dates. Keep only the
sampleTotals output. For details on sampleTotals, see transprob.

[~,sampleTotals(1)] = transprob(data(1:cutoff,:),...
   'startDate',startDate,'endDate',endDate);

Repeat for the remaining datasets. Note the different sampleTotals structures are stored in a
structured array.

[~,sampleTotals(2)] = transprob(data(cutoff+1:end,:),...
   'startDate',startDate,'endDate',endDate);

To get the transition matrix corresponding to the aggregated dataset, use transprobbytotals.
When the totals input is a structure array, transprobbytotals aggregates the information over all
structures, and returns a single transition matrix.
transMatAggr = transprobbytotals(sampleTotals)

transMatAggr =

   90.6236    7.9051    1.0314    0.4123    0.0210    0.0020    0.0003    0.0043
    4.4780   89.5558    4.5298    1.1225    0.2284    0.0094    0.0009    0.0754
    0.3983    6.1164   87.0641    5.4801    0.7637    0.0892    0.0050    0.0832
    0.1029    0.8572   10.7918   83.0204    3.9971    0.7001    0.1313    0.3992
    0.1043    0.3745    2.2962   14.0954   78.9840    3.0013    0.0463    1.0980
    0.0113    0.0544    0.7055    3.2925   15.4350   75.5988    1.8166    3.0860
    0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484
         0         0         0         0         0         0         0  100.0000

As a sanity check, for this example you can analyze that the aggregation procedure yields the same
estimates (up to numerical differences) as estimating the probabilities directly over the entire
sample:
transMatWhole = transprob(data,'startDate',startDate,'endDate',endDate)
aggError = max(max(abs(transMatAggr - transMatWhole)))

transMatWhole =

   90.6236    7.9051    1.0314    0.4123    0.0210    0.0020    0.0003    0.0043
    4.4780   89.5558    4.5298    1.1225    0.2284    0.0094    0.0009    0.0754
    0.3983    6.1164   87.0641    5.4801    0.7637    0.0892    0.0050    0.0832
    0.1029    0.8572   10.7918   83.0204    3.9971    0.7001    0.1313    0.3992
    0.1043    0.3745    2.2962   14.0954   78.9840    3.0013    0.0463    1.0980
    0.0113    0.0544    0.7055    3.2925   15.4350   75.5988    1.8166    3.0860
    0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484
         0         0         0         0         0         0         0  100.0000

aggError =

  2.8422e-014

See Also
transprob | transprobprep | transprobbytotals | bootstrp | transprobgrouptotals |
transprobtothresholds | transprobfromthresholds

Related Examples
• “Credit Quality Thresholds” on page 8-43
• “Credit Rating by Bagging Decision Trees”
• “Forecasting Corporate Default Rates” on page 8-20
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External Websites
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

 Estimation of Transition Probabilities

8-19

https://www.mathworks.com/videos/credit-risk-modeling-with-matlab-81728.html
https://www.mathworks.com/videos/forecasting-corporate-default-rates-with-matlab-81876.html


Forecasting Corporate Default Rates
This example shows how to build a forecasting model for corporate default rates.

Risk parameters are dynamic in nature, and understanding how these parameters change in time is a
fundamental task for risk management.

In the first part of this example, we work with historical credit migrations data to construct some
time series of interest, and to visualize default rates dynamics. In the second part of this example, we
use some of the series constructed in the first part, and some additional data, to fit a forecasting
model for corporate default rates, and to show some backtesting and stress testing concepts. A linear
regression model for corporate default rates is presented, but the tools and concepts described can
be used with other forecasting methodologies. The appendix at the end references the handling of
models for full transition matrices.

People interested in forecasting, backtesting, and stress testing can go directly to the second part of
this example. The first part of this example is more relevant for people who work with credit
migration data.

Part I: Working with Credit Migrations Data

We work with historical transition probabilities for corporate issuers (variable TransMat). This is
yearly data for the period 1981-2005, from [10 on page 8-0 ]. The data includes, for each year, the
number of issuers per rating at the beginning of the year (variable nIssuers), and the number of
new issuers per rating per year (variable nNewIssuers). There is also a corporate profits forecast,
from [9 on page 8-0 ], and a corporate spread, from [4 on page 8-0 ] (variables CPF and SPR). A
variable indicating recession years (Recession), consistent with recession dates from [7 on page 8-
0 ], is used mainly for visualizations.

Example_LoadData

Getting Default Rates for Different Ratings Categories

We start by performing some aggregations to get corporate default rates for Investment Grade (IG)
and Speculative Grade (SG) issuers, and the overall corporate default rate.

Aggregation and segmentation are relative terms. IG is an aggregate with respect to credit ratings,
but a segment from the perspective of the overall corporate portfolio. Other segments are of interest
in practice, for example, economic sectors, industries, or geographic regions. The data we use,
however, is aggregated by credit ratings, so further segmentation is not possible. Nonetheless, the
tools and workflow discussed here can be useful to work with other segment-specific models.

Use functionality in Financial Toolbox™, specifically, the functions transprobgrouptotals and
transprobbytotals, to perform the aggregation. These functions take as inputs structures with
credit migration information in a particular format. We set up the inputs here and visualize them
below to understand their information and format.

% Pre-allocate the struct array
totalsByRtg(nYears,1) = struct('totalsVec',[],'totalsMat',[],...
   'algorithm','cohort');
for t = 1:nYears
   % Number of issuers per rating at the beginning of the year
   totalsByRtg(t).totalsVec = nIssuers(t,:);
   % Number of transitions between ratings during the year
   totalsByRtg(t).totalsMat = round(diag(nIssuers(t,:))*...
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      (0.01*TransMat(:,:,t)));
   % Algorithm
   totalsByRtg(t).algorithm = 'cohort';
end

It is useful to see both the original data and the data stored in these totals structures side to side. The
original data contains number of issuers and transition probabilities for each year. For example, for
2005:

fprintf('\nTransition matrix for 2005:\n\n')

Transition matrix for 2005:

Example_DisplayTransitions(squeeze(TransMat(:,:,end)),nIssuers(end,:),...
   {'AAA','AA','A','BBB','BB','B','CCC'},...
   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

         Init    AAA     AA      A    BBB     BB      B    CCC      D     NR 
   AAA     98  88.78   9.18   1.02      0      0      0      0      0   1.02 
    AA    407      0  90.66   4.91   0.49      0      0      0      0   3.93 
     A   1224   0.08   1.63  88.89   4.41      0      0      0      0   4.98 
   BBB   1535      0    0.2   5.93  84.04   3.06   0.46      0   0.07   6.25 
    BB   1015      0      0      0   5.71  76.75    6.9    0.2    0.2  10.25 
     B   1010      0      0    0.1   0.59   8.51  70.59   3.76   1.58  14.85 
   CCC    126      0      0      0   0.79   0.79   25.4  46.83   8.73  17.46 

The totals structure stores the total number of issuers per rating at the beginning of the year in the
totalsVec field, and the total number of migrations between ratings (instead of transition
probabilities) in the totalsMat field. Here is the information for 2005:

fprintf('\nTransition counts (totals struct) for 2005:\n\n')

Transition counts (totals struct) for 2005:

Example_DisplayTransitions(totalsByRtg(end).totalsMat,...
   totalsByRtg(end).totalsVec,...
   {'AAA','AA','A','BBB','BB','B','CCC'},...
   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

         Init    AAA     AA      A    BBB     BB      B    CCC      D     NR 
   AAA     98     87      9      1      0      0      0      0      0      1 
    AA    407      0    369     20      2      0      0      0      0     16 
     A   1224      1     20   1088     54      0      0      0      0     61 
   BBB   1535      0      3     91   1290     47      7      0      1     96 
    BB   1015      0      0      0     58    779     70      2      2    104 
     B   1010      0      0      1      6     86    713     38     16    150 
   CCC    126      0      0      0      1      1     32     59     11     22 

The third field in the totals structure, algorithm, indicates that we are working with the cohort
method (duration is also supported, although the information in totalsVec and totalsMat would
be different). These structures are obtained as optional outputs from transprob, but this example
shows how you can define these structures directly.

Use transprobgrouptotals to group the ratings 'AAA' to 'BBB' (ratings 1 to 4) into the IG
category and ratings 'BB' to 'CCC' (ratings 5 to 7) into the SG category. The edges argument tells
the function which ratings are to be grouped together (1 to 4, and 5 to 7). We also group all non-
default ratings into one category. These are preliminary steps to get the IG, SG, and overall default
rates for each year.
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edgesIGSG = [4 7];
totalsIGSG = transprobgrouptotals(totalsByRtg,edgesIGSG);
edgesAll = 7; % could also use edgesAll = 2 with totalsIGSG
totalsAll = transprobgrouptotals(totalsByRtg,edgesAll);

Here are the 2005 totals grouped at IG/SG level, and the corresponding transition matrix, recovered
using transprobbytotals.

fprintf('\nTransition counts for 2005 at IG/SG level:\n\n')

Transition counts for 2005 at IG/SG level:

Example_DisplayTransitions(totalsIGSG(end).totalsMat,...
   totalsIGSG(end).totalsVec,...
   {'IG','SG'},...
   {'IG','SG','D','NR'})

         Init     IG     SG      D     NR 
    IG   3264   3035     54      1    174 
    SG   2151     66   1780     29    276 

fprintf('\nTransition matrix for 2005 at IG/SG level:\n\n')

Transition matrix for 2005 at IG/SG level:

Example_DisplayTransitions(transprobbytotals(totalsIGSG(end)),[],...
   {'IG','SG'},...
   {'IG','SG','D','NR'})

           IG     SG      D     NR 
    IG  92.98   1.65   0.03   5.33 
    SG   3.07  82.75   1.35  12.83 

Now get transition matrices for every year both at IG/SG and non-default/default levels and store the
default rates only (we do not use the rest of the transition probabilities).

DefRateIG = zeros(nYears,1);
DefRateSG = zeros(nYears,1);
DefRate = zeros(nYears,1);
for t=1:nYears
   % Get transition matrix at IG/SG level and extract IG default rate and
   % SG default rate for year t
   tmIGSG = transprobbytotals(totalsIGSG(t));
   DefRateIG(t) = tmIGSG(1,3);
   DefRateSG(t) = tmIGSG(2,3);
   % Get transition matrix at most aggregate level and extract overall
   % corporate default rate for year t
   tmAll = transprobbytotals(totalsAll(t));
   DefRate(t) = tmAll(1,2);
end

Here is a visualization of the dynamics of IG, SG, and overall corporate default rates together. To
emphasize their patterns, rather than their magnitudes, a log scale is used. The shaded bands
indicate recession years. The patterns of SG and IG are slightly different. For example, the IG rate is
higher in 1994 than in 1995, but the opposite is true for SG. More noticeably, the IG default rate
peaked after the 2001 recession, in 2002, whereas the peak for SG is in 2001. This suggests that
models for the dynamics of the IG and SG default rates could have important differences, a common
situation when working with different segments. The overall corporate default rate is by construction
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a combination of the other two, and its pattern is closer to SG, most likely due to the relative
magnitude of SG versus IG.

minIG = min(DefRateIG(DefRateIG~=0));
figure
plot(Years,log(DefRateSG),'m-*')
hold on
plot(Years,log(DefRate),'b-o')
plot(Years,log(max(DefRateIG,minIG-0.001)),'r-+')
Example_RecessionBands
hold off
grid on
title('{\bf Default Rates (log scale)}')
ylabel('log %')
legend({'SG','Overall','IG'},'location','NW')

Getting Default Rates for Different Time Periods

The default rates obtained are examples of point-in-time (PIT) rates, only the most recent information
is used to estimate them. On the other extreme, we can use all the migrations observed in the 25
years spanned by the dataset to estimate long-term, or through-the-cycle (TTC) default rates. Other
rates of interest are the average default rates over recession or expansion years.

All of these are easy to estimate with the data we have and the same tools. For example, to estimate
the average transition probabilities over recession years, pass to transprobbytotals the totals
structures corresponding to the recession years only. We use logical indexing below, taking advantage
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of the Recession variable. transprobbytotals aggregates the information over time and returns
the corresponding transition matrix.

tmAllRec = transprobbytotals(totalsAll(Recession));
DefRateRec = tmAllRec(1,2);

tmAllExp = transprobbytotals(totalsAll(~Recession));
DefRateExp = tmAllExp(1,2);

tmAllTTC = transprobbytotals(totalsAll);
DefRateTTC = tmAllTTC(1,2);

The following figure shows the estimated PIT rates, TTC rates, and recession and expansion rates.

DefRateTwoValues = DefRateExp*ones(nYears,1);
DefRateTwoValues(Recession) = DefRateRec;

figure
plot(Years,DefRate,'bo:','LineWidth',1.2)
hold on
stairs(Years-0.5,DefRateTwoValues,'m-','LineWidth',1.5)
plot(Years,DefRateTTC*ones(nYears,1),'r-.','LineWidth',1.5)
Example_RecessionBands
hold off
grid on
title('{\bf Default Rate}')
ylabel('%')
legend({'Point-in-time (PIT)','Recession/Expansion Avg',...
   'Through-the-cycle (TTC)'},'location','NW')
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Some analyses (see, for example, [11 on page 8-0 ]) use simulations where the default rate is
conditional on the general state of the economy, for example, recession v. expansion. The recession
and expansion estimates obtained can be useful in such a framework. These are all historical
averages, however, and may not work well if used as predictions for the actual default rates expected
on any particular year. In the second part of this example, we revisit the use of these types of
historical averages as forecasting tools in a backtesting exercise.

Building Predictors Using Credit Ratings Data

Using the credit data, you can build new time series of interest. We start with an age proxy that is
used as predictor in the forecasting model in the second part of this example.

Age is known to be an important factor in predicting default rates; see, for example, [1 on page 8-
0 ] and [5 on page 8-0 ]. Age here means the number of years since a bond was issued. By
extension, the age of a portfolio is the average age of its bonds. Certain patterns have been observed
historically. Many low-quality borrowers default just a few years after issuing a bond. When troubled
companies issue bonds, the amount borrowed helps them make payments for a year or two. Beyond
that point, their only source of money is their cash flows, and if they are insufficient, default occurs.

We cannot calculate the exact age of the portfolio, because there is no information at issuer level in
the dataset. We follow [6 on page 8-0 ], however, and use the number of new issuers in year t-3
divided by the total number of issuers at the end of year t as an age proxy. Because of the lag, the age
proxy starts in 1984. For the numerator, we have explicit information on the number of new issuers.
For the denominator, the number of issuers at the end of a year equals the number of issuers at the
beginning of next year. This is known for all years but the last one, which is set to the total transitions
into a non-default rating plus the number of new issuers on that year.
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% Total number of issuers at the end of the year
nEOY = zeros(nYears,1);
% nIssuers is number of issuers per ratings at the beginning of the year
% nEOY ( 1981 ) = sum nIssuers ( 1982 ), etc until 2004
nEOY(1:end-1) = sum(nIssuers(2:end,:),2);
% nEOY ( 2005 ) = issuers in non-default state at end of 2005 plus
% new issuers in 2005
nEOY(end) = totalsAll(end).totalsMat(1,1) + sum(nNewIssuers(end,:));
% Age proxy
AGE = 100*[nan(3,1); sum(nNewIssuers(1:end-3,:),2)./nEOY(4:end)];

Examples of other time series of interest are the proportion of SG issuers at the end of each year, or
an age proxy for SG.

% nSGEOY: Number of SG issuers at the end of the year
% nSGEOY is similar to nEOY, but for SG only, from 5 ('BB') to 7 ('CCC')
indSG = 5:7;
nSGEOY = zeros(nYears,1);
nSGEOY(1:end-1) = sum(nIssuers(2:end,indSG),2);
nSGEOY(end) = sum(totalsIGSG(end).totalsMat(:,2)) +...
   sum(nNewIssuers(end,indSG));
% Proportion of SG issuers
SG = 100*nSGEOY./nEOY;
% SG age proxy: new SG issuers in t-3 / total issuers at the end of year t
AGESG = 100*[nan(3,1); sum(nNewIssuers(1:end-3,indSG),2)./nEOY(4:end)];

Part II: A Forecasting Model for Default Rates

We work with the following linear regression model for corporate default rates

Def Rate = β0 + βageAGE + βcpfCPF + βsprSPR

where

• AGE: Age proxy defined above
• CPF: Corporate profits forecast
• SPR: Corporate spread over treasuries

This is the same model as in [6 on page 8-0 ], except the model in [6 on page 8-0 ] is for IG only.

As previously discussed, age is known to be an important factor regarding default rates. The
corporate profits provide information on the economic environment. The corporate spread is a proxy
for credit quality. Age, environment, and quality are three dimensions frequently found in credit
analysis models.

inSample = 4:nYears-1;
T = length(inSample);
varNames = {'AGE','CPF','SPR'};
X = [AGE CPF SPR];
X = X(inSample,:);
y = DefRate(inSample+1); % DefaultRate, year t+1
stats = regstats(y,X);

fprintf('\nConst   AGE   CPF   SPR   adjR^2\n')

Const   AGE   CPF   SPR   adjR^2
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fprintf('%1.2f  %1.2f %1.2f  %1.2f   %1.4f\n',...
   [stats.beta;stats.adjrsquare])

-1.19  0.15 -0.10  0.71   0.7424

The coefficients have the expected sign: default rates tend to increase with a higher proportion of 3-
year issuers, decrease with good corporate profits, and increase when the corporate yields are
higher. The adjusted R square shows a good fit.

The in-sample fit, or how close the model predictions are from the sample points used to fit the
model, is shown in the following figure.

bHat = stats.beta;
yHat = [ones(T,1),X]*bHat;

figure
plot(Years(inSample+1),DefRate(inSample+1),'ko','LineWidth',1.5,...
   'MarkerSize',10,'MarkerFaceColor','g')
hold on
plot(Years(inSample+1),yHat,'b-s','LineWidth',1.2,'MarkerSize',10)
hold off
grid on
legend({'Actual','Model'},'location','NW')
title('{\bf Corporate Default Rate Models: In-Sample Fit}')
xlabel('Year')
ylabel('Percent')
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It can be shown that there is no strong statistical evidence to conclude that the linear regression
assumptions are violated. It is apparent that default rates are not normally distributed. The model,
however, does not make that assumption. The only normality assumption in the model is that, given
the predictors values, the error between the predicted and the observed default rates is normally
distributed. By looking at the in-sample fit, this does not seem unreasonable. The magnitude of the
errors certainly seems independent of whether the default rates are high or low. Year 2001 has a high
default rate and a high error, but years 1991 or 2002 also have high rates and yet very small errors.
Likewise, low default rate years like 1996 and 1997 show considerable errors, but years 2004 or 2005
have similarly low rates and tiny errors.

A thorough statistical analysis of the model is out of scope here, but there are several detailed
examples in Statistics and Machine Learning Toolbox™ and Econometrics Toolbox™.

Backtesting

To evaluate how this model performs out-of-sample, we set up a backtesting exercise. Starting at the
end of 1995, we fit the linear regression model with the information available up to that date, and
compare the model prediction to the actual default rate observed the following year. We repeat the
same for all subsequent years until the end of the sample.

For backtesting, relative performance of a model, when compared to alternatives, is easier to assess
than the performance of a model in isolation. Here we include two alternatives to determine next
year's default rate, both likely candidates in practice. One is the TTC default rate, estimated with
data from the beginning of the sample to the current year, a very stable default rate estimate. The
other is the PIT rate, estimated using data from the most recent year only, much more sensitive to
recent events.

XBT = [AGE,CPF,SPR];
yBT = DefRate;

iYear0 = find(Years==1984); % index of first year in sample, 1984
T = find(Years==1995); % ind "current" year, start at 1995, updated in loop
YearsBT = 1996:2005; % years predicted in BT exercise
iYearsBT = find(Years==1996):find(Years==2005); % corresponding indices
nYearsBT = length(YearsBT); % number of years in BT exercise

MethodTags = {'Model','PIT','TTC'};
nMethods = length(MethodTags);
PredDefRate = zeros(nYearsBT,nMethods);
ErrorBT = zeros(nYearsBT,nMethods);

alpha = 0.05;
PredDefLoBnd = zeros(nYearsBT,1);
PredDefUpBnd = zeros(nYearsBT,1);

for k=1:nYearsBT
   % In sample years for predictors, from 1984 to "last" year (T-1)
   inSampleBT = iYear0:T-1;
   
   % Method 1: Linear regression model
   %   Fit regression model with data up to "current" year (T)
   s = regstats(yBT(inSampleBT+1),XBT(inSampleBT,:));
   %   Predict default rate for "next" year (T+1)
   PredDefRate(k,1) = [1 XBT(T,:)]*s.beta;
   %   Compute prediction intervals
   tCrit = tinv(1-alpha/2,s.tstat.dfe);
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   PredStd = sqrt([1 XBT(T,:)]*s.covb*[1 XBT(T,:)]'+s.mse);
   PredDefLoBnd(k) = max(0,PredDefRate(k,1) - tCrit*PredStd);
   PredDefUpBnd(k) = PredDefRate(k,1) + tCrit*PredStd;

   % Method 2: Point-in-time (PIT) default rate
   PredDefRate(k,2) = DefRate(T);

   % Method 3: Through-the-cycle (TTC) default rate
   tmAll = transprobbytotals(totalsAll(iYear0:T));
   PredDefRate(k,3) = tmAll(1,2);

   % Update error
   ErrorBT(k,:) = PredDefRate(k,:) - DefRate(T+1);
   
   % Move to next year
   T = T + 1;
end

Here are the predictions of the three alternative approaches, compared to the actual default rates
observed. Unsurprisingly, TTC shows a very poor predictive power. However, it is not obvious whether
PIT or the linear regression model makes better predictions in this 10-year time span.

Example_BacktestPlot(YearsBT,DefRate(iYearsBT),PredDefRate,'Year','%',...
   '{\bf Default Rate Estimation Methods: Backtesting}',...
   ['Actual' MethodTags],'NW')
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The following plot keeps track of cumulative square error, a measure often used for comparisons in
backtesting exercises. This confirms TTC as a poor alternative. PIT shows lower cumulative error
than the linear regression model in the late nineties, but after the 2001 recession the situation is
reversed. Cumulative square error, however, is not an intuitive measure, it is hard to get a sense of
what the difference between these alternatives means in practical terms.

CumSqError = cumsum(ErrorBT.^2);
Example_BacktestPlot(YearsBT,[],CumSqError,'Year','Cum Sq Error',...
   '{\bf Cumulative Square Error in Backtesting Exercise}',...
   MethodTags,'NW')

It makes sense to translate the prediction errors into a monetary measure. Here we measure the
impact of the prediction error on a simplified framework for generating loss reserves in an institution.

We assume a homogeneous portfolio, where all credits have the same probability of default, the same
loss given default (LGD), and the same exposure at default (EAD). Both LGD and EAD are assumed to
be known. For simplicity, we keep these values constant for the 10 years of the exercise. We set LGD
at 45%, and EAD per bond at 100 million. The portfolio is assumed to have a thousand bonds, so the
total value of the portfolio, the total EAD, is 100 billion.

The predicted default rate for year t, determined at the end of year t-1, is used to calculate the
expected loss for year t

ELt = EADt × LGDt × PredictedDefaultRatet

This is the amount added to the loss reserves at the start of year t. At the end of the year, the actual
losses are known
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ALt = EADt × LGDt × ObservedDefaultRatet

We assume that unused loss reserves remain in the reserves fund. The starting balance in reserves at
the beginning of the exercise is set to zero. If the actual losses surpass the expected loss, unused
reserves accumulated over the years are used first, and only if these run out, capital is used to cover
a shortfall. All this translates into the following formula

Reservest = Reservest − 1 + ELt− ALt

or equivalently

Reservest = ∑
s = 1

t
ELt − ALt

The following figure shows the loss reserves balance for each of the three alternatives in the
backtesting exercise.

EAD = 100*ones(nYearsBT,1); % in billions
LGD = 0.45*ones(nYearsBT,1); % Loss given default, 45%
% Reserves excess or shortfall for each year, in billions
ReservesExcessShortfall = bsxfun(@times,EAD.*LGD,ErrorBT/100);
% Cumulative reserve balance for each year, in billions
ReservesBalanceEOY = cumsum(ReservesExcessShortfall);

Example_BacktestPlot(YearsBT,[],ReservesBalanceEOY,'Year',...
   'Billions of Dollars',...
   '{\bf Reserves Balance (EOY): Backtesting}',...
   MethodTags,'SW')
grid on
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Using the linear regression model we only observe a deficit in reserves in two out of ten years, and
the maximum deficit, in 2001, is 0.09 billion, only nine basis points of the portfolio value.

In contrast, both TTC and PIT reach a deficit of 1.2 billion by 2001. Things get worse for TTC in the
next two years, reaching a deficit of 2.1 billion by 2003. PIT does make a correction quickly after
2001, and by 2004 the reserves have a surplus. Yet, both TTC and PIT lead to more deficit years than
surplus years in this exercise.

The linear regression model shows more of a counter-cyclical effect than the alternatives in this
exercise. The money set aside using the linear regression model reaches close to a billion in 1997 and
1998. High levels of unused reserves translate into a slower pace of lending (not reflected in the
exercise, because we exogenously impose the portfolio value). Moreover, capital is only slightly
impacted during the 2001 recession thanks to the reserves accumulated over the previous expansion.
This translates into more capital available to back up further lending, if desired, during the economic
recovery.

The last backtesting tool we discuss is the use of prediction intervals. Linear regression models
provide standard formulas to compute confidence intervals for the values of new observations. These
intervals are shown in the next figure for the 10 years spanned in the backtesting exercise.

figure
plot(YearsBT,DefRate(iYearsBT),'ko','LineWidth',1.5,'MarkerSize',10,...
   'MarkerFaceColor','g')
hold on
plot(YearsBT,PredDefRate(:,1),'b-s','LineWidth',1.2,'MarkerSize',10)
plot(YearsBT,[PredDefLoBnd PredDefUpBnd],'b:','LineWidth',1.2)
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hold off
strConf = num2str((1-alpha)*100);
title(['{\bf Backtesting Results with ' strConf '% Prediction Intervals}'])
xlabel('Year');
ylabel('%');
legend({'Actual','Predicted','Conf Bounds'},'location','NW');

The observed default rates fall outside the prediction intervals for two years, 1996 and 1997, where
very low default rates are observed. For a 95% confidence level, two out of 10 seems high. Yet, the
observed values in these cases fall barely outside the prediction interval, which is a positive sign for
the model. It is also positive that the prediction intervals contain the observed values around the
2001 recession.

Stress Testing

Stress testing is a broad area that reaches far beyond computational tools; see, for example, [3 on
page 8-0 ]. We show some tools that can be incorporated into a comprehensive stress testing
framework. We build on the linear regression model presented above, but the concepts and tools are
compatible with other forecasting methodologies.

The first tool is the use of prediction intervals to define a worst-case scenario forecasts. This is to
account for uncertainty in the model only, not in the value of the predictors.

We take a baseline scenario of predictors, in our case, the latest known values of our age proxy AGE,
corporate profits forecast, CPF, and corporate spread, SPR. We then use the linear regression model
to compute a 95% confidence upper bound for the predicted default rate. The motivation for this is
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illustrated in the last plot of the backtesting section, where the 95% confidence upper limit acts as a
conservative bound when the prediction underestimates the actual default rates.

tCrit = tinv(1-alpha/2,stats.tstat.dfe);
XLast = [AGE(end),CPF(end),SPR(end)];

yPred = [1 XLast]*stats.beta;
PredStd = sqrt([1 XLast]*stats.covb*[1 XLast]'+stats.mse);
yPredUB = yPred + tCrit*PredStd;

fprintf('\nPredicted default rate:\n');

Predicted default rate:

fprintf('     Baseline: %4.2f%%\n',yPred);

     Baseline: 1.18%

fprintf('     %g%% Upper Bound: %4.2f%%\n',(1-alpha)*100,yPredUB);

     95% Upper Bound: 2.31%

The next step is to incorporate stressed scenarios of the predictors in the analysis. CPF and SPR can
change in the short term, whereas AGE cannot. This is important. The corporate profits forecast and
the corporate spread are influenced by world events, including, for example, natural disasters. These
predictors can significantly change overnight. On the other hand, AGE depends on managerial
decisions that can alter the proportion of old and new loans in time, but these decisions take months,
if not years, to reflect in the AGE time series. Scenarios for AGE are compatible with longer term
analyses. Here we look at one year ahead only, and keep AGE fixed for the remainder of this section.

It is convenient to define the predicted default rate and the confidence bounds as functions of CPF
and SPR to simplify the scenario analysis.

yPredFn = @(cpf,spr) [1 AGE(end) cpf spr]*stats.beta;
PredStdFn = @(cpf,spr) sqrt([1 AGE(end) cpf spr]*stats.covb*...
   [1 AGE(end) cpf spr]'+stats.mse);
yPredUBFn = @(cpf,spr) (yPredFn(cpf,spr) + tCrit*PredStdFn(cpf,spr));
yPredLBFn = @(cpf,spr) (yPredFn(cpf,spr) - tCrit*PredStdFn(cpf,spr));

Two extreme scenarios of interest can be a drop in the corporate profits forecast of 4% relative to the
baseline, and an increase in the corporate spread of 100 basis points over the baseline.

Moving one predictor at a time is not unreasonable in this case, because the correlation between CPF
and SPR is very low. Moderate correlation levels may require perturbing predictors together to get
more reliable results. Highly correlated predictors usually do not coexist in the same model, since
they offer redundant information.

fprintf('\n\n         What-if Analysis\n');

         What-if Analysis

fprintf('Scenario         LB    Pred    UB\n');

Scenario         LB    Pred    UB

cpf = CPF(end)-4;
spr = SPR(end);
yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];
fprintf('CPF drops 4%%    %4.2f%%  %4.2f%%  %4.2f%%\n',yPredRange);
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CPF drops 4%    0.42%  1.57%  2.71%

cpf = CPF(end);
spr = SPR(end)+1;
yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];
fprintf('SPR rises 1%%    %4.2f%%  %4.2f%%  %4.2f%%\n',yPredRange);

SPR rises 1%    0.71%  1.88%  3.05%

cpf = CPF(end);
spr = SPR(end);
yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];
fprintf('    Baseline    %4.2f%%  %4.2f%%  %4.2f%%\n',yPredRange);

    Baseline    0.04%  1.18%  2.31%

fprintf('\nCorrelation between CPF and SPR: %4.3f\n',corr(CPF,SPR));

Correlation between CPF and SPR: 0.012

We now take a more global view of the scenario analysis. Instead of analyzing one scenario at a time,
we visualize the default rate forecasts as a function of CPF and SPR. More precisely, we plot default
rate contours over a whole grid of CPF and SPR values. We use the conservative 95% upper bound.

If we assumed a particular bivariate distribution for the values of CPF and SPR, we could plot the
contours of their distribution in the same figure. That would give visual information on the probability
of falling on each region. Lacking such a distribution, we simply add to the plot the CPF - SPR pairs
observed in our sample, as a historical, empirical distribution. The last observation in the sample, the
baseline scenario, is marked in red.

gridCPF = 2*min(CPF):0.1:max(CPF);
gridSPR = min(SPR):0.1:2*max(SPR);
nGridCPF = length(gridCPF);
nGridSPR = length(gridSPR);

DefRateUB = zeros(nGridCPF,nGridSPR);
for i=1:nGridCPF
   for j=1:nGridSPR
      DefRateUB(i,j) = yPredUBFn(gridCPF(i),gridSPR(j));
   end
end
Example_StressTestPlot(gridCPF,gridSPR,DefRateUB,CPF,SPR,...
   'Corporate Profits Forecast (%)','Corporate Spread (%)',...
   ['{\bf ' strConf '% UB Default Rate Regions (in %)}'])
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Very different predictor values result in similar default rate levels. For example, consider a profits
forecast around 10% with a spread of 3.5%, and a profits forecast of -2.5% with a spread of 2%, they
both result in a default rate slightly above 3%. Also, only one point in the available history yields a
default rate higher than 4%.

Monetary terms, once again, may be more meaningful. We use the Basel II capital requirements
formula (see [2 on page 8-0 ]) to translate the default rates into a monetary measure. The Basel II
formula is convenient because it is analytic (there is no need to simulate to estimate the capital
requirements), but also because it depends only on the probabilities of default. We define the Basel II
capital requirements as a function K.

% Correlation as a function of PD
w = @(pd) (1-exp(-50*pd))/(1-exp(-50)); % weight
R = @(pd) (0.12*w(pd)+0.24*(1-w(pd))); % correlation
% Vasicek formula
V = @(pd) normcdf(norminv(pd)+R(pd).*norminv(0.999)./sqrt(1-R(pd)));
% Parameter b for maturity adjustment
b = @(pd) (0.11852-0.05478*log(pd)).^2;
% Basel II capital requirement with LGD=45% and maturity M=2.5 (numerator
% in maturity adjustment term becomes 1)
K = @(pd) 0.45*(V(pd)-pd).*(1./(1-1.5*b(pd)));

Worst-case default rates for a whole grid of CPF - SPR pairs are stored in DefRateUB. By applying the
function K to DefRateUB, we can visualize the capital requirements over the same grid.

CapReq = 100*K(DefRateUB/100);
Example_StressTestPlot(gridCPF,gridSPR,CapReq,CPF,SPR,...
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   'Corporate Profits Forecast (%)','Corporate Spread (%)',...
   {'{\bf Capital Requirement Regions (% of value)}';...
   ['{\bf using ' strConf '% UB Default Rate}']})

The contour levels now indicate capital requirements as a percentage of portfolio value. The two
scenarios above, profits of 10% with spread of 3.5%, and profits of -2.5% and spread of 2%, result in
capital requirements near 2.75%. The worst-case point from the historical data yields a capital
requirement of about 3%.

This visualization can also be used, for example, as part of a reverse stress test analysis. Critical
levels of capital can be determined first, and the figure can be used to determine regions of risk
factor values (in this case CPF and SPR) that lead to those critical levels.

Instead of historical observations of CPF and SPR, an empirical distribution for the risk factors can be
simulated using, for example, a vector autoregressive (VAR) model from Econometrics Toolbox™. The
capital requirements corresponding to each default probability level can be found by simulation if a
closed form formula is not available, and the same plots can be generated. For large simulations, a
distributed computing implementation using Parallel Computing Toolbox™ or MATLAB® Parallel
Server™ can make the process more efficient.

Appendix: Modeling Full Transition Matrices

Transition matrices change in time, and a full description of their dynamics requires working with
multi-dimensional time series. There are, however, techniques that exploit the particular structure of
transition matrices to reduce the dimensionality of the problem. In [8 on page 8-0 ], for example, a
single parameter related to the proportion of downgrades is used, and both [6 on page 8-0 ] and [8
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on page 8-0 ] describe a method to shift transition probabilities using a single parameter. The latter
approach is shown in this appendix.

The method takes the TTC transition matrix as a baseline.

tmTTC = transprobbytotals(totalsByRtg);
Example_DisplayTransitions(tmTTC,[],...
   {'AAA','AA','A','BBB','BB','B','CCC'},...
   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

          AAA     AA      A    BBB     BB      B    CCC      D     NR 
   AAA   88.2   7.67   0.49   0.09   0.06      0      0      0   3.49 
    AA   0.58  87.16   7.63   0.58   0.06   0.11   0.02   0.01   3.85 
     A   0.05    1.9  87.24   5.59   0.42   0.15   0.03   0.04   4.58 
   BBB   0.02   0.16   3.85  84.13   4.27   0.76   0.17   0.27   6.37 
    BB   0.03   0.04   0.25   5.26  75.74   7.36    0.9   1.12   9.29 
     B      0   0.05   0.19   0.31   5.52  72.67   4.21   5.38  11.67 
   CCC      0      0   0.28   0.41   1.24  10.92  47.06  27.02  13.06 

An equivalent way to represent this matrix is by transforming it into credit quality thresholds, that is,
critical values of a standard normal distribution that yield the same transition probabilities (row by
row).

thresholdMat = transprobtothresholds(tmTTC);
Example_DisplayTransitions(thresholdMat,[],...
   {'AAA','AA','A','BBB','BB','B','CCC'},...
   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

          AAA     AA      A    BBB     BB      B    CCC      D     NR 
   AAA    Inf  -1.19  -1.74   -1.8  -1.81  -1.81  -1.81  -1.81  -1.81 
    AA    Inf   2.52  -1.16  -1.68  -1.75  -1.75  -1.76  -1.77  -1.77 
     A    Inf   3.31   2.07  -1.24  -1.62  -1.66  -1.68  -1.68  -1.69 
   BBB    Inf   3.57   2.91   1.75  -1.18  -1.43  -1.49   -1.5  -1.52 
    BB    Inf   3.39   3.16   2.72   1.59  -0.89  -1.21  -1.26  -1.32 
     B    Inf    Inf   3.28   2.82   2.54   1.55   -0.8  -0.95  -1.19 
   CCC    Inf    Inf    Inf   2.77   2.46   2.07   1.13  -0.25  -1.12 

Credit quality thresholds are illustrated in the following figure. The segments in the vertical axis
represent transition probabilities, and the boundaries between them determine the critical values in
the horizontal axis, via the standard normal distribution. Each row in the transition matrix determines
a set of thresholds. The figure shows the thresholds for the 'CCC' rating.

xliml = -5;
xlimr = 5;
step = 0.1;
x = xliml:step:xlimr;
thresCCC = thresholdMat(7,:);
centersY = (normcdf([thresCCC(2:end) xliml])+...
   normcdf([xlimr thresCCC(2:end)]))/2;
labels = {'AAA','AA','A','BBB','BB','B','CCC','D','NR'};

figure
plot(x,normcdf(x),'m','LineWidth',1.5)
for i=2:length(labels)
   val = thresCCC(i);
   line([val val],[0 normcdf(val)],'LineStyle',':');
   line([x(1) val],[normcdf(val) normcdf(val)],'LineStyle',':');
   if (centersY(i-1)-centersY(i))>0.05
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      text(-4.5,centersY(i),labels{i});
   end
end
xlabel('Credit Quality Thresholds')
ylabel('Cumulative Probability')
title('{\bf Visualization of Credit Quality Thresholds}')
legend('Std Normal CDF','Location','E')

Shifting the critical values to the right or left changes the transition probabilities. For example, here
is the transition matrix obtained by shifting the TTC thresholds by 0.5 to the right. Note that default
probabilities increase.

shiftedThresholds = thresholdMat+0.5;
Example_DisplayTransitions(transprobfromthresholds(shiftedThresholds),...
   [],{'AAA','AA','A','BBB','BB','B','CCC'},...
   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

          AAA     AA      A    BBB     BB      B    CCC      D     NR 
   AAA  75.34  13.84   1.05   0.19   0.13      0      0      0   9.45 
    AA   0.13  74.49  13.53   1.21   0.12   0.22   0.04   0.02  10.24 
     A   0.01   0.51   76.4  10.02   0.83   0.31   0.06   0.08  11.77 
   BBB      0   0.03    1.2  74.03   7.22   1.39   0.32   0.51  15.29 
    BB      0   0.01   0.05   1.77  63.35  10.94   1.47   1.88  20.52 
     B      0   0.01   0.04   0.07   1.91  59.67   5.74    8.1  24.46 
   CCC      0      0   0.05    0.1   0.36   4.61  35.06  33.18  26.65 

Given a particular PIT matrix, the idea in [6 on page 8-0 ] and [8 on page 8-0 ] is to vary the
shifting parameter applied to the TTC thresholds so that the resulting transition matrix is as close as
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possible to the PIT matrix. Closeness is measured as the sum of squares of differences between
corresponding transition probabilities. The optimal shifting value is called credit index. A credit index
is determined for every PIT transition matrix in the sample.

Here we use fminunc from Optimization Toolbox™ to find the credit indices.

CreditIndex = zeros(nYears,1);
ExitFlag = zeros(nYears,1);
options = optimset('LargeScale','Off','Display','Off');
for i=1:nYears
   errorfun = @(z)norm(squeeze(TransMat(:,:,i))-...
      transprobfromthresholds(...
      transprobtothresholds(tmTTC)+z),'fro');
   [CreditIndex(i),~,ExitFlag(i)] = fminunc(errorfun,0,options);
end

In general, one expects that higher credit indices correspond to riskier years. The series of credit
indices found does not entirely match this pattern. There may be different reasons for this. First,
transition probabilities may deviate from their long-term averages in different ways that may lead to
confounding effects in the single parameter trying to capture these differences, the credit index.
Having separate credit indices for IG and SG, for example, may help separate confounding effects.
Second, a difference of five basis points may be very significant for the 'BBB' default rate, but not as
important for the 'CCC' default rate, yet the norm used weights them equally. Other norms can be
considered. Also, it is always a good idea to check the exit flags of optimization solvers, in case the
algorithm could not find a solution. Here we get valid solutions for each year (all exit flags are 1).

figure
plot(Years,CreditIndex,'-d')
hold on
Example_RecessionBands
hold off
grid on
xlabel('Year')
ylabel('Shift')
title('{\bf Credit Index}')
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The workflow above can be adapted to work with the series of credit indices instead of the series of
corporate default rates. A model can be fit to predict a credit index for the following year, and a
predicted transition matrix can be inferred and used for risk analyses.
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See Also
transprob | transprobprep | transprobbytotals | bootstrp | transprobgrouptotals |
transprobtothresholds | transprobfromthresholds

Related Examples
• “Credit Quality Thresholds” on page 8-43
• “Credit Rating by Bagging Decision Trees”

External Websites
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)
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Credit Quality Thresholds
In this section...
“Introduction” on page 8-43
“Compute Credit Quality Thresholds” on page 8-43
“Visualize Credit Quality Thresholds” on page 8-44

Introduction
An equivalent way to represent transition probabilities is by transforming them into credit quality
thresholds. These are critical values of a standard normal distribution that yield the same transition
probabilities.

An M-by-N matrix of transition probabilities TRANS and the corresponding M-by-N matrix of credit
quality thresholds THRESH are related as follows. The thresholds THRESH(i,j) are critical values of a
standard normal distribution z, such that
TRANS(i,N) = P[z < THRESH(i,N)],

TRANS(i,j) = P[z < THRESH(i,j)] - P[z < THRESH(i,j+1)], for 1<=j<N

Financial Toolbox supports the transformation between transition probabilities and credit quality
thresholds with the functions transprobtothresholds and transprobfromthresholds.

Compute Credit Quality Thresholds
To compute credit quality thresholds, transition probabilities are required as input. Here is a
transition matrix estimated from credit ratings data:
load Data_TransProb
trans = transprob(data)

trans =

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Convert the transition matrix to credit quality thresholds using transprobtothresholds:
thresh = transprobtothresholds(trans)

thresh =

       Inf   -1.4846   -2.3115   -2.8523   -3.3480   -4.0083   -4.1276   -4.1413
       Inf    2.1403   -1.6228   -2.3788   -2.8655   -3.3166   -3.3523   -3.3554
       Inf    3.0264    1.8773   -1.6690   -2.4673   -2.9800   -3.1631   -3.1736
       Inf    3.4963    2.8009    1.6201   -1.6897   -2.4291   -2.7663   -2.8490
       Inf    3.5195    2.9999    2.4225    1.5089   -1.7010   -2.3275   -2.4547
       Inf    4.2696    3.8015    3.0477    2.3320    1.3838   -1.6491   -1.9703
       Inf    4.6241    4.2097    3.6472    2.7803    2.1199    1.5556   -1.1399
       Inf       Inf       Inf       Inf       Inf       Inf       Inf       Inf

Conversely, given a matrix of thresholds, you can compute transition probabilities using
transprobfromthresholds. For example, take the thresholds computed previously as input to
recover the original transition probabilities:
trans1 = transprobfromthresholds(thresh)
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trans1 =

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Visualize Credit Quality Thresholds
You can graphically represent the relationship between credit quality thresholds and transition
probabilities. Here, this example shows the relationship for the 'CCC' credit rating. In the plot, the
thresholds are marked by the vertical lines and the transition probabilities are the area below the
standard normal density curve:

load Data_TransProb
trans = transprob(data);
thresh = transprobtothresholds(trans);

xliml = -5;
xlimr = 5;
step = 0.1;
x=xliml:step:xlimr;
thresCCC = thresh(7,:);
labels = {'AAA','AA','A','BBB','BB','B','CCC','D'};

centersX = ([5 thresCCC(2:end)]+[thresCCC(2:end) -5])*0.5;
omag = round(log10(trans(7,:)));
omag(omag>0)=omag(omag>0).^2;
fs = 14+2*omag;

figure
plot(x,normpdf(x),'LineWidth',1.5)
text(centersX(1),0.2,labels{1},'FontSize',fs(1),...
   'HorizontalAlignment','center')
for i=2:length(labels)
   val = thresCCC(i);
   line([val val],[0 0.4],'LineStyle',':')
   text(centersX(i),0.2,labels{i},'FontSize',fs(i),...
      'HorizontalAlignment','center')
end
xlabel('Credit Quality Thresholds')
ylabel('Probability Density Function')
title('{\bf Visualization of Credit Quality Thresholds}')
legend('Std Normal PDF','Location','S')
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The second plot uses the cumulative density function instead. The thresholds are represented by
vertical lines. The transition probabilities are given by the distance between horizontal lines.

figure
plot(x,normcdf(x),'m','LineWidth',1.5)
text(centersX(1),0.2,labels{1},'FontSize',fs(1),...
   'HorizontalAlignment','center')
for i=2:length(labels)
   val = thresCCC(i);
   line([val val],[0 normcdf(val)],'LineStyle',':');
   line([x(1) val],[normcdf(val) normcdf(val)],'LineStyle',':');
   text(centersX(i),0.2,labels{i},'FontSize',fs(i),...
      'HorizontalAlignment','center')
end
xlabel('Credit Quality Thresholds')
ylabel('Cumulative Probability')
title('{\bf Visualization of Credit Quality Thresholds}')
legend('Std Normal CDF','Location','W')
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See Also
transprob | transprobprep | transprobbytotals | bootstrp | transprobgrouptotals |
transprobtothresholds | transprobfromthresholds

Related Examples
• “Estimation of Transition Probabilities” on page 8-2
• “Credit Rating by Bagging Decision Trees”
• “Forecasting Corporate Default Rates” on page 8-20

External Websites
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)
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About Credit Scorecards
In this section...
“What Is a Credit Scorecard?” on page 8-47
“Credit Scorecard Development Process” on page 8-49

What Is a Credit Scorecard?
Credit scoring is one of the most widely used credit risk analysis tools. The goal of credit scoring is
ranking borrowers by their credit worthiness. In the context of retail credit (credit cards, mortgages,
car loans, and so on), credit scoring is performed using a credit scorecard. Credit scorecards
represent different characteristics of a customer (age, residential status, time at current address,
time at current job, and so on) translated into points and the total number of points becomes the
credit score. The credit worthiness of customers is summarized by their credit score; high scores
usually correspond to low-risk customers, and conversely. Scores are also used for corporate credit
analysis of small and medium enterprises, and, large corporations.

A credit scorecard is a lookup table that maps specific characteristics of a borrower into points. The
total number of points becomes the credit score. Credit scorecards are a widely used type of credit
scoring model. As such, the goal of a credit scorecard is to distinguish between customers who repay
their loans (“good” customers), and customers who will not (“bad” customers). Like other credit
scoring models, credit scorecards quantify the risk that a borrower will not repay a loan in the form
of a score and a probability of default.

For example, a credit scorecard can give individual borrowers points for their age and income
according to the following table. Other characteristics such as residential status, employment status,
might also be included, although, for brevity, they are not shown in this table.

Using the credit scorecard in this example, a particular customer who is 31 and has an income of
$52,000 a year, is placed into the second age group (26–40) and receives 25 points for their age, and
similarly, receives 28 points for their income. Other characteristics (not shown here) might contribute
additional points to their score. The total score is the sum of all points, which in this example is
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assumed to give the customer a total of 238 points (this is a fictitious example on an arbitrary scoring
scale).

Technically, to determine the credit scorecard points, start out by selecting a set of potential
predictors (column 1 in the next figure). Then, bin data into groups (for example, ages ‘Up to 25’, ’25
to 40’ (column 2 in the figure). This grouping helps to distinguish between “good” and “bad”
customers. The Weight of Evidence (WOE) is a way to measure how well the distribution of “good”
and “bad” are separated across bins or groups for each individual predictor (column 3 in the figure).
By fitting a logistic regression model, you can identify which predictors, when put together, do a
better job distinguishing between “good” and “bad” customers. The model is summarized by its
coefficients (column 4 in the figure). Finally, the combination of WOE’s and model coefficients
(commonly scaled, shifted, and rounded) make up the scorecard points (column 5 in the figure).
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Credit Scorecard Development Process
1 Data gathering and preparation phase

This includes data gathering and integration, such as querying, merging, aligning. It also
includes treatment of missing information and outliers. There is a prescreening step based on
reports of association measures between the predictors and the response variable. Finally, there
is a sampling step, to produce a training set, sometimes called the modeling view, and usually a
validation set, too. The training set, in the form of a table, is the required data input to the
creditscorecard object, and this training set table must be prepared before creating a
creditscorecard object in the Modeling phase.

2 Modeling phase

Use the creditscorecard object and associated object functions to develop a credit scorecard
model. You can bin the data, apply the Weight of Evidence (WOE) transformation, and compute
other statistics, such as the Information Value. You can fit a logistic regression model and also
review the resulting scorecard points and format their scaling and rounding. For details on using
the creditscorecard object, see creditscorecard.

3 Deployment phase

Deployment entails integrating a credit scorecard model into an IT production environment and
keeping tracking logs, performance reports, and so on.

The creditscorecard object is designed for the Modeling phase of the credit scorecard workflow.
Support for all three phases requires other MathWorks® products.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor |
modifybins | bindata | plotbins | fitmodel | displaypoints | formatpoints | score |
setmodel | probdefault | validatemodel

Related Examples
• “Troubleshooting Credit Scorecard Results” on page 8-63
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• “Case Study for a Credit Scorecard Analysis” on page 8-70

More About
• “Credit Scorecard Modeling Workflow” on page 8-51
• “Credit Scorecard Modeling Using Observation Weights” on page 8-54
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Credit Scorecard Modeling Workflow
Create, model, and analyze credit scorecards as follows.

1 Use screenpredictors from Risk Management Toolbox™ to pare down a potentially large set
of predictors to a subset that is most predictive of the credit score card response variable. Use
this subset of predictors when creating the creditscorecard object. In addition, you can use
Thresholds for Screen Predictors to interactively set credit scorecard predictor thresholds
using the output from screenpredictors.

Create a creditscorecard object for credit scorecard analysis by specifying “training” data in
table format. The training data, sometimes called the modeling view, is the result of multiple data
preparation tasks (see “About Credit Scorecards” on page 8-47) that must be performed before
creating a creditscorecard object.

You can use optional input arguments for creditscorecard to specify scorecard properties
such as the response variable and the GoodLabel. Perform some initial data exploration when
the creditscorecard object is created, although data analysis is usually done in combination
with data binning (see step 2). For more information and examples, see creditscorecard and
step 1 in “Case Study for a Credit Scorecard Analysis” on page 8-70.

2 Create a creditscorecard object using training data.

When you create a creditscorecard object for credit scorecard, you can specify “training”
data in table format. The training data, sometimes called the modeling view, is the result of
multiple data preparation tasks (see “About Credit Scorecards” on page 8-47) that must be
performed before creating a creditscorecard object.

You can use optional input arguments for creditscorecard to specify scorecard properties
such as the response variable and the GoodLabel. Perform some initial data exploration when
the creditscorecard object is created, although data analysis is usually done in combination
with data binning (see step 2). For more information and examples, see creditscorecard and
step 1 in “Case Study for a Credit Scorecard Analysis” on page 8-70.

3 Bin the data.

Perform manual or automatic binning of the data loaded into the creditscorecard object.

A common starting point is to apply automatic binning to all or selected variables using
autobinning, report using bininfo, and visualize bin information with respect to bin counts
and statistics or association measures such as Weight of Evidence (WOE) using plotbins. The
bins can be modified or fine-tuned either manually using modifybins or with a different
automatic binning algorithm using autobinning. Bins that show a close-to-linear trend in the
WOE are frequently desired in the credit scorecard context.

Alternatively, with Risk Management Toolbox, you can use the Binning Explorer app to
interactively bin. The Binning Explorer enables you to interactively apply a binning algorithm
and modify bins. For more information, see Binning Explorer.

For more information and examples, see autobinning, modifybins, bininfo, and plotbins
and step 2 in “Case Study for a Credit Scorecard Analysis” on page 8-70.

4 Fit a logistic regression model.
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Fit a logistic regression model to the WOE data from the creditscorecard object. The
fitmodel function internally bins the training data, transforms it into WOE values, maps the
response variable so that 'Good' is 1, and fits a linear logistic regression model.

By default, fitmodel uses a stepwise procedure to determine which predictors should be in the
model, but optional input arguments can also be used, for example, to fit a full model. For more
information and examples, see fitmodel and step 3 in “Case Study for a Credit Scorecard
Analysis” on page 8-70.

Alternatively, you can apply equality, inequality, or bound constraints to fit a logistic regression
model to the WOE data from the creditscorecard object using fitConstrainedModel.

5 Review and format credit scorecard points.

After fitting the logistic model, use displaypoints to summarize the scorecard points. By
default, the points are unscaled and come directly from the combination of Weight of Evidence
(WOE) values and model coefficients.

The formatpoints function lets you control scaling and rounding of scorecard points. For more
information and examples, see displaypoints and formatpoints and step 4 in “Case Study
for a Credit Scorecard Analysis” on page 8-70.

Optionally, you can create a compact credit scorecard using

To create a compactCreditScorecard object, use compact to create a
compactCreditScorecard object. You can then use the following functions displaypoints,
score, and probdefault from the Risk Management Toolbox with the
compactCreditScorecard object..

6 Score the data.

The score function computes the scores for the training data.

An optional data input can also be passed to score, for example, validation data. The points per
predictor for each customer are also provided as an optional output. For more information and
examples, see score and step 5 in “Case Study for a Credit Scorecard Analysis” on page 8-70.

7 Calculate the probability of default for credit scorecard scores.

The probdefault function to calculate the probability of default for training data.

In addition, you can compute likelihood of default for a different dataset (for example, a
validation data set) using the probdefault function. For more information and examples, see
probdefault and step 6 in “Case Study for a Credit Scorecard Analysis” on page 8-70.

8 Validate the credit scorecard model.

Use the validatemodel function to validate the quality of the credit scorecard model.

You can obtain the Cumulative Accuracy Profile (CAP), Receiver Operating Characteristic (ROC),
and Kolmogorov-Smirnov (KS) plots and statistics for a given dataset using the validatemodel
function. For more information and examples, see validatemodel and step 7 in “Case Study for
a Credit Scorecard Analysis” on page 8-70.

For an example of this workflow, see “Case Study for a Credit Scorecard Analysis” on page 8-70.
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See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor |
modifybins | bindata | plotbins | fitmodel | displaypoints | formatpoints | score |
setmodel | probdefault | validatemodel

Related Examples
• “Troubleshooting Credit Scorecard Results” on page 8-63
• “Case Study for a Credit Scorecard Analysis” on page 8-70

More About
• “About Credit Scorecards” on page 8-47
• “Credit Scorecard Modeling Using Observation Weights” on page 8-54
• “Credit Scorecard Modeling with Missing Values” on page 8-56
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Credit Scorecard Modeling Using Observation Weights
When creating a creditscorecard object, the table used for the input data argument either
defines or does not define observational weights. If the data does not use weights, then the "counts"
for Good, Bad, and Odds are used by credit score card functions. However, if the optional
WeightsVar argument is specified when creating a creditscorecard object, then the "counts" for
Good, Bad, and Odds are the sum of weights.

For example, here is a snippet of an input table that does not define observational weights:

If you bin the customer age predictor data, with customers up to 45 years old in one bin, and 46 and
up in another bin, you get these statistics:

Good means the total number of rows with a 0 value in the status response variable. Bad the
number of 1’s in the status column. Odds is the ratio of Good to Bad. The Good, Bad, and Odds is
reported for each bin. This means that there are 381 people in the sample who are 45 and under who
paid their loans, 241 in the same age range who defaulted, and therefore, the odds of being good for
that age range is 1.581.

Suppose that the modeler thinks that people 45 and younger are underrepresented in this sample.
The modeler wants to give all rows with ages up to 45 a higher weight. Assume that the modeler
thinks the up to 45 age group should have 50% more weight than rows with ages 46 and up. The
table data is expanded to include the observation weights. A Weight column is added to the table,
where all rows with ages 45 and under have a weight of 1.5, and all other rows a weight of 1. There
are other reasons to use weights, for example, recent data points may be given higher weights than
older data points.

8 Credit Risk Analysis

8-54



If you bin the weighted data based on age (45 and under, versus 46 and up) the expectation is that
each row with age 45 and under must count as 1.5 observations, and therefore the Good and Bad
“counts” are increased by 50%:

The “counts” are now “weighted frequencies” and are no longer integer values. The Odds do not
change for the first bin. The particular weights given in this example have the effect of scaling the
total Good and Bad counts in the first bin by the same scaling factor, therefore their ratio does not
change. However, the Odds value of the total sample does change; the first bin now carries a higher
weight, and because the odds in that bin are lower, the total Odds are now lower, too. Other credit
scorecard statistics not shown here, such as WOE and Information Value are affected in a similar
way.

In general, the effect of weights is not simply to scale frequencies in a particular bin, because
members of that bin will have different weights. The goal of this example is to demonstrate the
concept of switching from counts to the sum of weights.

See Also
creditscorecard | autobinning | bininfo | fitmodel | validatemodel

More About
• “About Credit Scorecards” on page 8-47
• “Credit Scorecard Modeling Workflow” on page 8-51
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Credit Scorecard Modeling with Missing Values
This example shows how to handle missing values when you work with creditscorecard objects.
First, the example shows how to use the creditscorecard functionality to create an explicit bin for
missing data with corresponding points. Then, this example describes four different ways to "treat"
the missing data on page 8-0  to get a final credit scorecard with no explicit bins for missing values.

Develop a Credit Scorecard with Explicit Bins for Missing Values

When you create a creditscorecard object, the data can contain missing values. When using
creditscorecard to create a creditscorecard object, you can set the name-value pair argument
for 'BinMissingData' set to true. In this case, the missing data for numeric predictors (NaN
values) and for categorical predictors (<undefined> values) is binned in a separate bin labeled
<missing> that appears at the end of the bins. Predictors with no missing values in the training data
have no <missing> bin. If you do not specify the 'BinMissingData' argument or if you set
'BinMissingData' to false, the creditscorecard function discards missing observations when
computing frequencies of Good and Bad, and neither the bininfo nor plotbins functions reports
such observations.

The <missing> bin remains in place throughout the scorecard modeling process. The final scorecard
explicitly indicates the points to be assigned to missing values for predictors that have a <missing>
bin. These points are determined from the weight-of-evidence (WOE) value of the <missing> bin and
the predictor's coefficient in the logistic model. For predictors without an explicit <missing> bin,
you can assign points to missing values using the name-value pair argument 'Missing' in
formatpoints, as described in this example, or by using one of the four different ways to "treat" the
missing data on page 8-0 .

The dataMissing table in the CreditCardData.mat file has two predictors with missing values —
CustAge and ResStatus, .

load CreditCardData.mat
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
table with missing values. Set the 'BinMissingData' argument to true. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

The bin information and bin plots for the predictors that have missing data both show a <missing>
bin at the end.

bi = bininfo(sc,'CustAge');
disp(bi)
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         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')

bi = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627
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plotbins(sc,'ResStatus')

The training data for the 'CustAge' and 'ResStatus' predictors has missing data (NaNs and
<undefined>). The binning process estimates WOE values of -0.15787 and 0.026469,
respectively, for the missing data in these predictors.

The training data for EmpStatus and CustIncome has no explicit bin for <missing> values because
there are no missing values for these predictors.

bi = bininfo(sc,'EmpStatus');
disp(bi)

        Bin         Good    Bad     Odds       WOE       InfoValue
    ____________    ____    ___    ______    ________    _________

    {'Unknown' }    396     239    1.6569    -0.19947    0.021715 
    {'Employed'}    407     158    2.5759      0.2418    0.026323 
    {'Totals'  }    803     397    2.0227         NaN    0.048038 

bi = bininfo(sc,'CustIncome');
disp(bi)

           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,29000)' }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
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    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

Use fitmodel to fit a logistic regression model using WOE values. fitmodel internally transforms
all the predictor variables into WOE values, using the bins found during the automatic binning
process. By default, fitmodel then fits a logistic regression model using a stepwise method. For
predictors that have missing data, there is an explicit <missing> bin with a corresponding WOE
value computed from the data. When you use fitmodel, the corresponding WOE value for the
<missing> bin is applied when the function performs the WOE transformation.

[sc,mdl] = fitmodel(sc,'display','off');

Scale the scorecard points by the points-to-double-the-odds (PDO) method using the
'PointsOddsAndPDO' argument of formatpoints. Suppose that you want a score of 500 points to
have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50 points (so
that 550 points would have odds of 4).

Display the scorecard showing the scaled points for predictors retained in the fitting model.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
     Predictors           Bin          Points
    _____________    ______________    ______

    {'CustAge'  }    {'[-Inf,33)' }    54.062
    {'CustAge'  }    {'[33,37)'   }    56.282
    {'CustAge'  }    {'[37,40)'   }    60.012
    {'CustAge'  }    {'[40,46)'   }    69.636
    {'CustAge'  }    {'[46,48)'   }    77.912
    {'CustAge'  }    {'[48,51)'   }     78.86
    {'CustAge'  }    {'[51,58)'   }     80.83
    {'CustAge'  }    {'[58,Inf]'  }     96.76
    {'CustAge'  }    {'<missing>' }    64.984
    {'ResStatus'}    {'Tenant'    }    62.138
    {'ResStatus'}    {'Home Owner'}    73.248
    {'ResStatus'}    {'Other'     }    90.828
    {'ResStatus'}    {'<missing>' }    74.125
    {'EmpStatus'}    {'Unknown'   }    58.807
    {'EmpStatus'}    {'Employed'  }    86.937
    {'EmpStatus'}    {'<missing>' }       NaN
      ⋮

Notice that points for the <missing> bins for CustAge and ResStatus are explicitly shown (as
64.9836 and 74.1250, respectively). These points are computed from the WOE value for the
<missing> bin and the logistic model coefficients.

Points for predictors that have no missing data in the training set, by default, are set to NaN and they
lead to a score of NaN when you run score. This can be changed by updating the name-value pair
argument 'Missing' in formatpoints to indicate how to treat missing data for scoring purposes.

The scorecard is ready for scoring new data sets. You can also use the scorecard to compute
probabilities of default or perform model validation. For details, see score, probdefault, and
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validatemodel. To further explore the handling of missing data, take a few rows from the original
data as test data and introduce some missing data.

tdata = dataMissing(11:14,mdl.PredictorNames); % Keep only the predictors retained in the model
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
disp(tdata)

    CustAge     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance
    _______    ___________    ___________    __________    _______    _______    _________

      NaN      Tenant         Unknown          34000         44         Yes        119.8  
       48      <undefined>    Unknown          44000         14         Yes       403.62  
       65      Home Owner     <undefined>      48000          6         No        111.88  
       44      Other          Unknown            NaN         35         No        436.41  

Score the new data and see how points for missing data are differently assigned for CustAge and
ResStatus and for EmpStatus and CustIncome. CustAge and ResStatus have an explicit
<missing> bin for missing data. However, for EmpStatus and CustIncome, the score function sets
the points to NaN.

[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
       NaN
       NaN

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248          NaN        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807           NaN      61.858     50.914      89.922  

Use the name-value pair argument 'Missing' in formatpoints to choose how to assign points to
missing values for predictors that do not have an explicit <missing> bin. For this example, use the
'MinPoints' option for the 'Missing' argument. For EmpStatus and CustIncome, the minimum
numbers of points in the scorecard are 58.8072 and 29.3753, respectively. You can also treat
missing values using one of the four different ways to "treat" the missing data on page 8-0 .

sc = formatpoints(sc,'Missing','MinPoints');
[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
  517.7532
  451.3405

disp(Points)
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    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248       58.807        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807        29.375      61.858     50.914      89.922  

Four Approaches for Treating Missing Data and Developing a New Credit Scorecard

There are four different approaches for treating missing data.

Approach 1: Fill missing data using the fillmissing function of the creditscorecard
object

The creditscorecard object supports a fillmissing function. When you call the function on a
predictor or group of predictors, the fillmissing function fills the missing data with the user-
specified statistic. fillmissing supports the fill values 'mean', 'median', 'mode', and
'constant', as well as the option to switch back to the original data.

The advantage of using fillmissing is that the creditscorecard object keeps track of the fill
value and also applies it to the validation data. The limitation of this approach is that only basic
statistics are used to fill missing data.

For more information on Approach 1, see fillmissing.

Approach 2: Fill missing data using the MATLAB® fillmissing function

MATLAB® supports a fillmissing function that you can use before creating a creditscorecard
object to treat missing values in numeric and categorical data. The advantage of this method is that
you can use all the options available in fillmissing to fill missing data, as well as other MATLAB
functionality, such as standardizeMissing and features for the treatment of outliers. However, the
downside is that you are responsible for the same transformations to the validation data before
scoring as the fillmissing function is outside of the creditscorecard object.

For more information on Approach 2, see “Treat Missing Data in a Credit Scorecard Workflow Using
MATLAB® fillmissing” on page 8-130.

Approach 3: Impute missing data using the k-nearest neighbors (KNN) algorithm

This KNN approach considers multiple predictors as compared to Approach 1 and Approach 2. Like
Approach 2, the KNN approach is done outside the creditscoreacrd workflow, and consequently,
you need to perform imputation for both the training and validation data.

For more information on Approach 3, see “Impute Missing Data in the Credit Scorecard Workflow
Using the k-Nearest Neighbors Algorithm” on page 8-118.

Approach 4: Impute missing data using the random forest algorithm

This random forest approach is similar to Approach 3 and uses multiple predictors to impute missing
values. Because the approach is outside the creditscorecard workflow, you need to perform
imputation for both the training and validation data.
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For more information on Approach 4, see “Impute Missing Data in the Credit Scorecard Workflow
Using the Random Forest Algorithm” on page 8-125.

See Also
creditscorecard | bininfo | plotbins | fillmissing

More About
• “About Credit Scorecards” on page 8-47
• “Credit Scorecard Modeling Workflow” on page 8-51
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Troubleshooting Credit Scorecard Results
In this section...
“Predictor Name Is Unspecified and the Parser Returns an Error” on page 8-63
“Using bininfo or plotbins Before Binning” on page 8-63
“If Categorical Data Is Given as Numeric” on page 8-65
“NaNs Returned When Scoring a “Test” Dataset” on page 8-67

This topic shows some of the results when using credit scorecards that need troubleshooting. These
examples cover the full range of the credit score card workflow. For details on the overall process of
creating and developing credit scorecards, see “Credit Scorecard Modeling Workflow” on page 8-51.

Predictor Name Is Unspecified and the Parser Returns an Error
If you attempt to use modifybins, bininfo, or plotbins and omit the predictor's name, the parser
returns an error.

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);
modifybins(sc,'CutPoints',[20 30 50 65])

Error using creditscorecard/modifybins (line 79)
Expected a string for the parameter name, instead the input type was 'double'.

Solution: Make sure to include the predictor’s name when using these functions. Use this syntax to
specify the PredictorName when using modifybins.

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);
modifybins(sc,'CustIncome','CutPoints',[20 30 50 65]);

Using bininfo or plotbins Before Binning
If you use bininfo or plotbins before binning, the results might be unusable.

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);
bininfo(sc,'CustAge')
plotbins(sc,'CustAge')

ans = 

      Bin       Good    Bad     Odds         WOE       InfoValue 
    ________    ____    ___    _______    _________    __________

    '21'          2       1          2    -0.011271    3.1821e-07
    '22'          3       1          3      0.39419    0.00047977
    '23'          1       2        0.5      -1.3976     0.0053002
    '24'          3       4       0.75      -0.9921     0.0062895
    '25'          3       1          3      0.39419    0.00047977
    '26'          4       2          2    -0.011271    6.3641e-07
    '27'          6       5        1.2      -0.5221     0.0026744
    '28'         10       2          5      0.90502     0.0067112
    '29'          8       6     1.3333     -0.41674     0.0021465
    '30'          9      10        0.9     -0.80978      0.011321
    '31'          8       6     1.3333     -0.41674     0.0021465
    '32'         13      13          1     -0.70442      0.011663
    '33'          9      11    0.81818     -0.90509      0.014934
    '34'         14      12     1.1667     -0.55027     0.0070391
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    '35'         18      10        1.8     -0.11663    0.00032342
    '36'         23      14     1.6429     -0.20798     0.0013772
    '37'         28      19     1.4737     -0.31665     0.0041132
    '38'         24      14     1.7143     -0.16542     0.0008894
    '39'         21      14        1.5     -0.29895     0.0027242
    '40'         31      12     2.5833      0.24466     0.0020499
    '41'         21      18     1.1667     -0.55027      0.010559
    '42'         29       9     3.2222      0.46565     0.0062605
    '43'         29      23     1.2609     -0.47262      0.010312
    '44'         28      16       1.75      -0.1448    0.00078672
    '45'         36      16       2.25      0.10651    0.00048246
    '46'         33      19     1.7368     -0.15235     0.0010303
    '47'         28       6     4.6667      0.83603      0.016516
    '48'         32      17     1.8824    -0.071896    0.00021357
    '49'         38      10        3.8      0.63058      0.013957
    '50'         33      14     2.3571      0.15303    0.00089239
    '51'         28       9     3.1111      0.43056     0.0052525
    '52'         35       8      4.375      0.77149       0.01808
    '53'         14       8       1.75      -0.1448    0.00039336
    '54'         27      12       2.25      0.10651    0.00036184
    '55'         20       9     2.2222     0.094089    0.00021044
    '56'         20      11     1.8182     -0.10658    0.00029856
    '57'         16       7     2.2857      0.12226    0.00028035
    '58'         11       7     1.5714     -0.25243    0.00099297
    '59'         11       6     1.8333    -0.098283    0.00013904
    '60'          9       4       2.25      0.10651    0.00012061
    '61'         11       2        5.5       1.0003     0.0086637
    '62'          8       0        Inf          Inf           Inf
    '63'          7       1          7       1.2415     0.0076953
    '64'         10       0        Inf          Inf           Inf
    '65'          4       1          4      0.68188     0.0016791
    '66'          6       1          6       1.0873     0.0053857
    '67'          2       3    0.66667      -1.1099     0.0056227
    '68'          6       1          6       1.0873     0.0053857
    '69'          6       0        Inf          Inf           Inf
    '70'          1       0        Inf          Inf           Inf
    '71'          1       0        Inf          Inf           Inf
    '72'          1       0        Inf          Inf           Inf
    '73'          3       0        Inf          Inf           Inf
    '74'          1       0        Inf          Inf           Inf
    'Totals'    803     397     2.0227          NaN           Inf

The plot for CustAge is not readable because it has too many bins. Also, bininfo returns data that
have Inf values for the WOE due to zero observations for either Good or Bad.
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Solution: Bin the data using autobinning or modifybins before plotting or inquiring about the
bin statistics, to avoid having too many bins or having NaNs and Infs. For example, you can use the
name-value pair argument for AlgoOptions with the autobinning function to define the number of
bins.
load CreditCardData
sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);
AlgoOptions = {'NumBins',4};
sc = autobinning(sc,'CustAge','Algorithm','EqualFrequency',...
'AlgorithmOptions',AlgoOptions);
bininfo(sc,'CustAge','Totals','off')
plotbins(sc,'CustAge')

ans = 

        Bin        Good    Bad     Odds       WOE       InfoValue
    ___________    ____    ___    ______    ________    _________

    '[-Inf,39)'    186     133    1.3985    -0.36902      0.03815
    '[39,46)'      195     108    1.8056    -0.11355    0.0033158
    '[46,52)'      192      75      2.56     0.23559     0.011823
    '[52,Inf]'     230      81    2.8395     0.33921      0.02795

If Categorical Data Is Given as Numeric
Categorical data is often recorded using numeric values, and can be stored in a numeric array.
Although you know that the data should be interpreted as categorical information, for
creditscorecard this predictor looks like a numeric array.

To show the case where categorical data is given as numeric data, the data for the variable
ResStatus is intentionally converted to numeric values.

load CreditCardData
data.ResStatus = double(data.ResStatus);
sc = creditscorecard(data,'IDVar','CustID')

sc = 
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  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'EmpStatus'  'OtherCC'}
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}

Note that 'ResStatus' appears as part of the NumericPredictors property. If we applied
automatic binning, the resulting bin information raises flags regarding the predictor type.

sc = autobinning(sc,'ResStatus');
[bi,cg] = bininfo(sc,'ResStatus')

bi = 

       Bin        Good    Bad     Odds        WOE       InfoValue 
    __________    ____    ___    ______    _________    __________

    '[-Inf,2)'    365     177    2.0621     0.019329     0.0001682
    '[2,Inf]'     438     220    1.9909    -0.015827    0.00013772
    'Totals'      803     397    2.0227          NaN    0.00030592

cg =

     2

The numeric ranges in the bin labels show that 'ResStatus' is being treated as a numeric variable.
This is also confirmed by the fact that the optional output from bininfo is a numeric array of cut
points, as opposed to a table with category groupings. Moreover, the output from predictorinfo
confirms that the credit scorecard is treating the data as numeric.

[T,Stats] = predictorinfo(sc,'ResStatus')

T = 

                 PredictorType        LatestBinning     
                 _____________    ______________________

    ResStatus    'Numeric'        'Automatic / Monotone'

Stats = 

             Value 
            _______

    Min           1
    Max           3
    Mean     1.7017
    Std     0.71863

Solution: For creditscorecard, 'Categorical' means a MATLAB categorical data type. For
more information, see categorical. To treat'ResStatus' as categorical, change the
'PredictorType' of the PredictorName 'ResStatus' from 'Numeric' to 'Categorical'
using modifypredictor.

sc = modifypredictor(sc,'ResStatus','PredictorType','Categorical')
[T,Stats] = predictorinfo(sc,'ResStatus')

sc = 

  creditscorecard with properties:

                GoodLabel: 0
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              ResponseVar: 'status'
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}

T = 

                 PredictorType    Ordinal     LatestBinning 
                 _____________    _______    _______________

    ResStatus    'Categorical'    false      'Original Data'

Stats = 

          Count
          _____

    C1    542  
    C2    474  
    C3    184  

Note that 'ResStatus' now appears as part of the Categorical predictors. Also, predictorinfo
now describes 'ResStatus' as categorical and displays the category counts.

If you apply autobinning, the categories are now reordered, as shown by calling bininfo, which
also shows the category labels, as opposed to numeric ranges. The optional output of bininfo is now
a category grouping table.

sc = autobinning(sc,'ResStatus');
[bi,cg] = bininfo(sc,'ResStatus')

bi = 

      Bin       Good    Bad     Odds        WOE       InfoValue
    ________    ____    ___    ______    _________    _________

    'C2'        307     167    1.8383    -0.095564    0.0036638
    'C1'        365     177    2.0621     0.019329    0.0001682
    'C3'        131      53    2.4717      0.20049    0.0059418
    'Totals'    803     397    2.0227          NaN    0.0097738

cg = 

    Category    BinNumber
    ________    _________

    'C2'        1        
    'C1'        2        
    'C3'        3        

NaNs Returned When Scoring a “Test” Dataset
When applying a creditscorecard model to a “test” dataset using the score function, if an
observation in the “test” dataset has a NaN or <undefined> value, a NaN total score is returned for
each of these observations. For example, a creditscorecard object is created using “training”
data.

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID');
sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
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4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized Linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Suppose that a missing observation (Nan) is added to the data and then newdata is scored using the
score function. By default, the points and score assigned to the missing value is NaN.

newdata = data(1:10,:);
newdata.CustAge(1) = NaN;
[Scores,Points] = score(sc,newdata)

Scores =

       NaN
    1.4646
    0.7662
    1.5779
    1.4535
    1.8944
   -0.0872
    0.9207
    1.0399
    0.8252

Points = 

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance
    ________    _________    _________    __________    _________    ________    _________

         NaN    -0.031252    -0.076317     0.43693        0.39607     0.15842    -0.017472
       0.479      0.12696      0.31449     0.43693      -0.033752     0.15842    -0.017472
     0.21445    -0.031252      0.31449    0.081611        0.39607    -0.19168    -0.017472
     0.23039      0.12696      0.31449     0.43693      -0.044811     0.15842      0.35551
       0.479      0.12696      0.31449     0.43693      -0.044811     0.15842    -0.017472
       0.479      0.12696      0.31449     0.43693        0.39607     0.15842    -0.017472
    -0.14036      0.12696    -0.076317    -0.10466      -0.033752     0.15842    -0.017472
     0.23039      0.37641      0.31449     0.43693      -0.033752    -0.19168     -0.21206
     0.23039    -0.031252    -0.076317     0.43693      -0.033752     0.15842      0.35551
     0.23039      0.12696    -0.076317     0.43693      -0.033752     0.15842    -0.017472

Also, notice that because the CustAge predictor for the first observation is NaN, the corresponding
Scores output is NaN also.

Solution: To resolve this issue, use the formatpoints function with the name-value pair argument
Missing. When using Missing, you can replace a predictor’s NaN value according to three
alternative criteria ('ZeroWoe', 'MinPoints', or 'MaxPoints').

For example, use Missing to replace the missing value with the 'MinPoints' option. The row with
the missing data now has a score corresponding to assigning it the minimum possible points for
CustAge.
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sc = formatpoints(sc,'Missing','MinPoints');
[Scores,Points] = score(sc,newdata)
PointsTable = displaypoints(sc);
PointsTable(1:7,:)

Scores =

    0.7074
    1.4646
    0.7662
    1.5779
    1.4535
    1.8944
   -0.0872
    0.9207
    1.0399
    0.8252

Points = 

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance
    ________    _________    _________    __________    _________    ________    _________

    -0.15894    -0.031252    -0.076317     0.43693        0.39607     0.15842    -0.017472
       0.479      0.12696      0.31449     0.43693      -0.033752     0.15842    -0.017472
     0.21445    -0.031252      0.31449    0.081611        0.39607    -0.19168    -0.017472
     0.23039      0.12696      0.31449     0.43693      -0.044811     0.15842      0.35551
       0.479      0.12696      0.31449     0.43693      -0.044811     0.15842    -0.017472
       0.479      0.12696      0.31449     0.43693        0.39607     0.15842    -0.017472
    -0.14036      0.12696    -0.076317    -0.10466      -0.033752     0.15842    -0.017472
     0.23039      0.37641      0.31449     0.43693      -0.033752    -0.19168     -0.21206
     0.23039    -0.031252    -0.076317     0.43693      -0.033752     0.15842      0.35551
     0.23039      0.12696    -0.076317     0.43693      -0.033752     0.15842    -0.017472

ans = 

    Predictors        Bin         Points  
    __________    ___________    _________

    'CustAge'     '[-Inf,33)'     -0.15894
    'CustAge'     '[33,37)'       -0.14036
    'CustAge'     '[37,40)'      -0.060323
    'CustAge'     '[40,46)'       0.046408
    'CustAge'     '[46,48)'        0.21445
    'CustAge'     '[48,58)'        0.23039
    'CustAge'     '[58,Inf]'         0.479

Notice that the Scores output has a value for the first customer record because CustAge now has a
value and the score can be calculated for the first customer record.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor |
modifybins | bindata | plotbins | fitmodel | displaypoints | formatpoints | score |
setmodel | probdefault | validatemodel

Related Examples
• “Case Study for a Credit Scorecard Analysis” on page 8-70

More About
• “About Credit Scorecards” on page 8-47
• “Credit Scorecard Modeling Workflow” on page 8-51
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Case Study for a Credit Scorecard Analysis
This example shows how to create a creditscorecard object, bin data, display, and plot binned
data information. This example also shows how to fit a logistic regression model, obtain a score for
the scorecard model, and determine the probabilities of default and validate the credit scorecard
model using three different metrics.

Step 1. Create a creditscorecard object.

Use the CreditCardData.mat file to load the data (using a dataset from Refaat 2011). If your data
contains many predictors, you can first use screenpredictors (Risk Management Toolbox) to pare
down a potentially large set of predictors to a subset that is most predictive of the credit scorecard
response variable. You can then use this subset of predictors when creating the creditscorecard
object. In addition, you can use Threshold Predictors (Risk Management Toolbox) to interactively set
credit scorecard predictor thresholds using the output from screenpredictors (Risk Management
Toolbox).

When creating a creditscorecard object, by default, 'ResponseVar' is set to the last column in
the data ('status' in this example) and the 'GoodLabel' to the response value with the highest
count (0 in this example). The syntax for creditscorecard indicates that 'CustID' is the 'IDVar'
to remove from the list of predictors. Also, while not demonstrated in this example, when creating a
creditscorecard object using creditscorecard, you can use the optional name-value pair
argument 'WeightsVar' to specify observation (sample) weights or 'BinMissingData' to bin
missing data.

load CreditCardData
head(data)

ans=8×11 table
    CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

      1         53           62         Tenant        Unknown        50000         55         Yes       1055.9        0.22        0   
      2         61           22         Home Owner    Employed       52000         25         Yes       1161.6        0.24        0   
      3         47           30         Tenant        Employed       37000         61         No        877.23        0.29        0   
      4         50           75         Home Owner    Employed       53000         20         Yes       157.37        0.08        0   
      5         68           56         Home Owner    Employed       53000         14         Yes       561.84        0.11        0   
      6         65           13         Home Owner    Employed       48000         59         Yes       968.18        0.15        0   
      7         34           32         Home Owner    Unknown        32000         26         Yes       717.82        0.02        1   
      8         50           57         Other         Employed       51000         33         No        3041.2        0.13        0   

The variables in CreditCardData are customer ID, customer age, time at current address,
residential status, employment status, customer income, time with bank, other credit card, average
monthly balance, utilization rate, and the default status (response).

sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}

8 Credit Risk Analysis

8-70



    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform some initial data exploration. Inquire about predictor statistics for the categorical variable
'ResStatus' and plot the bin information for 'ResStatus'.

bininfo(sc,'ResStatus')

ans=4×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

plotbins(sc,'ResStatus')

This bin information contains the frequencies of “Good” and “Bad,” and bin statistics. Avoid having
bins with frequencies of zero because they lead to infinite or undefined (NaN) statistics. Use the 
modifybins or autobinning functions to bin the data accordingly.
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For numeric data, a common first step is "fine classing." This means binning the data into several
bins, defined with a regular grid. To illustrate this point, use the predictor 'CustIncome'.

cp = 20000:5000:60000;

sc = modifybins(sc,'CustIncome','CutPoints',cp);

bininfo(sc,'CustIncome')

ans=11×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,20000)' }      3       5        0.6      -1.2152      0.010765
    {'[20000,25000)'}     23      16     1.4375     -0.34151     0.0039819
    {'[25000,30000)'}     38      47    0.80851     -0.91698      0.065166
    {'[30000,35000)'}    131      75     1.7467     -0.14671      0.003782
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,45000)'}    173      76     2.2763      0.11814     0.0028361
    {'[45000,50000)'}    131      47     2.7872      0.32063      0.014348
    {'[50000,55000)'}     82      24     3.4167      0.52425      0.021842
    {'[55000,60000)'}     21       8      2.625      0.26066     0.0015642
    {'[60000,Inf]'  }      8       1          8        1.375      0.010235
    {'Totals'       }    803     397     2.0227          NaN       0.13469

plotbins(sc,'CustIncome')
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Step 2a. Automatically bin the data.

Use the autobinning function to perform automatic binning for every predictor variable, using the
default 'Monotone' algorithm with default algorithm options.

sc = autobinning(sc);

After the automatic binning step, every predictor bin must be reviewed using the bininfo and 
plotbins functions and fine-tuned. A monotonic, ideally linear trend in the Weight of Evidence
(WOE) is desirable for credit scorecards because this translates into linear points for a given
predictor. The WOE trends can be visualized using plotbins.

Predictor = ;
plotbins(sc,Predictor)

Unlike the initial plot of 'ResStatus' when the scorecard was created, the new plot for
'ResStatus' shows an increasing WOE trend. This is because the autobinning function, by
default, sorts the order of the categories by increasing odds.

These plots show that the 'Monotone' algorithm does a good job finding monotone WOE trends for
this dataset. To complete the binning process, it is necessary to make only a few manual adjustments
for some predictors using the modifybins function.

Step 2b. Fine-tune the bins using manual binning.

Common steps to manually modify bins are:
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• Use the bininfo function with two output arguments where the second argument contains
binning rules.

• Manually modify the binning rules using the second output argument from bininfo.
• Set the updated binning rules with modifybins and then use plotbins or bininfo to review

the updated bins.

For example, based on the plot for 'CustAge' in Step 2a, bins number 1 and 2 have similar WOE's
as do bins number 5 and 6. To merge these bins using the steps outlined above:

Predictor = ;
[bi,cp] = bininfo(sc,Predictor)

bi=8×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue
    _____________    ____    ___    ______    _________    _________

    {'[-Inf,33)'}     70      53    1.3208     -0.42622     0.019746
    {'[33,37)'  }     64      47    1.3617     -0.39568     0.015308
    {'[37,40)'  }     73      47    1.5532     -0.26411    0.0072573
    {'[40,46)'  }    174      94    1.8511    -0.088658     0.001781
    {'[46,48)'  }     61      25      2.44      0.18758    0.0024372
    {'[48,58)'  }    263     105    2.5048      0.21378     0.013476
    {'[58,Inf]' }     98      26    3.7692      0.62245       0.0352
    {'Totals'   }    803     397    2.0227          NaN     0.095205

cp = 6×1

    33
    37
    40
    46
    48
    58

cp([1 5]) = []; % To merge bins 1 and 2, and bins 5 and 6
sc = modifybins(sc,'CustAge','CutPoints',cp);
plotbins(sc,'CustAge')
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For 'CustIncome', based on the plot above, it is best to merge bins 3, 4 and 5 because they have
similar WOE's. To merge these bins:

Predictor = ;
[bi,cp] = bininfo(sc,Predictor)

bi=8×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,29000)' }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

cp = 6×1

       29000
       33000
       35000
       40000
       42000
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       47000

cp([3 4]) = []; % To merge bins 3, 4, and 5
sc = modifybins(sc,'CustIncome','CutPoints',cp);
plotbins(sc,'CustIncome')

For 'TmWBank', based on the plot above, it is best to merge bins 2 and 3 because they have similar
WOE's. To merge these bins:

Predictor = ;
[bi,cp] = bininfo(sc,Predictor)

bi=6×6 table
         Bin         Good    Bad     Odds       WOE       InfoValue
    _____________    ____    ___    ______    ________    _________

    {'[-Inf,12)'}    141      90    1.5667    -0.25547     0.013057
    {'[12,23)'  }    165      93    1.7742    -0.13107    0.0037719
    {'[23,45)'  }    224     125     1.792    -0.12109    0.0043479
    {'[45,71)'  }    177      67    2.6418     0.26704     0.013795
    {'[71,Inf]' }     96      22    4.3636     0.76889     0.049313
    {'Totals'   }    803     397    2.0227         NaN     0.084284

cp = 4×1
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    12
    23
    45
    71

cp(2) = []; % To merge bins 2 and 3
sc = modifybins(sc,'TmWBank','CutPoints',cp);
plotbins(sc,'TmWBank')

For 'AMBalance', based on the plot above, it is best to merge bins 2 and 3 because they have similar
WOE's. To merge these bins:

Predictor = ;
[bi,cp] = bininfo(sc,Predictor)

bi=5×6 table
             Bin             Good    Bad     Odds       WOE       InfoValue
    _____________________    ____    ___    ______    ________    _________

    {'[-Inf,558.88)'    }    346     134    2.5821     0.24418     0.022795
    {'[558.88,1254.28)' }    309     171     1.807    -0.11274    0.0051774
    {'[1254.28,1597.44)'}     76      44    1.7273    -0.15787    0.0025554
    {'[1597.44,Inf]'    }     72      48       1.5    -0.29895    0.0093402
    {'Totals'           }    803     397    2.0227         NaN     0.039868
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cp = 3×1
103 ×

    0.5589
    1.2543
    1.5974

cp(2) = []; % To merge bins 2 and 3
sc = modifybins(sc,'AMBalance','CutPoints',cp);
plotbins(sc,'AMBalance')

Now that the binning fine-tuning is completed, the bins for all predictors have close-to-linear WOE
trends.

Step 3. Fit a logistic regression model.

The fitmodel function fits a logistic regression model to the WOE data. fitmodel internally bins
the training data, transforms it into WOE values, maps the response variable so that 'Good' is 1, and
fits a linear logistic regression model. By default, fitmodel uses a stepwise procedure to determine
which predictors should be in the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8954, Chi2Stat = 32.545914, PValue = 1.1640961e-08
2. Adding TmWBank, Deviance = 1467.3249, Chi2Stat = 23.570535, PValue = 1.2041739e-06
3. Adding AMBalance, Deviance = 1455.858, Chi2Stat = 11.466846, PValue = 0.00070848829
4. Adding EmpStatus, Deviance = 1447.6148, Chi2Stat = 8.2432677, PValue = 0.0040903428
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5. Adding CustAge, Deviance = 1442.06, Chi2Stat = 5.5547849, PValue = 0.018430237
6. Adding ResStatus, Deviance = 1437.9435, Chi2Stat = 4.1164321, PValue = 0.042468555
7. Adding OtherCC, Deviance = 1433.7372, Chi2Stat = 4.2063597, PValue = 0.040272676

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate      SE       tStat       pValue  
                   ________    _______    ______    __________

    (Intercept)     0.7024       0.064    10.975    5.0407e-28
    CustAge        0.61562     0.24783    2.4841      0.012988
    ResStatus       1.3776     0.65266    2.1107      0.034799
    EmpStatus      0.88592     0.29296     3.024     0.0024946
    CustIncome     0.69836     0.21715     3.216     0.0013001
    TmWBank          1.106     0.23266    4.7538    1.9958e-06
    OtherCC         1.0933     0.52911    2.0662      0.038806
    AMBalance       1.0437     0.32292    3.2322     0.0012285

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.42e-16

Step 4. Review and format scorecard points.

After fitting the logistic model, by default the points are unscaled and come directly from the
combination of WOE values and model coefficients. The displaypoints function summarizes the
scorecard points.

p1 = displaypoints(sc);
disp(p1)

      Predictors              Bin              Points  
    ______________    ____________________    _________

    {'CustAge'   }    {'[-Inf,37)'       }     -0.15314
    {'CustAge'   }    {'[37,40)'         }    -0.062247
    {'CustAge'   }    {'[40,46)'         }     0.045763
    {'CustAge'   }    {'[46,58)'         }      0.22888
    {'CustAge'   }    {'[58,Inf]'        }      0.48354
    {'CustAge'   }    {'<missing>'       }          NaN
    {'ResStatus' }    {'Tenant'          }    -0.031302
    {'ResStatus' }    {'Home Owner'      }      0.12697
    {'ResStatus' }    {'Other'           }      0.37652
    {'ResStatus' }    {'<missing>'       }          NaN
    {'EmpStatus' }    {'Unknown'         }    -0.076369
    {'EmpStatus' }    {'Employed'        }      0.31456
    {'EmpStatus' }    {'<missing>'       }          NaN
    {'CustIncome'}    {'[-Inf,29000)'    }     -0.45455
    {'CustIncome'}    {'[29000,33000)'   }      -0.1037
    {'CustIncome'}    {'[33000,42000)'   }     0.077768
    {'CustIncome'}    {'[42000,47000)'   }      0.24406
    {'CustIncome'}    {'[47000,Inf]'     }      0.43536
    {'CustIncome'}    {'<missing>'       }          NaN
    {'TmWBank'   }    {'[-Inf,12)'       }     -0.18221
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    {'TmWBank'   }    {'[12,45)'         }    -0.038279
    {'TmWBank'   }    {'[45,71)'         }      0.39569
    {'TmWBank'   }    {'[71,Inf]'        }      0.95074
    {'TmWBank'   }    {'<missing>'       }          NaN
    {'OtherCC'   }    {'No'              }       -0.193
    {'OtherCC'   }    {'Yes'             }      0.15868
    {'OtherCC'   }    {'<missing>'       }          NaN
    {'AMBalance' }    {'[-Inf,558.88)'   }       0.3552
    {'AMBalance' }    {'[558.88,1597.44)'}    -0.026797
    {'AMBalance' }    {'[1597.44,Inf]'   }     -0.21168
    {'AMBalance' }    {'<missing>'       }          NaN

This is a good time to modify the bin labels, if this is something of interest for cosmetic reasons. To do
so, use modifybins to change the bin labels.

sc = modifybins(sc,'CustAge','BinLabels',...
{'Up to 36' '37 to 39' '40 to 45' '46 to 57' '58 and up'});

sc = modifybins(sc,'CustIncome','BinLabels',...
{'Up to 28999' '29000 to 32999' '33000 to 41999' '42000 to 46999' '47000 and up'});

sc = modifybins(sc,'TmWBank','BinLabels',...
{'Up to 11' '12 to 44' '45 to 70' '71 and up'});

sc = modifybins(sc,'AMBalance','BinLabels',...
{'Up to 558.87' '558.88 to 1597.43' '1597.44 and up'});

p1 = displaypoints(sc);
disp(p1)

      Predictors               Bin              Points  
    ______________    _____________________    _________

    {'CustAge'   }    {'Up to 36'         }     -0.15314
    {'CustAge'   }    {'37 to 39'         }    -0.062247
    {'CustAge'   }    {'40 to 45'         }     0.045763
    {'CustAge'   }    {'46 to 57'         }      0.22888
    {'CustAge'   }    {'58 and up'        }      0.48354
    {'CustAge'   }    {'<missing>'        }          NaN
    {'ResStatus' }    {'Tenant'           }    -0.031302
    {'ResStatus' }    {'Home Owner'       }      0.12697
    {'ResStatus' }    {'Other'            }      0.37652
    {'ResStatus' }    {'<missing>'        }          NaN
    {'EmpStatus' }    {'Unknown'          }    -0.076369
    {'EmpStatus' }    {'Employed'         }      0.31456
    {'EmpStatus' }    {'<missing>'        }          NaN
    {'CustIncome'}    {'Up to 28999'      }     -0.45455
    {'CustIncome'}    {'29000 to 32999'   }      -0.1037
    {'CustIncome'}    {'33000 to 41999'   }     0.077768
    {'CustIncome'}    {'42000 to 46999'   }      0.24406
    {'CustIncome'}    {'47000 and up'     }      0.43536
    {'CustIncome'}    {'<missing>'        }          NaN
    {'TmWBank'   }    {'Up to 11'         }     -0.18221
    {'TmWBank'   }    {'12 to 44'         }    -0.038279
    {'TmWBank'   }    {'45 to 70'         }      0.39569
    {'TmWBank'   }    {'71 and up'        }      0.95074
    {'TmWBank'   }    {'<missing>'        }          NaN
    {'OtherCC'   }    {'No'               }       -0.193

8 Credit Risk Analysis

8-80



    {'OtherCC'   }    {'Yes'              }      0.15868
    {'OtherCC'   }    {'<missing>'        }          NaN
    {'AMBalance' }    {'Up to 558.87'     }       0.3552
    {'AMBalance' }    {'558.88 to 1597.43'}    -0.026797
    {'AMBalance' }    {'1597.44 and up'   }     -0.21168
    {'AMBalance' }    {'<missing>'        }          NaN

Points are usually scaled and also often rounded. To do this, use the formatpoints function. For
example, you can set a target level of points corresponding to a target odds level and also set the
required points-to-double-the-odds (PDO).

TargetPoints = 500;
TargetOdds = 2;
PDO = 50; % Points to double the odds

sc = formatpoints(sc,'PointsOddsAndPDO',[TargetPoints TargetOdds PDO]);
p2 = displaypoints(sc);
disp(p2)

      Predictors               Bin             Points
    ______________    _____________________    ______

    {'CustAge'   }    {'Up to 36'         }    53.239
    {'CustAge'   }    {'37 to 39'         }    59.796
    {'CustAge'   }    {'40 to 45'         }    67.587
    {'CustAge'   }    {'46 to 57'         }    80.796
    {'CustAge'   }    {'58 and up'        }    99.166
    {'CustAge'   }    {'<missing>'        }       NaN
    {'ResStatus' }    {'Tenant'           }    62.028
    {'ResStatus' }    {'Home Owner'       }    73.445
    {'ResStatus' }    {'Other'            }    91.446
    {'ResStatus' }    {'<missing>'        }       NaN
    {'EmpStatus' }    {'Unknown'          }    58.777
    {'EmpStatus' }    {'Employed'         }    86.976
    {'EmpStatus' }    {'<missing>'        }       NaN
    {'CustIncome'}    {'Up to 28999'      }    31.497
    {'CustIncome'}    {'29000 to 32999'   }    56.805
    {'CustIncome'}    {'33000 to 41999'   }    69.896
    {'CustIncome'}    {'42000 to 46999'   }    81.891
    {'CustIncome'}    {'47000 and up'     }     95.69
    {'CustIncome'}    {'<missing>'        }       NaN
    {'TmWBank'   }    {'Up to 11'         }    51.142
    {'TmWBank'   }    {'12 to 44'         }    61.524
    {'TmWBank'   }    {'45 to 70'         }    92.829
    {'TmWBank'   }    {'71 and up'        }    132.87
    {'TmWBank'   }    {'<missing>'        }       NaN
    {'OtherCC'   }    {'No'               }    50.364
    {'OtherCC'   }    {'Yes'              }    75.732
    {'OtherCC'   }    {'<missing>'        }       NaN
    {'AMBalance' }    {'Up to 558.87'     }    89.908
    {'AMBalance' }    {'558.88 to 1597.43'}    62.353
    {'AMBalance' }    {'1597.44 and up'   }    49.016
    {'AMBalance' }    {'<missing>'        }       NaN
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Step 5. Score the data.

The score function computes the scores for the training data. An optional data input can also be
passed to score, for example, validation data. The points per predictor for each customer are
provided as an optional output.

[Scores,Points] = score(sc);
disp(Scores(1:10))

  528.2044
  554.8861
  505.2406
  564.0717
  554.8861
  586.1904
  441.8755
  515.8125
  524.4553
  508.3169

disp(Points(1:10,:))

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    80.796      62.028       58.777         95.69      92.829     75.732      62.353  
    99.166      73.445       86.976         95.69      61.524     75.732      62.353  
    80.796      62.028       86.976        69.896      92.829     50.364      62.353  
    80.796      73.445       86.976         95.69      61.524     75.732      89.908  
    99.166      73.445       86.976         95.69      61.524     75.732      62.353  
    99.166      73.445       86.976         95.69      92.829     75.732      62.353  
    53.239      73.445       58.777        56.805      61.524     75.732      62.353  
    80.796      91.446       86.976         95.69      61.524     50.364      49.016  
    80.796      62.028       58.777         95.69      61.524     75.732      89.908  
    80.796      73.445       58.777         95.69      61.524     75.732      62.353  

Step 6. Calculate the probability of default.

To calculate the probability of default, use the probdefault function.

pd = probdefault(sc);

Define the probability of being “Good” and plot the predicted odds versus the formatted scores.
Visually analyze that the target points and target odds match and that the points-to-double-the-odds
(PDO) relationship holds.

ProbGood = 1-pd;
PredictedOdds = ProbGood./pd;

figure
scatter(Scores,PredictedOdds)
title('Predicted Odds vs. Score')
xlabel('Score')
ylabel('Predicted Odds')

hold on

xLimits = xlim;
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yLimits = ylim;

% Target points and odds
plot([TargetPoints TargetPoints],[yLimits(1) TargetOdds],'k:')
plot([xLimits(1) TargetPoints],[TargetOdds TargetOdds],'k:')

% Target points plus PDO
plot([TargetPoints+PDO TargetPoints+PDO],[yLimits(1) 2*TargetOdds],'k:')
plot([xLimits(1) TargetPoints+PDO],[2*TargetOdds 2*TargetOdds],'k:')

% Target points minus PDO
plot([TargetPoints-PDO TargetPoints-PDO],[yLimits(1) TargetOdds/2],'k:')
plot([xLimits(1) TargetPoints-PDO],[TargetOdds/2 TargetOdds/2],'k:')

hold off

Step 7. Validate the credit scorecard model using the CAP, ROC, and Kolmogorov-Smirnov
statistic

The creditscorecard class supports three validation methods, the Cumulative Accuracy Profile
(CAP), the Receiver Operating Characteristic (ROC), and the Kolmogorov-Smirnov (K-S) statistic. For
more information on CAP, ROC, and KS, see “Cumulative Accuracy Profile (CAP)” on page 19-1925,
“Receiver Operating Characteristic (ROC)” on page 19-1925, and “Kolmogorov-Smirnov statistic (KS)”
on page 19-1925.

[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});
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disp(Stats)

            Measure              Value 
    ________________________    _______

    {'Accuracy Ratio'      }    0.32225
    {'Area under ROC curve'}    0.66113
    {'KS statistic'        }    0.22324
    {'KS score'            }     499.18

disp(T(1:15,:))

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm      PctObs  
    ______    ___________    ________    _________    _________    __________    ___________    __________    __________

     369.4       0.7535          0           1           802          397                 0     0.0012453     0.00083333
    377.86      0.73107          1           1           802          396         0.0025189     0.0012453      0.0016667
    379.78       0.7258          2           1           802          395         0.0050378     0.0012453         0.0025
    391.81      0.69139          3           1           802          394         0.0075567     0.0012453      0.0033333
    394.77      0.68259          3           2           801          394         0.0075567     0.0024907      0.0041667
    395.78      0.67954          4           2           801          393          0.010076     0.0024907          0.005
    396.95      0.67598          5           2           801          392          0.012594     0.0024907      0.0058333
    398.37      0.67167          6           2           801          391          0.015113     0.0024907      0.0066667
    401.26      0.66276          7           2           801          390          0.017632     0.0024907         0.0075
    403.23      0.65664          8           2           801          389          0.020151     0.0024907      0.0083333
    405.09      0.65081          8           3           800          389          0.020151      0.003736      0.0091667
    405.15      0.65062         11           5           798          386          0.027708     0.0062267       0.013333
    405.37      0.64991         11           6           797          386          0.027708      0.007472       0.014167
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    406.18      0.64735         12           6           797          385          0.030227      0.007472          0.015
    407.14      0.64433         13           6           797          384          0.032746      0.007472       0.015833

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor |
modifybins | bindata | plotbins | fitmodel | displaypoints | formatpoints | score |
setmodel | probdefault | validatemodel | compact

Related Examples
• “Troubleshooting Credit Scorecard Results” on page 8-63
• “Credit Rating by Bagging Decision Trees”

More About
• “About Credit Scorecards” on page 8-47
• “Credit Scorecard Modeling Workflow” on page 8-51
• “Credit Scorecard Modeling Using Observation Weights” on page 8-54
• Monotone Adjacent Pooling Algorithm (MAPA) on page 19-1886

External Websites
• Credit Risk Modeling with MATLAB (53 min 10 sec)
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Credit Scorecards with Constrained Logistic Regression
Coefficients

To compute scores for a creditscorecard object with constraints for equality, inequality, or bounds
on the coefficients of the logistic regression model, use fitConstrainedModel. Unlike fitmodel,
fitConstrainedModel solves for both the unconstrained and constrained problem. The current
solver used to minimize an objective function for fitConstrainedModel is fmincon, from the
Optimization Toolbox™.

This example has three main sections. First, fitConstrainedModel is used to solve for the
coefficients in the unconstrained model. Then, fitConstrainedModel demonstrates how to use
several types of constraints. Finally, fitConstrainedModel uses bootstrapping for the significance
analysis to determine which predictors to reject from the model.

Create the creditscorecard Object and Bin data
load CreditCardData.mat
sc = creditscorecard(data,'IDVar','CustID');
sc = autobinning(sc);

Unconstrained Model Using fitConstrainedModel

Solve for the unconstrained coefficients using fitConstrainedModel with default values for the
input parameters. fitConstrainedModel uses the internal optimization solver fmincon from the
Optimization Toolbox™. If you do not set any constraints, fmincon treats the model as an
unconstrained optimization problem. The default parameters for the LowerBound and UpperBound
are -Inf and +Inf, respectively. For the equality and inequality constraints, the default is an empty
numeric array.

[sc1,mdl1] = fitConstrainedModel(sc);
coeff1 = mdl1.Coefficients.Estimate;
disp(mdl1.Coefficients);

                   Estimate 
                   _________

    (Intercept)      0.70246
    CustAge           0.6057
    TmAtAddress       1.0381
    ResStatus         1.3794
    EmpStatus        0.89648
    CustIncome       0.70179
    TmWBank           1.1132
    OtherCC           1.0598
    AMBalance         1.0572
    UtilRate       -0.047597

Unlike fitmodel which gives p-values, when using fitConstrainedModel, you must use
bootstrapping to find out which predictors are rejected from the model, when subject to constraints.
This is illustrated in the "Significance Bootstrapping" section.

Using fitmodel to Compare the Results and Calibrate the Model

fitmodel fits a logistic regression model to the Weight-of-Evidence (WOE) data and there are no
constraints. You can compare the results from the "Unconstrained Model Using fitConstrainedModel"
section with those of fitmodel to verify that the model is well calibrated.
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Now, solve the unconstrained problem by using fitmodel. Note that fitmodel and
fitConstrainedModel use different solvers. While fitConstrainedModel uses fmincon,
fitmodel uses stepwiseglm by default. To include all predictors from the start, set the
'VariableSelection' name-value pair argument of fitmodel to 'fullmodel'.

[sc2,mdl2] = fitmodel(sc,'VariableSelection','fullmodel','Display','off');
coeff2 = mdl2.Coefficients.Estimate;
disp(mdl2.Coefficients);

                   Estimate        SE         tStat        pValue  
                   _________    ________    _________    __________

    (Intercept)      0.70246    0.064039       10.969    5.3719e-28
    CustAge           0.6057     0.24934       2.4292      0.015131
    TmAtAddress       1.0381     0.94042       1.1039       0.26963
    ResStatus         1.3794      0.6526       2.1137      0.034538
    EmpStatus        0.89648     0.29339       3.0556     0.0022458
    CustIncome       0.70179     0.21866       3.2095     0.0013295
    TmWBank           1.1132     0.23346       4.7683    1.8579e-06
    OtherCC           1.0598     0.53005       1.9994      0.045568
    AMBalance         1.0572     0.36601       2.8884     0.0038718
    UtilRate       -0.047597     0.61133    -0.077858       0.93794

figure
plot(coeff1,'*')
hold on
plot(coeff2,'s')
xticklabels(mdl1.Coefficients.Properties.RowNames)
ylabel('Model Coefficients')
title('Unconstrained Model Coefficients')
legend({'Calculated by fitConstrainedModel with defaults','Calculated by fimodel'},'Location','best')
grid on
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As both the tables and the plot show, the model coefficients match. You can be confident that this
implementation of fitConstrainedModel is well calibrated.

Constrained Model

In the constrained model approach, you solve for the values of the coefficients bi of the logistic model,
subject to constraints. The supported constraints are bound, equality, or inequality. The coefficients
maximize the likelihood-of-default function defined, for observation i, as:

Li = p Defaulti
yi × 1− p Defaulti

1− yi

where:

•
p Defaulti = 1

1 + e−bxi

• b = b1 b2 . . . bK  is an unknown model coefficient

• xi = xi1 x2 . . . xiK  is the predictor values at observation i

• yi is the response value; a value of 1 represents default and a value of 0 represents non-default

This formula is for non-weighted data. When observation i has weight wi, it means that there are wi as
many observations i. Therefore, the probability that default occurs at observation i is the product of
the probabilities of default:
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pi = p Defaulti
yi * p Defaulti

yi * . . . * p Defaulti
yi

wi times
= p Defaulti

wi * yi

Likewise, the probability of non-default for weighted observation i is:

pi = p Defaulti
1− yi * p Defaulti

1− yi * . . . * p Defaulti
1− yi

wi times
= 1− p Defaulti

wi * 1− yi

For weighted data, if there is default at a given observation i whose weight is wi, it is as if there was a
wi count of that one observation, and all of them either all default, or all non-default. wi may or may
not be an integer.

Therefore, for the weighted data, the likelihood-of-default function for observation i in the first
equation becomes

Li = p Defaulti
wi * yi × 1− p Defaulti

wi * 1− yi

By assumption, all defaults are independent events, so the objective function is

L = L1 × L2 × . . . × LN

or, in more convenient logarithmic terms:

log L = ∑i = 1
N wi * yilog p Defaulti + 1− yi log 1− p Defaulti

Apply Constraints on the Coefficients

After calibrating the unconstrained model as described in the "Unconstrained Model Using
fitConstrainedModel" section, you can solve for the model coefficients subject to constraints. You can
choose lower and upper bounds such that 0 ≤ bi ≤ 1, ∀i = 1 . . . K, except for the intercept. Also, since
the customer age and customer income are somewhat correlated, you can also use additional
constraints on their coefficients, for example, |bCusAge− bCustIncome | < 0 . 1. The coefficients
corresponding to the predictors 'CustAge' and 'CustIncome' in this example are b2 and b6,
respectively.

K  = length(sc.PredictorVars);
lb = [-Inf;zeros(K,1)];
ub = [Inf;ones(K,1)];
AIneq = [0 -1 0 0 0 1 0 0 0 0;0 -1 0 0 0 -1 0 0 0 0];
bIneq = [0.05;0.05];
Options = optimoptions('fmincon','SpecifyObjectiveGradient',true,'Display','off');
[sc3,mdl] = fitConstrainedModel(sc,'AInequality',AIneq,'bInequality',bIneq,...
    'LowerBound',lb,'UpperBound',ub,'Options',Options);

figure
plot(coeff1,'*','MarkerSize',8)
hold on
plot(mdl.Coefficients.Estimate,'.','MarkerSize',12)
line(xlim,[0 0],'color','k','linestyle',':')
line(xlim,[1 1],'color','k','linestyle',':')
text(1.1,0.1,'Lower bound')
text(1.1,1.1,'Upper bound')
grid on
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xticklabels(mdl.Coefficients.Properties.RowNames)
ylabel('Model Coefficients')
title('Comparison Between Unconstrained and Constrained Solutions')
legend({'Unconstrained','Constrained'},'Location','best')

Significance Bootstrapping

For the unconstrained problem, standard formulas are available for computing p-values, which you
use to evaluate which coefficients are significant and which are to be rejected. However, for the
constrained problem, standard formulas are not available, and the derivation of formulas for
significance analysis is complicated. A practical alternative is to perform significance analysis
through bootstrapping.

In the bootstrapping approach, when using fitConstrainedModel, you set the name-value
argument 'Bootstrap' to true and chose a value for the name-value argument
'BootstrapIter'. Bootstrapping means that NIter samples (with replacement) from the original
observations are selected. In each iteration, fitConstrainedModel solves for the same constrained
problem as the "Constrained Model" section. fitConstrainedModel obtains several values
(solutions) for each coefficient bi and you can plot these as a boxplot or histogram. Using the
boxplot or histogram, you can examine the median values to evaluate whether the coefficients are
away from zero and how much the coefficients deviate from their means.

lb = [-Inf;zeros(K,1)];
ub = [Inf;ones(K,1)];
AIneq = [0 -1 0 0 0 1 0 0 0 0;0 1 0 0 0 -1 0 0 0 0];
bIneq = [0.05;0.05];
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c0 = zeros(K,1);
NIter = 100;
Options = optimoptions('fmincon','SpecifyObjectiveGradient',true,'Display','off');
rng('default')

[sc,mdl] = fitConstrainedModel(sc,'AInequality',AIneq,'bInequality',bIneq,...
    'LowerBound',lb,'UpperBound',ub,'Bootstrap',true,'BootstrapIter',NIter,'Options',Options);

figure
boxplot(mdl.Bootstrap.Matrix,mdl.Coefficients.Properties.RowNames)
hold on
line(xlim,[0 0],'color','k','linestyle',':')
line(xlim,[1 1],'color','k','linestyle',':')
title('Bootstrapping with N = 100 Iterations')
ylabel('Model Coefficients')

The solid red lines in the boxplot indicate that the median values and the bottom and top edges are
for the 25th and 75th percentiles. The "whiskers" are the minimum and maximum values, not
including outliers. The dotted lines represent the lower and upper bound constraints on the
coefficients. In this example, the coefficients cannot be negative, by construction.

To help decide which predictors to keep in the model, assess the proportion of times each coefficient
is zero.

Tol = 1e-6;
figure
bar(100*sum(mdl.Bootstrap.Matrix<= Tol)/NIter)
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ylabel('% of Zeros')
title('Percentage of Zeros Over Bootstrap Iterations')
xticklabels(mdl.Coefficients.Properties.RowNames)
grid on

Based on the plot, you can reject 'UtilRate' since it has the highest number of zero values. You can
also decide to reject 'TmAtAddress' since it shows a peak, albeit small.

Set the Corresponding Coefficients to Zero

To set the corresponding coefficients to zero, set their upper bound to zero and solve the model again
using the original data set.

ub(3) = 0;
ub(end) = 0;
[sc,mdl] = fitConstrainedModel(sc,'AInequality',AIneq,'bInequality',bIneq,'LowerBound',lb,'UpperBound',ub,'Options',Options);
Ind = (abs(mdl.Coefficients.Estimate) <= Tol);
ModelCoeff = mdl.Coefficients.Estimate(~Ind);
ModelPreds = mdl.Coefficients.Properties.RowNames(~Ind)';

figure
hold on
plot(ModelCoeff,'.','MarkerSize',12)
ylim([0.2 1.2])
ylabel('Model Coefficients')
xticklabels(ModelPreds)
title('Selected Model Coefficients After Bootstrapping')
grid on
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Set Constrained Coefficients Back Into the creditscorecard

Now that you have solved for the constrained coefficients, use setmodel to set the model's
coefficients and predictors. Then you can compute the (unscaled) points.

ModelPreds = ModelPreds(2:end);
sc = setmodel(sc,ModelPreds,ModelCoeff);
p = displaypoints(sc);

disp(p)

      Predictors               Bin              Points  
    ______________    _____________________    _________

    {'CustAge'   }    {'[-Inf,33)'        }     -0.16725
    {'CustAge'   }    {'[33,37)'          }     -0.14811
    {'CustAge'   }    {'[37,40)'          }    -0.065607
    {'CustAge'   }    {'[40,46)'          }     0.044404
    {'CustAge'   }    {'[46,48)'          }      0.21761
    {'CustAge'   }    {'[48,58)'          }      0.23404
    {'CustAge'   }    {'[58,Inf]'         }      0.49029
    {'CustAge'   }    {'<missing>'        }          NaN
    {'ResStatus' }    {'Tenant'           }    0.0044307
    {'ResStatus' }    {'Home Owner'       }      0.11932
    {'ResStatus' }    {'Other'            }      0.30048
    {'ResStatus' }    {'<missing>'        }          NaN
    {'EmpStatus' }    {'Unknown'          }    -0.077028
    {'EmpStatus' }    {'Employed'         }      0.31459
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    {'EmpStatus' }    {'<missing>'        }          NaN
    {'CustIncome'}    {'[-Inf,29000)'     }     -0.43795
    {'CustIncome'}    {'[29000,33000)'    }    -0.097814
    {'CustIncome'}    {'[33000,35000)'    }     0.053667
    {'CustIncome'}    {'[35000,40000)'    }     0.081921
    {'CustIncome'}    {'[40000,42000)'    }     0.092364
    {'CustIncome'}    {'[42000,47000)'    }      0.23932
    {'CustIncome'}    {'[47000,Inf]'      }      0.42477
    {'CustIncome'}    {'<missing>'        }          NaN
    {'TmWBank'   }    {'[-Inf,12)'        }     -0.15547
    {'TmWBank'   }    {'[12,23)'          }    -0.031077
    {'TmWBank'   }    {'[23,45)'          }    -0.021091
    {'TmWBank'   }    {'[45,71)'          }      0.36703
    {'TmWBank'   }    {'[71,Inf]'         }      0.86888
    {'TmWBank'   }    {'<missing>'        }          NaN
    {'OtherCC'   }    {'No'               }     -0.16832
    {'OtherCC'   }    {'Yes'              }      0.15336
    {'OtherCC'   }    {'<missing>'        }          NaN
    {'AMBalance' }    {'[-Inf,558.88)'    }      0.34418
    {'AMBalance' }    {'[558.88,1254.28)' }    -0.012745
    {'AMBalance' }    {'[1254.28,1597.44)'}    -0.057879
    {'AMBalance' }    {'[1597.44,Inf]'    }     -0.19896
    {'AMBalance' }    {'<missing>'        }          NaN

Using the unscaled points, you can follow the remainder of the “Credit Scorecard Modeling
Workflow” on page 8-51 to compute scores and probabilities of default and to validate the model.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor |
modifybins | bindata | plotbins | fitmodel | displaypoints | formatpoints | score |
setmodel | probdefault | validatemodel | compact

Related Examples
• “Troubleshooting Credit Scorecard Results” on page 8-63
• “Credit Rating by Bagging Decision Trees”

More About
• “About Credit Scorecards” on page 8-47
• “Credit Scorecard Modeling Workflow” on page 8-51
• “Credit Scorecard Modeling Using Observation Weights” on page 8-54
• Monotone Adjacent Pooling Algorithm (MAPA) on page 19-1886

External Websites
• Credit Risk Modeling with MATLAB (53 min 10 sec)
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Credit Default Swap (CDS)
A credit default swap (CDS) is a contract that protects against losses resulting from credit defaults.
The transaction involves two parties, the protection buyer and the protection seller, and also a
reference entity, usually a bond. The protection buyer pays a stream of premiums to the protection
seller, who in exchange offers to compensate the buyer for the loss in the bond’s value if a credit
event occurs. The stream of premiums is called the premium leg, and the compensation when a credit
event occurs is called the protection leg. Credit events usually include situations in which the bond
issuer goes bankrupt, misses coupon payments, or enters a restructuring process. Financial
Instruments Toolbox software supports:

CDS Functions

Function Purpose
cdsbootstrap Compute default probability parameters from CDS market quotes.
cdsspread Compute breakeven spreads for the CDS contracts.
cdsprice Compute the price for the CDS contracts.

See Also
cdsbootstrap | cdsprice | cdsspread | cdsrpv01

Related Examples
• “First-to-Default Swaps” (Financial Instruments Toolbox)
• “Credit Default Swap Option” (Financial Instruments Toolbox)
• “Counterparty Credit Risk and CVA” (Financial Instruments Toolbox)
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Bootstrapping a Default Probability Curve
This example shows how to bootstrap default probabilities from CDS market quotes. To bootstrap
default probabilities from bond market data, see bondDefaultBootstrap. In a typical workflow,
pricing a new CDS contract involves first estimating a default probability term structure using
cdsbootstrap. This requires market quotes of existing CDS contracts, or quotes of CDS indices
(e.g., iTraxx). The estimated default probability curve is then used as input to cdsspread or
cdsprice. If the default probability information is already known, cdsbootstrap can be bypassed
and cdsspread or cdsprice can be called directly.

The market information in this example is provided in the form of running spreads of CDS contracts
maturing on the CDS standard payment dates closest to 1, 2, 3, 5, and 7 years from the valuation
date.
Settle = '17-Jul-2009'; % valuation date for the CDS
MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...
'20-Sep-16'});
MarketSpreads = [140 175 210 265 310]';
MarketData = [MarketDates MarketSpreads];
ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...
'17-Jul-13','17-Jul-14'});
ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

The bootstrapped default probability curve is plotted against time, in years, from the valuation date.

ProbTimes = yearfrac(Settle,ProbData(:,1));
figure
plot([0; ProbTimes],[0; ProbData(:,2)])
grid on
axis([0 ProbTimes(end,1) 0 ProbData(end,2)])
xlabel('Time (years)')
ylabel('Cumulative Default Probability')
title('Bootstrapped Default Probability Curve')
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The associated hazard rates are returned as an optional output. The convention is that the first
hazard rate applies from the settlement date to the first market date, the second hazard rate from the
first to the second market date, and so on, and the last hazard rate applies from the second-to-last
market date onwards. The following plot displays the bootstrapped hazard rates, plotted against time,
in years, from the valuation date:

HazTimes = yearfrac(Settle,HazData(:,1));
figure
stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...
[HazData(:,2);HazData(end,2)])
grid on
axis([0 HazTimes(end,1)+1 0.9*HazData(1,2) 1.1*HazData(end,2)])
xlabel('Time (years)')
ylabel('Hazard Rate')
title('Bootstrapped Hazard Rates')
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See Also
cdsbootstrap | cdsprice | cdsspread | cdsrpv01 | bondDefaultBootstrap

Related Examples
• “First-to-Default Swaps” (Financial Instruments Toolbox)
• “Credit Default Swap Option” (Financial Instruments Toolbox)
• “Counterparty Credit Risk and CVA” (Financial Instruments Toolbox)
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Finding Breakeven Spread for New CDS Contract
The breakeven, or running, spread is the premium a protection buyer must pay, with no upfront
payments involved, to receive protection for credit events associated to a given reference entity.
Spreads are expressed in basis points (bp). There is a notional amount associated to the CDS contract
to determine the monetary amounts of the premium payments.

New quotes for CDS contracts can be obtained with cdsspread. After obtaining a default probability
curve using cdsbootstrap, you get quotes that are consistent with current market conditions.

In this example, instead of standard CDS payment dates, define new maturity dates. Using the period
from three to five years (CDS standard dates), maturities are defined within this range spaced at
quarterly intervals (measuring time from the valuation date):
Settle = '17-Jul-2009';  % valuation date for the CDS
MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...
'20-Sep-16'});
MarketSpreads = [140 175 210 265 310]';
MarketData = [MarketDates MarketSpreads];
ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...
'17-Jul-13','17-Jul-14'});
ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity1 = datestr(daysadd('17-Jul-09',360*(3.25:0.25:5),1));
Spread1 = cdsspread(ZeroData,ProbData,Settle,Maturity1);

figure
scatter(yearfrac(Settle,Maturity1),Spread1,'*')
hold on
scatter(yearfrac(Settle,MarketData(3:4,1)),MarketData(3:4,2))
hold off
grid on
xlabel('Time (years)')
ylabel('Spread (bp)')
title('CDS Spreads')
legend('New Quotes','Market','location','SouthEast')

This plot displays the resulting spreads:
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To evaluate the effect of the recovery rate parameter, instead of 40% (default value), use a recovery
rate of 35%:

Spread1Rec35 = cdsspread(ZeroData,ProbData,Settle,Maturity1,...
'RecoveryRate',0.35);

figure
plot(yearfrac(Settle,Maturity1),Spread1,...
yearfrac(Settle,Maturity1),Spread1Rec35,'--')
grid on
xlabel('Time (years)')
ylabel('Spread (bp)')
title('CDS Spreads with Different Recovery Rates')
legend('40%','35%','location','SouthEast')

The resulting plot shows that smaller recovery rates produce higher premia, as expected, since in the
event of default, the protection payments are higher:
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See Also
cdsbootstrap | cdsprice | cdsspread | cdsrpv01

Related Examples
• “First-to-Default Swaps” (Financial Instruments Toolbox)
• “Credit Default Swap Option” (Financial Instruments Toolbox)
• “Counterparty Credit Risk and CVA” (Financial Instruments Toolbox)
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Valuing an Existing CDS Contract
The current value, or mark-to-market, of an existing CDS contract is the amount of money the
contract holder would receive (if positive) or pay (if negative) to unwind this contract. The upfront of
the contract is the current value expressed as a fraction of the notional amount of the contract, and it
is commonly used to quote market values.

The value of existing CDS contracts is obtained with cdsprice. By default, cdsprice treats
contracts as long positions. Whether a contract position is long or short is determined from a
protection standpoint, that is, long means that protection was bought, and short means protection
was sold. In the following example, an existing CDS contract pays a premium that is lower than
current market conditions. The price is positive, as expected, since it would be more costly to buy the
same type of protection today.
Settle = '17-Jul-2009';   % valuation date for the CDS
MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...
'20-Sep-16'});
MarketSpreads = [140 175 210 265 310]';
MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...
'17-Jul-13','17-Jul-14'});
ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity2 = '20-Sep-2012';
Spread2 = 196;
 
[Price,AccPrem,PaymentDates,PaymentTimes,PaymentCF] = cdsprice(ZeroData,...
ProbData,Settle,Maturity2,Spread2);
 
fprintf('Dirty Price: %8.2f\n',Price+AccPrem);
fprintf('Accrued Premium: %8.2f\n',AccPrem);
fprintf('Clean Price: %8.2f\n',Price);
fprintf('\nPayment Schedule:\n\n');
fprintf('Date \t\t Time Frac \t Amount\n');
for k = 1:length(PaymentDates)
   fprintf('%s \t %5.4f \t %8.2f\n',datestr(PaymentDates(k)),...
      PaymentTimes(k),PaymentCF(k));
end

This resulting payment schedule is:

Dirty Price: 56872.94
Accrued Premium: 15244.44
Clean Price: 41628.50

Payment Schedule:

Date          Time Frac      Amount
20-Sep-2009      0.1806      35388.89
20-Dec-2009      0.2528      49544.44
20-Mar-2010      0.2500      49000.00
20-Jun-2010      0.2556      50088.89
20-Sep-2010      0.2556      50088.89
20-Dec-2010      0.2528      49544.44
20-Mar-2011      0.2500      49000.00
20-Jun-2011      0.2556      50088.89
20-Sep-2011      0.2556      50088.89
20-Dec-2011      0.2528      49544.44
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20-Mar-2012      0.2528      49544.44
20-Jun-2012      0.2556      50088.89
20-Sep-2012      0.2556      50088.89

Also, you can use cdsprice to value a portfolio of CDS contracts. In the following example, a simple
hedged position with two vanilla CDS contracts, one long, one short, with slightly different spreads is
priced in a single call and the value of the portfolio is the sum of the returned prices:

[Price2,AccPrem2] = cdsprice(ZeroData,ProbData,Settle,...
repmat(datenum(Maturity2),2,1),[Spread2;Spread2+3],...
'Notional',[1e7; -1e7]);

fprintf('Contract \t Dirty Price \t Acc Premium \t  Clean Price\n');
fprintf('    Long \t $ %9.2f \t $ %9.2f \t $ %9.2f \t\n',...
   Price2(1)+AccPrem2(1), AccPrem2(1), Price2(1));
fprintf('   Short \t $ %8.2f \t $ %8.2f \t $ %8.2f \t\n',...
   Price2(2)+AccPrem2(2), AccPrem2(2), Price2(2));
fprintf('Mark-to-market of hedged position: $ %8.2f\n',sum(Price2)+sum(AccPrem2));

This resulting value of the portfolio is:

Contract      Dirty Price      Acc Premium       Clean Price
    Long      $  56872.94      $  15244.44      $  41628.50     
   Short      $ -48185.88      $ -15477.78      $ -32708.11     
Mark-to-market of hedged position: $  8687.06

See Also
cdsbootstrap | cdsprice | cdsspread | cdsrpv01

Related Examples
• “First-to-Default Swaps” (Financial Instruments Toolbox)
• “Credit Default Swap Option” (Financial Instruments Toolbox)
• “Counterparty Credit Risk and CVA” (Financial Instruments Toolbox)
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Converting from Running to Upfront
A CDS market quote is given in terms of a standard spread (usually 100 bp or 500 bp) and an upfront
payment, or in terms of an equivalent running or breakeven spread, with no upfront payment. The
functions cdsbootstrap, cdsspread, and cdsprice perform upfront to running or running to
upfront conversions.

For example, to convert the market quotes to upfront quotes for a standard spread of 100 bp:
Settle = '17-Jul-2009';  % valuation date for the CDS
MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...
'20-Sep-16'});
MarketSpreads = [140 175 210 265 310]';
MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...
'17-Jul-13','17-Jul-14'});
ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity3 = MarketData(:,1);
Spread3Run = MarketData(:,2);
Spread3Std = 100*ones(size(Maturity3));
Price3 = cdsprice(ZeroData,ProbData,Settle,Maturity3,Spread3Std);
Upfront3 = Price3/10000000; % Standard notional of 10MM
display(Upfront3);

This resulting value is:

Upfront3 =

    0.0047
    0.0158
    0.0327
    0.0737
    0.1182

The conversion can be reversed to convert upfront quotes to market quotes:
ProbData3Upf = cdsbootstrap(ZeroData,[Maturity3 Upfront3 Spread3Std],Settle);
Spread3RunFromUpf = cdsspread(ZeroData,ProbData3Upf,Settle,Maturity3);
display([Spread3Run Spread3RunFromUpf]);

Comparing the results of this conversion to the original market spread demonstrates the reversal:

ans =

  140.0000  140.0000
  175.0000  175.0000
  210.0000  210.0000
  265.0000  265.0000
  310.0000  310.0000

Under the flat-hazard rate (FHR) quoting convention, a single market quote is used to calibrate a
probability curve. This convention yields a single point in the probability curve, and a single hazard
rate value. For example, assume a four-year (standard dates) CDS contract with a current FHR-based
running spread of 550 bp needs conversion to a CDS contract with a standard spread of 500 bp:
Maturity4 = datenum('20-Sep-13');
Spread4Run = 550;
ProbData4Run = cdsbootstrap(ZeroData,[Maturity4 Spread4Run],Settle);
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Spread4Std = 500;
Price4 = cdsprice(ZeroData,ProbData4Run,Settle,Maturity4,Spread4Std);
Upfront4 = Price4/10000000;
fprintf('A running spread of %5.2f is equivalent to\n',Spread4Run);
fprintf('   a standard spread of %5.2f with an upfront of %8.7f\n',...
   Spread4Std,Upfront4);

A running spread of 550.00 is equivalent to
   a standard spread of 500.00 with an upfront of 0.0167576

To reverse the conversion:
ProbData4Upf = cdsbootstrap(ZeroData,[Maturity4 Upfront4 Spread4Std],Settle);
Spread4RunFromUpf = cdsspread(ZeroData,ProbData4Upf,Settle,Maturity4);
fprintf('A standard spread of %5.2f with an upfront of %8.7f\n',...
   Spread4Std,Upfront4);
fprintf('    is equivalent to a running spread of %5.2f\n',Spread4RunFromUpf);

A standard spread of 500.00 with an upfront of 0.0167576
    is equivalent to a running spread of 550.00

As discussed in Beumee et. al., 2009 (see “Credit Derivatives” on page A-5), the FHR approach is a
quoting convention only, and leads to quotes inconsistent with market data. For example, calculating
the upfront for the three-year (standard dates) CDS contract with a standard spread of 100 bp using
the FHR approach and comparing the results to the upfront amounts previously calculated,
demonstrates that the FHR-based approach yields a different upfront amount:
Maturity5 = MarketData(3,1);
Spread5Run = MarketData(3,2);
ProbData5Run = cdsbootstrap(ZeroData,[Maturity5 Spread5Run],Settle);
Spread5Std = 100;
Price5 = cdsprice(ZeroData,ProbData5Run,Settle,Maturity5,Spread5Std);
Upfront5 = Price5/10000000;
fprintf('Relative error of FHR-based upfront amount: %3.1f%%\n',...
   ((Upfront5-Upfront3(3))/Upfront3(3))*100);

Relative error of FHR-based upfront amount: -0.8%

See Also
cdsbootstrap | cdsprice | cdsspread | cdsrpv01

Related Examples
• “First-to-Default Swaps” (Financial Instruments Toolbox)
• “Credit Default Swap Option” (Financial Instruments Toolbox)
• “Counterparty Credit Risk and CVA” (Financial Instruments Toolbox)

 Converting from Running to Upfront

8-107



Bootstrapping from Inverted Market Curves
The following two examples demonstrate the behavior of bootstrapping with inverted CDS market
curves, that is, market quotes with higher spreads for short-term CDS contracts. The first example is
handled normally by cdsbootstrap:
Settle = '17-Jul-2009';  % valuation date for the CDS
MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...
'20-Sep-16'});

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...
'17-Jul-13','17-Jul-14'});
ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
ZeroData = [ZeroDates ZeroRates];

MarketSpreadsInv1 = [750 650 550 500 450]';
MarketDataInv1 = [MarketDates MarketSpreadsInv1];
[ProbDataInv1,HazDataInv1] = cdsbootstrap(ZeroData,MarketDataInv1,Settle)

ProbDataInv1 =

   1.0e+05 *

    7.3440    0.0000
    7.3477    0.0000
    7.3513    0.0000
    7.3586    0.0000
    7.3659    0.0000

HazDataInv1 =

   1.0e+05 *

    7.3440    0.0000
    7.3477    0.0000
    7.3513    0.0000
    7.3586    0.0000
    7.3659    0.0000

In the second example, cdsbootstrap generates a warning:
MarketSpreadsInv2 = [800 550 400 250 100]';
MarketDataInv2 = [MarketDates MarketSpreadsInv2];

[ProbDataInv2,HazDataInv2] = cdsbootstrap(ZeroData,MarketDataInv2,Settle);

Warning: Found non-monotone default probabilities (negative hazard rates)

A non-monotone bootstrapped probability curve implies negative default probabilities and negative
hazard rates for certain time intervals. Extreme market conditions can lead to these types of
situations. In these cases, you must assess the reliability and usefulness of the bootstrapped results.

The following plot illustrates these bootstrapped probability curves. The curves are concave, meaning
that the marginal default probability decreases with time. This result is consistent with the market
information that indicates a higher default risk in the short term. The second bootstrapped curve is
non-monotone, as indicated by the warning.

ProbTimes = yearfrac(Settle, MarketDates);
figure
plot([0; ProbTimes],[0; ProbDataInv1(:,2)])
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hold on
plot([0; ProbTimes],[0; ProbDataInv2(:,2)],'--')
hold off
grid on
axis([0 ProbTimes(end,1) 0 ProbDataInv1(end,2)])
xlabel('Time (years)')
ylabel('Cumulative Default Probability')
title('Probability Curves for Inverted Spread Curves')
legend('1st instance','2nd instance','location','SouthEast')

The resulting plot

Also in line with the previous plot, the hazard rates for these bootstrapped curves are decreasing
because the short-term risk is higher. Some bootstrapped parameters in the second curve are
negative, as indicated by the warning.

HazTimes = yearfrac(Settle, MarketDates);
figure
stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...
   [HazDataInv1(:,2);HazDataInv1(end,2)])
hold on
stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...
   [HazDataInv2(:,2);HazDataInv2(end,2)],'--')
hold off
grid on
xlabel('Time (years)')
ylabel('Hazard Rate')
title('Hazard Rates for Inverted Spread Curves')
legend('1st instance','2nd instance','location','NorthEast')

The resulting plot shows the hazard rates for both bootstrapped curves:

 Bootstrapping from Inverted Market Curves

8-109



For further discussion on inverted curves, and their relationship to arbitrage, see O'Kane and
Turnbull, 2003 (“Credit Derivatives” on page A-5).

See Also
cdsbootstrap | cdsprice | cdsspread | cdsrpv01

Related Examples
• “First-to-Default Swaps” (Financial Instruments Toolbox)
• “Credit Default Swap Option” (Financial Instruments Toolbox)
• “Counterparty Credit Risk and CVA” (Financial Instruments Toolbox)
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Visualize Transitions Data for transprob
This example shows how to visualize credit rating transitions that are used as an input to the
transprob function. The example also describes how the transprob function treats rating
transitions when the company data starts after the start date of the analysis, or when the end date of
the analysis is after the last transition observed.

Sample Data

Set up fictitious sample data for illustration purposes.

data = {'ABC','17-Feb-2015','AA';
    'ABC','6-Jul-2017','A';
    'LMN','12-Aug-2014','B';
    'LMN','9-Nov-2015','CCC';
    'LMN','7-Sep-2016','D';
    'XYZ','14-May-2013','BB';
    'XYZ','21-Jun-2016','BBB'};
data = cell2table(data,'VariableNames',{'ID','Date','Rating'});
disp(data)

      ID            Date          Rating 
    _______    _______________    _______

    {'ABC'}    {'17-Feb-2015'}    {'AA' }
    {'ABC'}    {'6-Jul-2017' }    {'A'  }
    {'LMN'}    {'12-Aug-2014'}    {'B'  }
    {'LMN'}    {'9-Nov-2015' }    {'CCC'}
    {'LMN'}    {'7-Sep-2016' }    {'D'  }
    {'XYZ'}    {'14-May-2013'}    {'BB' }
    {'XYZ'}    {'21-Jun-2016'}    {'BBB'}

The transprob function understands that this panel-data format indicates the dates when a new
rating is assigned to a given company. transprob assumes that such ratings remain unchanged,
unless a subsequent row explicitly indicates a rating change. For example, for company 'ABC',
transprob understands that the 'A' rating is unchanged for any date after '6-Jul-2017'
(indefinitely).

Compute Transition Matrix and Transition Counts

The transprob function returns a transition probability matrix as the primary output. There are also
optional outputs that contain additional information for how many transitions occurred. For more
information, see transprob for information on the optional outputs for both the 'cohort' and the
'duration' methods.

For illustration purposes, this example allows you to pick the StartYear (limited to 2014 or 2015
for this example) and the EndYear (2016 or 2017). This example also uses the
hDisplayTransitions helper function (see the Local Functions on page 8-0  section) to format
the transitions information for ease of reading.

StartYear = ;

EndYear = ;
startDate = datetime(StartYear,12,31,'Locale','en_US');
endDate = datetime(EndYear,12,31,'Locale','en_US');
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RatingLabels = ["AAA","AA","A","BBB","BB","B","CCC","D"];

[tm,st,it] = transprob(data,'startDate',startDate,'endDate',endDate,'algorithm','cohort','labels',RatingLabels);

The transition probabilities of the TransMat output indicate the probability of migrating between
ratings. The probabilities are expressed in %, that is, they are multiplied by 100.

hDisplayTransitions(tm,RatingLabels,"Transition Matrix")

Transition Matrix

           AAA    AA     A     BBB    BB    B    CCC     D 
           ___    __    ___    ___    __    _    ___    ___

    AAA    100     0      0      0     0    0      0      0
    AA       0    50     50      0     0    0      0      0
    A        0     0    100      0     0    0      0      0
    BBB      0     0      0    100     0    0      0      0
    BB       0     0      0     50    50    0      0      0
    B        0     0      0      0     0    0    100      0
    CCC      0     0      0      0     0    0      0    100
    D        0     0      0      0     0    0      0    100

The transition counts are stored in the sampleTotals optional output and indicate how many
transitions occurred between ratings for the entire sample (that is, all companies).

hDisplayTransitions(st.totalsMat,RatingLabels,"Transition counts, all companies")

Transition counts, all companies

           AAA    AA    A    BBB    BB    B    CCC    D
           ___    __    _    ___    __    _    ___    _

    AAA     0     0     0     0     0     0     0     0
    AA      0     1     1     0     0     0     0     0
    A       0     0     0     0     0     0     0     0
    BBB     0     0     0     1     0     0     0     0
    BB      0     0     0     1     1     0     0     0
    B       0     0     0     0     0     0     1     0
    CCC     0     0     0     0     0     0     0     1
    D       0     0     0     0     0     0     0     1

The third output of transprob is idTotals that contains information about transitions at an ID
level, company by company (in the same order that the companies appear in the input data).

Select a company to display the transition counts and a corresponding visualization of the transitions.
The hPlotTransitions helper function (see the Local Functions on page 8-0  section) shows the
transitions history for a company.

CompanyID = ;
UniqueIDs = unique(data.ID,'stable');
[~,CompanyIndex] = ismember(CompanyID,UniqueIDs);
hDisplayTransitions(it(CompanyIndex).totalsMat,RatingLabels,strcat("Transition counts, company ID: ",CompanyID))

Transition counts, company ID: ABC

           AAA    AA    A    BBB    BB    B    CCC    D
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           ___    __    _    ___    __    _    ___    _

    AAA     0     0     0     0     0     0     0     0
    AA      0     1     1     0     0     0     0     0
    A       0     0     0     0     0     0     0     0
    BBB     0     0     0     0     0     0     0     0
    BB      0     0     0     0     0     0     0     0
    B       0     0     0     0     0     0     0     0
    CCC     0     0     0     0     0     0     0     0
    D       0     0     0     0     0     0     0     0

hPlotTransitions(CompanyID,startDate,endDate,data,RatingLabels)

To understand how transprob handles data when the first observed date is after the start date of
the analysis, or whose last observed date occurs before the end date of the analysis, consider the
following example. For company 'ABC' suppose that the analysis has a start date of 31-Dec-2014
and end date of 31-Dec-2017. There are only two transitions reported for this company for that
analysis time window. The first observation for 'ABC' happened on 17-Feb-2015. So the 31-
Dec-2015 snapshot is the first time the company is observed. By 31-Dec-2016, the company
remained in the original 'AA' rating. By 31-Dec-2017, a downgrade to 'A' is recorded. Consistent
with this, the transition counts show one transition from 'AA' to 'AA' (from the end of 2015 to the
end of 2016), and one transition from 'AA' to 'A' (from the end of 2016 to the end of 2017). The plot
shows the last rating as a dotted red line to emphasize that the last rating in the data is extrapolated
indefinitely into the future. There is no extrapolation into the past; the company's history is ignored
until a company rating is known for an entire transition period (31-Dec-2015 through 31-Dec-2016
in the case of 'ABC').
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Compute Transition Matrix Containing NR (Not Rated) Rating

Consider a different sample data containing only a single company 'DEF'. The data contains
transitions of company 'DEF' from 'A' to 'NR' rating and a subsequent transition from 'NR' to
'BBB'.

dataNR = {'DEF','17-Mar-2011','A';
    'DEF','24-Mar-2014','NR';
    'DEF','26-Sep-2016','BBB'};
dataNR = cell2table(dataNR,'VariableNames',{'ID','Date','Rating'});
disp(dataNR)

      ID            Date          Rating 
    _______    _______________    _______

    {'DEF'}    {'17-Mar-2011'}    {'A'  }
    {'DEF'}    {'24-Mar-2014'}    {'NR' }
    {'DEF'}    {'26-Sep-2016'}    {'BBB'}

transprob treats 'NR' as another rating. The transition matrix below shows the estimated
probability of transitioning into and out of 'NR'.

StartYearNR = 2010;
EndYearNR = 2018;
startDateNR = datetime(StartYearNR,12,31,'Locale','en_US');
endDateNR = datetime(EndYearNR,12,31,'Locale','en_US');
CompanyID_NR = "DEF";

RatingLabelsNR = ["AAA","AA","A","BBB","BB","B","CCC","D","NR"];

[tmNR,~,itNR] = transprob(dataNR,'startDate',startDateNR,'endDate',endDateNR,'algorithm','cohort','labels',RatingLabelsNR);
hDisplayTransitions(tmNR,RatingLabelsNR,"Transition Matrix")

Transition Matrix

           AAA    AA       A       BBB    BB      B     CCC     D       NR  
           ___    ___    ______    ___    ___    ___    ___    ___    ______

    AAA    100      0         0      0      0      0      0      0         0
    AA       0    100         0      0      0      0      0      0         0
    A        0      0    66.667      0      0      0      0      0    33.333
    BBB      0      0         0    100      0      0      0      0         0
    BB       0      0         0      0    100      0      0      0         0
    B        0      0         0      0      0    100      0      0         0
    CCC      0      0         0      0      0      0    100      0         0
    D        0      0         0      0      0      0      0    100         0
    NR       0      0         0     50      0      0      0      0        50

Display the transition counts and corresponding visualization of the transitions.

hDisplayTransitions(itNR.totalsMat,RatingLabelsNR,strcat("Transition counts, company ID: ",CompanyID_NR))

Transition counts, company ID: DEF

           AAA    AA    A    BBB    BB    B    CCC    D    NR
           ___    __    _    ___    __    _    ___    _    __

    AAA     0     0     0     0     0     0     0     0    0 
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    AA      0     0     0     0     0     0     0     0    0 
    A       0     0     2     0     0     0     0     0    1 
    BBB     0     0     0     2     0     0     0     0    0 
    BB      0     0     0     0     0     0     0     0    0 
    B       0     0     0     0     0     0     0     0    0 
    CCC     0     0     0     0     0     0     0     0    0 
    D       0     0     0     0     0     0     0     0    0 
    NR      0     0     0     1     0     0     0     0    1 

hPlotTransitions(CompanyID_NR,startDateNR,endDateNR,dataNR,RatingLabelsNR)

To remove the 'NR' from the transition matrix, use the 'excludeLabels' name-value input
argument in transprob. The list of labels to exclude may or may not be specified in the name-value
pair argument labels. For example, both RatingLabels and RatingLabelsNR generate the same
output from transprob.

[tmNR,stNR,itNR] = transprob(dataNR,'startDate',startDateNR,'endDate',endDateNR,'algorithm','cohort','labels',RatingLabelsNR,'excludeLabels','NR');
hDisplayTransitions(tmNR,RatingLabels,"Transition Matrix")

Transition Matrix

           AAA    AA      A     BBB    BB      B     CCC     D 
           ___    ___    ___    ___    ___    ___    ___    ___

    AAA    100      0      0      0      0      0      0      0
    AA       0    100      0      0      0      0      0      0
    A        0      0    100      0      0      0      0      0
    BBB      0      0      0    100      0      0      0      0
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    BB       0      0      0      0    100      0      0      0
    B        0      0      0      0      0    100      0      0
    CCC      0      0      0      0      0      0    100      0
    D        0      0      0      0      0      0      0    100

Display the transition counts and corresponding visualization of the transitions.

hDisplayTransitions(itNR.totalsMat,RatingLabels,strcat("Transition counts, company ID: ",CompanyID_NR))

Transition counts, company ID: DEF

           AAA    AA    A    BBB    BB    B    CCC    D
           ___    __    _    ___    __    _    ___    _

    AAA     0     0     0     0     0     0     0     0
    AA      0     0     0     0     0     0     0     0
    A       0     0     2     0     0     0     0     0
    BBB     0     0     0     2     0     0     0     0
    BB      0     0     0     0     0     0     0     0
    B       0     0     0     0     0     0     0     0
    CCC     0     0     0     0     0     0     0     0
    D       0     0     0     0     0     0     0     0

hPlotTransitions(CompanyID_NR,startDateNR,endDateNR,dataNR,RatingLabels)

Consistent with the previous plot, the transition counts still show two transitions from 'A' to 'A'
(from the end of 2012 to the end of 2014), and two transitions from 'BBB' to 'BBB' (from the end of
2017 to the end of 2019).
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However, different from the previous plot, specifying 'NR' using the 'excludeLabels' name-value
input argument of transprob removes any transitions into and out of the 'NR' rating.

Local Functions

function hDisplayTransitions(TransitionsData,RatingLabels,Title)
% Helper function to format transition information outputs

TransitionsAsTable = array2table(TransitionsData,...
   'VariableNames',RatingLabels,'RowNames',RatingLabels);

fprintf('\n%s\n\n',Title)
disp(TransitionsAsTable)

end

function hPlotTransitions(CompanyID,startDate,endDate,data,RatingLabels)
% Helper function to visualize transitions between ratings

   Ind = string(data.ID)==CompanyID;
   DatesOriginal = datetime(data.Date(Ind),'Locale','en_US');
   RatingsOriginal = categorical(data.Rating(Ind),flipud(RatingLabels(:)),flipud(RatingLabels(:)));
   
   stairs(DatesOriginal,RatingsOriginal,'LineWidth',2)
   hold on;

   % Indicate rating extrapolated into the future (arbitrarily select 91
   % days after endDate as the last date on the plot)
   endDateExtrap = endDate+91;
   if endDateExtrap>DatesOriginal(end)
      DatesExtrap = [DatesOriginal(end); endDateExtrap];
      RatingsExtrap = [RatingsOriginal(end); RatingsOriginal(end)];
      stairs(DatesExtrap,RatingsExtrap,'LineWidth',2,'LineStyle',':')
   end
   hold off;

   % Add lines to indicate the snapshot dates
   % transprob uses 1 as the default for 'snapsPerYear', hardcoded here for simplicity
   % The call to cfdates generates the exact same snapshot dates that transprob uses
   snapsPerYear = 1;
   snapDates = cfdates(startDate-1,endDate,snapsPerYear)';
   yLimits = ylim;
   for ii=1:length(snapDates)
      line([snapDates(ii) snapDates(ii)],yLimits,'Color','m')
   end
   title(strcat("Company ID: ",CompanyID))
end
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Impute Missing Data in the Credit Scorecard Workflow Using
the k-Nearest Neighbors Algorithm

This example shows how to perform imputation of missing data in the credit scorecard workflow
using the k-nearest neighbors (kNN) algorithm.

The kNN algorithm is a nonparametric method used for classification and regression. In both cases,
the input consists of the k-closest training examples in the feature space. The output depends on
whether kNN is used for classification or regression. In kNN classification, an object is classified by a
plurality vote of its neighbors, and the object is assigned to the class most common among its k-
nearest neighbors. In kNN regression, the output is the average of the values of k-nearest neighbors.
For more information on the kNN algorithm, see fitcknn.

For additional information on alternative approaches for "treating" missing data, see “Credit
Scorecard Modeling with Missing Values” on page 8-56.

Impute Missing Data Using kNN Algorithm

Use the dataMissing data set to impute missing values for the CustAge (numeric) and ResStatus
(categorical) predictors.

load CreditCardData.mat
disp(head(dataMissing));

    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   
      6          65          13         Home Owner     Employed       48000         59         Yes       968.18        0.15        0   
      7          34          32         Home Owner     Unknown        32000         26         Yes       717.82        0.02        1   
      8          50          57         Other          Employed       51000         33         No        3041.2        0.13        0   

In this example, the 'CustID' and 'status' columns are removed in the imputation process as
those are the id and response values respectively. Alternatively, you can choose to leave the
'status' column in.

dataToImpute = dataMissing(:,setdiff(dataMissing.Properties.VariableNames,...
    {'CustID','status'},'stable'));

Create dummy variables for all categorical predictors so that the kNN algorithm can compute the
Euclidean distances.

dResStatus = dummyvar(dataToImpute.ResStatus);
dEmpStatus = dummyvar(dataToImpute.EmpStatus);
dOtherCC = dummyvar(dataToImpute.OtherCC);

'k' in the kNN algorithm is based on feature similarity. Choosing the right value of 'k' is a process
called parameter tuning, which is important for greater accuracy. There is no physical way to
determine the "best" value for 'k', so you have to try a few values before settling on one. Small
values of 'k' can be noisy and subject to the effects of outliers. Larger values of 'k' have smoother
decision boundaries, which mean lower variance but increased bias.
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For the purpose of this example, choose 'k' as the square root of the number of samples in the data
set. This is a generally accepted value for 'k'. Choose a value of 'k' that is odd in order to break a
tie between two classes of data.

numObs = height(dataToImpute);
k = round(sqrt(numObs));
if ~mod(k,2)
    k = k+1;
end

Get the missing values from the CustAge and ResStatus predictors.

missingResStatus = ismissing(dataToImpute.ResStatus);
missingCustAge = ismissing(dataToImpute.CustAge);

Next, follow these steps:

• Modify the dataset to incorporate the dummy variables.
• Call the fitcknn function to create a k-nearest neighbor classifier.
• Call the predict method on that class to predict the imputed values.

custAgeToImpute = dataToImpute;
custAgeToImpute.HomeOwner = dResStatus(:,1);
custAgeToImpute.Tenant = dResStatus(:,2);
custAgeToImpute.Employed = dEmpStatus(:,1);
custAgeToImpute.HasOtherCC = dOtherCC(:,2);
custAgeToImpute = removevars(custAgeToImpute, 'ResStatus');
custAgeToImpute = removevars(custAgeToImpute, 'EmpStatus');
custAgeToImpute = removevars(custAgeToImpute, 'OtherCC');

knnCustAge = fitcknn(custAgeToImpute, 'CustAge', 'NumNeighbors', k, 'Standardize',true);
imputedCustAge = predict(knnCustAge,custAgeToImpute(missingCustAge,:));

resStatusToImpute = dataToImpute;
resStatusToImpute.Employed = dEmpStatus(:,1);
resStatusToImpute.HasOtherCC = dOtherCC(:,2);
resStatusToImpute = removevars(resStatusToImpute, 'EmpStatus');
resStatusToImpute = removevars(resStatusToImpute, 'OtherCC');

knnResStatus = fitcknn(resStatusToImpute, 'ResStatus', 'NumNeighbors', k, 'Standardize', true);
imputedResStatus = predict(knnResStatus,resStatusToImpute(missingResStatus,:));

Compare Imputed Data to Original Data

Create a new data set with the imputed data.

knnImputedData = dataMissing;
knnImputedData.CustAge(missingCustAge) = imputedCustAge;
knnImputedData.ResStatus(missingResStatus) = imputedResStatus;
disp(knnImputedData(5:10,:));

    CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

       5        68           56         Home Owner    Employed       53000         14         Yes       561.84        0.11        0   
       6        65           13         Home Owner    Employed       48000         59         Yes       968.18        0.15        0   
       7        34           32         Home Owner    Unknown        32000         26         Yes       717.82        0.02        1   
       8        50           57         Other         Employed       51000         33         No        3041.2        0.13        0   
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       9        50           10         Tenant        Unknown        52000         25         Yes       115.56        0.02        1   
      10        49           30         Home Owner    Unknown        53000         23         Yes        718.5        0.17        1   

disp(knnImputedData(find(missingCustAge,5),:));

    CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

       4        52           75         Home Owner    Employed       53000         20         Yes       157.37        0.08        0   
      19        45           14         Home Owner    Employed       51000         11         Yes       519.46        0.42        1   
     138        41           31         Other         Employed       41000          2         Yes       1101.8        0.32        0   
     165        37           21         Home Owner    Unknown        38000         70         No          1217         0.2        0   
     207        48           38         Home Owner    Employed       48000         12         No         573.9         0.1        0   

disp(knnImputedData(find(missingResStatus,5),:));

    CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

       1        53           62         Tenant        Unknown        50000         55         Yes       1055.9        0.22        0   
      22        51           13         Tenant        Employed       35000         33         Yes       468.85        0.01        0   
      33        46            8         Home Owner    Unknown        32000         26         Yes       940.78         0.3        0   
      47        52           56         Tenant        Employed       56000         79         Yes       294.46        0.12        0   
     103        64           49         Tenant        Employed       50000         35         Yes       118.43           0        0   

Plot a histogram of the predictor values before and after imputation.

Predictor = ;
f1 = figure;
ax1 = axes(f1);
histogram(ax1,knnImputedData.(Predictor),'FaceColor','red','FaceAlpha',1);
hold on
histogram(ax1,dataMissing.(Predictor),'FaceColor','blue','FaceAlpha',1);
legend(strcat("Imputed ", Predictor), strcat("Observed ", Predictor));
title(strcat("Histogram of ", Predictor));
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Create Credit Scorecard Model Using New Imputed Data

Use the imputed data to create the creditscorecard object, and then use autobinning,
fitmodel, and formatpoints to create a credit scorecard model.

sc = creditscorecard(knnImputedData,'IDVar','CustID');
sc = autobinning(sc);
[sc,mdl] = fitmodel(sc,'display','off');
sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc);
disp(PointsInfo);

      Predictors               Bin             Points
    ______________    _____________________    ______

    {'CustAge'   }    {'[-Inf,33)'        }    53.675
    {'CustAge'   }    {'[33,37)'          }    56.983
    {'CustAge'   }    {'[37,40)'          }    57.721
    {'CustAge'   }    {'[40,45)'          }    67.063
    {'CustAge'   }    {'[45,48)'          }    78.319
    {'CustAge'   }    {'[48,51)'          }    79.494
    {'CustAge'   }    {'[51,58)'          }    81.157
    {'CustAge'   }    {'[58,Inf]'         }    97.315
    {'CustAge'   }    {'<missing>'        }       NaN
    {'ResStatus' }    {'Tenant'           }    63.012
    {'ResStatus' }    {'Home Owner'       }     72.35
    {'ResStatus' }    {'Other'            }    92.434
    {'ResStatus' }    {'<missing>'        }       NaN
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    {'EmpStatus' }    {'Unknown'          }    58.892
    {'EmpStatus' }    {'Employed'         }     86.83
    {'EmpStatus' }    {'<missing>'        }       NaN
    {'CustIncome'}    {'[-Inf,29000)'     }    30.304
    {'CustIncome'}    {'[29000,33000)'    }    56.365
    {'CustIncome'}    {'[33000,35000)'    }    67.971
    {'CustIncome'}    {'[35000,40000)'    }    70.136
    {'CustIncome'}    {'[40000,42000)'    }    70.936
    {'CustIncome'}    {'[42000,47000)'    }    82.196
    {'CustIncome'}    {'[47000,Inf]'      }    96.405
    {'CustIncome'}    {'<missing>'        }       NaN
    {'TmWBank'   }    {'[-Inf,12)'        }    50.966
    {'TmWBank'   }    {'[12,23)'          }    60.975
    {'TmWBank'   }    {'[23,45)'          }    61.778
    {'TmWBank'   }    {'[45,71)'          }    93.007
    {'TmWBank'   }    {'[71,Inf]'         }    133.39
    {'TmWBank'   }    {'<missing>'        }       NaN
    {'OtherCC'   }    {'No'               }    50.765
    {'OtherCC'   }    {'Yes'              }    75.649
    {'OtherCC'   }    {'<missing>'        }       NaN
    {'AMBalance' }    {'[-Inf,558.88)'    }    89.765
    {'AMBalance' }    {'[558.88,1254.28)' }    63.097
    {'AMBalance' }    {'[1254.28,1597.44)'}    59.725
    {'AMBalance' }    {'[1597.44,Inf]'    }    49.184
    {'AMBalance' }    {'<missing>'        }       NaN

Calculate Scores and Probability of Default for New Applicants

Create a data set of 'new customers' and then calculate the scores and probabilities of default.

dataNewCustomers = dataMissing(1:20,1:end-1);
disp(head(dataNewCustomers));

    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22  
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24  
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29  
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08  
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11  
      6          65          13         Home Owner     Employed       48000         59         Yes       968.18        0.15  
      7          34          32         Home Owner     Unknown        32000         26         Yes       717.82        0.02  
      8          50          57         Other          Employed       51000         33         No        3041.2        0.13  

Perform the same preprocessing on the 'new customers' data as on the training data.

dResStatusNewCustomers = dummyvar(dataNewCustomers.ResStatus);
dEmpStatusNewCustomers = dummyvar(dataNewCustomers.EmpStatus);
dOtherCCNewCustomers = dummyvar(dataNewCustomers.OtherCC);

dataNewCustomersCopy = dataNewCustomers;
dataNewCustomersCopy.HomeOwner = dResStatusNewCustomers(:,1);
dataNewCustomersCopy.Tenant = dResStatusNewCustomers(:,2);
dataNewCustomersCopy.Employed = dEmpStatusNewCustomers(:,1);
dataNewCustomersCopy.HasOtherCC = dOtherCCNewCustomers(:,2);
dataNewCustomersCopy = removevars(dataNewCustomersCopy, 'ResStatus');
dataNewCustomersCopy = removevars(dataNewCustomersCopy, 'EmpStatus');
dataNewCustomersCopy = removevars(dataNewCustomersCopy, 'OtherCC');
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Predict the missing data in the scoring data set with the same imputation model as before.

missingCustAgeNewCustomers = isnan(dataNewCustomers.CustAge);
missingResStatusNewCustomers = ismissing(dataNewCustomers.ResStatus);
imputedCustAgeNewCustomers = round(predict(knnCustAge, dataNewCustomersCopy(missingCustAgeNewCustomers,:)));
imputedResStatusNewCustomers = predict(knnResStatus, dataNewCustomersCopy(missingResStatusNewCustomers,:));
dataNewCustomers.CustAge(missingCustAgeNewCustomers) = imputedCustAgeNewCustomers;
dataNewCustomers.ResStatus(missingResStatusNewCustomers) = imputedResStatusNewCustomers;

Use score to calculate scores of new customers.

[scores, points] = score(sc, dataNewCustomers);
disp(scores);

  531.2201
  553.4261
  505.1671
  563.1321
  552.6226
  584.6546
  445.1156
  516.8917
  524.9965
  507.6668
  498.2255
  539.4057
  516.4594
  491.6344
  566.1685
  486.8248
  476.0595
  469.5488
  550.2850
  511.0285

disp(points);

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    81.157      63.012       58.892        96.405      93.007     75.649      63.097  
    97.315       72.35        86.83        96.405      61.778     75.649      63.097  
    78.319      63.012        86.83        70.136      93.007     50.765      63.097  
    81.157       72.35        86.83        96.405      60.975     75.649      89.765  
    97.315       72.35        86.83        96.405      60.975     75.649      63.097  
    97.315       72.35        86.83        96.405      93.007     75.649      63.097  
    56.983       72.35       58.892        56.365      61.778     75.649      63.097  
    79.494      92.434        86.83        96.405      61.778     50.765      49.184  
    79.494      63.012       58.892        96.405      61.778     75.649      89.765  
    79.494       72.35       58.892        96.405      61.778     75.649      63.097  
    81.157      63.012       58.892        67.971      61.778     75.649      89.765  
    79.494      92.434       58.892        82.196      60.975     75.649      89.765  
    97.315       72.35       58.892        96.405      50.966     50.765      89.765  
    67.063      92.434       58.892        70.936      61.778     50.765      89.765  
    78.319      92.434        86.83        82.196      60.975     75.649      89.765  
    56.983       72.35        86.83        70.136      61.778     75.649      63.097  
    57.721      63.012        86.83        67.971      61.778     75.649      63.097  
    53.675       72.35        86.83        30.304      60.975     75.649      89.765  
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    78.319       72.35        86.83        96.405      50.966     75.649      89.765  
    81.157      92.434       58.892        82.196      60.975     75.649      59.725  
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Impute Missing Data in the Credit Scorecard Workflow Using
the Random Forest Algorithm

This example shows how to perform imputation of missing data in the credit scorecard workflow
using the random forest algorithm.

Random forests are an ensemble learning method for classification or regression that operates by
constructing a multitude of decision trees at training time and obtaining the class that is the mode of
the classes (classification) or mean prediction (regression) of the individual trees. Random forests
correct for the tendency of decision trees to overfit to the training set. For more information on the
random forest algorithm, see fitrensemble and fitcensemble.

For additional information on alternative approaches for "treating" missing data, see “Credit
Scorecard Modeling with Missing Values” on page 8-56.

Impute Missing Data Using Random Forest Algorithm

Use the dataMissing data set to impute missing values for the CustAge (numeric) and ResStatus
(categorical) predictors.

load CreditCardData.mat
disp(head(dataMissing));

    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   
      6          65          13         Home Owner     Employed       48000         59         Yes       968.18        0.15        0   
      7          34          32         Home Owner     Unknown        32000         26         Yes       717.82        0.02        1   
      8          50          57         Other          Employed       51000         33         No        3041.2        0.13        0   

Remove the 'CustID' and 'status' columns in the imputation process as these are the id and
response values respectively. Alternatively, you can choose to leave the 'status' column in.

dataToImpute = dataMissing(:,setdiff(dataMissing.Properties.VariableNames,...
    {'CustID','status'},'stable'));

rfImputedData = dataMissing;

Because multiple predictors contain missing data, turn on the 'Surrogate' flag when you create
the decision tree template.

rng('default');
tmp = templateTree('Surrogate','on','Reproducible',true);

Next, use the fitrensemble and fitcensemble functions, which return the trained regression and
classification ensemble model objects contain the results of boosting 100 regression and classification
trees using LSBoost, respectively.

missingCustAge = ismissing(dataToImpute.CustAge);
% Fit ensemble of regression learners
rfCustAge = fitrensemble(dataToImpute,'CustAge','Method','Bag',...
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    'NumLearningCycles',200,'Learners',tmp,'CategoricalPredictors',...
    {'ResStatus','EmpStatus','OtherCC'});
rfImputedData.CustAge(missingCustAge) = predict(rfCustAge,...
    dataToImpute(missingCustAge,:));

missingResStatus = ismissing(dataToImpute.ResStatus);
% Fit ensemble of classification learners
rfResStatus = fitcensemble(dataToImpute,'ResStatus','Method','Bag',...
    'NumLearningCycles',200,'Learners',tmp,'CategoricalPredictors',...
    {'EmpStatus','OtherCC'});
rfImputedData.ResStatus(missingResStatus) = predict(rfResStatus,...
    dataToImpute(missingResStatus,:));

% Optionally, round the age to the nearest integer
rfImputedData.CustAge = round(rfImputedData.CustAge);

Compare Imputed Data to Original Data

disp(rfImputedData(5:10,:));

    CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

       5        68           56         Home Owner    Employed       53000         14         Yes       561.84        0.11        0   
       6        65           13         Home Owner    Employed       48000         59         Yes       968.18        0.15        0   
       7        34           32         Home Owner    Unknown        32000         26         Yes       717.82        0.02        1   
       8        50           57         Other         Employed       51000         33         No        3041.2        0.13        0   
       9        50           10         Tenant        Unknown        52000         25         Yes       115.56        0.02        1   
      10        49           30         Home Owner    Unknown        53000         23         Yes        718.5        0.17        1   

disp(rfImputedData(find(missingCustAge,5),:));

    CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

       4        55           75         Home Owner    Employed       53000         20         Yes       157.37        0.08        0   
      19        54           14         Home Owner    Employed       51000         11         Yes       519.46        0.42        1   
     138        52           31         Other         Employed       41000          2         Yes       1101.8        0.32        0   
     165        46           21         Home Owner    Unknown        38000         70         No          1217         0.2        0   
     207        52           38         Home Owner    Employed       48000         12         No         573.9         0.1        0   

disp(rfImputedData(find(missingResStatus,5),:));

    CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

       1        53           62         Tenant        Unknown        50000         55         Yes       1055.9        0.22        0   
      22        51           13         Home Owner    Employed       35000         33         Yes       468.85        0.01        0   
      33        46            8         Home Owner    Unknown        32000         26         Yes       940.78         0.3        0   
      47        52           56         Tenant        Employed       56000         79         Yes       294.46        0.12        0   
     103        64           49         Home Owner    Employed       50000         35         Yes       118.43           0        0   

Plot a histogram of the predictor values before and after imputation.

Predictor = ;
f1 = figure;
ax1 = axes(f1);
histogram(ax1,rfImputedData.(Predictor),'FaceColor','red','FaceAlpha',1);
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hold on
histogram(ax1,dataMissing.(Predictor),'FaceColor','blue','FaceAlpha',1);
legend(strcat("Imputed ", Predictor), strcat("Observed ", Predictor));
title(strcat("Histogram of ", Predictor));

Create Credit Scorecard Model Using New Imputed Data

Use the imputed data to create the creditscorecard object, and then use autobinning,
fitmodel, and formatpoints to create a credit scorecard model.

sc = creditscorecard(rfImputedData,'IDVar','CustID');
sc = autobinning(sc);
[sc,mdl] = fitmodel(sc,'display','off');
sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc);
disp(PointsInfo);

      Predictors               Bin             Points
    ______________    _____________________    ______

    {'CustAge'   }    {'[-Inf,33)'        }    54.313
    {'CustAge'   }    {'[33,37)'          }    57.145
    {'CustAge'   }    {'[37,40)'          }     59.04
    {'CustAge'   }    {'[40,46)'          }    68.806
    {'CustAge'   }    {'[46,51)'          }    78.204
    {'CustAge'   }    {'[51,58)'          }    81.041
    {'CustAge'   }    {'[58,Inf]'         }    96.395
    {'CustAge'   }    {'<missing>'        }       NaN
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    {'ResStatus' }    {'Tenant'           }    62.768
    {'ResStatus' }    {'Home Owner'       }    72.621
    {'ResStatus' }    {'Other'            }    92.228
    {'ResStatus' }    {'<missing>'        }       NaN
    {'EmpStatus' }    {'Unknown'          }    58.839
    {'EmpStatus' }    {'Employed'         }    86.897
    {'EmpStatus' }    {'<missing>'        }       NaN
    {'CustIncome'}    {'[-Inf,29000)'     }    29.765
    {'CustIncome'}    {'[29000,33000)'    }    56.167
    {'CustIncome'}    {'[33000,35000)'    }    67.926
    {'CustIncome'}    {'[35000,40000)'    }    70.119
    {'CustIncome'}    {'[40000,42000)'    }     70.93
    {'CustIncome'}    {'[42000,47000)'    }    82.337
    {'CustIncome'}    {'[47000,Inf]'      }    96.733
    {'CustIncome'}    {'<missing>'        }       NaN
    {'TmWBank'   }    {'[-Inf,12)'        }    51.023
    {'TmWBank'   }    {'[12,23)'          }    61.005
    {'TmWBank'   }    {'[23,45)'          }    61.806
    {'TmWBank'   }    {'[45,71)'          }     92.95
    {'TmWBank'   }    {'[71,Inf]'         }    133.22
    {'TmWBank'   }    {'<missing>'        }       NaN
    {'OtherCC'   }    {'No'               }    50.796
    {'OtherCC'   }    {'Yes'              }    75.644
    {'OtherCC'   }    {'<missing>'        }       NaN
    {'AMBalance' }    {'[-Inf,558.88)'    }    89.941
    {'AMBalance' }    {'[558.88,1254.28)' }    63.018
    {'AMBalance' }    {'[1254.28,1597.44)'}    59.613
    {'AMBalance' }    {'[1597.44,Inf]'    }    48.972
    {'AMBalance' }    {'<missing>'        }       NaN

Calculate Scores and Probability of Default for New Customers

Create a data set of 'new customers' and then calculate the scores and probabilities of default.

dataNewCustomers = dataMissing(1:20,1:end-1);
disp(head(dataNewCustomers));

    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22  
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24  
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29  
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08  
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11  
      6          65          13         Home Owner     Employed       48000         59         Yes       968.18        0.15  
      7          34          32         Home Owner     Unknown        32000         26         Yes       717.82        0.02  
      8          50          57         Other          Employed       51000         33         No        3041.2        0.13  

Predict missing data in the scoring data set with the same imputation model as before.

missingCustAgeNewCustomers = isnan(dataNewCustomers.CustAge);
missingResStatusNewCustomers = ismissing(dataNewCustomers.ResStatus);
imputedCustAgeNewCustomers = round(predict(rfCustAge, dataNewCustomers(missingCustAgeNewCustomers,:)));
imputedResStatusNewCustomers = predict(rfResStatus, dataNewCustomers(missingResStatusNewCustomers,:));
dataNewCustomers.CustAge(missingCustAgeNewCustomers) = imputedCustAgeNewCustomers;
dataNewCustomers.ResStatus(missingResStatusNewCustomers) = imputedResStatusNewCustomers;

Use score to calculate the scores of the new customers.
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[scores, points] = score(sc, dataNewCustomers);
disp(scores);

  530.9936
  553.1144
  504.7522
  563.8821
  552.3131
  584.2581
  445.2402
  515.6361
  523.9354
  506.8645
  497.9661
  538.1986
  516.3480
  493.3467
  566.2568
  487.2501
  477.0996
  470.1861
  553.9004
  510.7086

disp(points);

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    81.041      62.768       58.839        96.733       92.95     75.644      63.018  
    96.395      72.621       86.897        96.733      61.806     75.644      63.018  
    78.204      62.768       86.897        70.119       92.95     50.796      63.018  
    81.041      72.621       86.897        96.733      61.005     75.644      89.941  
    96.395      72.621       86.897        96.733      61.005     75.644      63.018  
    96.395      72.621       86.897        96.733       92.95     75.644      63.018  
    57.145      72.621       58.839        56.167      61.806     75.644      63.018  
    78.204      92.228       86.897        96.733      61.806     50.796      48.972  
    78.204      62.768       58.839        96.733      61.806     75.644      89.941  
    78.204      72.621       58.839        96.733      61.806     75.644      63.018  
    81.041      62.768       58.839        67.926      61.806     75.644      89.941  
    78.204      92.228       58.839        82.337      61.005     75.644      89.941  
    96.395      72.621       58.839        96.733      51.023     50.796      89.941  
    68.806      92.228       58.839         70.93      61.806     50.796      89.941  
    78.204      92.228       86.897        82.337      61.005     75.644      89.941  
    57.145      72.621       86.897        70.119      61.806     75.644      63.018  
     59.04      62.768       86.897        67.926      61.806     75.644      63.018  
    54.313      72.621       86.897        29.765      61.005     75.644      89.941  
    81.041      72.621       86.897        96.733      51.023     75.644      89.941  
    81.041      92.228       58.839        82.337      61.005     75.644      59.613  
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Treat Missing Data in a Credit Scorecard Workflow Using
MATLAB® fillmissing

This example shows a workflow to gather missing data, manually treat the training data, develop a
new creditscorecard, and treat new data before scoring using the MATLAB® fillmissing.

The advantage of this method is that you can use all the options available in fillmissing to fill
missing data, as well as other MATLAB functionality such as standardizeMissing and features for
the treatment of outliers. In this approach, note that you must ensure that the treatment of the
training data and the treatment of any new data set that requires scoring must be the same.

Alternatively, after you create a creditscorecard object, you can use the fillmissing function
for the creditscorecard object to fill missing values. For additional information on alternative
approaches for "treating" missing data, see “Credit Scorecard Modeling with Missing Values” on page
8-56.

The dataMissing table in the CreditCardData.mat file has two predictors with missing values —
CustAge and ResStatus.

load CreditCardData.mat
head(dataMissing)

ans=8×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   
      6          65          13         Home Owner     Employed       48000         59         Yes       968.18        0.15        0   
      7          34          32         Home Owner     Unknown        32000         26         Yes       717.82        0.02        1   
      8          50          57         Other          Employed       51000         33         No        3041.2        0.13        0   

First, analyze the missing data information using the untreated training data.

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
that contains missing values. Set the 'BinMissingData' argument for creditscorecard to true
to explicitly report information on missing values. Then apply automatic binning using autobinning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

The bin information and bin plots for predictors that have missing data both show a <missing> bin
at the end. The two predictors with missing values in this data set are CustAge and ResStatus.

bi = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839

8 Credit Risk Analysis

8-130



    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')

bi = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus')

 Treat Missing Data in a Credit Scorecard Workflow Using MATLAB® fillmissing

8-131



The missing bin can be left as is, although a common alternative is to treat the missing values. Note
that treating the missing values must be done with care because it changes the data and can
introduce bias.

To treat missing values, you can apply different criteria. This example follows a straightforward
approach to replace missing observations with the most common or typical value in the data
distribution, which is the value of mode for the data. For this example, the mode happens to have a
similar WOE value as the original <missing> bin. The similarity in values is favorable because
similar WOE values means similar points in a scorecard.

For CustAge, bin 4 is the bin with the most observations and the mode value of the original data is
43.

modeCustAge = mode(dataMissing.CustAge);
disp(modeCustAge)

    43

The WOE value of the <missing> bin is similar to the WOE value of bin 4. Therefore, replacing the
missing values in CustAge with the value of mode is reasonable.

To treat the data, create a copy of the data and fill the missing values.

dataTreated = dataMissing;
dataTreated.CustAge = fillmissing(dataTreated.CustAge,'constant',modeCustAge);
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For ResStatus, the value of 'Home Owner' is the value of the mode of the data, and the WOE value
of the <missing> bin is closest to that of the 'Home Owner' bin.

modeResStatus = mode(dataMissing.ResStatus);
disp(modeResStatus)

     Home Owner 

Use MATLAB® fillmissing to replace the missing data with 'Home Owner'.

dataTreated.ResStatus = fillmissing(dataTreated.ResStatus,'constant',string(modeResStatus));

The treated data set now has no missing values.

disp(any(any(ismissing(dataTreated))))

   0

Using the treated data set, apply the typical creditscorecard workflow. First, create a
creditscorecard object with the treated data and then apply automatic binning.

scTreated = creditscorecard(dataTreated,'IDVar','CustID');
scTreated = autobinning(scTreated);

Compare the bin information of the untreated data for CustAge with the bin information of the
treated data for CustAge.

bi = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

biTreated = bininfo(scTreated,'CustAge');
disp(biTreated)

         Bin         Good    Bad     Odds       WOE       InfoValue
    _____________    ____    ___    ______    ________    _________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156     0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795     0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779    0.0079824
    {'[40,45)'  }    156      86     1.814    -0.10891    0.0024345
    {'[45,48)'  }     94      39    2.4103     0.17531    0.0033002
    {'[48,58)'  }    256     103    2.4854     0.20603      0.01223
    {'[58,Inf]' }     93      25      3.72     0.60931     0.032198
    {'Totals'   }    803     397    2.0227         NaN     0.089977
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The first few bins are the same, but the treatment of missing values influences the binning results,
starting with the bin where the missing data is placed. You can further explore your binning results
using autobinning with a different algorithm or you can manually modify the bins using
modifybins.

For ResStatus, the results for the treated data look similar to the initial results, except for the
higher counts in the 'Home Owner' bin due to the treatment. For a categorical variable with more
categories (or levels), an automatic algorithm can find category groups and the results can show
more differences for before and after the treatment.

bi = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

biTreated = bininfo(scTreated,'ResStatus');
disp(biTreated)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    379     184    2.0598     0.018182    0.00015462
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'Totals'    }    803     397    2.0227          NaN     0.0092603

Fit the logistic model, scale the points, and display the final scorecard.

[scTreated, mdl] = fitmodel(scTreated,'Display','off');
scTreated = formatpoints(scTreated,'PointsOddsAndPDO',[500 2 50]);
ScPoints = displaypoints(scTreated);
disp(ScPoints)

      Predictors               Bin             Points
    ______________    _____________________    ______

    {'CustAge'   }    {'[-Inf,33)'        }    53.507
    {'CustAge'   }    {'[33,37)'          }    55.798
    {'CustAge'   }    {'[37,40)'          }    59.646
    {'CustAge'   }    {'[40,45)'          }    66.868
    {'CustAge'   }    {'[45,48)'          }    79.013
    {'CustAge'   }    {'[48,58)'          }    80.326
    {'CustAge'   }    {'[58,Inf]'         }    97.559
    {'CustAge'   }    {'<missing>'        }       NaN
    {'ResStatus' }    {'Tenant'           }    62.161
    {'ResStatus' }    {'Home Owner'       }    73.305
    {'ResStatus' }    {'Other'            }    90.777
    {'ResStatus' }    {'<missing>'        }       NaN
    {'EmpStatus' }    {'Unknown'          }    58.846
    {'EmpStatus' }    {'Employed'         }    86.887
    {'EmpStatus' }    {'<missing>'        }       NaN
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    {'CustIncome'}    {'[-Inf,29000)'     }    29.906
    {'CustIncome'}    {'[29000,33000)'    }    56.219
    {'CustIncome'}    {'[33000,35000)'    }    67.938
    {'CustIncome'}    {'[35000,40000)'    }    70.123
    {'CustIncome'}    {'[40000,42000)'    }    70.931
    {'CustIncome'}    {'[42000,47000)'    }      82.3
    {'CustIncome'}    {'[47000,Inf]'      }    96.647
    {'CustIncome'}    {'<missing>'        }       NaN
    {'TmWBank'   }    {'[-Inf,12)'        }     51.05
    {'TmWBank'   }    {'[12,23)'          }    61.018
    {'TmWBank'   }    {'[23,45)'          }    61.818
    {'TmWBank'   }    {'[45,71)'          }    92.921
    {'TmWBank'   }    {'[71,Inf]'         }    133.14
    {'TmWBank'   }    {'<missing>'        }       NaN
    {'OtherCC'   }    {'No'               }    50.806
    {'OtherCC'   }    {'Yes'              }    75.642
    {'OtherCC'   }    {'<missing>'        }       NaN
    {'AMBalance' }    {'[-Inf,558.88)'    }    89.788
    {'AMBalance' }    {'[558.88,1254.28)' }    63.088
    {'AMBalance' }    {'[1254.28,1597.44)'}    59.711
    {'AMBalance' }    {'[1597.44,Inf]'    }    49.157
    {'AMBalance' }    {'<missing>'        }       NaN

The new scorecard does not know that the data was treated, hence it assigns NaNs to the <missing>
bins. If you need to score a new data set and it contains missing data, by default, the score function
sets the points to NaN. To further explore the handling of missing data, take a few rows from the
original data as test data and introduce some missing data.

tdata = dataTreated(11:14,mdl.PredictorNames); % Keep only the predictors retained in the model
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
disp(tdata)

    CustAge     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance
    _______    ___________    ___________    __________    _______    _______    _________

      NaN      Tenant         Unknown          34000         44         Yes        119.8  
       48      <undefined>    Unknown          44000         14         Yes       403.62  
       65      Home Owner     <undefined>      48000          6         No        111.88  
       44      Other          Unknown            NaN         35         No        436.41  

Score the new data and see how points are set to NaN, which leads to NaN scores.

[Scores,Points] = score(scTreated,tdata);
disp(Scores)

   NaN
   NaN
   NaN
   NaN

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________
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       NaN      62.161       58.846        67.938      61.818     75.642      89.788  
    80.326         NaN       58.846          82.3      61.018     75.642      89.788  
    97.559      73.305          NaN        96.647       51.05     50.806      89.788  
    66.868      90.777       58.846           NaN      61.818     50.806      89.788  

To assign points to missing data, one possibility is to use the name-value pair argument 'Missing'
in formatpoints to choose how to assign points to missing values.

Use the 'MinPoints' option for the 'Missing' argument. This option assigns the minimum
number of possible points in the scorecard to the missing data. In this example, the minimum number
of possible points for CustIncome is 29.906, so the last row in the table gets 29.906 points for the
missing CustIncome value.

scTreated = formatpoints(scTreated,'Missing','MinPoints');
[Scores,Points] = score(scTreated,tdata);
disp(Scores)

  469.7003
  510.0812
  518.0013
  448.8099

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    53.507      62.161       58.846        67.938      61.818     75.642      89.788  
    80.326      62.161       58.846          82.3      61.018     75.642      89.788  
    97.559      73.305       58.846        96.647       51.05     50.806      89.788  
    66.868      90.777       58.846        29.906      61.818     50.806      89.788  

However, for predictors treated in the training data, such as CustAge, the effect of the 'Missing'
argument is inconsistent with the treatment of the training data. For example, for CustAge, the first
observation gets 53.507 points for the missing value, yet if the new data were "treated," and the
missing value for CustAge were replaced with the mode of the training data (age of 43), this
observation falls in the [40,45) bin and receives 66.868 points.

Therefore, before scoring, data sets must be treated the same way the training data was treated. The
use of the 'Missing' argument is still important to assign points for untreated predictors and the
treated predictors receive points in a way that is consistent with the way the model was developed.

tdataTreated = tdata;
tdataTreated.CustAge = fillmissing(tdataTreated.CustAge,'constant',modeCustAge);
tdataTreated.ResStatus = fillmissing(tdataTreated.ResStatus,'constant',string(modeResStatus));
disp(tdataTreated)

    CustAge    ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance
    _______    __________    ___________    __________    _______    _______    _________

      43       Tenant        Unknown          34000         44         Yes        119.8  
      48       Home Owner    Unknown          44000         14         Yes       403.62  
      65       Home Owner    <undefined>      48000          6         No        111.88  
      44       Other         Unknown            NaN         35         No        436.41  

[Scores,Points] = score(scTreated,tdataTreated);
disp(Scores)
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  483.0606
  521.2249
  518.0013
  448.8099

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    66.868      62.161       58.846        67.938      61.818     75.642      89.788  
    80.326      73.305       58.846          82.3      61.018     75.642      89.788  
    97.559      73.305       58.846        96.647       51.05     50.806      89.788  
    66.868      90.777       58.846        29.906      61.818     50.806      89.788  
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Regression with Missing Data

• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-7
• “Multivariate Normal Regression Functions” on page 9-10
• “Multivariate Normal Regression Types” on page 9-13
• “Troubleshooting Multivariate Normal Regression” on page 9-18
• “Portfolios With Missing Data” on page 9-21
• “Valuation with Missing Data” on page 9-26
• “Capital Asset Pricing Model with Missing Data” on page 9-33
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Multivariate Normal Regression
In this section...
“Introduction” on page 9-2
“Multivariate Normal Linear Regression” on page 9-2
“Maximum Likelihood Estimation” on page 9-3
“Special Case of Multiple Linear Regression Model” on page 9-4
“Least-Squares Regression” on page 9-4
“Mean and Covariance Estimation” on page 9-4
“Convergence” on page 9-4
“Fisher Information” on page 9-4
“Statistical Tests” on page 9-5

Introduction
This section focuses on using likelihood-based methods for multivariate normal regression. The
parameters of the regression model are estimated via maximum likelihood estimation. For multiple
series, this requires iteration until convergence. The complication due to the possibility of missing
data is incorporated into the analysis with a variant of the EM algorithm known as the ECM
algorithm.

The underlying theory of maximum likelihood estimation and the definition and significance of the
Fisher information matrix can be found in Caines [1] and Cramér [2]. The underlying theory of the
ECM algorithm can be found in Meng and Rubin [8] and Sexton and Swensen [9].

In addition, these two examples of maximum likelihood estimation are presented:

• “Portfolios With Missing Data” on page 9-21
• “Estimation of Some Technology Stock Betas” on page 9-27

Multivariate Normal Linear Regression
Suppose that you have a multivariate normal linear regression model in the form

Z1

⋮
Zm

N
H1b
⋮

Hmb
,  

C 0
⋱

0 C
,

where the model has m observations of n-dimensional random variables Z1, ..., Zm with a linear
regression model that has a p-dimensional model parameter vector b. In addition, the model has a
sequence of m design matrices H1, ..., Hm, where each design matrix is a known n-by-p matrix.

Given a parameter vector b and a collection of design matrices, the collection of m independent
variables Zk is assumed to have independent identically distributed multivariate normal residual
errors Zk – Hk b with n-vector mean 0 and n-by-n covariance matrix C for each k = 1, ..., m.

A concise way to write this model is
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Zk ∼ N Hkb, C

for k = 1, ..., m.

The goal of multivariate normal regression is to obtain maximum likelihood estimates for b and C
given a collection of m observations z1, ..., zm of the random variables Z1, ..., Zm. The estimated
parameters are the p distinct elements of b and the n (n + 1)/2 distinct elements of C (the lower-
triangular elements of C).

Note Quasi-maximum likelihood estimation works with the same models but with a relaxation of the
assumption of normally distributed residuals. In this case, however, the parameter estimates are
asymptotically optimal.

Maximum Likelihood Estimation
To estimate the parameters of the multivariate normal linear regression model using maximum
likelihood estimation, it is necessary to maximize the log-likelihood function over the estimation
parameters given observations z1, ... , zm.

Given the multivariate normal model to characterize residual errors in the regression model, the log-
likelihood function is

L z1, …, zm; b, C = 1
2mnlog 2π + 1

2mlog det C

+ 1
2 ∑k = 1

m
zk− Hkb TC−1 zk− Hkb .

Although the cross-sectional residuals must be independent, you can use this log-likelihood function
for quasi-maximum likelihood estimation. In this case, the estimates for the parameters b and C
provide estimates to characterize the first and second moments of the residuals. See Caines [1] for
details.

Except for a special case (see “Special Case of Multiple Linear Regression Model” on page 9-4), if
both the model parameters in b and the covariance parameters in C are to be estimated, the
estimation problem is intractably nonlinear and a solution must use iterative methods. Denote
estimates for the parameters b and C for iteration t = 0, 1, ... with the superscript notation b(t) and
C(t).

Given initial estimates b(0) and C(0) for the parameters, the maximum likelihood estimates for b and C
are obtained using a two-stage iterative process with

b t + 1 = ∑
k = 1

m
HkT C t −1Hk

−1
∑

k = 1

m
HkT C t −1zk

and

C t + 1 = 1
m ∑

k = 1

m
zk− Hkb t + 1 zk− Hkb t + 1 T

for t = 0, 1, ... .
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Special Case of Multiple Linear Regression Model
The special case mentioned in “Maximum Likelihood Estimation” on page 9-3 occurs if n = 1 so that
the sequence of observations is a sequence of scalar observations. This model is known as a multiple
linear regression model. In this case, the covariance matrix C is a 1-by-1 matrix that drops out of the
maximum likelihood iterates so that a single-step estimate for b and C can be obtained with
converged estimates b(1) and C(1).

Least-Squares Regression
Another simplification of the general model is called least-squares regression. If b(0) = 0 and C(0) = I,
then b(1) and C(1) from the two-stage iterative process are least-squares estimates for b and C, where

bLS = ∑
k = 1

m
HkTHk

−1
∑

k = 1

m
HkTzk

and

CLS = 1
m ∑

k = 1

m
zk− HkbLS zk− HkbLS T .

Mean and Covariance Estimation
A final simplification of the general model is to estimate the mean and covariance of a sequence of n-
dimensional observations z1, ..., zm. In this case, the number of series is equal to the number of model
parameters with n = p and the design matrices are identity matrices with Hk = I for i = 1, ..., m so
that b is an estimate for the mean and C is an estimate of the covariance of the collection of
observations z1, ..., zm.

Convergence
If the iterative process continues until the log-likelihood function increases by no more than a
specified amount, the resultant estimates are said to be maximum likelihood estimates bML and CML.

If n = 1 (which implies a single data series), convergence occurs after only one iterative step, which,
in turn, implies that the least-squares and maximum likelihood estimates are identical. If, however, n
> 1, the least-squares and maximum likelihood estimates are usually distinct.

In Financial Toolbox software, both the changes in the log-likelihood function and the norm of the
change in parameter estimates are monitored. Whenever both changes fall below specified tolerances
(which should be something between machine precision and its square root), the toolbox functions
terminate under an assumption that convergence has been achieved.

Fisher Information
Since maximum likelihood estimates are formed from samples of random variables, their estimators
are random variables; an estimate derived from such samples has an uncertainty associated with it.
To characterize these uncertainties, which are called standard errors, two quantities are derived from
the total log-likelihood function.

The Hessian of the total log-likelihood function is
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∇2L z1, …, zm; θ

and the Fisher information matrix is

I θ = − E ∇2L z1, …, zm; θ ,

where the partial derivatives of the ∇2 operator are taken with respect to the combined parameter
vector Θ that contains the distinct components of b and C with a total of q = p + n (n + 1)/2
parameters.

Since maximum likelihood estimation is concerned with large-sample estimates, the central limit
theorem applies to the estimates and the Fisher information matrix plays a key role in the sampling
distribution of the parameter estimates. Specifically, maximum likelihood parameter estimates are
asymptotically normally distributed such that

θ t − θ ∼ N 0, I−1, θ t  as t ∞,

where Θ is the combined parameter vector and Θ(t) is the estimate for the combined parameter vector
at iteration t = 0, 1, ... .

The Fisher information matrix provides a lower bound, called a Cramér-Rao lower bound, for the
standard errors of estimates of the model parameters.

Statistical Tests
Given an estimate for the combined parameter vector Θ, the squared standard errors are the
diagonal elements of the inverse of the Fisher information matrix

s2 θ i = I−1 θ i ii

for i = 1, ..., q.

Since the standard errors are estimates for the standard deviations of the parameter estimates, you
can construct confidence intervals so that, for example, a 95% interval for each parameter estimate is
approximately

θ i ± 1.96s θ i

for i = 1, ..., q.

Error ellipses at a level-of-significance α ε [0, 1] for the parameter estimates satisfy the inequality

θ− θ TI θ θ− θ ≤ χ1− α, q
2

and follow a χ2 distribution with q degrees-of-freedom. Similar inequalities can be formed for any
subcollection of the parameters.

In general, given parameter estimates, the computed Fisher information matrix, and the log-
likelihood function, you can perform numerous statistical tests on the parameters, the model, and the
regression.
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See Also
mvnrmle | mvnrstd | mvnrfish | mvnrobj | ecmmvnrmle | ecmmvnrstd | ecmmvnrfish |
ecmmvnrobj | ecmlsrmle | ecmlsrobj | ecmmvnrstd | ecmmvnrfish | ecmnmle | ecmnstd |
ecmnfish | ecmnhess | ecmnobj | convert2sur | ecmninit

Related Examples
• “Maximum Likelihood Estimation with Missing Data” on page 9-7
• “Multivariate Normal Regression Types” on page 9-13
• “Valuation with Missing Data” on page 9-26
• “Portfolios With Missing Data” on page 9-21
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Maximum Likelihood Estimation with Missing Data

In this section...
“Introduction” on page 9-7
“ECM Algorithm” on page 9-7
“Standard Errors” on page 9-8
“Data Augmentation” on page 9-8

Introduction
Suppose that a portion of the sample data is missing, where missing values are represented as NaNs.
If the missing values are missing-at-random and ignorable, where Little and Rubin [7] have precise
definitions for these terms, it is possible to use a version of the Expectation Maximization, or EM,
algorithm of Dempster, Laird, and Rubin [3] to estimate the parameters of the multivariate normal
regression model. The algorithm used in Financial Toolbox software is the ECM (Expectation
Conditional Maximization) algorithm of Meng and Rubin [8] with enhancements by Sexton and
Swensen [9].

Each sample zk for k = 1, ..., m, is either complete with no missing values, empty with no observed
values, or incomplete with both observed and missing values. Empty samples are ignored since they
contribute no information.

To understand the missing-at-random and ignorable conditions, consider an example of stock price
data before an IPO. For a counterexample, censored data, in which all values greater than some
cutoff are replaced with NaNs, does not satisfy these conditions.

In sample k, let xk represent the missing values in zk and yk represent the observed values. Define a
permutation matrix Pk so that

zk = Pk
xk
yk

for k = 1, ..., m.

ECM Algorithm
The ECM algorithm has two steps – an E, or expectation step, and a CM, or conditional maximization,
step. As with maximum likelihood estimation, the parameter estimates evolve according to an
iterative process, where estimates for the parameters after t iterations are denoted as b(t) and C(t).

The E step forms conditional expectations for the elements of missing data with

E Xk Yk = yk; b t , C t

cov Xk Yk = yk; b t , C t

for each sample k ∈ 1, …, m  that has missing data.
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The CM step proceeds in the same manner as the maximum likelihood procedure without missing
data. The main difference is that missing data moments are imputed from the conditional
expectations obtained in the E step.

The E and CM steps are repeated until the log-likelihood function ceases to increase. One of the
important properties of the ECM algorithm is that it is always guaranteed to find a maximum of the
log-likelihood function and, under suitable conditions, this maximum can be a global maximum.

Standard Errors
The negative of the expected Hessian of the log-likelihood function and the Fisher information matrix
are identical if no data is missing. However, if data is missing, the Hessian, which is computed over
available samples, accounts for the loss of information due to missing data. So, the Fisher information
matrix provides standard errors that are a Cramér-Rao lower bound whereas the Hessian matrix
provides standard errors that may be greater if there is missing data.

Data Augmentation
The ECM functions do not “fill in” missing values as they estimate model parameters. In some cases,
you may want to fill in the missing values. Although you can fill in the missing values in your data
with conditional expectations, you would get optimistic and unrealistic estimates because conditional
estimates are not random realizations.

Several approaches are possible, including resampling methods and multiple imputation (see Little
and Rubin [7] and Shafer [10] for details). A somewhat informal sampling method for data
augmentation is to form random samples for missing values based on the conditional distribution for
the missing values. Given parameter estimates for X ⊂ Rn and C , each observation has moments

E Zk = Hkb

and

cov Zk = HkC HkT

for k = 1, ..., m, where you have dropped the parameter dependence on the left sides for notational
convenience.

For observations with missing values partitioned into missing values Xk and observed values Yk = yk,
you can form conditional estimates for any subcollection of random variables within a given
observation. Thus, given estimates E[ Zk ] and cov(Zk) based on the parameter estimates, you can
create conditional estimates

E Xk yk

and

cov Xk yk

using standard multivariate normal distribution theory. Given these conditional estimates, you can
simulate random samples for the missing values from the conditional distribution

Xk ∼ N E Xk yk , cov Xk yk .
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The samples from this distribution reflect the pattern of missing and nonmissing values for
observations k = 1, ..., m. You must sample from conditional distributions for each observation to
preserve the correlation structure with the nonmissing values at each observation.

If you follow this procedure, the resultant filled-in values are random and generate mean and
covariance estimates that are asymptotically equivalent to the ECM-derived mean and covariance
estimates. Note, however, that the filled-in values are random and reflect likely samples from the
distribution estimated over all the data and may not reflect “true” values for a particular observation.

See Also
mvnrmle | mvnrstd | mvnrfish | mvnrobj | ecmmvnrmle | ecmmvnrstd | ecmmvnrfish |
ecmmvnrobj | ecmlsrmle | ecmlsrobj | ecmmvnrstd | ecmmvnrfish | ecmnmle | ecmnstd |
ecmnfish | ecmnhess | ecmnobj | convert2sur | ecmninit

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Multivariate Normal Regression Types” on page 9-13
• “Valuation with Missing Data” on page 9-26
• “Portfolios With Missing Data” on page 9-21
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Multivariate Normal Regression Functions
In this section...
“Multivariate Normal Regression Without Missing Data” on page 9-11
“Multivariate Normal Regression With Missing Data” on page 9-11
“Least-Squares Regression With Missing Data” on page 9-11
“Multivariate Normal Parameter Estimation With Missing Data” on page 9-12
“Support Functions” on page 9-12

Financial Toolbox software has a number of functions for multivariate normal regression with or
without missing data. The toolbox functions solve four classes of regression problems with functions
to estimate parameters, standard errors, log-likelihood functions, and Fisher information matrices.
The four classes of regression problems are:

• “Multivariate Normal Regression Without Missing Data” on page 9-11
• “Multivariate Normal Regression With Missing Data” on page 9-11
• “Least-Squares Regression With Missing Data” on page 9-11
• “Multivariate Normal Parameter Estimation With Missing Data” on page 9-12

Additional support functions are also provided, see “Support Functions” on page 9-12.

In all functions, the MATLAB representation for the number of observations (or samples) is
NumSamples = m, the number of data series is NumSeries = n, and the number of model
parameters is NumParams = p. The moment estimation functions have NumSeries = NumParams.

The collection of observations (or samples) is stored in a MATLAB matrix Data such that

Data k,  : = zk
T

for k = 1, ..., NumSamples, where Data is a NumSamples-by-NumSeries matrix.

For the multivariate normal regression or least-squares functions, an additional required input is the
collection of design matrices that is stored as either a MATLAB matrix or a vector of cell arrays
denoted as Design.

If Numseries = 1, Design can be a NumSamples-by-NumParams matrix. This is the “standard” form
for regression on a single data series.

If Numseries = 1, Design can be either a cell array with a single cell or a cell array with
NumSamples cells. Each cell in the cell array contains a NumSeries-by-NumParams matrix such that

Design k = Hk

for k = 1, ..., NumSamples. If Design has a single cell, it is assumed to be the same Design
matrix for each sample such that

Design 1 = H1 = … = Hm .

Otherwise, Design must contain individual design matrices for each sample.

The main distinction among the four classes of regression problems depends upon how missing
values are handled and where missing values are represented as the MATLAB value NaN. If a sample
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is to be ignored given any missing values in the sample, the problem is said to be a problem “without
missing data.” If a sample is to be ignored if and only if every element of the sample is missing, the
problem is said to be a problem “with missing data” since the estimation must account for possible
NaN values in the data.

In general, Data may or may not have missing values and Design should have no missing values. In
some cases, however, if an observation in Data is to be ignored, the corresponding elements in
Design are also ignored. Consult the function reference pages for details.

Multivariate Normal Regression Without Missing Data
You can use the following functions for multivariate normal regression without missing data.

mvnrmle Estimate model parameters, residuals, and the residual
covariance.

mvnrstd Estimate standard errors of model and covariance parameters.
mvnrfish Estimate the Fisher information matrix.
mvnrobj Calculate the log-likelihood function.

The first two functions are the main estimation functions. The second two are supporting functions
that can be used for more detailed analyses.

Multivariate Normal Regression With Missing Data
You can use the following functions for multivariate normal regression with missing data.

ecmmvnrmle Estimate model parameters, residuals, and the residual
covariance.

ecmmvnrstd Estimate standard errors of model and covariance parameters.
ecmmvnrfish Estimate the Fisher information matrix.
ecmmvnrobj Calculate the log-likelihood function.

The first two functions are the main estimation functions. The second two are supporting functions
used for more detailed analyses.

Least-Squares Regression With Missing Data
You can use the following functions for least-squares regression with missing data or for covariance-
weighted least-squares regression with a fixed covariance matrix.

ecmlsrmle Estimate model parameters, residuals, and the residual
covariance.

ecmlsrobj Calculate the least-squares objective function (pseudo log-
likelihood).

To compute standard errors and estimates for the Fisher information matrix, the multivariate normal
regression functions with missing data are used.
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ecmmvnrstd Estimate standard errors of model and covariance parameters.
ecmmvnrfish Estimate the Fisher information matrix.

Multivariate Normal Parameter Estimation With Missing Data
You can use the following functions to estimate the mean and covariance of multivariate normal data.

ecmnmle Estimate the mean and covariance of the data.
ecmnstd Estimate standard errors of the mean and covariance of the data.
ecmnfish Estimate the Fisher information matrix.
ecmnhess Estimate the Fisher information matrix using the Hessian.
ecmnobj Calculate the log-likelihood function.

These functions behave slightly differently from the more general regression functions since they
solve a specialized problem. Consult the function reference pages for details.

Support Functions
Two support functions are included.

convert2sur Convert a multivariate normal regression model into an SUR
model.

ecmninit Obtain initial estimates for the mean and covariance of a Data
matrix.

The convert2sur function converts a multivariate normal regression model into a seemingly
unrelated regression, or SUR, model. The second function ecmninit is a specialized function to
obtain initial ad hoc estimates for the mean and covariance of a Data matrix with missing data. (If
there are no missing values, the estimates are the maximum likelihood estimates for the mean and
covariance.)

See Also
mvnrmle | mvnrstd | mvnrfish | mvnrobj | ecmmvnrmle | ecmmvnrstd | ecmmvnrfish |
ecmmvnrobj | ecmlsrmle | ecmlsrobj | ecmmvnrstd | ecmmvnrfish | ecmnmle | ecmnstd |
ecmnfish | ecmnhess | ecmnobj | convert2sur | ecmninit

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Multivariate Normal Regression Types” on page 9-13
• “Valuation with Missing Data” on page 9-26
• “Portfolios With Missing Data” on page 9-21
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Multivariate Normal Regression Types
In this section...
“Regressions” on page 9-13
“Multivariate Normal Regression” on page 9-13
“Multivariate Normal Regression Without Missing Data” on page 9-13
“Multivariate Normal Regression With Missing Data” on page 9-14
“Least-Squares Regression” on page 9-14
“Least-Squares Regression Without Missing Data” on page 9-14
“Least-Squares Regression With Missing Data” on page 9-14
“Covariance-Weighted Least Squares” on page 9-14
“Covariance-Weighted Least Squares Without Missing Data” on page 9-15
“Covariance-Weighted Least Squares With Missing Data” on page 9-15
“Feasible Generalized Least Squares” on page 9-15
“Feasible Generalized Least Squares Without Missing Data” on page 9-15
“Feasible Generalized Least Squares With Missing Data” on page 9-16
“Seemingly Unrelated Regression” on page 9-16
“Seemingly Unrelated Regression Without Missing Data” on page 9-17
“Seemingly Unrelated Regression With Missing Data” on page 9-17
“Mean and Covariance Parameter Estimation” on page 9-17

Regressions
Each regression function has a specific operation. This section shows how to use these functions to
perform specific types of regressions. To illustrate use of the functions for various regressions,
“typical” usage is shown with optional arguments kept to a minimum. For a typical regression, you
estimate model parameters and residual covariance matrices with the mle functions and estimate the
standard errors of model parameters with the std functions. The regressions “without missing data”
essentially ignore samples with any missing values, and the regressions “with missing data” ignore
samples with every value missing.

Multivariate Normal Regression
Multivariate normal regression, or MVNR, is the “standard” implementation of the regression
functions in Financial Toolbox software.

Multivariate Normal Regression Without Missing Data
Estimate parameters using mvnrmle:

[Parameters, Covariance] = mvnrmle(Data, Design);

Estimate standard errors using mvnrstd:

StdParameters = mvnrstd(Data, Design, Covariance);
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Multivariate Normal Regression With Missing Data
Estimate parameters using ecmmvnrmle:

[Parameters, Covariance] = ecmmvnrmle(Data, Design);

Estimate standard errors using ecmmvnrstd:

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Least-Squares Regression
Least-squares regression, or LSR, sometimes called ordinary least-squares or multiple linear
regression, is the simplest linear regression model. It also enjoys the property that, independent of
the underlying distribution, it is a best linear unbiased estimator (BLUE).

Given m = NumSamples observations, the typical least-squares regression model seeks to minimize
the objective function

∑
k = 1

m
Zk− Hkb T Zk− Hkb ,

which, within the maximum likelihood framework of the multivariate normal regression routine
mvnrmle, is equivalent to a single-iteration estimation of just the parameters to obtain Parameters
with the initial covariance matrix Covariance held fixed as the identity matrix. In the case of
missing data, however, the internal algorithm to handle missing data requires a separate routine
ecmlsrmle to do least-squares instead of multivariate normal regression.

Least-Squares Regression Without Missing Data
Estimate parameters using mvnrmle:

[Parameters, Covariance] = mvnrmle(Data, Design, 1);

Estimate standard errors using mvnrstd:

StdParameters = mvnrstd(Data, Design, Covariance);

Least-Squares Regression With Missing Data
Estimate parameters using ecmlsrmle:

[Parameters, Covariance] = ecmlsrmle(Data, Design);

Estimate standard errors using ecmmvnrstd:

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Covariance-Weighted Least Squares
Given m = NUMSAMPLES observations, the typical covariance-weighted least squares, or CWLS,
regression model seeks to minimize the objective function
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∑
k = 1

m
Zk− Hkb TC0 Zk− Hkb

with fixed covariance C0.

In most cases, C0 is a diagonal matrix. The inverse matrix W = C0
−1 has diagonal elements that can be

considered relative “weights” for each series. Thus, CWLS is a form of weighted least squares with
the weights applied across series.

Covariance-Weighted Least Squares Without Missing Data
Estimate parameters using mvnrmle:

[Parameters, Covariance] = mvnrmle(Data, Design, 1, [], [], [], Covar0);

Estimate standard errors using mvnrstd:

StdParameters = mvnrstd(Data, Design, Covariance);

Covariance-Weighted Least Squares With Missing Data
Estimate parameters using ecmlsrmle:
[Parameters, Covariance] = ecmlsrmle(Data, Design, [], [], [], [], Covar0);

Estimate standard errors using ecmmvnrstd:

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Feasible Generalized Least Squares
An ad hoc form of least squares that has surprisingly good properties for misspecified or nonnormal
models is known as feasible generalized least squares, or FGLS. The basic procedure is to do least-
squares regression and then to do covariance-weighted least-squares regression with the resultant
residual covariance from the first regression.

Feasible Generalized Least Squares Without Missing Data
Estimate parameters using mvnrmle:

[Parameters, Covariance] = mvnrmle(Data, Design, 2, 0, 0); 

or (to illustrate the FGLS process explicitly)

[Parameters, Covar0] = mvnrmle(Data, Design, 1);
[Parameters, Covariance] = mvnrmle(Data, Design, 1, [], [], [], Covar0);

Estimate standard errors using mvnrstd:

StdParameters = mvnrstd(Data, Design, Covariance);

 Multivariate Normal Regression Types

9-15



Feasible Generalized Least Squares With Missing Data
Estimate parameters using ecmlsrmle:
[Parameters, Covar0] = ecmlsrmle(Data, Design);
[Parameters, Covariance] = ecmlsrmle(Data, Design, [], [], [], [], Covar0);

Estimate standard errors using ecmmvnrstd:

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Seemingly Unrelated Regression
Given a multivariate normal regression model in standard form with a Data matrix and a Design
array, it is possible to convert the problem into a seemingly unrelated regression (SUR) problem by a
simple transformation of the Design array. The main idea of SUR is that instead of having a common
parameter vector over all data series, you have a separate parameter vector associated with each
separate series or with distinct groups of series that, nevertheless, share a common residual
covariance. It is this ability to aggregate and disaggregate series and to perform comparative tests on
each design that is the power of SUR.

To make the transformation, use the function convert2sur, which converts a standard-form design
array into an equivalent design array to do SUR with a specified mapping of the series into
NUMGROUPS groups. The regression functions are used in the usual manner, but with the SUR design
array instead of the original design array. Instead of having NUMPARAMS elements, the SUR output
parameter vector has NUMGROUPS of stacked parameter estimates, where the first NUMPARAMS
elements of Parameters contain parameter estimates associated with the first group of series, the
next NUMPARAMS elements of Parameters contain parameter estimates associated with the second
group of series, and so on. If the model has only one series, for example, NUMSERIES = 1, then the
SUR design array is the same as the original design array since SUR requires two or more series to
generate distinct parameter estimates.

Given NUMPARAMS parameters and NUMGROUPS groups with a parameter vector (Parameters) with
NUMGROUPS * NUMPARAMS elements from any of the regression routines, the following MATLAB
code fragment shows how to print a table of SUR parameter estimates with rows that correspond to
each parameter and columns that correspond to each group or series:

fprintf(1,'Seemingly Unrelated Regression Parameter
   Estimates\n');
fprintf(1,'   %7s ',' ');
fprintf(1,'  Group(%3d) ',1:NumGroups);
fprintf(1,'\n');
for i = 1:NumParams
    fprintf(1,'   %7d ',i);
    ii = i;
        for j = 1:NumGroups
            fprintf(1,'%12g ',Param(ii));
            ii = ii + NumParams;
            end
            fprintf(1,'\n');
end
fprintf(1,'\n');
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Seemingly Unrelated Regression Without Missing Data
Form a SUR design using convert2sur:

DesignSUR = convert2sur(Design, Group);

Estimate parameters using mvnrmle:

[Parameters, Covariance] = mvnrmle(Data, DesignSUR); 

Estimate standard errors using mvnrstd:

StdParameters = mvnrstd(Data, DesignSUR, Covariance);

Seemingly Unrelated Regression With Missing Data
Form a SUR design using convert2sur:

DesignSUR = convert2sur(Design, Group);

Estimate parameters using ecmmvnrmle:

[Parameters, Covariance] = ecmmvnrmle(Data, DesignSUR);

Estimate standard errors using ecmmvnrstd:

StdParameters = ecmmvnrstd(Data, DesignSUR, Covariance);

Mean and Covariance Parameter Estimation
Without missing data, you can estimate the mean of your Data with the function mean and the
covariance with the function cov. Nevertheless, the function ecmnmle does this for you if it detects
an absence of missing values. Otherwise, it uses the ECM algorithm to handle missing values.

Estimate parameters using ecmnmle:

[Mean, Covariance] = ecmnmle(Data);

Estimate standard errors using ecmnstd:

StdMean = ecmnstd(Data, Mean, Covariance);

See Also
mvnrmle | mvnrstd | mvnrfish | mvnrobj | ecmmvnrmle | ecmmvnrstd | ecmmvnrfish |
ecmmvnrobj | ecmlsrmle | ecmlsrobj | ecmmvnrstd | ecmmvnrfish | ecmnmle | ecmnstd |
ecmnfish | ecmnhess | ecmnobj | convert2sur | ecmninit

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-7
• “Valuation with Missing Data” on page 9-26
• “Portfolios With Missing Data” on page 9-21
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Troubleshooting Multivariate Normal Regression
This section provides a few pointers to handle various technical and operational difficulties that might
occur.

Biased Estimates
If samples are ignored, the number of samples used in the estimation is less than NumSamples.
Clearly the actual number of samples used must be sufficient to obtain estimates. In addition,
although the model parameters Parameters (or mean estimates Mean) are unbiased maximum
likelihood estimates, the residual covariance estimate Covariance is biased. To convert to an
unbiased covariance estimate, multiply Covariance by

Count/ Count−1 ,

where Count is the actual number of samples used in the estimation with Count ≤ NumSamples.
None of the regression functions perform this adjustment.

Requirements
The regression functions, particularly the estimation functions, have several requirements. First, they
must have consistent values for NumSamples, NumSeries, and NumParams. As a rule, the
multivariate normal regression functions require

Count × NumSeries ≤ max NumParams,  NumSeries × NumSeries+1 /2

and the least-squares regression functions require

Count × NumSeries ≤ NumParams,

where Count is the actual number of samples used in the estimation with

Count≤NumSamples.

Second, they must have enough nonmissing values to converge. Third, they must have a
nondegenerate covariance matrix.

Although some necessary and sufficient conditions can be found in the references, general conditions
for existence and uniqueness of solutions in the missing-data case, do not exist. Nonconvergence is
usually due to an ill-conditioned covariance matrix estimate, which is discussed in greater detail in
“Nonconvergence” on page 9-19.

Slow Convergence
Since worst-case convergence of the ECM algorithm is linear, it is possible to execute hundreds and
even thousands of iterations before termination of the algorithm. If you are estimating with the ECM
algorithm regularly with regular updates, you can use prior estimates as initial guesses for the next
period's estimation. This approach often speeds up things since the default initialization in the
regression functions sets the initial parameters b to zero and the initial covariance C to be the
identity matrix.
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Other improvised approaches are possible although most approaches are problem-dependent. In
particular, for mean and covariance estimation, the estimation function ecmnmle uses a function
ecmninit to obtain an initial estimate.

Nonrandom Residuals
Simultaneous estimates for parameters b and covariances C require C to be positive-definite. So, the
general multivariate normal regression routines require nondegenerate residual errors. If you are
faced with a model that has exact results, the least-squares routine ecmlsrmle still works, although
it provides a least-squares estimate with a singular residual covariance matrix. The other regression
functions fail.

Nonconvergence
Although the regression functions are robust and work for most “typical” cases, they can fail to
converge. The main failure mode is an ill-conditioned covariance matrix, where failures are either soft
or hard. A soft failure wanders endlessly toward a nearly singular covariance matrix and can be
spotted if the algorithm fails to converge after about 100 iterations. If MaxIterations is increased
to 500 and display mode is initiated (with no output arguments), a typical soft failure looks like this.

This case, which is based on 20 observations of five assets with 30% of data missing, shows that the
log-likelihood goes linearly to infinity as the likelihood function goes to 0. In this case, the function
converges but the covariance matrix is effectively singular with a smallest eigenvalue on the order of
machine precision (eps).

For the function ecmnmle, a hard error looks like this:

> In ecmninit at 60
  In ecmnmle at 140
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??? Error using ==> ecmnmle
Full covariance not positive-definite in iteration 218.

From a practical standpoint, if in doubt, test your residual covariance matrix from the regression
routines to ensure that it is positive-definite. This is important because a soft error has a matrix that
appears to be positive-definite but actually has a near-zero-valued eigenvalue to within machine
precision. To do this with a covariance estimate Covariance, use cond(Covariance), where any
value greater than 1/eps should be considered suspect.

If either type of failure occurs, however, note that the regression routine is indicating that something
is probably wrong with the data. (Even with no missing data, two time series that are proportional to
one another produce a singular covariance matrix.)

See Also
mvnrmle | mvnrstd | mvnrfish | mvnrobj | ecmmvnrmle | ecmmvnrstd | ecmmvnrfish |
ecmmvnrobj | ecmlsrmle | ecmlsrobj | ecmmvnrstd | ecmmvnrfish | ecmnmle | ecmnstd |
ecmnfish | ecmnhess | ecmnobj | convert2sur | ecmninit

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-7
• “Valuation with Missing Data” on page 9-26
• “Portfolios With Missing Data” on page 9-21
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Portfolios With Missing Data
This example shows how to use the missing data algorithms for portfolio optimization and for
valuation. This example works with five years of daily total return data for 12 computer technology
stocks, with six hardware and six software companies. The example estimates the mean and
covariance matrix for these stocks, forms efficient frontiers with both a naïve approach and the ECM
approach, and then compares results.

Load the data file.

load ecmtechdemo.mat

This data file contains these three quantities:

• Assets is a cell array of the tickers for the 12 stocks in the example.
• Data is a 1254-by-12 matrix of 1254 daily total returns for each of the 12 stocks.
• Dates is a 1254-by-1 column vector of the dates associated with the data.

The time period for the data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets
is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004
are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values
scattered throughout the past five years.

A naïve approach to the estimation of the mean and covariance for these 12 assets is to eliminate all
days that have missing values for any of the 12 assets. Use the function ecmninit with the
'nanskip' option to do this.

[NaNMean, NaNCovar] = ecmninit(Data,'nanskip');

Contrast the result of this approach with using all available data and the function ecmnmle to
compute the mean and covariance. First, call ecmnmle with no output arguments to establish that
enough data is available to obtain meaningful estimates.

ecmnmle(Data);
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This plot shows that, even with almost 87% of the Google data being NaN values, the algorithm
converges after only four iterations.

Estimate the mean and covariance as computed by ecmnmle.

[ECMMean, ECMCovar] = ecmnmle(Data)

ECMMean = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

ECMCovar = 12×12

    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
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    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
      ⋮

Given estimates for the mean and covariance of asset returns derived from the naïve and ECM
approaches, estimate portfolios, and associated expected returns and risks on the efficient frontier
for both approaches.

[ECMRisk, ECMReturn, ECMWts] = portopt(ECMMean',ECMCovar,10);
[NaNRisk, NaNReturn, NaNWts] = portopt(NaNMean',NaNCovar,10);

Plot the results on the same graph to illustrate the differences.

figure(gcf)
plot(ECMRisk,ECMReturn,'-bo','MarkerFaceColor','b','MarkerSize', 3);
hold on
plot(NaNRisk,NaNReturn,'-ro','MarkerFaceColor','r','MarkerSize', 3);
title('\bfEfficient Frontiers Under Various Assumptions');
legend('ECM','NaN','Location','SouthEast');
xlabel('\bfStd. Deviation of Returns');
ylabel('\bfMean of Returns');
hold off
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Clearly, the naïve approach is optimistic about the risk-return trade-offs for this universe of 12
technology stocks. The proof, however, lies in the portfolio weights. To view the weights:

Assets

Assets = 1x12 cell
  Columns 1 through 6

    {'AAPL'}    {'AMZN'}    {'CSCO'}    {'DELL'}    {'EBAY'}    {'GOOG'}

  Columns 7 through 12

    {'HPQ'}    {'IBM'}    {'INTC'}    {'MSFT'}    {'ORCL'}    {'YHOO'}

ECMWts

ECMWts = 10×12

    0.0358    0.0011         0         0         0    0.0989    0.0535    0.4676         0    0.3431         0         0
    0.0654    0.0110         0         0         0    0.1877    0.0179    0.3899         0    0.3282         0         0
    0.0923    0.0194         0         0         0    0.2784         0    0.3025         0    0.3074         0         0
    0.1165    0.0264         0         0         0    0.3712         0    0.2054         0    0.2806         0         0
    0.1407    0.0334         0         0         0    0.4639         0    0.1083         0    0.2538         0         0
    0.1648    0.0403         0         0         0    0.5566         0    0.0111         0    0.2271         0         0
    0.1755    0.0457         0         0         0    0.6532         0         0         0    0.1255         0         0
    0.1845    0.0509         0         0         0    0.7502         0         0         0    0.0143         0         0
    0.1093    0.0174         0         0         0    0.8733         0         0         0         0         0         0
         0         0         0         0         0    1.0000         0         0         0         0         0         0

NaNWts

NaNWts = 10×12

         0         0         0    0.1185         0    0.0522    0.0824    0.1779         0    0.5691         0         0
    0.0576         0         0    0.1219         0    0.0854    0.1274    0.0460         0    0.5617         0         0
    0.1248         0         0    0.0952         0    0.1195    0.1674         0         0    0.4802    0.0129         0
    0.1969         0         0    0.0529         0    0.1551    0.2056         0         0    0.3621    0.0274         0
    0.2690         0         0    0.0105         0    0.1906    0.2438         0         0    0.2441    0.0419         0
    0.3414         0         0         0         0    0.2265    0.2782         0         0    0.0988    0.0551         0
    0.4235         0         0         0         0    0.2639    0.2788         0         0         0    0.0337         0
    0.5245         0         0         0         0    0.3034    0.1721         0         0         0         0         0
    0.6269         0         0         0         0    0.3425    0.0306         0         0         0         0         0
    1.0000         0         0         0         0         0         0         0         0         0         0         0

The naïve portfolios in NaNWts tend to favor AAPL which happened to do well over the period from
the Google IPO to the end of the estimation period, while the ECM portfolios in ECMWts tend to
underweight AAPL and to recommend increased weights in GOOG relative to the naïve weights.

To evaluate the impact of the estimation error and, in particular, the effect of missing data, use
ecmnstd to calculate standard errors. Although it is possible to estimate the standard errors for both
the mean and covariance, the standard errors for the mean estimates alone are usually the main
quantities of interest.

StdMeanF = ecmnstd(Data,ECMMean,ECMCovar,'fisher');

9 Regression with Missing Data

9-24



Calculate standard errors that use the data-generated Hessian matrix (which accounts for the
possible loss of information due to missing data) with the option 'hessian'.

StdMeanH = ecmnstd(Data,ECMMean,ECMCovar,'hessian');

The difference in the standard errors shows the increase in uncertainty of estimation of asset
expected returns due to missing data. To view the differences:

Assets

Assets = 1x12 cell
  Columns 1 through 6

    {'AAPL'}    {'AMZN'}    {'CSCO'}    {'DELL'}    {'EBAY'}    {'GOOG'}

  Columns 7 through 12

    {'HPQ'}    {'IBM'}    {'INTC'}    {'MSFT'}    {'ORCL'}    {'YHOO'}

StdMeanH'

ans = 1×12

    0.0010    0.0014    0.0010    0.0009    0.0011    0.0021    0.0009    0.0006    0.0009    0.0007    0.0010    0.0012

StdMeanF'

ans = 1×12

    0.0010    0.0014    0.0010    0.0009    0.0011    0.0013    0.0009    0.0006    0.0009    0.0007    0.0010    0.0012

StdMeanH' - StdMeanF'

ans = 1×12
10-3 ×

   -0.0000    0.0021   -0.0000   -0.0000   -0.0000    0.7742   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000

The two assets with missing data, AMZN and GOOG, are the only assets to have differences due to
missing information.

See Also
mvnrmle | mvnrstd | mvnrfish | mvnrobj | ecmmvnrmle | ecmmvnrstd | ecmmvnrfish |
ecmmvnrobj | ecmlsrmle | ecmlsrobj | ecmmvnrstd | ecmmvnrfish | ecmnmle | ecmnstd |
ecmnfish | ecmnhess | ecmnobj | convert2sur | ecmninit

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-7
• “Valuation with Missing Data” on page 9-26

 Portfolios With Missing Data

9-25



Valuation with Missing Data
In this section...
“Introduction” on page 9-26
“Capital Asset Pricing Model” on page 9-26
“Estimation of the CAPM” on page 9-27
“Estimation with Missing Data” on page 9-27
“Estimation of Some Technology Stock Betas” on page 9-27
“Grouped Estimation of Some Technology Stock Betas” on page 9-29
“References” on page 9-31

Introduction
The Capital Asset Pricing Model (CAPM) is a venerable but often maligned tool to characterize
comovements between asset and market prices. Although many issues arise in CAPM implementation
and interpretation, one problem that practitioners face is to estimate the coefficients of the CAPM
with incomplete stock price data.

This example shows how to use the missing data regression functions to estimate the coefficients of
the CAPM. You can run the example directly using CAPMdemo.m located at matlabroot/toolbox/
finance/findemos.

Capital Asset Pricing Model
Given a host of assumptions that can be found in the references (see Sharpe [11], Lintner [6], Jarrow
[5], and Sharpe, et. al. [12]), the CAPM concludes that asset returns have a linear relationship with
market returns. Specifically, given the return of all stocks that constitute a market denoted as M and
the return of a riskless asset denoted as C, the CAPM states that the return of each asset Ri in the
market has the expectational form

E[Ri] = αi + C + βi(E[M]− C)

for assets i = 1, ..., n, where βi is a parameter that specifies the degree of comovement between a
given asset and the underlying market. In other words, the expected return of each asset is equal to
the return on a riskless asset plus a risk-adjusted expected market return net of riskless asset
returns. The collection of parameters β1, ..., βn is called asset betas.

The beta of an asset has the form

βi =
cov Ri, M

var M ,

which is the ratio of the covariance between asset and market returns divided by the variance of
market returns.Beta is the price volatility of a financial instrument relative to the price volatility of a
market or index as a whole. Beta is commonly used with respect to equities. A high-beta instrument is
riskier than a low-beta instrument. If an asset has a beta = 1, the asset is said to move with the
market; if an asset has a beta > 1, the asset is said to be more volatile than the market. Conversely, if
an asset has a beta < 1, the asset is said to be less volatile than the market.
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Estimation of the CAPM
The standard CAPM model is a linear model with additional parameters for each asset to characterize
residual errors. For each of n assets with m samples of observed asset returns Rk,i, market returns
Mk, and riskless asset returns Ck, the estimation model has the form

Rk, i = αi + Ck + βi(Mk− Ck) + Vk, i

for samples k = 1, ..., m and assets i = 1, ..., n, where αi is a parameter that specifies the
nonsystematic return of an asset, βi is the asset beta, and Vk,i is the residual error for each asset with
associated random variable Vi.

The collection of parameters α1, ..., αn are called asset alphas. The strict form of the CAPM specifies
that alphas must be zero and that deviations from zero are the result of temporary disequilibria. In
practice, however, assets may have nonzero alphas, where much of active investment management is
devoted to the search for assets with exploitable nonzero alphas.

To allow for the possibility of nonzero alphas, the estimation model generally seeks to estimate alphas
and to perform tests to determine if the alphas are statistically equal to zero.

The residual errors Vi are assumed to have moments

E Vi = 0

and

E ViV j = Si j

for assets i,j = 1, ..., n, where the parameters S11, ..., Snn are called residual or nonsystematic
variances/covariances.

The square root of the residual variance of each asset, for example, sqrt(Sii) for i = 1, ..., n, is said to
be the residual or nonsystematic risk of the asset since it characterizes the residual variation in asset
prices that are not explained by variations in market prices.

Estimation with Missing Data
Although betas can be estimated for companies with sufficiently long histories of asset returns, it is
difficult to estimate betas for recent IPOs. However, if a collection of sufficiently observable
companies exists that can be expected to have some degree of correlation with the new company's
stock price movements, that is, companies within the same industry as the new company, it is possible
to obtain imputed estimates for new company betas with the missing-data regression routines.

Estimation of Some Technology Stock Betas
To illustrate how to use the missing-data regression routines, estimate betas for 12 technology stocks,
where a single stock (GOOG) is an IPO.

1 Load dates, total returns, and ticker symbols for the 12 stocks from the MAT-file CAPMuniverse.

load CAPMuniverse
whos Assets Data Dates

  Name           Size             Bytes  Class     Attributes
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  Assets         1x14              1568  cell                
  Data        1471x14            164752  double              
  Dates       1471x1              11768  double   

The assets in the model have the following symbols, where the last two series are proxies for the
market and the riskless asset:
Assets(1:7)
Assets(8:14)

ans = 

  'AAPL'    'AMZN'    'CSCO'    'DELL'    'EBAY'    'GOOG'    'HPQ'

ans = 

  'IBM'    'INTC'    'MSFT'    'ORCL'    'YHOO'    'MARKET'    'CASH'

The data covers the period from January 1, 2000 to November 7, 2005 with daily total returns.
Two stocks in this universe have missing values that are represented by NaNs. One of the two
stocks had an IPO during this period and, so, has significantly less data than the other stocks.

2 Compute separate regressions for each stock, where the stocks with missing data have estimates
that reflect their reduced observability.
[NumSamples, NumSeries] = size(Data);
NumAssets = NumSeries - 2;

StartDate = Dates(1);
EndDate = Dates(end);

fprintf(1,'Separate regressions with ');
fprintf(1,'daily total return data from %s to %s ...\n', ...
    datestr(StartDate,1),datestr(EndDate,1));
fprintf(1,'  %4s %-20s %-20s %-20s\n','','Alpha','Beta','Sigma');
fprintf(1,'  ---- -------------------- ');
fprintf(1,'-------------------- --------------------\n');

for i = 1:NumAssets
% Set up separate asset data and design matrices
  TestData = zeros(NumSamples,1);
  TestDesign = zeros(NumSamples,2);

  TestData(:) = Data(:,i) - Data(:,14);
  TestDesign(:,1) = 1.0;
  TestDesign(:,2) = Data(:,13) - Data(:,14);

% Estimate CAPM for each asset separately
  [Param, Covar] = ecmmvnrmle(TestData, TestDesign);

 % Estimate ideal standard errors for covariance parameters
  [StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, ... 
      Covar, 'fisher');

% Estimate sample standard errors for model parameters
  StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');

% Set up results for output
  Alpha = Param(1);
  Beta = Param(2);
  Sigma = sqrt(Covar);

  StdAlpha = StdParam(1);
  StdBeta = StdParam(2);
  StdSigma = sqrt(StdCovar);

% Display estimates
  fprintf('  %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ...
     Assets{i},Alpha(1),abs(Alpha(1)/StdAlpha(1)), ...
     Beta(1),abs(Beta(1)/StdBeta(1)),Sigma(1),StdSigma(1));
end
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This code fragment generates the following table.
Separate regressions with daily total return data from 03-Jan-2000 
to 07-Nov-2005 ...
      Alpha                Beta                 Sigma 
-------------------- -------------------- --------------------
AAPL    0.0012 (  1.3882)    1.2294 ( 17.1839)    0.0322 (  0.0062)
AMZN    0.0006 (  0.5326)    1.3661 ( 13.6579)    0.0449 (  0.0086)
CSCO   -0.0002 (  0.2878)    1.5653 ( 23.6085)    0.0298 (  0.0057)
DELL   -0.0000 (  0.0368)    1.2594 ( 22.2164)    0.0255 (  0.0049)
EBAY    0.0014 (  1.4326)    1.3441 ( 16.0732)    0.0376 (  0.0072)
GOOG    0.0046 (  3.2107)    0.3742 (  1.7328)    0.0252 (  0.0071)
HPQ     0.0001 (  0.1747)    1.3745 ( 24.2390)    0.0255 (  0.0049)
IBM    -0.0000 (  0.0312)    1.0807 ( 28.7576)    0.0169 (  0.0032)
INTC    0.0001 (  0.1608)    1.6002 ( 27.3684)    0.0263 (  0.0050)
MSFT   -0.0002 (  0.4871)    1.1765 ( 27.4554)    0.0193 (  0.0037)
ORCL    0.0000 (  0.0389)    1.5010 ( 21.1855)    0.0319 (  0.0061)
YHOO    0.0001 (  0.1282)    1.6543 ( 19.3838)    0.0384 (  0.0074)

The Alpha column contains alpha estimates for each stock that are near zero as expected. In
addition, the t-statistics (which are enclosed in parentheses) generally reject the hypothesis that
the alphas are nonzero at the 99.5% level of significance.

The Beta column contains beta estimates for each stock that also have t-statistics enclosed in
parentheses. For all stocks but GOOG, the hypothesis that the betas are nonzero is accepted at
the 99.5% level of significance. It seems, however, that GOOG does not have enough data to
obtain a meaningful estimate for beta since its t-statistic would imply rejection of the hypothesis
of a nonzero beta.

The Sigma column contains residual standard deviations, that is, estimates for nonsystematic
risks. Instead of t-statistics, the associated standard errors for the residual standard deviations
are enclosed in parentheses.

Grouped Estimation of Some Technology Stock Betas
To estimate stock betas for all 12 stocks, set up a joint regression model that groups all 12 stocks
within a single design. (Since each stock has the same design matrix, this model is actually an
example of seemingly unrelated regression.) The routine to estimate model parameters is
ecmmvnrmle, and the routine to estimate standard errors is ecmmvnrstd.

Because GOOG has a significant number of missing values, a direct use of the missing data routine
ecmmvnrmle takes 482 iterations to converge. This can take a long time to compute. For the sake of
brevity, the parameter and covariance estimates after the first 480 iterations are contained in a MAT-
file and are used as initial estimates to compute stock betas.

load CAPMgroupparam
whos Param0 Covar0

Name         Size            Bytes  Class     Attributes

  Covar0      12x12             1152  double              
  Param0      24x1               192  double   

Now estimate the parameters for the collection of 12 stocks.
fprintf(1,'\n');
fprintf(1,'Grouped regression with ');
fprintf(1,'daily total return data from %s to %s ...\n', ...
    datestr(StartDate,1),datestr(EndDate,1));
fprintf(1,'  %4s %-20s %-20s %-20s\n','','Alpha','Beta','Sigma');
fprintf(1,'  ---- -------------------- ');
fprintf(1,'-------------------- --------------------\n');

 Valuation with Missing Data

9-29



NumParams = 2 * NumAssets;

% Set up grouped asset data and design matrices
TestData = zeros(NumSamples, NumAssets);
TestDesign = cell(NumSamples, 1);
Design = zeros(NumAssets, NumParams);

for k = 1:NumSamples
    for i = 1:NumAssets
        TestData(k,i) = Data(k,i) - Data(k,14);
        Design(i,2*i - 1) = 1.0;
        Design(i,2*i) = Data(k,13) - Data(k,14);
    end
    TestDesign{k} = Design;
end

% Estimate CAPM for all assets together with initial parameter
% estimates
[Param, Covar] = ecmmvnrmle(TestData, TestDesign, [], [], [],... 
    Param0, Covar0);

% Estimate ideal standard errors for covariance parameters
[StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, Covar,...
    'fisher');

% Estimate sample standard errors for model parameters
StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');

% Set up results for output
Alpha = Param(1:2:end-1);
Beta = Param(2:2:end);
Sigma = sqrt(diag(Covar));

StdAlpha = StdParam(1:2:end-1);
StdBeta = StdParam(2:2:end);
StdSigma = sqrt(diag(StdCovar));

% Display estimates
for i = 1:NumAssets
  fprintf('  %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ... 
  Assets{i},Alpha(i),abs(Alpha(i)/StdAlpha(i)), ...
  Beta(i),abs(Beta(i)/StdBeta(i)),Sigma(i),StdSigma(i));
end

This code fragment generates the following table.
Grouped regression with daily total return data from 03-Jan-2000 
to 07-Nov-2005 ...
       Alpha                 Beta              Sigma 
---------------------- ----------------------------------------
AAPL    0.0012 (  1.3882)    1.2294 ( 17.1839)    0.0322 (  0.0062)
AMZN    0.0007 (  0.6086)    1.3673 ( 13.6427)    0.0450 (  0.0086)
CSCO   -0.0002 (  0.2878)    1.5653 ( 23.6085)    0.0298 (  0.0057)
DELL   -0.0000 (  0.0368)    1.2594 ( 22.2164)    0.0255 (  0.0049)
EBAY    0.0014 (  1.4326)    1.3441 ( 16.0732)    0.0376 (  0.0072)
GOOG    0.0041 (  2.8907)    0.6173 (  3.1100)    0.0337 (  0.0065)
HPQ     0.0001 (  0.1747)    1.3745 ( 24.2390)    0.0255 (  0.0049)
IBM    -0.0000 (  0.0312)    1.0807 ( 28.7576)    0.0169 (  0.0032)
INTC    0.0001 (  0.1608)    1.6002 ( 27.3684)    0.0263 (  0.0050)
MSFT   -0.0002 (  0.4871)    1.1765 ( 27.4554)    0.0193 (  0.0037)
ORCL    0.0000 (  0.0389)    1.5010 ( 21.1855)    0.0319 (  0.0061)
YHOO    0.0001 (  0.1282)    1.6543 ( 19.3838)    0.0384 (  0.0074)

Although the results for complete-data stocks are the same, the beta estimates for AMZN and GOOG
(the two stocks with missing values) are different from the estimates derived for each stock
separately. Since AMZN has few missing values, the differences in the estimates are small. With
GOOG, however, the differences are more pronounced.
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The t-statistic for the beta estimate of GOOG is now significant at the 99.5% level of significance.
However, the t-statistics for beta estimates are based on standard errors from the sample Hessian
which, in contrast to the Fisher information matrix, accounts for the increased uncertainty in an
estimate due to missing values. If the t-statistic is obtained from the more optimistic Fisher
information matrix, the t-statistic for GOOG is 8.25. Thus, despite the increase in uncertainty due to
missing data, GOOG nonetheless has a statistically significant estimate for beta.

Finally, note that the beta estimate for GOOG is 0.62 — a value that may require some explanation.
Although the market has been volatile over this period with sideways price movements, GOOG has
steadily appreciated in value. So, it is less tightly correlated with the market, implying that it is less
volatile than the market (beta < 1).
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Related Examples
• “Multivariate Normal Regression” on page 9-2
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• “Maximum Likelihood Estimation with Missing Data” on page 9-7
• “Multivariate Normal Regression Types” on page 9-13
• “Portfolios With Missing Data” on page 9-21
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Capital Asset Pricing Model with Missing Data
This example illustrates implementation of the Capital Asset Pricing Model (CAPM) in the presence of
missing data.

The Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) is a venerable but often-maligned tool to characterize
comovements between asset and market prices. Although many issues arise in its implementation and
interpretation, one problem that practitioners face is to estimate the coefficients of the CAPM with
incomplete stock price data.

Given a host of assumptions that can be found in the references (see Sharpe [3 on page 9-0 ],
Lintner [2 on page 9-0 ], Jarrow [1 on page 9-0 ], and Sharpe, et. al. [4 on page 9-0 ]), the CAPM
concludes that asset returns have a linear relationship with market returns. Specifically, given the
return of all stocks that constitute a market denoted as M and the return of a riskless asset denoted as
C, the CAPM states that the return of each asset R(i) in the market has the expectational form

E[R(i)] = C + b(i) * (E[M] - C)

for assets i = 1, ... , n, where b(i) is a parameter that specifies the degree of comovement
between a given asset and the underlying market. In words, the expected return of each asset is
equal to the return on a riskless asset plus a risk-adjusted expected market return net of riskless
asset returns. The collection of parameters b(1), ... , b(n) are called asset betas.

Note that the beta of an asset has the form

b(i) = cov(R(i),M)/var(M)

which is the ratio of the covariance between asset and market returns divided by the variance of
market returns. If an asset has a beta equal to 1, the asset is said to move with the market; if an asset
has a beta greater 1, the asset is said to be more volatile than the market; and if an asset has a beta
less than 1, the asset is said to be less volatile than the market.

Estimation of the CAPM

The standard form of the CAPM model for estimation is a linear model with additional parameters for
each asset to characterize residual errors. For each of n assets with m samples of observed asset
returns R(k, i), market returns M(k), and riskless asset returns C(k), the estimation model has
the form

R(k,i) = a(i) + C(k) + b(i) * (M(k) - C(k)) + V(k,i)

for samples k = 1, ... , m and assets i = 1, ... , n, where a(i) is a parameter that
specifies the non-systematic return of an asset, b(i) is the asset beta, and V(k,i) is the residual
error for each asset with associated random variable V(i).

The collection of parameters a(1), ... , a(n) are called asset alphas. The strict form of the
CAPM specifies that alphas must be zero and that deviations from zero are the result of temporary
disequilibria. In practice, however, assets may have non-zero alphas, where much of active
investment management is devoted to the search for assets with exploitable non-zero alphas.

To allow for the possibility of non-zero alphas, the estimation model generally seeks to estimate
alphas and to perform tests to determine if the alphas are statistically equal to zero.
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The residual errors V(i) are assumed to have moments

E[V(i)] = 0

and

E[V(i) * V(j)] = S(i,j)

for assets i,j = 1, ... , n, where the parameters S(1,1), ... , S(n,n) are called residual
or non-systematic variances/covariances.

The square root of the residual variance of each asset, i.e., sqrt(S(i,i)) for i = 1, ... , n, is
said to be the residual or non-systematic risk of the asset since it characterizes the residual variation
in asset prices that cannot be explained by variations in market prices.

Estimation with Missing Data

Although betas can be estimated for companies with sufficiently long histories of asset returns, it is
extremely difficult to estimate betas for recent IPOs. However, if a collection of sufficiently-
observable companies exists that can be expected to have some degree of correlation with the new
company's stock price movements, for example, companies within the same industry as the new
company, then it is possible to obtain imputed estimates for new company betas with the missing-data
regression routines in the Financial Toolbox™.

Separate Estimation of Some Technology Stock Betas

To illustrate how to use the missing-data regression routines, we will estimate betas for twelve
technology stocks, where one stock (GOOG) is an IPO.

First, load dates, total returns, and ticker symbols for the twelve stocks from the MAT-file
CAPMuniverse.

load CAPMuniverse
whos Assets Data Dates

  Name           Size             Bytes  Class     Attributes

  Assets         1x14              1568  cell                
  Data        1471x14            164752  double              
  Dates       1471x1              11768  double              

Dates = datetime(Dates,'ConvertFrom','datenum');

The assets in the model have the following symbols, where the last two series are proxies for the
market and the riskless asset.

Assets(1:7)

ans = 1x7 cell
  Columns 1 through 6

    {'AAPL'}    {'AMZN'}    {'CSCO'}    {'DELL'}    {'EBAY'}    {'GOOG'}

  Column 7

    {'HPQ'}
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Assets(8:14)

ans = 1x7 cell
  Columns 1 through 6

    {'IBM'}    {'INTC'}    {'MSFT'}    {'ORCL'}    {'YHOO'}    {'MARKET'}

  Column 7

    {'CASH'}

The data covers the period from January 1, 2000 to November 7, 2005 with daily total returns. Two
stocks in this universe have missing values that are represented by NaNs. One of the two stocks had
an IPO during this period and, consequently, has significantly less data than the other stocks.

The first step is to compute separate regressions for each stock, where the stocks with missing data
have estimates that reflect their reduced observability.

[NumSamples, NumSeries] = size(Data);
NumAssets = NumSeries - 2;

StartDate = Dates(1);
EndDate = Dates(end);

Alpha = NaN(1, length(NumAssets));
Beta = NaN(1, length(NumAssets));
Sigma = NaN(1, length(NumAssets));
StdAlpha = NaN(1, length(NumAssets));
StdBeta = NaN(1, length(NumAssets));
StdSigma = NaN(1, length(NumAssets));
for i = 1:NumAssets
    % Set up separate asset data and design matrices
    TestData = zeros(NumSamples,1);
    TestDesign = zeros(NumSamples,2);

    TestData(:) = Data(:,i) - Data(:,14);
    TestDesign(:,1) = 1.0;
    TestDesign(:,2) = Data(:,13) - Data(:,14);

    % Estimate the CAPM for each asset separately.
    [Param, Covar] = ecmmvnrmle(TestData, TestDesign);

    % Estimate the ideal standard errors for covariance parameters.
    [StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, Covar, 'fisher');
    
    % Estimate the sample standard errors for model parameters.
    StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');

    % Set up results for the output.
    Alpha(i) = Param(1);
    Beta(i) = Param(2);
    Sigma(i) = sqrt(Covar);

    StdAlpha(i) = StdParam(1);
    StdBeta(i) = StdParam(2);
    StdSigma(i) = sqrt(StdCovar);
end
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displaySummary('Separate', StartDate, EndDate, NumAssets, Assets, Alpha, StdAlpha, Beta, StdBeta, Sigma, StdSigma)

Separate regression with daily total return data from 03-Jan-2000 to 07-Nov-2005 ...
       Alpha                Beta                 Sigma               
  ---- -------------------- -------------------- --------------------
  AAPL    0.0012 (  1.3882)    1.2294 ( 17.1839)    0.0322 (  0.0062)
  AMZN    0.0006 (  0.5326)    1.3661 ( 13.6579)    0.0449 (  0.0086)
  CSCO   -0.0002 (  0.2878)    1.5653 ( 23.6085)    0.0298 (  0.0057)
  DELL   -0.0000 (  0.0368)    1.2594 ( 22.2164)    0.0255 (  0.0049)
  EBAY    0.0014 (  1.4326)    1.3441 ( 16.0732)    0.0376 (  0.0072)
  GOOG    0.0046 (  3.2107)    0.3742 (  1.7328)    0.0252 (  0.0071)
   HPQ    0.0001 (  0.1747)    1.3745 ( 24.2390)    0.0255 (  0.0049)
   IBM   -0.0000 (  0.0312)    1.0807 ( 28.7576)    0.0169 (  0.0032)
  INTC    0.0001 (  0.1608)    1.6002 ( 27.3684)    0.0263 (  0.0050)
  MSFT   -0.0002 (  0.4871)    1.1765 ( 27.4554)    0.0193 (  0.0037)
  ORCL    0.0000 (  0.0389)    1.5010 ( 21.1855)    0.0319 (  0.0061)
  YHOO    0.0001 (  0.1282)    1.6543 ( 19.3838)    0.0384 (  0.0074)

The Alpha column contains alpha estimates for each stock that are near zero as expected. In
addition, the t-statistics (which are enclosed in parentheses) generally reject the hypothesis that the
alphas are nonzero at the 99.5% level of significance.

The Beta column contains beta estimates for each stock that also have t-statistics enclosed in
parentheses. For all stocks but GOOG, the hypothesis that the betas are nonzero is accepted at the
99.5% level of significance. It would seem, however, that GOOG does not have enough data to obtain
a meaningful estimate for beta since its t-statistic would imply rejection of the hypothesis of a
nonzero beta.

The Sigma column contains residual standard deviations, that is, estimates for non-systematic risks.
Instead of t-statistics, the associated standard errors for the residual standard deviations are
enclosed in parentheses.

Grouped Estimation of Some Technology Stock Betas

To estimate stock betas for all twelve stocks, set up a joint regression model that groups all twelve
stocks within a single design (since each stock has the same design matrix, this model is actually an
example of seemingly-unrelated regression). The function to estimate model parameters is
ecmmvnrmle and the function to estimate standard errors is ecmmvnrstd.

Since GOOG has a significant number of missing values, a direct use of the missing data function
ecmmvnrmle takes 482 iterations to converge. This can take a long time to compute. For the sake of
brevity, the parameter and covariance estimates after the first 480 iterations are contained in a MAT-
file (CAPMgroupparam) and is used as initial estimates to compute stock betas.

load CAPMgroupparam
whos Param0 Covar0

  Name         Size            Bytes  Class     Attributes

  Covar0      12x12             1152  double              
  Param0      24x1               192  double              

Now estimate the parameters for the collection of twelve stocks.

NumParams = 2 * NumAssets;
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% Set up the grouped asset data and design matrices.
TestData = zeros(NumSamples, NumAssets);
TestDesign = cell(NumSamples, 1);
Design = zeros(NumAssets, NumParams);

for    k = 1:NumSamples
    for i = 1:NumAssets
        TestData(k,i) = Data(k,i) - Data(k,14);
        Design(i,2*i - 1) = 1.0;
        Design(i,2*i) = Data(k,13) - Data(k,14);
    end
    TestDesign{k} = Design;
end

% Estimate the CAPM for all assets together with initial parameter estimates.
[Param, Covar] = ecmmvnrmle(TestData, TestDesign, [], [], [], Param0, Covar0);

% Estimate the ideal standard errors for covariance parameters.
[StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, Covar, 'fisher');

% Estimate the sample standard errors for model parameters.
StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');

% Set up results for the output.
Alpha = Param(1:2:end-1);
Beta = Param(2:2:end);
Sigma = sqrt(diag(Covar));

StdAlpha = StdParam(1:2:end-1);
StdBeta = StdParam(2:2:end);
StdSigma = sqrt(diag(StdCovar));

displaySummary('Grouped', StartDate, EndDate, NumAssets, Assets, Alpha, StdAlpha, Beta, StdBeta, Sigma, StdSigma)

Grouped regression with daily total return data from 03-Jan-2000 to 07-Nov-2005 ...
       Alpha                Beta                 Sigma               
  ---- -------------------- -------------------- --------------------
  AAPL    0.0012 (  1.3882)    1.2294 ( 17.1839)    0.0322 (  0.0062)
  AMZN    0.0007 (  0.6086)    1.3673 ( 13.6427)    0.0450 (  0.0086)
  CSCO   -0.0002 (  0.2878)    1.5653 ( 23.6085)    0.0298 (  0.0057)
  DELL   -0.0000 (  0.0368)    1.2594 ( 22.2164)    0.0255 (  0.0049)
  EBAY    0.0014 (  1.4326)    1.3441 ( 16.0732)    0.0376 (  0.0072)
  GOOG    0.0041 (  2.8907)    0.6173 (  3.1100)    0.0337 (  0.0065)
   HPQ    0.0001 (  0.1747)    1.3745 ( 24.2390)    0.0255 (  0.0049)
   IBM   -0.0000 (  0.0312)    1.0807 ( 28.7576)    0.0169 (  0.0032)
  INTC    0.0001 (  0.1608)    1.6002 ( 27.3684)    0.0263 (  0.0050)
  MSFT   -0.0002 (  0.4871)    1.1765 ( 27.4554)    0.0193 (  0.0037)
  ORCL    0.0000 (  0.0389)    1.5010 ( 21.1855)    0.0319 (  0.0061)
  YHOO    0.0001 (  0.1282)    1.6543 ( 19.3838)    0.0384 (  0.0074)

Although the results for complete-data stocks are the same, notice that the beta estimates for AMZN
and GOOG (which are the two stocks with missing values) are different from the estimates derived for
each stock separately. Since AMZN has few missing values, the differences in the estimates are small.
With GOOG, however, the differences are more pronounced.

The t-statistic for the beta estimate of GOOG is now significant at the 99.5% level of significance.
Note, however, that the t-statistics for beta estimates are based on standard errors from the sample
Hessian which, in contrast to the Fisher information matrix, accounts for the increased uncertainty in
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an estimate due to missing values. If the t-statistic is obtained from the more optimistic Fisher
information matrix, the t-statistic for GOOG is 8.25. Thus, despite the increase in uncertainty due to
missing data, GOOG nonetheless has a statistically-significant estimate for beta.

Finally, note that the beta estimate for GOOG is 0.62 - a value that may require some explanation.
Whereas the market has been volatile over this period with sideways price movements, GOOG has
steadily appreciated in value. Consequently, it is less correlated than the market, which, in turn,
implies that it is less volatile than the market with a beta less than 1.
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Utility Functions

function displaySummary(regressionType, StartDate, EndDate, NumAssets, Assets, Alpha, StdAlpha, Beta, StdBeta, Sigma, StdSigma)
fprintf(1,'%s regression with daily total return data from %s to %s ...\n', ...
    regressionType, string(StartDate),string(EndDate));
fprintf(1,'  %4s %-20s %-20s %-20s\n',' ','Alpha','Beta','Sigma');
fprintf(1,'  ---- -------------------- -------------------- --------------------\n');

for i = 1:NumAssets
    fprintf('  %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ...
        Assets{i},Alpha(i),abs(Alpha(i)/StdAlpha(i)), ...
        Beta(i),abs(Beta(i)/StdBeta(i)),Sigma(i),StdSigma(i));
end

end
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Solving Sample Problems

• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
• “Plotting an Efficient Frontier Using portopt” on page 10-22
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
• “Bond Portfolio Optimization” on page 10-30
• “Hedging an Option Using Reinforcement Learning Toolbox” on page 10-40
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Sensitivity of Bond Prices to Interest Rates
Macaulay and modified duration measure the sensitivity of a bond's price to changes in the level of
interest rates. Convexity measures the change in duration for small shifts in the yield curve, and thus
measures the second-order price sensitivity of a bond. Both measures can gauge the vulnerability of a
bond portfolio's value to changes in the level of interest rates.

Alternatively, analysts can use duration and convexity to construct a bond portfolio that is partly
hedged against small shifts in the term structure. If you combine bonds in a portfolio whose duration
is zero, the portfolio is insulated, to some extent, against interest rate changes. If the portfolio
convexity is also zero, this insulation is even better. However, since hedging costs money or reduces
expected return, you must know how much protection results from hedging duration alone compared
to hedging both duration and convexity.

This example demonstrates a way to analyze the relative importance of duration and convexity for a
bond portfolio using some of the SIA-compliant bond functions in Financial Toolbox software. Using
duration, it constructs a first-order approximation of the change in portfolio price to a level shift in
interest rates. Then, using convexity, it calculates a second-order approximation. Finally, it compares
the two approximations with the true price change resulting from a change in the yield curve.

Step 1
Define three bonds using values for the settlement date, maturity date, face value, and coupon rate.
For simplicity, accept default values for the coupon payment periodicity (semiannual), end-of-month
payment rule (rule in effect), and day-count basis (actual/actual). Also, synchronize the coupon
payment structure to the maturity date (no odd first or last coupon dates). Any inputs for which
defaults are accepted are set to empty matrices ([]) as placeholders where appropriate.

Settle     = '19-Aug-1999';
Maturity   = ['17-Jun-2010'; '09-Jun-2015'; '14-May-2025'];
Face       = [100; 100; 1000];
CouponRate = [0.07; 0.06; 0.045];

Also, specify the yield curve information.

Yields = [0.05; 0.06; 0.065];

Step 2
Use Financial Toolbox functions to calculate the price, modified duration in years, and convexity in
years of each bond.

The true price is quoted (clean) price plus accrued interest.
[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity, 2, 0,...
[], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle, Maturity, 2, 0,...
[], [], [], [], [], Face);

Prices  =  CleanPrice + AccruedInterest

Prices =

  117.7622
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  101.1534
  763.3932

Step 3
Choose a hypothetical amount by which to shift the yield curve (here, 0.2 percentage point or 20
basis points).

dY = 0.002;

Weight the three bonds equally, and calculate the actual quantity of each bond in the portfolio, which
has a total value of $100,000.

PortfolioPrice   = 100000;
PortfolioWeights = ones(3,1)/3;
PortfolioAmounts = PortfolioPrice * PortfolioWeights ./ Prices

PortfolioAmounts =

  283.0562
  329.5324
   43.6647

Step 4
Calculate the modified duration and convexity of the portfolio. The portfolio duration or convexity is a
weighted average of the durations or convexities of the individual bonds. Calculate the first- and
second-order approximations of the percent price change as a function of the change in the level of
interest rates.

PortfolioDuration  = PortfolioWeights' * Durations;
PortfolioConvexity = PortfolioWeights' * Convexities;
PercentApprox1 = -PortfolioDuration * dY * 100

PercentApprox2 =  PercentApprox1 + ...
PortfolioConvexity*dY^2*100/2.0

PercentApprox1 =

   -2.0636

PercentApprox2 =

   -2.0321

Step 5
Estimate the new portfolio price using the two estimates for the percent price change.

PriceApprox1  =  PortfolioPrice + ... 
PercentApprox1 * PortfolioPrice/100 

PriceApprox2  =  PortfolioPrice + ...
PercentApprox2 * PortfolioPrice/100
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PriceApprox1 =

   9.7936e+04

PriceApprox2 =

   9.7968e+04

Step 6
Calculate the true new portfolio price by shifting the yield curve.

[CleanPrice, AccruedInterest] = bndprice(Yields + dY,...
CouponRate, Settle, Maturity, 2, 0, [], [], [], [], [],...
Face);

NewPrice = PortfolioAmounts' * (CleanPrice + AccruedInterest)

NewPrice =

   9.7968e+04

Step 7
Compare the results. The analysis results are as follows:

• The original portfolio price was $100,000.
• The yield curve shifted up by 0.2 percentage point or 20 basis points.
• The portfolio duration and convexity are 10.3181 and 157.6346, respectively. These are needed for

“Bond Portfolio for Hedging Duration and Convexity” on page 10-6.
• The first-order approximation, based on modified duration, predicts the new portfolio price

(PriceApprox1), which is $97,936.37.
• The second-order approximation, based on duration and convexity, predicts the new portfolio price

(PriceApprox2), which is $97,968.90.
• The true new portfolio price (NewPrice) for this yield curve shift is $97,968.51.
• The estimate using duration and convexity is good (at least for this fairly small shift in the yield

curve), but only slightly better than the estimate using duration alone. The importance of
convexity increases as the magnitude of the yield curve shift increases. Try a larger shift (dY) to
see this effect.

The approximation formulas in this example consider only parallel shifts in the term structure,
because both formulas are functions of dY, the change in yield. The formulas are not well-defined
unless each yield changes by the same amount. In actual financial markets, changes in yield curve
level typically explain a substantial portion of bond price movements. However, other changes in the
yield curve, such as slope, may also be important and are not captured here. Also, both formulas give
local approximations whose accuracy deteriorates as dY increases in size. You can demonstrate this
by running the program with larger values of dY.

See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc
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Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
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Bond Portfolio for Hedging Duration and Convexity
This example constructs a bond portfolio to hedge the portfolio of “Sensitivity of Bond Prices to
Interest Rates” on page 10-2. It assumes a long position in (holding) the portfolio, and that three
other bonds are available for hedging. It chooses weights for these three other bonds in a new
portfolio so that the duration and convexity of the new portfolio match those of the original portfolio.
Taking a short position in the new portfolio, in an amount equal to the value of the first portfolio,
partially hedges against parallel shifts in the yield curve.

Recall that portfolio duration or convexity is a weighted average of the durations or convexities of the
individual bonds in a portfolio. As in the previous example, this example uses modified duration in
years and convexity in years. The hedging problem therefore becomes one of solving a system of
linear equations, which is an easy thing to do in MATLAB software.

Step 1
Define three bonds available for hedging the original portfolio. Specify values for the settlement date,
maturity date, face value, and coupon rate. For simplicity, accept default values for the coupon
payment periodicity (semiannual), end-of-month payment rule (rule in effect), and day-count basis
(actual/actual). Also, synchronize the coupon payment structure to the maturity date (that is, no odd
first or last coupon dates). Set any inputs for which defaults are accepted to empty matrices ([]) as
placeholders where appropriate. The intent is to hedge against duration and convexity and constrain
total portfolio price.

Settle     = '19-Aug-1999';
Maturity   = ['15-Jun-2005'; '02-Oct-2010'; '01-Mar-2025'];
Face       = [500; 1000; 250];
CouponRate = [0.07; 0.066; 0.08];

Also, specify the yield curve for each bond.

Yields = [0.06; 0.07; 0.075];

Step 2
Use Financial Toolbox functions to calculate the price, modified duration in years, and convexity in
years of each bond.

The true price is quoted (clean price plus accrued interest).
[CleanPrice, AccruedInterest] = bndprice(Yields,CouponRate,... 
Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity,...
2, 0, [], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle,... 
Maturity, 2, 0, [], [], [], [], [], Face);

Prices  =  CleanPrice + AccruedInterest

Prices =

  530.4248
  994.4065
  273.4051
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Step 3
Set up and solve the system of linear equations whose solution is the weights of the new bonds in a
new portfolio with the same duration and convexity as the original portfolio. In addition, scale the
weights to sum to 1; that is, force them to be portfolio weights. You can then scale this unit portfolio
to have the same price as the original portfolio. Recall that the original portfolio duration and
convexity are 10.3181 and 157.6346, respectively. Also, note that the last row of the linear system
ensures that the sum of the weights is unity.

A = [Durations'
     Convexities'
     1 1 1];

b = [ 10.3181
     157.6346
       1];

Weights = A\b

Weights =

   -0.3043
    0.7130
    0.5913

Step 4
Compute the duration and convexity of the hedge portfolio, which should now match the original
portfolio.

PortfolioDuration  = Weights' * Durations
PortfolioConvexity = Weights' * Convexities

PortfolioDuration =

   10.3181

PortfolioConvexity =

  157.6346

Step 5
Finally, scale the unit portfolio to match the value of the original portfolio and find the number of
bonds required to insulate against small parallel shifts in the yield curve.

PortfolioValue = 100000;
HedgeAmounts   = Weights ./ Prices * PortfolioValue

HedgeAmounts =

  -57.3716
   71.7044
  216.2653
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Step 6
Compare the results.

• As required, the duration and convexity of the new portfolio are 10.3181 and 157.6346,
respectively.

• The hedge amounts for bonds 1, 2, and 3 are -57.37, 71.70, and 216.27, respectively.

Notice that the hedge matches the duration, convexity, and value ($100,000) of the original portfolio.
If you are holding that first portfolio, you can hedge by taking a short position in the new portfolio.

Just as the approximations of the first example are appropriate only for small parallel shifts in the
yield curve, the hedge portfolio is appropriate only for reducing the impact of small level changes in
the term structure.

See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
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Bond Prices and Yield Curve Parallel Shifts
This example uses Financial Toolbox™ bond pricing functions to evaluate the impact of time-to-
maturity and yield variation on the price of a bond portfolio. Also, this example shows how to
visualize the price behavior of a portfolio of bonds over a wide range of yield curve scenarios, and as
time progresses toward maturity.

Specify values for the settlement date, maturity date, face value, coupon rate, and coupon payment
periodicity of a four-bond portfolio. For simplicity, accept default values for the end-of-month payment
rule (rule in effect) and day-count basis (actual/actual). Also, synchronize the coupon payment
structure to the maturity date (no odd first or last coupon dates). Any inputs for which defaults are
accepted are set to empty matrices ([]) as placeholders where appropriate. Also, specify the points
on the yield curve for each bond.

Settle     = datetime(1995,1,15);
Maturity   = datetime( [2020, 4, 3;...
                        2025, 5,14;...
                        2019, 6, 9;...
                        2019, 2,25])

Maturity = 4x1 datetime
   03-Apr-2020
   14-May-2025
   09-Jun-2019
   25-Feb-2019

Face       = [1000; 1000; 1000; 1000];
CouponRate = [0; 0.05; 0; 0.055];
Periods    = [0; 2; 0; 2];

Yields = [0.078; 0.09; 0.075; 0.085];

Use Financial Toolbox functions to calculate the true bond prices as the sum of the quoted price plus
accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields,... 
CouponRate,Settle, Maturity, Periods,...
[], [], [], [], [], [], Face);

Prices  =  CleanPrice + AccruedInterest

Prices = 4×1

  145.2452
  594.7757
  165.8949
  715.7584

Assume that the value of each bond is $25,000, and determine the quantity of each bond such that
the portfolio value is $100,000.

BondAmounts = 25000 ./ Prices;

Compute the portfolio price for a rolling series of settlement dates over a range of yields. The
evaluation dates occur annually on January 15, beginning on 15-Jan-1995 (settlement) and extending
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out to 15-Jan-2018. Thus, this step evaluates portfolio price on a grid of time of progression (dT) and
interest rates (dY).

dy = -0.05:0.005:0.05;               % Yield changes

D  = datevec(Settle);                % Get date components
dt = datetime(year(Settle):2018, month(Settle), day(Settle)); % Get evaluation dates

[dT, dY]  =  meshgrid(dt, dy); % Create grid

NumTimes  =  length(dt);       % Number of time steps
NumYields =  length(dy);       % Number of yield changes
NumBonds  =  length(Maturity); % Number of bonds

% Preallocate vector
Prices = zeros(NumTimes*NumYields, NumBonds);

Now that the grid and price vectors have been created, compute the price of each bond in the
portfolio on the grid one bond at a time.

for i = 1:NumBonds

   [CleanPrice, AccruedInterest] = bndprice(Yields(i)+... 
   dY(:), CouponRate(i), dT(:), Maturity(i), Periods(i),...
   [], [], [], [], [], [], Face(i));

   Prices(:,i) = CleanPrice + AccruedInterest;

end

Scale the bond prices by the quantity of bonds and reshape the bond values to conform to the
underlying evaluation grid.

Prices = Prices * BondAmounts;
Prices = reshape(Prices, NumYields, NumTimes);

Plot the price of the portfolio as a function of settlement date and a range of yields, and as a function
of the change in yield (dY). This plot illustrates the interest-rate sensitivity of the portfolio as time
progresses (dT), under a range of interest-rate scenarios. With the following graphics commands, you
can visualize the three-dimensional surface relative to the current portfolio value (that is, $100,000).

figure                   % Open a new figure window
surf(dt, dy, Prices)     % Draw the surface

hold on                  % Add the current value for reference
basemesh = mesh(dt, dy, 100000*ones(NumYields, NumTimes));
set(basemesh, 'facecolor', 'none');
set(basemesh, 'edgecolor', 'm');
set(gca, 'box', 'on');

xlim(datetime([1993,2020],1,1))
xlabel('Evaluation Date');
ylabel('Change in Yield');
zlabel('Portfolio Price');
hold off
view(-25,25);
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MATLAB® three-dimensional graphics allow you to visualize the interest-rate risk experienced by a
bond portfolio over time. This example assumed parallel shifts in the term structure, but it might
similarly have allowed other components to vary, such as the level and slope.

See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
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Bond Prices and Yield Curve Nonparallel Shifts
This example shows how to construct a bond portfolio to hedge the interest-rate risk of a Treasury
bond maturing in 20 years. Key rate duration enables you to determine the sensitivity of the price of a
bond to nonparallel shifts in the yield curve. This example uses bndkrdur to construct a portfolio to
hedge the interest-rate risk of a U.S. Treasury bond maturing in 20 years.

Specify the bond.

Settle = datetime(2008,12,2);
CouponRate = 5.500/100;
Maturity = datetime(2028,8,15);
Price = 128.68;

The interest-rate risk of this bond is hedged with the following four on-the-run Treasury bonds:

Maturity_30 = datetime(2038,5,15);  % 30-year bond
Coupon_30 = .045;
Price_30 = 124.69;

Maturity_10 = datetime(2018,11,15);  %10-year note
Coupon_10 = .0375;
Price_10 = 109.35;

Maturity_05 = datetime(2013,11,30);  % 5-year note
Coupon_05 = .02;
Price_05 = 101.67;

Maturity_02 = datetime(2010,11,30);  % 2-year note
Coupon_02 = .01250;
Price_02 =  100.72;

You can get the Treasury spot or zero curve from https://www.treas.gov/offices/domestic-finance/debt-
management/interest-rate/yield.shtml:

ZeroDates = daysadd(Settle,[30 90 180 360 360*2 360*3 360*5 ...
360*7 360*10 360*20 360*30]);
ZeroRates = ([0.09 0.07 0.44 0.81 0.90 1.16 1.71 2.13 2.72 3.51 3.22]/100)';

Compute the key rate durations for both the bond and the hedging portfolio.

BondKRD = bndkrdur(table(ZeroDates, ZeroRates), CouponRate, Settle,...
Maturity,'keyrates',[2 5 10 20]);
HedgeMaturity = [Maturity_02;Maturity_05;Maturity_10;Maturity_30];
HedgeCoupon = [Coupon_02;Coupon_05;Coupon_10;Coupon_30];
HedgeKRD = bndkrdur(table(ZeroDates, ZeroRates), HedgeCoupon,...
Settle, HedgeMaturity, 'keyrates',[2 5 10 20])

HedgeKRD = 4×4

    1.9675         0         0         0
    0.1269    4.6152         0         0
    0.2129    0.7324    7.4010         0
    0.2229    0.7081    2.1487   14.5172

Compute the dollar durations for each of the instruments and each of the key rates (assuming holding
100 bonds).
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PortfolioDD = 100*Price* BondKRD;
HedgeDD = HedgeKRD.*[Price_30;Price_10;Price_05;Price_02]

HedgeDD = 4×4
103 ×

    0.2453         0         0         0
    0.0139    0.5047         0         0
    0.0216    0.0745    0.7525         0
    0.0224    0.0713    0.2164    1.4622

Compute the number of bonds to sell short to obtain a key rate duration that is 0 for the entire
portfolio.

NumBonds = PortfolioDD/HedgeDD

NumBonds = 1×4

    3.8973    6.1596   23.0282   80.0522

These results indicate selling 4, 6, 23 and 80 bonds respectively of the 2-, 5-, 10-, and 30-year bonds
achieves a portfolio that is neutral with respect to the 2-, 5-, 10-, and 30-year spot rates.

See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
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Greek-Neutral Portfolios of European Stock Options
The option sensitivity measures familiar to most option traders are often referred to as the greeks:
delta, gamma, vega, lambda, rho, and theta. Delta is the price sensitivity of an option with respect to
changes in the price of the underlying asset. It represents a first-order sensitivity measure analogous
to duration in fixed income markets. Gamma is the sensitivity of an option's delta to changes in the
price of the underlying asset, and represents a second-order price sensitivity analogous to convexity
in fixed income markets. Vega is the price sensitivity of an option with respect to changes in the
volatility of the underlying asset. For more information, see “Pricing and Analyzing Equity
Derivatives” on page 2-35.

The greeks of a particular option are a function of the model used to price the option. However, given
enough different options to work with, a trader can construct a portfolio with any desired values for
its greeks. For example, to insulate the value of an option portfolio from small changes in the price of
the underlying asset, one trader might construct an option portfolio whose delta is zero. Such a
portfolio is then said to be “delta neutral.” Another trader may want to protect an option portfolio
from larger changes in the price of the underlying asset, and so might construct a portfolio whose
delta and gamma are both zero. Such a portfolio is both delta and gamma neutral. A third trader may
want to construct a portfolio insulated from small changes in the volatility of the underlying asset in
addition to delta and gamma neutrality. Such a portfolio is then delta, gamma, and vega neutral.

Using the Black-Scholes model for European options, this example creates an equity option portfolio
that is simultaneously delta, gamma, and vega neutral. The value of a particular greek of an option
portfolio is a weighted average of the corresponding greek of each individual option. The weights are
the quantity of each option in the portfolio. Hedging an option portfolio thus involves solving a system
of linear equations, an easy process in MATLAB.

Step 1
Create an input data matrix to summarize the relevant information. Each row of the matrix contains
the standard inputs to Financial Toolbox Black-Scholes suite of functions: column 1 contains the
current price of the underlying stock; column 2 the strike price of each option; column 3 the time to-
expiry of each option in years; column 4 the annualized stock price volatility; and column 5 the
annualized dividend rate of the underlying asset. Rows 1 and 3 are data related to call options, while
rows 2 and 4 are data related to put options.

DataMatrix = [100.000  100  0.2  0.3   0        % Call
              119.100  125  0.2  0.2   0.025    % Put
               87.200   85  0.1  0.23  0        % Call
              301.125  315  0.5  0.25  0.0333]; % Put

Also, assume that the annualized risk-free rate is 10% and is constant for all maturities of interest.

RiskFreeRate = 0.10;

For clarity, assign each column of DataMatrix to a column vector whose name reflects the type of
financial data in the column.

StockPrice   = DataMatrix(:,1);
StrikePrice  = DataMatrix(:,2);
ExpiryTime   = DataMatrix(:,3);
Volatility   = DataMatrix(:,4);
DividendRate = DataMatrix(:,5);
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Step 2
Based on the Black-Scholes model, compute the prices, and the delta, gamma, and vega sensitivity
greeks of each of the four options. The functions blsprice and blsdelta have two outputs, while
blsgamma and blsvega have only one. The price and delta of a call option differ from the price and
delta of an otherwise equivalent put option, in contrast to the gamma and vega sensitivities, which
are valid for both calls and puts.
[CallPrices, PutPrices] = blsprice(StockPrice, StrikePrice,... 
RiskFreeRate, ExpiryTime, Volatility, DividendRate);

[CallDeltas, PutDeltas] = blsdelta(StockPrice,... 
StrikePrice, RiskFreeRate, ExpiryTime, Volatility,... 
DividendRate);

Gammas = blsgamma(StockPrice, StrikePrice, RiskFreeRate,...
                  ExpiryTime, Volatility , DividendRate)'

Vegas  = blsvega(StockPrice, StrikePrice, RiskFreeRate,...
                 ExpiryTime, Volatility , DividendRate)'

Gammas =

    0.0290    0.0353    0.0548    0.0074

Vegas =

   17.4293   20.0347    9.5837   83.5225

Extract the prices and deltas of interest to account for the distinction between call and puts.

Prices = [CallPrices(1) PutPrices(2) CallPrices(3)... 
PutPrices(4)]

Deltas = [CallDeltas(1) PutDeltas(2) CallDeltas(3)... 
PutDeltas(4)]

Prices =

    6.3441    6.6035    4.2993   22.7694

Deltas =

    0.5856   -0.6255    0.7003   -0.4830

Step 3
Now, assuming an arbitrary portfolio value of $17,000, set up and solve the linear system of equations
such that the overall option portfolio is simultaneously delta, gamma, and vega-neutral. The solution
computes the value of a particular greek of a portfolio of options as a weighted average of the
corresponding greek of each individual option in the portfolio. The system of equations is solved
using the back slash (\) operator discussed in “Solving Simultaneous Linear Equations” on page 1-11.

A = [Deltas; Gammas; Vegas; Prices];
b = [0; 0; 0; 17000];
OptionQuantities = A\b % Quantity (number) of each option.
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OptionQuantities =

   1.0e+04 *

    2.2333
    0.6864
   -1.5655
   -0.4511

Step 4
Finally, compute the market value, delta, gamma, and vega of the overall portfolio as a weighted
average of the corresponding parameters of the component options. The weighted average is
computed as an inner product of two vectors.

PortfolioValue =  Prices * OptionQuantities
PortfolioDelta =  Deltas * OptionQuantities
PortfolioGamma =  Gammas * OptionQuantities
PortfolioVega  =  Vegas  * OptionQuantities

PortfolioValue =

       17000

PortfolioDelta =

   1.8190e-12

PortfolioGamma =

     0

PortfolioVega =

     0

The output for these computations is:

Option  Price    Delta    Gamma    Vega     Quantity
   1   6.3441   0.5856   0.0290  17.4293   22332.6131
   2   6.6035  -0.6255   0.0353  20.0347    6864.0731
   3   4.2993   0.7003   0.0548   9.5837  -15654.8657
   4  22.7694  -0.4830   0.0074  83.5225   -4510.5153

You can verify that the portfolio value is $17,000 and that the option portfolio is indeed delta, gamma,
and vega neutral, as desired. Hedges based on these measures are effective only for small changes in
the underlying variables.

See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc
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Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
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Term Structure Analysis and Interest-Rate Swaps
This example illustrates some of the term-structure analysis functions found in Financial Toolbox
software. Specifically, it illustrates how to derive implied zero (spot) and forward curves from the
observed market prices of coupon-bearing bonds. The zero and forward curves implied from the
market data are then used to price an interest rate swap agreement.

In an interest rate swap, two parties agree to a periodic exchange of cash flows. One of the cash flows
is based on a fixed interest rate held constant throughout the life of the swap. The other cash flow
stream is tied to some variable index rate. Pricing a swap at inception amounts to finding the fixed
rate of the swap agreement. This fixed rate, appropriately scaled by the notional principal of the swap
agreement, determines the periodic sequence of fixed cash flows.

In general, interest rate swaps are priced from the forward curve such that the variable cash flows
implied from the series of forward rates and the periodic sequence of fixed-rate cash flows have the
same current value. Thus, interest rate swap pricing and term structure analysis are intimately
related.

Step 1
Specify values for the settlement date, maturity dates, coupon rates, and market prices for 10 U.S.
Treasury Bonds. This data allows you to price a five-year swap with net cash flow payments
exchanged every six months. For simplicity, accept default values for the end-of-month payment rule
(rule in effect) and day-count basis (actual/actual). To avoid issues of accrued interest, assume that all
Treasury Bonds pay semiannual coupons and that settlement occurs on a coupon payment date.

Settle   = datenum('15-Jan-1999');

BondData = {'15-Jul-1999'  0.06000   99.93
            '15-Jan-2000'  0.06125   99.72
            '15-Jul-2000'  0.06375   99.70
            '15-Jan-2001'  0.06500   99.40
            '15-Jul-2001'  0.06875   99.73
            '15-Jan-2002'  0.07000   99.42
            '15-Jul-2002'  0.07250   99.32
            '15-Jan-2003'  0.07375   98.45
            '15-Jul-2003'  0.07500   97.71
            '15-Jan-2004'  0.08000   98.15};

BondData is an instance of a MATLAB cell array, indicated by the curly braces ({}).

Next assign the date stored in the cell array to Maturity, CouponRate, and Prices vectors for
further processing.

Maturity   = datenum(char(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices     = [BondData{:,3}]';
Period     = 2; % semiannual coupons

Step 2
Now that the data has been specified, use the term structure function zbtprice to bootstrap the
zero curve implied from the prices of the coupon-bearing bonds. This implied zero curve represents
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the series of zero-coupon Treasury rates consistent with the prices of the coupon-bearing bonds such
that arbitrage opportunities will not exist.

ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle)

ZeroRates =

    0.0614
    0.0642
    0.0660
    0.0684
    0.0702
    0.0726
    0.0754
    0.0795
    0.0827
    0.0868

The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis (the periodic, six-month,
interest rate is doubled to annualize). The first element of ZeroRates is the annualized rate over the
next six months, the second element is the annualized rate over the next 12 months, and so on.

Step 3
From the implied zero curve, find the corresponding series of implied forward rates using the term
structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle)

ForwardRates =

    0.0614
    0.0670
    0.0695
    0.0758
    0.0774
    0.0846
    0.0925
    0.1077
    0.1089
    0.1239

The forward curve, stored in ForwardRates, is also quoted on a semiannual bond basis. The first
element of ForwardRates is the annualized rate applied to the interval between settlement and six
months after settlement, the second element is the annualized rate applied to the interval from six
months to 12 months after settlement, and so on. This implied forward curve is also consistent with
the observed market prices such that arbitrage activities will be unprofitable. Since the first forward
rate is also a zero rate, the first element of ZeroRates and ForwardRates are the same.

Step 4
Now that you have derived the zero curve, convert it to a sequence of discount factors with the term
structure function zero2disc.

DiscountFactors = zero2disc(ZeroRates, Maturity, Settle)
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DiscountFactors =

    0.9704
    0.9387
    0.9073
    0.8739
    0.8416
    0.8072
    0.7718
    0.7320
    0.6945
    0.6537

Step 5
From the discount factors, compute the present value of the variable cash flows derived from the
implied forward rates. For plain interest rate swaps, the notional principal remains constant for each
payment date and cancels out of each side of the present value equation. The next line assumes unit
notional principal.

PresentValue = sum((ForwardRates/Period) .* DiscountFactors)

PresentValue =

    0.3460

Step 6
Compute the swap's price (the fixed rate) by equating the present value of the fixed cash flows with
the present value of the cash flows derived from the implied forward rates. Again, since the notional
principal cancels out of each side of the equation, it is assumed to be 1.

SwapFixedRate = Period * PresentValue / sum(DiscountFactors)

SwapFixedRate =

    0.0845

The output for these computations is:

  Zero Rates  Forward Rates
    0.0614        0.0614
    0.0642        0.0670
    0.0660        0.0695
    0.0684        0.0758
    0.0702        0.0774
    0.0726        0.0846
    0.0754        0.0925
    0.0795        0.1077
    0.0827        0.1089
    0.0868        0.1239

  Swap Price (Fixed Rate) = 0.0845

All rates are in decimal format. The swap price, 8.45%, would likely be the mid-point between a
market-maker's bid/ask quotes.
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See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
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Plotting an Efficient Frontier Using portopt
This example plots the efficient frontier of a hypothetical portfolio of three assets. It illustrates how to
specify the expected returns, standard deviations, and correlations of a portfolio of assets, how to
convert standard deviations and correlations into a covariance matrix, and how to compute and plot
the efficient frontier from the returns and covariance matrix. The example also illustrates how to
randomly generate a set of portfolio weights, and how to add the random portfolios to an existing plot
for comparison with the efficient frontier.

First, specify the expected returns, standard deviations, and correlation matrix for a hypothetical
portfolio of three assets.

Returns      = [0.1 0.15 0.12];
STDs         = [0.2 0.25 0.18];

Correlations = [ 1  0.3  0.4
                0.3  1   0.3
                0.4 0.3   1 ];

Convert the standard deviations and correlation matrix into a variance-covariance matrix with the
function corr2cov.

Covariances = corr2cov(STDs, Correlations)

Covariances =

    0.0400    0.0150    0.0144
    0.0150    0.0625    0.0135
    0.0144    0.0135    0.0324

Evaluate and plot the efficient frontier at 20 points along the frontier, using the function portopt
and the expected returns and corresponding covariance matrix. Although rather elaborate constraints
can be placed on the assets in a portfolio, for simplicity accept the default constraints and scale the
total value of the portfolio to 1 and constrain the weights to be positive (no short-selling).

Note portopt has been partially removed and will no longer accept ConSet or varargin
arguments. Use Portfolio object instead to solve portfolio problems that are more than a long-only
fully-invested portfolio. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow” on page 4-17. For more information on migrating portopt code to Portfolio, see
“portopt Migration to Portfolio Object” on page 3-11.

portopt(Returns, Covariances, 20)
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Now that the efficient frontier is displayed, randomly generate the asset weights for 1000 portfolios
starting from the MATLAB initial state.

rng('default')
Weights = rand(1000, 3);

The previous line of code generates three columns of uniformly distributed random weights, but does
not guarantee they sum to 1. The following code segment normalizes the weights of each portfolio so
that the total of the three weights represent a valid portfolio.

Total = sum(Weights, 2);     % Add the weights
Total = Total(:,ones(3,1));  % Make size-compatible matrix
Weights = Weights./Total;    % Normalize so sum = 1

Given the 1000 random portfolios created, compute the expected return and risk of each portfolio
associated with the weights.

[PortRisk, PortReturn] = portstats(Returns, Covariances, Weights);

Finally, hold the current graph, and plot the returns and risks of each portfolio on top of the existing
efficient frontier for comparison. After plotting, annotate the graph with a title and return the graph
to default holding status (any subsequent plots will erase the existing data). The efficient frontier
appears in blue, while the 1000 random portfolios appear as a set of red dots on or below the frontier.

hold on
plot (PortRisk, PortReturn, '.r')
title('Mean-Variance Efficient Frontier and Random Portfolios')
hold off 
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See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc | corr2cov | portopt

Related Examples
• “Plotting Sensitivities of an Option” on page 10-25
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
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Plotting Sensitivities of an Option
This example creates a three-dimensional plot showing how gamma changes relative to price for a
Black-Scholes option.

Recall that gamma is the second derivative of the option price relative to the underlying security
price. The plot in this example shows a three-dimensional surface whose z-value is the gamma of an
option as price (x-axis) and time (y-axis) vary. The plot adds yet a fourth dimension by showing option
delta (the first derivative of option price to security price) as the color of the surface. First set the
price range of the options, and set the time range to one year divided into half-months and expressed
as fractions of a year.

Range = 10:70;
Span = length(Range);
j = 1:0.5:12;
Newj = j(ones(Span,1),:)'/12;

For each time period, create a vector of prices from 10 to 70 and create a matrix of all ones.

JSpan = ones(length(j),1);
NewRange = Range(JSpan,:);
Pad = ones(size(Newj));

Calculate the gamma and delta sensitivities (greeks) using the blsgamma and blsdelta functions.
Gamma is the second derivative of the option price with respect to the stock price, and delta is the
first derivative of the option price with respect to the stock price. The exercise price is $40, the risk-
free interest rate is 10%, and volatility is 0.35 for all prices and periods.

ZVal = blsgamma(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
Color = blsdelta(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);

Display the greeks as a function of price and time. Gamma is the z-axis; delta is the color.

mesh(Range, j, ZVal, Color);
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
title('Call Option Price Sensitivity');
axis([10 70  1 12  -inf inf]);
view(-40, 50);
colorbar('horiz');
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See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc | corr2cov | portopt

Related Examples
• “Plotting Sensitivities of a Portfolio of Options” on page 10-27
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
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Plotting Sensitivities of a Portfolio of Options
This example plots gamma as a function of price and time for a portfolio of ten Black-Scholes options.

The plot in this example shows a three-dimensional surface. For each point on the surface, the height
(z-value) represents the sum of the gammas for each option in the portfolio weighted by the amount
of each option. The x-axis represents changing price, and the y-axis represents time. The plot adds a
fourth dimension by showing delta as surface color. This example has applications in hedging. First
set up the portfolio with arbitrary data. Current prices range from $20 to $90 for each option. Then,
set the corresponding exercise prices for each option.

Range = 20:90;
PLen = length(Range);
ExPrice = [75 70 50 55 75 50 40 75 60 35];

Set all risk-free interest rates to 10%, and set times to maturity in days. Set all volatilities to 0.35. Set
the number of options of each instrument, and allocate space for matrices.

Rate = 0.1*ones(10,1);
Time = [36  36  36  27  18  18  18  9  9  9];
Sigma = 0.35*ones(10,1);
NumOpt = 1000*[4  8  3  5  5.5  2  4.8  3  4.8  2.5];
ZVal = zeros(36, PLen);
Color = zeros(36, PLen);

For each instrument, create a matrix (of size Time by PLen) of prices for each period.

for i = 1:10
    Pad = ones(Time(i),PLen);
    NewR = Range(ones(Time(i),1),:);

Create a vector of time periods 1 to Time and a matrix of times, one column for each price.

  T = (1:Time(i))';
  NewT = T(:,ones(PLen,1));

Use the Black-Scholes gamma and delta sensitivity functions blsgamma and blsdelta to compute
gamma and delta.

    ZVal(36-Time(i)+1:36,:) = ZVal(36-Time(i)+1:36,:) ...
        + NumOpt(i) * blsgamma(NewR, ExPrice(i)*Pad, ...
        Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

    Color(36-Time(i)+1:36,:) = Color(36-Time(i)+1:36,:) ...
        + NumOpt(i) * blsdelta(NewR, ExPrice(i)*Pad, ...
        Rate(i)*Pad, NewT/36, Sigma(i)*Pad);
end

Draw the surface as a mesh, set the viewpoint, and reverse the x-axis because of the viewpoint. The
axes range from 20 to 90, 0 to 36, and -∞ to ∞.

mesh(Range, 1:36, ZVal, Color);
view(60,60);
set(gca, 'xdir','reverse', 'tag', 'mesh_axes_3');
axis([20 90  0 36  -inf inf]);
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Add a title and axis labels and draw a box around the plot. Annotate the colors with a bar and label
the color bar.

title('Call Option Portfolio Sensitivity');
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
set(gca, 'box', 'on');
colorbar('horiz');
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See Also
bnddury | bndconvy | bndprice | bndkrdur | blsprice | blsdelta | blsgamma | blsvega |
zbtprice | zero2fwd | zero2disc | corr2cov | portopt

Related Examples
• “Plotting Sensitivities of an Option” on page 10-25
• “Pricing and Analyzing Equity Derivatives” on page 2-35
• “Greek-Neutral Portfolios of European Stock Options” on page 10-14
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-9
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18
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Bond Portfolio Optimization
This example shows how to construct an optimal portfolio of 10,20 and 30 year treasuries that will be
held for a period of one month. Emphasis is placed on the over-all asset allocation process.

• Step 1: Load Market Data - Historic daily treasury yields downloaded from FRED are loaded.
• Step 2: Calculate Market Invariants - Daily changes in yield to maturity are chosen as invariants

and assumed to be multivariate normal. Due to missing data for the 30 year bonds, an expectation
maximization algorithm is used to estimate the mean and covariance of the invariants. The
invariant's statistics are projected to the investment horizon.

• Step 3: Simulate Invariants at Horizon - Due to the high correlation and inherent structure in the
yield curves, a principal component analysis is applied to the invariant statistics. Multivariate
normal random draws are done in PCA space. The simulations are transformed back into invariant
space using the PCA loadings.

• Step 4: Calculate Distribution of Returns at Horizon - The simulated monthly changes in the yield
curve are used to calculate the yield for the portfolio securities at the horizon. This requires
interpolating values off of the simulated yield curves since the portfolio securities will have
maturities that are one month less than 10, 20 and 30 years. Profit/Loss for each scenario/security
are calculated by pricing the treasuries using the simulated and interpolated yields. Simulated
linear returns and their statistics are calculated from the prices.

• Step 5: Optimize Asset Allocation - Quadratic mean/variance optimization is performed on the
treasury returns statistics to calculate optimal portfolio weights for 10 points along the Efficient
Frontier. The investor preference is to choose the portfolio that is closest to the mean value of
possible Sharpe ratios.

Step 1: Load Market Data

Historic Yield To Maturity Data for Series: DGS6MO, DGS1, DGS2, DGS3, DGS5, DGS7, DGS10,
DGS20, DGS30 For Dates: Sep 1, 2000 - Sep 1, 2010 Obtained from: http://research.stlouisfed.org/
fred2/categories/115 Note: Data is downloaded using Datafeed Toolbox™ using commands like: >>
conn = fred; >> data = fetch(conn,'DGS10','9/1/2000','9/1/2010'); Results have been
aggregated and stored in a binary MAT file for convinience

disp('Step 1: Load and Visualize Market Data...');

Step 1: Load and Visualize Market Data...

histData = load('HistoricalYTMData.mat');
% Time to maturity for each series
tsYTMMats = histData.tsYTMMats;
% Dates rates were observed
tsYTMObsDates = histData.tsYTMObsDates;
% Observed Rates
tsYTMRates = histData.tsYTMRates;

% Visualize Yield Curves
miny = min(tsYTMRates(:));
maxy = max(tsYTMRates(:));

figure;
h = plot(tsYTMMats,tsYTMRates,'k-o');
axis([0,32,miny,maxy]);
xlabel('Time to Maturity');
ylabel('Yield');
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legend('Historic Yield Curve','location','se');
grid on;
for i = 1:50:length(tsYTMObsDates)
    set(h,'ydata',tsYTMRates(i,:));
    title(datestr(tsYTMObsDates(i)));
    pause(0.1);
end

Step 2: Calculate Market Invariants

For market invariants, use the standard: daily changes in yield to maturity for each series. You can
estimate their statistical distribution to be multi-variate normal. IID Analysis on each invariant series
produces decent results - more so in the "independent" factor than "identical". A more thorough
modeling using more complex distributions and/or time series models is beyond the scope of this
project. What will need to be accounted for is the estimation of distribution parameters in the the
presence of missing data. The 30 year bonds were discontinued for a period between Feb 2002 and
Feb 2006, so there are no yields for this time period.

disp('Step 2: Calculate Market Invariants...');

Step 2: Calculate Market Invariants...

% Invariants are assumed to be daily changes in YTM rates
tsYTMRateDeltas = diff(tsYTMRates);

% About 1/3 of the 30 year rates (column 9) are missing from the original
% data set. Rather than throw out all these observations, an expectation
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% Maximization routine is used to estimate the mean and covariance of the
% invariants. Default options (NaN skip for initial estimates, etc.) are used.
[tsInvMu,tsInvCov] = ecmnmle(tsYTMRateDeltas);

% Calculate standard deviations and correlations
[tsInvStd,tsInvCorr] = cov2corr(tsInvCov);

% The investment horizon is 1 month. (21 business days between 9/1/2010
% and 10/1/2010). Since the invariants are summable and the means and
% variances of normal distributions are normal, we can project the
% invariants to the investment horizon as follows
hrznInvMu = 21*tsInvMu';
hrznInvCov = 21*tsInvCov;
[hrznInvStd,hrznInvCor] = cov2corr(hrznInvCov);

% Display results
disp('The market invariants projected to the horizon have the following stats');

The market invariants projected to the horizon have the following stats

disp('Mean:');

Mean:

disp(hrznInvMu);

   1.0e-03 *

   -0.5149   -0.4981   -0.4696   -0.4418   -0.3788   -0.3268   -0.2604   -0.2184   -0.1603

disp('Standard Deviation:');

Standard Deviation:

disp(hrznInvStd);

    0.0023    0.0024    0.0030    0.0032    0.0033    0.0032    0.0030    0.0027    0.0026

disp('Correlation:');

Correlation:

disp(hrznInvCor);

    1.0000    0.8553    0.5952    0.5629    0.4980    0.4467    0.4028    0.3338    0.3088
    0.8553    1.0000    0.8282    0.7901    0.7246    0.6685    0.6175    0.5349    0.4973
    0.5952    0.8282    1.0000    0.9653    0.9114    0.8589    0.8055    0.7102    0.6642
    0.5629    0.7901    0.9653    1.0000    0.9519    0.9106    0.8664    0.7789    0.7361
    0.4980    0.7246    0.9114    0.9519    1.0000    0.9725    0.9438    0.8728    0.8322
    0.4467    0.6685    0.8589    0.9106    0.9725    1.0000    0.9730    0.9218    0.8863
    0.4028    0.6175    0.8055    0.8664    0.9438    0.9730    1.0000    0.9562    0.9267
    0.3338    0.5349    0.7102    0.7789    0.8728    0.9218    0.9562    1.0000    0.9758
    0.3088    0.4973    0.6642    0.7361    0.8322    0.8863    0.9267    0.9758    1.0000

Step 3: Simulate Market Invariants at Horizon

The high correlation is not ideal for simulation of the distribution of invariants at the horizon (and
ultimately security prices). A principal component decomposition is used to extract orthogonal
invariants. This could also be used for dimension reduction, however since the number of invariants is
still relatively small, retain all 9 components for more accurate reconstruction. However, missing
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values in the market data prevents you from estimating directly off of the time series data. Instead,
this can be done directly off of the covariance matrix

disp('Step 3: Simulate Market Invariants at Horizon...');

Step 3: Simulate Market Invariants at Horizon...

% Perform PCA decomposition using invariants' covariance
[pcaFactorCoeff,pcaFactorVar,pcaFactorExp] = pcacov(hrznInvCov);

% Keeping all components of pca decompositon
numFactors = 9;

% Create PCA factor covariance matrix
pcaFactorCov = corr2cov(sqrt(pcaFactorVar),eye(numFactors));

% The number of simulations (random draws)
numSim = 10000;

% Fix random seed for reproducible results
stream = RandStream('mrg32k3a');
RandStream.setGlobalStream(stream);

% Take random draws from multi-variate normal distribution with zero mean
% and diagonal covariance
pcaFactorSims = mvnrnd(zeros(numFactors,1),pcaFactorCov,numSim);

% Transform to horizon invariants and calculate statistics
hrznInvSims = pcaFactorSims*pcaFactorCoeff' + repmat(hrznInvMu,numSim,1);
hrznInvSimsMu = mean(hrznInvSims);
hrznInvSimsCov = cov(hrznInvSims);
[hrznInvSimsStd,hrznInvSimsCor] = cov2corr(hrznInvSimsCov);

% Display results
disp('The simulated invariants have very similar statistics to the original invariants');

The simulated invariants have very similar statistics to the original invariants

disp('Mean:');

Mean:

disp(hrznInvSimsMu);

   1.0e-03 *

   -0.4983   -0.5002   -0.4832   -0.4542   -0.4031   -0.3597   -0.2867   -0.2515   -0.1875

disp('Standard Deviation:');

Standard Deviation:

disp(hrznInvSimsStd);

    0.0023    0.0023    0.0030    0.0031    0.0032    0.0031    0.0029    0.0027    0.0026

disp('Correlation:');

Correlation:

disp(hrznInvSimsCor);
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    1.0000    0.8527    0.5827    0.5502    0.4846    0.4327    0.3896    0.3197    0.2961
    0.8527    1.0000    0.8227    0.7840    0.7181    0.6603    0.6097    0.5246    0.4896
    0.5827    0.8227    1.0000    0.9646    0.9100    0.8569    0.8048    0.7074    0.6633
    0.5502    0.7840    0.9646    1.0000    0.9507    0.9085    0.8656    0.7757    0.7344
    0.4846    0.7181    0.9100    0.9507    1.0000    0.9721    0.9428    0.8710    0.8319
    0.4327    0.6603    0.8569    0.9085    0.9721    1.0000    0.9726    0.9211    0.8870
    0.3896    0.6097    0.8048    0.8656    0.9428    0.9726    1.0000    0.9552    0.9264
    0.3197    0.5246    0.7074    0.7757    0.8710    0.9211    0.9552    1.0000    0.9753
    0.2961    0.4896    0.6633    0.7344    0.8319    0.8870    0.9264    0.9753    1.0000

Step 4: Calculate Distribution of Security Returns at Horizon

The portfolio will consist of 10, 20, and 30 year maturity treasuries. For simplicity, assume that these
are new issues on the settlement date and are priced at market value inferred from the current yield
curve. Profit and Loss distributions are calculated by pricing each security along each simulated yield
at the horizon and subtracting the purchase price. The horizon prices require nonstandard time to
maturity yields. These are calculated using cubic spline interpolation. Simulated linear returns are
their statistics that are calculated from the Profit and Loss scenarios.

disp('Step 4: Calculate Distribution of Security Returns at Horizon...');

Step 4: Calculate Distribution of Security Returns at Horizon...

% Purchase and investment horizon dates
settleDate = '9/1/2010';
hrznDate = '10/1/2010';

% The maturity dates for new issue treasuries purchased on the settle date
treasuryMaturities = {'9/1/2020','9/1/2030','9/1/2040'};

% The observed yields for the securities of interes on the settle date
treasuryYTMAtSettle = tsYTMRates(end,7:9);

% Initialize arrays for later use
treasuryYTMAtHorizonSim = zeros(numSim,3);
treasuryPricesAtSettle = zeros(1,3);
treasuryPricesAtHorizonSim = zeros(numSim,3);

% Use actual/actual day count basis with annualized yields
basis = 8;

% Price treasuries at settle date using known yield to maturity
% Note: For simplicity, we are assuming that none of these securities
% include coupon payments. The hope is that although the prices may not be 
% accurate the overall structure/relationships between value will be
% preserved for the asset allocation process.
for j=1:3
    treasuryPricesAtSettle(j) = bndprice(treasuryYTMAtSettle(j),0,settleDate,...
                                         treasuryMaturities(j),'basis',basis);
end

% To price the treasuries at the horizon, we need to know yield to maturity
% at 9 years 11 months, 19 years 11 months and 29 years 11 months for each
% simulation. We approximate these using cubic spline interpolation

% Transform simulated invariants to YTM at horizon
hrznYTMRatesSims = repmat(tsYTMRates(end,:),numSim,1) + hrznInvSims;
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hrznYTMMaturities = {'4/1/2011','10/1/2011','10/1/2012','10/1/2013',...
                     '10/1/2015','10/1/2017','10/1/2020','10/1/2030',...
                     '10/1/2040'};

% Convert dates to numeric serial dates                 
x = datenum(hrznYTMMaturities);
xi = datenum(treasuryMaturities);

% For numerical accuracy, shift x values to start at zero
minDate = min(x);
x = x - minDate;
xi = xi - minDate;

% For each simulation and maturity approximate yield near 10,20,30 year
% nodes. Note that the effects of a spline fit vs. linear fit have a
% significant effect on the resulting ideal allocation. This is due
% to significant under-estimation of yield when using a linear fit
% for points just short of the known nodes
for i=1:numSim
    treasuryYTMAtHorizonSim(i,:) = interp1(x,hrznYTMRatesSims(i,:),xi,'spline');
end

% Visualize 1 simulated yield curve with interpolation
figure;
plot(x,hrznYTMRatesSims(1,:),'k-o',xi,treasuryYTMAtHorizonSim(1,:),'ro');
xlabel('Time (days)');
ylabel('Yield');
legend({'Simulated Yield Curve','Interpolated Yields'},'location','se');
grid on;
title('Zoom to See Spline vs. Linear Interpolants');
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% Price treasuries at horizon for each simulated yield to maturity
% Same assumptions are being made here as in above call to bndprice
basis = 8*ones(numSim,1);
for j=1:3
    treasuryPricesAtHorizonSim(:,j) = bndprice(treasuryYTMAtHorizonSim(:,j),0,...
                                               hrznDate,treasuryMaturities(j),'basis',basis);
end

% Calculate distribution of linear returns
treasuryReturns = ( treasuryPricesAtHorizonSim - repmat(treasuryPricesAtSettle,numSim,1) )./repmat(treasuryPricesAtSettle,numSim,1);

% Calculate returns statistics
retsMean = mean(treasuryReturns);
retsCov  = cov(treasuryReturns);
[retsStd,retsCor] = cov2corr(retsCov);

% Visualize results for 30 year treasury
figure;
hist(treasuryReturns,100);
title('Distribution of Returns for 10, 20, 30 Year Treasuries');
grid on;
legend({'10 year','20 year','30 year'});
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Step 5: Optimize Asset Allocation

Asset allocation is optimized using quadratic programming. Ten optimal portfolios are calculated and
their sharpe ratios are calculated. The optimal portfolio based on investor preference is chosen to be
the one that is closest to the mean value of the Sharpe ratio

disp('Step 5: Optimize Asset Allocation...');

Step 5: Optimize Asset Allocation...

% Calculate 10 points along the projection of the efficient frontier into
% std/return space.
[portStd,portRet,portWts] = portopt(retsMean,retsCov,10);

% Visualize
figure;
subplot(2,1,1)
plot(portStd,portRet,'k-o');
xlabel('Portfolio Std');
ylabel('Portfolio Return');
title('Efficient Frontier Projection');
legend('Optimal Portfolios','location','se');
grid on;

subplot(2,1,2)
bar(portWts,'stacked');
xlabel('Portfolio Number');
ylabel('Portfolio Weights');
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title('Percentage invested in each treasury');
legend({'10 year','20 year','30 year'});

% Sharpe ratio is calculated using 0 risk-free rate since we are investing
% in treasuries
sharpe = portRet./portStd;

% Investor chooses portfolio based on a near mean Sharpe ratio
sharpeTarget = mean(sharpe);
investorChoice = find( min(abs(sharpe-sharpeTarget)) == abs(sharpe-sharpeTarget));
investorPortfolioWts = portWts(investorChoice,:);

disp('Investor percentage allocation in 10,20,30 year treasuries');

Investor percentage allocation in 10,20,30 year treasuries

disp(investorPortfolioWts);

    0.3989    0.3196    0.2815

See Also
tbilldisc2yield | tbillprice | tbillrepo | tbillval01 | tbillyield | tbillyield2disc

Related Examples
• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-18
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• “Computing Treasury Bill Price and Yield” on page 2-29
• “Term Structure of Interest Rates” on page 2-32
• “Sensitivity of Bond Prices to Interest Rates” on page 10-2
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-6
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-18

More About
• “Treasury Bills Defined” on page 2-28
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Hedging an Option Using Reinforcement Learning Toolbox
This example shows how to learn an optimal option hedging policy and outperform the traditional
BSM approach using Reinforcement Learning Toolbox™ .

Option Modeling Using Black-Scholes-Merton Model

The Black-Scholes-Merton (BSM) model, which earned its creators a Nobel Prize in Economics in
1997, provides a modeling framework for pricing and analyzing financial derivatives or options.
Options are financial instruments that derive their value from a particular underlying asset. The
concept of dynamic hedging is fundamental to the BSM model. Dynamic hedging is the idea that, by
continuously buying and selling shares in the relevant underlying asset, you can hedge the risk of the
derivative instrument such that the risk is zero. This "risk-neutral" pricing framework is used to
derive pricing formulae for many different financial instruments.

The simplest financial derivative is a European call option, which provides the buyer with the right,
but not the obligation, to buy the underlying asset at a previously specified value (strike price) at a
previously specified time (maturity).

You can use a BSM model to price a European call option. The BSM model makes the following
simplifying assumptions:

• The behavior of the underlying asset is defined by geometric Brownian motion (GBM).
• There are no transaction costs.
• Volatility is constant.

The BSM dynamic hedging strategy is also called "delta-hedging," after the quantity Delta, which is
the sensitivity of the option with respect to the underlying asset. In an environment that meets the
previously stated BSM assumptions, using a delta-hedging strategy is an optimal approach to hedging
an option. However, it is well-known that in an environment with transaction costs, the use of the
BSM model leads to an inefficient hedging strategy. The goal of this example is to use Reinforcement
Learning Toolbox™ to learn a strategy that outperforms the BSM hedging strategy, in the presence of
transaction costs.

The goal of reinforcement learning (RL) is to train an agent to complete a task within an unknown
environment. The agent receives observations and a reward from the environment and sends actions
to the environment. The reward is a measure of how successful an action is with respect to
completing the task goal.

The agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on the observations from the environment.
Typically, the policy is a function approximator with tunable parameters, such as a deep neural
network.

• The learning algorithm continuously updates the policy parameters based on the actions,
observations, and reward. The goal of the learning algorithm is to find an optimal policy that
maximizes the cumulative reward received during the task.

In other words, reinforcement learning involves an agent learning the optimal behavior through
repeated trial-and-error interactions with the environment without human involvement. For more
information on reinforcement learning, see “What Is Reinforcement Learning?” (Reinforcement
Learning Toolbox).
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Cao [2 on page 10-0 ] describes the setup for reinforcement learning as:

• Si is the state at time i.
• Ai is the action taken at i.
• Ri + 1 is the resulting reward at time i + 1.

The aim of reinforcement learning is to maximize expected future rewards. In this financial
application of reinforcement learning, maximizing expected rewards is learning a delta-hedging
strategy as an optimal approach to hedging a European call option.

This example follows the framework outlined in Cao [2 on page 10-0 ]. Specifically, an accounting
profit and loss (P&L) formulation from that paper is used to set up the reinforcement learning
problem and a deep deterministic policy gradient (DDPG) agent is used. This example does not
exactly reproduce the approach from [2 on page 10-0 ] because Cao et. al. recommend a Q-learning
approach with two separate Q-functions (one for the hedging cost and one for the expected square of
the hedging cost), but this example uses instead a simplified reward function.

Define Training Parameters

Next, specify an at-the-money option with three months to maturity is hedged. For simplicity, both the
interest rate and dividend yield are set to 0.

% Option parameters
Strike = 100;
Maturity = 21*3/250;

% Asset parameters
SpotPrice = 100;
ExpVol = .2;
ExpReturn = .05;

% Simulation parameters
rfRate = 0;
dT = 1/250;
nSteps = Maturity/dT;
nTrials = 5000;

% Transacation cost and cost function parameters
c = 1.5;
kappa = .01;
InitPosition = 0;

% Set the random generator seed for reproducibility.
rng(3)

Define Environment

In this section, the action and observation parameters, actInfo and obsInfo. The agent action is
the current hedge value which can range between 0 and 1. There are three variables in the agent
observation:

• Moneyness (ratio of the spot price to the strike price)
• Time to maturity
• Position or amount of the underlying asset that is held
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ObservationInfo             = rlNumericSpec([3 1],'LowerLimit',0,'UpperLimit',[10 Maturity 1]');
ObservationInfo.Name        = 'Hedging State';
ObservationInfo.Description = ['Moneyness', 'TimeToMaturity','Position'];

ActionInfo = rlNumericSpec([1 1],'LowerLimit',0,'UpperLimit',1);
ActionInfo.Name = 'Hedge';

Define Reward

From Cao [2 on page 10-0 ], the accounting P&L formulation and rewards (negative costs) are

Ri + 1 = Vi + 1− Vi + Hi + 1(Si + 1 - Si) - κ Si + 1 Hi + 1− Hi

where

Ri:Reward

Vi:Value of option

Si:Spot price of underlying asset

Hi:Holding

κ:Transaction costs

A final reward at the last time step liquidates the hedge that is κ Sn Hn .

In this implementation, the reward (Ri) is penalized by the square of the reward multiplied by a
constant to punish large swings in the value of the hedged position:

Ri + 1 = Ri + 1− c Ri + 1
2

The reward is defined in stepFcn which is called at each step of the simulation.

env = rlFunctionEnv(ObservationInfo,ActionInfo, ...
    @(Hedge, LoggedSignals) stepFcn(Hedge,LoggedSignals,rfRate,ExpVol,dT,Strike,ExpReturn,c,kappa), ...
    @() resetFcn(SpotPrice/Strike,Maturity,InitPosition));

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create Environment Interface for RL Agent

Create the DDPG agent using rlDDPGAgent (Reinforcement Learning Toolbox). While it is possible to
create custom actor and critic networks, this example uses the default networks.

initOpts = rlAgentInitializationOptions('NumHiddenUnit',64);

agent = rlDDPGAgent(obsInfo,actInfo,initOpts);

critic = getCritic(agent);
critic.Options.LearnRate = 1e-4;
% critic.Options.UseDevice = "gpu";
agent  = setCritic(agent,critic);

actor = getActor(agent);
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actor.Options.LearnRate = 1e-4;
% actor.Options.UseDevice = "gpu";
agent  = setActor(agent,actor);

agent.AgentOptions.DiscountFactor = .9995;
agent.AgentOptions.TargetSmoothFactor = 5e-4;

Visualize Actor and Critic Networks

Visualize the actor and critic networks using the Deep Network Designer.

deepNetworkDesigner(layerGraph(getModel(actor)))
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Train Agent

Train the agent using the train (Reinforcement Learning Toolbox) function.

trainOpts = rlTrainingOptions( ...
    'MaxEpisodes', nTrials, ...
    'MaxStepsPerEpisode',nSteps, ...
    'Verbose', false, ...
    'ScoreAveragingWindowLength',200,...
    'StopTrainingCriteria',"AverageReward", ...
    'StopTrainingValue',-40, ...
    'StopOnError',"on", ...
    "UseParallel",false);

doTraining = false;
if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('DeepHedgingDDPG.mat','agent')
end

To avoid waiting for the training, load pretrained networks by setting the doTraining flag to false.
If you set doTraining to true, the Reinforcement Learning Episode Manager displays the training
progress.
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Validate Agent

Use the Financial Toolbox™ functions blsdelta and blsprice for a coventional approach to
caculate the price as a European call option. When comparing the conventional approach to the RL
approach, the results are similar to the findings of Cao [2 on page 10-0 ] in Exhibit 4. This example
demonstrates that the RL approach significantly reduces hedging costs.

% Simulation parameters
nTrials = 1000;

policy_BSM = @(mR,TTM,Pos) blsdelta(mR,1,rfRate,max(TTM,eps),ExpVol);
policy_RL = @(mR,TTM,Pos) arrayfun(@(mR,TTM,Pos) cell2mat(getAction(agent,[mR TTM Pos])),mR,TTM,Pos);

OptionPrice = blsprice(SpotPrice,Strike,rfRate,Maturity,ExpVol);

Costs_BSM = computeCosts(policy_BSM,nTrials,nSteps,SpotPrice,Strike,Maturity,rfRate,ExpVol,InitPosition,dT,ExpReturn,kappa);
Costs_RL = computeCosts(policy_RL,nTrials,nSteps,SpotPrice,Strike,Maturity,rfRate,ExpVol,InitPosition,dT,ExpReturn,kappa);

HedgeComp = table(100*[-mean(Costs_BSM) std(Costs_BSM)]'/OptionPrice, ...
    100*[-mean(Costs_RL) std(Costs_RL)]'/OptionPrice, ...
    'RowNames',["Average Hedge Cost (% of Option Price)","STD Hedge Cost (% of Option Price)"], ...
    'VariableNames',["BSM","RL"]);
disp(HedgeComp)

                                               BSM        RL  
                                              ______    ______

    Average Hedge Cost (% of Option Price)    91.259    47.022
    STD Hedge Cost (% of Option Price)        35.712    68.119

The following histogram shows the range of different hedging costs for both approaches. The RL
approach performs better, but with a larger variance than the BSM approach. The RL appraoch in
this example would likely benefit from the two Q-function approach that Cao [2 on page 10-0 ]
discusses and implements.

figure
numBins = 10;
histogram(-Costs_RL,numBins,'FaceColor','r','FaceAlpha',.5)
hold on
histogram(-Costs_BSM,numBins,'FaceColor','b','FaceAlpha',.5)
xlabel('Hedging Costs')
ylabel('Number of Trials')
title('RL Hedge Costs vs. BLS Hedge Costs')
legend('RL Hedge','Theoretical BLS Delta','location','best')
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A plot of the hedge Ratio with respect to moneyness shows the differences between the BSM and RL
approaches. As discussed in Cao [2 on page 10-0 ], in the presence of transaction costs, the agent
learns that "when delta hedging would require shares to be purchased, it tends to be optimal for a
trader to be underhedged relative to delta. Similarly, when delta hedging would require shares to be
sold, it tends to be optimal for a trader to be over-hedged relative to delta."

policy_RL_mR = @(mR,TTM,Pos) cell2mat(getAction(agent,[mR TTM Pos]));
mRange = (.8:.01:1.2)';

figure
t_plot = 2/12;
plot(mRange,blsdelta(mRange,1,rfRate,t_plot,ExpVol),'b')
hold on
plot(mRange,arrayfun(@(mR) policy_RL_mR(mR,t_plot,blsdelta(mR,1,rfRate,t_plot,ExpVol)),mRange),'r')
plot(mRange,arrayfun(@(mR) policy_RL_mR(mR,t_plot,blsdelta(mR+.1,1,rfRate,t_plot,ExpVol)),mRange),'g')
plot(mRange,arrayfun(@(mR) policy_RL_mR(mR,t_plot,blsdelta(mR-.1,1,rfRate,t_plot,ExpVol)),mRange),'m')
legend('Theoretical BLS Delta','RL Hedge -- ATM','RL Hedge -- Selling','RL Hedge -- Buying', ...
    'location','best')
xlabel('Moneyness')
ylabel('Hedge Ratio')
title('RL Hedge vs. BLS Delta for TTM of 2/12')
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Local Functions

function [InitialObservation,LoggedSignals] = resetFcn(Moneyness,TimeToMaturity,InitPosition)
% Reset function to reset at the beginning of each episode.

LoggedSignals.State = [Moneyness TimeToMaturity InitPosition]';
InitialObservation  = LoggedSignals.State;

end

function [NextObs,Reward,IsDone,LoggedSignals] = stepFcn(Position_next,LoggedSignals,r,vol,dT,X,mu,c,kappa)
% Step function to evaluate at each step of the episode.
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Moneyness_prev = LoggedSignals.State(1);
TTM_prev = LoggedSignals.State(2);
Position_prev = LoggedSignals.State(3);

S_prev = Moneyness_prev*X;

% GBM Motion
S_next = S_prev*((1 + mu*dT) + (randn* vol).*sqrt(dT));
TTM_next = max(0,TTM_prev - dT);

IsDone = TTM_next < eps;

stepReward = (S_next - S_prev)*Position_prev - abs(Position_next - Position_prev)*S_next*kappa - ...
    blsprice(S_next,X,r,TTM_next,vol) + blsprice(S_prev,X,r,TTM_prev,vol);

if IsDone
    stepReward = stepReward - Position_next*S_next*kappa;
end

Reward = stepReward - c*stepReward.^2;

LoggedSignals.State = [S_next/X;TTM_next;Position_next];
NextObs = LoggedSignals.State;

end

function perCosts = computeCosts(policy,nTrials,nSteps,SpotPrice,Strike,T,r,ExpVol,InitPos,dT,mu,kappa)
% Helper function to compute costs for any hedging approach.

rng(0)

simOBJ = gbm(mu,ExpVol,'StartState',SpotPrice);
[simPaths,simTimes] = simulate(simOBJ,nSteps,'nTrials',nTrials,'deltaTime',dT);
simPaths = squeeze(simPaths);

rew = zeros(nSteps,nTrials);

Position_prev = InitPos;
Position_next = policy(simPaths(1,:)/Strike,T*ones(1,nTrials),InitPos*ones(1,nTrials));
for timeidx=2:nSteps+1
    rew(timeidx-1,:) = (simPaths(timeidx,:) - simPaths(timeidx-1,:)).*Position_prev - ...
        abs(Position_next - Position_prev).*simPaths(timeidx,:)*kappa - ...
        blsprice(simPaths(timeidx,:),Strike,r,max(0,T - simTimes(timeidx)),ExpVol) + ...
        blsprice(simPaths(timeidx-1,:),Strike,r,T - simTimes(timeidx-1),ExpVol);

    if timeidx == nSteps+1
         rew(timeidx-1,:) =  rew(timeidx-1,:) - Position_next.*simPaths(timeidx,:,:)*kappa;
    else
        Position_prev = Position_next;
        Position_next = policy(simPaths(timeidx,:,:)/Strike,(T - simTimes(timeidx)).*ones(1,nTrials),Position_prev);
    end
end

perCosts = sum(rew);
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end

See Also
blsprice | blsdelta | rlDDPGAgent
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Financial Time Series Analysis

• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
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Creating Financial Time Series Objects
In this section...
“Introduction” on page 11-2
“Using the Constructor” on page 11-2
“Transforming a Text File” on page 11-22

Introduction
Financial Toolbox software provides three ways to create a financial time series object:

• At the command line using the object constructor fints
• From a text data file through the function ascii2fts
• Use the Financial Time Series app, you can create a financial time series (fints) object from one

or more selected variables. For more information, see “Creating a Financial Time Series Object”
on page 14-9.

The structure of the object minimally consists of a description field, a frequency indicator field, the
date vector field, and at least one data series vector. The names for the fields are fixed for the first
three fields: desc, freq, and dates. You can specify names of your choice for any data series
vectors. If you do not specify names, the object uses the default names series1, series2, series3,
and so on.

If time-of-day information is incorporated in the date vector, the object contains an additional field
named times.

Using the Constructor
The object constructor function fints has five different syntaxes. These forms exist to simplify object
construction. The syntaxes vary according to the types of input arguments presented to the
constructor. The syntaxes are

• Single Matrix Input

• See “Time-of-Day Information Excluded” on page 11-3.
• See “Time-of-Day Information Included” on page 11-7.

• Separate Vector Input

• See “Time-of-Day Information Excluded” on page 11-9.
• See “Time-of-Day Information Included” on page 11-11.

• See “Data Name Input” on page 11-12.
• See “Frequency Indicator Input” on page 11-17.
• See “Description Field Input” on page 11-19.

Single Matrix Input

The date information provided with this syntax must be in serial date number format. The date
number may on page 11-7 or may not on page 11-3 include time-of-day information.
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Note If you are unfamiliar with the concepts of date character vectors and serial date numbers,
consult “Handle and Convert Dates” on page 2-2.

Time-of-Day Information Excluded

fts = fints(dates_and_data)

In this simplest form of syntax, the input must be at least a two-column matrix. The first column
contains the dates in serial date format; the second column is the data series. The input matrix can
have more than two columns, each additional column representing a different data series or set of
observations.

If the input is a two-column matrix, the output object contains four fields: desc, freq, dates, and
series1. The description field, desc, defaults to blanks '', and the frequency indicator field, freq,
defaults to 0. The dates field, dates, contains the serial dates from the first column of the input
matrix, while the data series field, series1, has the data from the second column of the input matrix.

The first example makes two financial time series objects. The first one has only one data series,
while the other has more than one. A random vector provides the values for the data series. The
range of dates is arbitrarily chosen using the today function:

date_series = (today:today+100)';
data_series = exp(randn(1, 101))';
dates_and_data = [date_series data_series];
fts1 = fints(dates_and_data)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
fts1 = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'series1:  (101)'
    '03-Oct-2017'      [           0.97]
    '04-Oct-2017'      [           1.20]
    '05-Oct-2017'      [           0.21]
    '06-Oct-2017'      [           0.92]
    '07-Oct-2017'      [           4.97]
    '08-Oct-2017'      [           1.10]
    '09-Oct-2017'      [           1.04]
    '10-Oct-2017'      [           0.48]
    '11-Oct-2017'      [           0.97]
    '12-Oct-2017'      [           1.26]
    '13-Oct-2017'      [           1.53]
    '14-Oct-2017'      [           0.69]
    '15-Oct-2017'      [           0.79]
    '16-Oct-2017'      [           7.57]
    '17-Oct-2017'      [           0.10]
    '18-Oct-2017'      [           9.29]
    '19-Oct-2017'      [           1.40]
    '20-Oct-2017'      [           2.72]
    '21-Oct-2017'      [           0.19]
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    '22-Oct-2017'      [           0.55]
    '23-Oct-2017'      [           0.76]
    '24-Oct-2017'      [           1.53]
    '25-Oct-2017'      [           0.19]
    '26-Oct-2017'      [           1.60]
    '27-Oct-2017'      [           0.30]
    '28-Oct-2017'      [           1.07]
    '29-Oct-2017'      [           1.92]
    '30-Oct-2017'      [           1.39]
    '31-Oct-2017'      [           2.95]
    '01-Nov-2017'      [           2.73]
    '02-Nov-2017'      [           0.52]
    '03-Nov-2017'      [           1.29]
    '04-Nov-2017'      [           0.39]
    '05-Nov-2017'      [           0.27]
    '06-Nov-2017'      [           2.52]
    '07-Nov-2017'      [           1.00]
    '08-Nov-2017'      [           0.95]
    '09-Nov-2017'      [           2.49]
    '10-Nov-2017'      [           1.81]
    '11-Nov-2017'      [           1.42]
    '12-Nov-2017'      [           3.49]
    '13-Nov-2017'      [           2.53]
    '14-Nov-2017'      [           1.27]
    '15-Nov-2017'      [           0.50]
    '16-Nov-2017'      [           0.52]
    '17-Nov-2017'      [           3.29]
    '18-Nov-2017'      [           0.20]
    '19-Nov-2017'      [           0.98]
    '20-Nov-2017'      [           0.14]
    '21-Nov-2017'      [           2.77]
    '22-Nov-2017'      [           2.37]
    '23-Nov-2017'      [           1.00]
    '24-Nov-2017'      [           0.93]
    '25-Nov-2017'      [           0.08]
    '26-Nov-2017'      [           1.79]
    '27-Nov-2017'      [           0.11]
    '28-Nov-2017'      [           0.10]
    '29-Nov-2017'      [           1.08]
    '30-Nov-2017'      [           0.39]
    '01-Dec-2017'      [           1.51]
    '02-Dec-2017'      [           1.97]
    '03-Dec-2017'      [           2.36]
    '04-Dec-2017'      [           0.50]
    '05-Dec-2017'      [           1.57]
    '06-Dec-2017'      [           1.11]
    '07-Dec-2017'      [           2.28]
    '08-Dec-2017'      [           1.71]
    '09-Dec-2017'      [           2.45]
    '10-Dec-2017'      [           0.88]
    '11-Dec-2017'      [           0.86]
    '12-Dec-2017'      [           2.74]
    '13-Dec-2017'      [           0.12]
    '14-Dec-2017'      [           0.60]
    '15-Dec-2017'      [           0.28]
    '16-Dec-2017'      [           0.68]
    '17-Dec-2017'      [           1.91]
    '18-Dec-2017'      [           2.28]

11 Financial Time Series Analysis

11-4



    '19-Dec-2017'      [           0.36]
    '20-Dec-2017'      [           0.62]
    '21-Dec-2017'      [           1.15]
    '22-Dec-2017'      [           0.75]
    '23-Dec-2017'      [           1.35]
    '24-Dec-2017'      [           1.49]
    '25-Dec-2017'      [           0.39]
    '26-Dec-2017'      [           0.84]
    '27-Dec-2017'      [           0.12]
    '28-Dec-2017'      [           3.14]
    '29-Dec-2017'      [           0.53]
    '30-Dec-2017'      [           0.30]
    '31-Dec-2017'      [           0.78]
    '01-Jan-2018'      [           0.24]
    '02-Jan-2018'      [           0.98]
    '03-Jan-2018'      [           0.57]
    '04-Jan-2018'      [           8.83]
    '05-Jan-2018'      [           3.12]
    '06-Jan-2018'      [           0.08]
    '07-Jan-2018'      [           1.55]
    '08-Jan-2018'      [           0.25]
    '09-Jan-2018'      [           0.77]
    '10-Jan-2018'      [           1.18]
    '11-Jan-2018'      [           2.11]

Examine the contents of the object fts1. The actual date series you observe will vary according to
the day when you run the example (the value of today). Also, your values in series1 will differ from
those shown, depending upon the sequence of random numbers generated:
fts1 = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'series1:  (101)'
    '12-Jul-1999'      [         0.3124]
    '13-Jul-1999'      [         3.2665]
    '14-Jul-1999'      [         0.9847]
    '15-Jul-1999'      [         1.7095]
    '16-Jul-1999'      [         0.4885]
    '17-Jul-1999'      [         0.5192]
    '18-Jul-1999'      [         1.3694]
    '19-Jul-1999'      [         1.1127]
    '20-Jul-1999'      [         6.3485]
    '21-Jul-1999'      [         0.7595]
    '22-Jul-1999'      [         9.1390]
    '23-Jul-1999'      [         4.5201]
    '24-Jul-1999'      [         0.1430]
    '25-Jul-1999'      [         0.1863]
    '26-Jul-1999'      [         0.5635]
    '27-Jul-1999'      [         0.8304]
    '28-Jul-1999'      [         1.0090]...

The output is truncated for brevity. There are actually 101 data points in the object.

The desc field displays as (none) instead of '', and that the contents of the object display as cell
array elements. Although the object displays as such, it should be thought of as a MATLAB structure
containing the default field names for a single data series object: desc, freq, dates, and series1.

Now create an object with more than one data series in it:

date_series = (today:today+100)';
data_series1 = exp(randn(1, 101))';
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data_series2 = exp(randn(1, 101))';
dates_and_data = [date_series data_series1 data_series2];
fts2 = fints(dates_and_data)

Now look at the object created (again in abbreviated form):
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
fts2 = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'series1:  (101)'    'series2:  (101)'
    '03-Oct-2017'      [           0.76]    [           4.56]
    '04-Oct-2017'      [           4.84]    [           0.97]
    '05-Oct-2017'      [           0.62]    [           5.13]
    '06-Oct-2017'      [           1.39]    [           0.65]
    '07-Oct-2017'      [           1.94]    [           1.80]
    '08-Oct-2017'      [           1.09]    [           0.94]
    '09-Oct-2017'      [           2.41]    [           0.13]
    '10-Oct-2017'      [           1.38]    [           0.37]
    '11-Oct-2017'      [           0.46]    [           1.85]
    '12-Oct-2017'      [           0.16]    [           0.95]
    '13-Oct-2017'      [           6.41]    [           0.33]
    '14-Oct-2017'      [           0.55]    [           0.53]
    '15-Oct-2017'      [           1.11]    [           1.28]
    '16-Oct-2017'      [           1.76]    [           0.37]
    '17-Oct-2017'      [           1.12]    [           2.65]
    '18-Oct-2017'      [           0.40]    [           0.53]
    '19-Oct-2017'      [           0.63]    [           6.10]
    '20-Oct-2017'      [           0.88]    [           0.34]
    '21-Oct-2017'      [           4.39]    [           1.22]
    '22-Oct-2017'      [           0.42]    [           0.22]
    '23-Oct-2017'      [           2.19]    [           0.48]
    '24-Oct-2017'      [           1.36]    [           0.55]
    '25-Oct-2017'      [           0.79]    [           1.49]
    '26-Oct-2017'      [           0.35]    [           2.57]
    '27-Oct-2017'      [           0.75]    [           1.35]
    '28-Oct-2017'      [           0.92]    [           0.69]
    '29-Oct-2017'      [           0.23]    [           2.26]
    '30-Oct-2017'      [           1.21]    [           2.22]
    '31-Oct-2017'      [           0.44]    [           1.13]
    '01-Nov-2017'      [           0.91]    [           1.77]
    '02-Nov-2017'      [           1.40]    [           1.51]
    '03-Nov-2017'      [           0.40]    [           0.37]
    '04-Nov-2017'      [           0.75]    [           2.14]
    '05-Nov-2017'      [           1.42]    [           0.52]
    '06-Nov-2017'      [           0.16]    [           0.55]
    '07-Nov-2017'      [           2.82]    [           1.19]
    '08-Nov-2017'      [          11.30]    [           0.74]
    '09-Nov-2017'      [           2.61]    [           0.88]
    '10-Nov-2017'      [           0.73]    [           1.81]
    '11-Nov-2017'      [           1.54]    [           2.85]
    '12-Nov-2017'      [           0.35]    [           0.82]
    '13-Nov-2017'      [           6.54]    [           1.39]
    '14-Nov-2017'      [           2.56]    [           0.79]
    '15-Nov-2017'      [           2.20]    [           1.26]
    '16-Nov-2017'      [           0.42]    [           1.55]
    '17-Nov-2017'      [           1.38]    [           0.54]
    '18-Nov-2017'      [           0.57]    [           1.32]
    '19-Nov-2017'      [           0.73]    [           1.82]
    '20-Nov-2017'      [           0.57]    [           1.10]
    '21-Nov-2017'      [           0.36]    [           5.64]
    '22-Nov-2017'      [           0.40]    [           0.54]
    '23-Nov-2017'      [           0.81]    [           0.48]
    '24-Nov-2017'      [           0.18]    [           0.17]
    '25-Nov-2017'      [           1.84]    [           2.49]
    '26-Nov-2017'      [           0.89]    [           2.38]
    '27-Nov-2017'      [           2.01]    [           0.92]
    '28-Nov-2017'      [           1.31]    [           2.46]
    '29-Nov-2017'      [           1.64]    [           1.20]
    '30-Nov-2017'      [           0.23]    [           1.34]
    '01-Dec-2017'      [           0.36]    [           1.12]
    '02-Dec-2017'      [           0.64]    [           1.55]
    '03-Dec-2017'      [           1.12]    [           1.11]
    '04-Dec-2017'      [           3.09]    [          16.24]
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    '05-Dec-2017'      [           0.75]    [           0.31]
    '06-Dec-2017'      [           3.53]    [           0.16]
    '07-Dec-2017'      [           1.61]    [           0.32]
    '08-Dec-2017'      [           3.24]    [           0.34]
    '09-Dec-2017'      [           1.14]    [           0.65]
    '10-Dec-2017'      [           0.52]    [           0.84]
    '11-Dec-2017'      [           0.23]    [           0.80]
    '12-Dec-2017'      [           1.17]    [           1.72]
    '13-Dec-2017'      [           2.27]    [           1.48]
    '14-Dec-2017'      [           0.75]    [           2.12]
    '15-Dec-2017'      [           0.58]    [           5.92]
    '16-Dec-2017'      [           0.73]    [           3.40]
    '17-Dec-2017'      [           0.33]    [           0.28]
    '18-Dec-2017'      [           0.61]    [           0.10]
    '19-Dec-2017'      [           0.83]    [           2.46]
    '20-Dec-2017'      [           1.05]    [           0.16]
    '21-Dec-2017'      [           0.94]    [           1.07]
    '22-Dec-2017'      [           1.84]    [           1.04]
    '23-Dec-2017'      [           1.12]    [           9.27]
    '24-Dec-2017'      [           6.14]    [           0.93]
    '25-Dec-2017'      [           1.37]    [           0.60]
    '26-Dec-2017'      [           6.08]    [           1.27]
    '27-Dec-2017'      [           0.49]    [           1.28]
    '28-Dec-2017'      [           1.69]    [           1.07]
    '29-Dec-2017'      [           0.77]    [           0.54]
    '30-Dec-2017'      [           1.82]    [           0.29]
    '31-Dec-2017'      [           1.81]    [           1.37]
    '01-Jan-2018'      [           0.11]    [           0.26]
    '02-Jan-2018'      [           0.27]    [           0.36]
    '03-Jan-2018'      [           0.24]    [           3.79]
    '04-Jan-2018'      [           1.49]    [           0.66]
    '05-Jan-2018'      [           4.35]    [           0.87]
    '06-Jan-2018'      [           0.72]    [           2.46]
    '07-Jan-2018'      [           2.25]    [           0.74]
    '08-Jan-2018'      [           1.73]    [           2.80]
    '09-Jan-2018'      [           0.35]    [           0.71]
    '10-Jan-2018'      [           1.49]    [           2.75]
    '11-Jan-2018'      [           0.47]    [           1.88]

The second data series name defaults to series2, as expected.

Before you can perform any operations on the object, you must set the frequency indicator field freq
to the valid frequency of the data series contained in the object. You can leave the description field
desc blank.

To set the frequency indicator field to a daily frequency, enter

fts2.freq = 1, or

fts2.freq = 'daily'.

For more information, see fints.

Time-of-Day Information Included

The serial date number used with this form of the fints function can incorporate time-of-day
information. When time-of-day information is present, the output of the function contains a field
times that indicates the time of day.

If you recode the previous example on page 11-3 to include time-of-day information, you can see the
additional column present in the output object:

time_series = (now:now+100)';
data_series = exp(randn(1, 101))';
times_and_data = [time_series data_series];
fts1 = fints(times_and_data)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
fts1 = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'times:  (101)'    'series1:  (101)'
    '03-Oct-2017'      '16:17'            [           0.81]
    '04-Oct-2017'      '16:17'            [           0.42]
    '05-Oct-2017'      '16:17'            [           0.35]
    '06-Oct-2017'      '16:17'            [           0.76]
    '07-Oct-2017'      '16:17'            [           0.65]
    '08-Oct-2017'      '16:17'            [           0.66]
    '09-Oct-2017'      '16:17'            [           2.67]
    '10-Oct-2017'      '16:17'            [           0.74]
    '11-Oct-2017'      '16:17'            [           3.14]
    '12-Oct-2017'      '16:17'            [           0.59]
    '13-Oct-2017'      '16:17'            [           2.64]
    '14-Oct-2017'      '16:17'            [           0.59]
    '15-Oct-2017'      '16:17'            [           1.19]
    '16-Oct-2017'      '16:17'            [           2.64]
    '17-Oct-2017'      '16:17'            [           0.66]
    '18-Oct-2017'      '16:17'            [           0.65]
    '19-Oct-2017'      '16:17'            [           7.41]
    '20-Oct-2017'      '16:17'            [           2.59]
    '21-Oct-2017'      '16:17'            [           0.65]
    '22-Oct-2017'      '16:17'            [           1.91]
    '23-Oct-2017'      '16:17'            [           0.70]
    '24-Oct-2017'      '16:17'            [           2.03]
    '25-Oct-2017'      '16:17'            [           4.12]
    '26-Oct-2017'      '16:17'            [           0.20]
    '27-Oct-2017'      '16:17'            [           2.80]
    '28-Oct-2017'      '16:17'            [           4.30]
    '29-Oct-2017'      '16:17'            [           1.05]
    '30-Oct-2017'      '16:17'            [           5.73]
    '31-Oct-2017'      '16:17'            [           1.17]
    '01-Nov-2017'      '16:17'            [           0.29]
    '02-Nov-2017'      '16:17'            [           0.11]
    '03-Nov-2017'      '16:17'            [           0.72]
    '04-Nov-2017'      '16:17'            [           2.04]
    '05-Nov-2017'      '16:17'            [           1.37]
    '06-Nov-2017'      '16:17'            [           1.51]
    '07-Nov-2017'      '16:17'            [           0.56]
    '08-Nov-2017'      '16:17'            [           1.15]
    '09-Nov-2017'      '16:17'            [           0.19]
    '10-Nov-2017'      '16:17'            [           0.47]
    '11-Nov-2017'      '16:17'            [           0.44]
    '12-Nov-2017'      '16:17'            [           1.68]
    '13-Nov-2017'      '16:17'            [           0.99]
    '14-Nov-2017'      '16:17'            [           0.31]
    '15-Nov-2017'      '16:17'            [           0.99]
    '16-Nov-2017'      '16:17'            [           0.50]
    '17-Nov-2017'      '16:17'            [           0.51]
    '18-Nov-2017'      '16:17'            [           2.37]
    '19-Nov-2017'      '16:17'            [           1.12]
    '20-Nov-2017'      '16:17'            [           1.49]
    '21-Nov-2017'      '16:17'            [           2.42]
    '22-Nov-2017'      '16:17'            [           1.20]
    '23-Nov-2017'      '16:17'            [           1.73]
    '24-Nov-2017'      '16:17'            [           1.98]
    '25-Nov-2017'      '16:17'            [           3.22]
    '26-Nov-2017'      '16:17'            [           1.61]
    '27-Nov-2017'      '16:17'            [           4.11]
    '28-Nov-2017'      '16:17'            [           1.02]
    '29-Nov-2017'      '16:17'            [           0.95]
    '30-Nov-2017'      '16:17'            [           5.48]
    '01-Dec-2017'      '16:17'            [           0.60]
    '02-Dec-2017'      '16:17'            [           1.00]
    '03-Dec-2017'      '16:17'            [           2.51]
    '04-Dec-2017'      '16:17'            [           1.16]
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    '05-Dec-2017'      '16:17'            [           4.08]
    '06-Dec-2017'      '16:17'            [           2.81]
    '07-Dec-2017'      '16:17'            [           1.34]
    '08-Dec-2017'      '16:17'            [           0.46]
    '09-Dec-2017'      '16:17'            [           1.76]
    '10-Dec-2017'      '16:17'            [           0.25]
    '11-Dec-2017'      '16:17'            [           1.28]
    '12-Dec-2017'      '16:17'            [           2.24]
    '13-Dec-2017'      '16:17'            [           1.24]
    '14-Dec-2017'      '16:17'            [           2.41]
    '15-Dec-2017'      '16:17'            [           7.68]
    '16-Dec-2017'      '16:17'            [           2.52]
    '17-Dec-2017'      '16:17'            [           1.31]
    '18-Dec-2017'      '16:17'            [           1.90]
    '19-Dec-2017'      '16:17'            [           1.53]
    '20-Dec-2017'      '16:17'            [           0.27]
    '21-Dec-2017'      '16:17'            [           0.66]
    '22-Dec-2017'      '16:17'            [           3.40]
    '23-Dec-2017'      '16:17'            [           0.96]
    '24-Dec-2017'      '16:17'            [           1.79]
    '25-Dec-2017'      '16:17'            [           0.37]
    '26-Dec-2017'      '16:17'            [           1.07]
    '27-Dec-2017'      '16:17'            [           1.82]
    '28-Dec-2017'      '16:17'            [           0.26]
    '29-Dec-2017'      '16:17'            [           1.42]
    '30-Dec-2017'      '16:17'            [           0.83]
    '31-Dec-2017'      '16:17'            [           0.39]
    '01-Jan-2018'      '16:17'            [           0.96]
    '02-Jan-2018'      '16:17'            [           0.15]
    '03-Jan-2018'      '16:17'            [           0.12]
    '04-Jan-2018'      '16:17'            [           0.31]
    '05-Jan-2018'      '16:17'            [           0.37]
    '06-Jan-2018'      '16:17'            [           0.31]
    '07-Jan-2018'      '16:17'            [           0.18]
    '08-Jan-2018'      '16:17'            [           1.33]
    '09-Jan-2018'      '16:17'            [           0.20]
    '10-Jan-2018'      '16:17'            [           1.12]
    '11-Jan-2018'      '16:17'            [           2.20]

Separate Vector Input

The date information provided with this syntax can be in serial date number or date character vector
format. The date information may on page 11-11 or may not on page 11-9 include time-of-day
information.
Time-of-Day Information Excluded

fts = fints(dates, data)

In this second syntax the dates and data series are entered as separate vectors to fints, the
financial time series object constructor function. The dates vector must be a column vector, while
the data series data can be a column vector (if there is only one data series) or a column-oriented
matrix (for multiple data series). A column-oriented matrix, in this context, indicates that each
column is a set of observations. Different columns are different sets of data series.

Here is an example:

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts = fints(dates, data)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
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fts = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'series1:  (101)'    'series2:  (101)'
    '03-Oct-2017'      [           1.00]    [           0.50]
    '04-Oct-2017'      [           1.10]    [           0.20]
    '05-Oct-2017'      [           0.69]    [           4.31]
    '06-Oct-2017'      [           0.23]    [           7.77]
    '07-Oct-2017'      [           0.96]    [           1.13]
    '08-Oct-2017'      [           2.61]    [           0.37]
    '09-Oct-2017'      [           5.69]    [           3.31]
    '10-Oct-2017'      [           0.65]    [           0.55]
    '11-Oct-2017'      [           0.20]    [           0.63]
    '12-Oct-2017'      [           1.18]    [           2.43]
    '13-Oct-2017'      [           1.46]    [           0.25]
    '14-Oct-2017'      [           0.80]    [           0.14]
    '15-Oct-2017'      [           0.32]    [           1.52]
    '16-Oct-2017'      [           7.57]    [           1.49]
    '17-Oct-2017'      [           0.09]    [           1.10]
    '18-Oct-2017'      [           0.60]    [           1.64]
    '19-Oct-2017'      [           0.27]    [           2.95]
    '20-Oct-2017'      [           0.53]    [           2.64]
    '21-Oct-2017'      [           1.37]    [           0.57]
    '22-Oct-2017'      [           1.15]    [           2.25]
    '23-Oct-2017'      [           0.49]    [           1.19]
    '24-Oct-2017'      [           2.17]    [           0.60]
    '25-Oct-2017'      [           1.86]    [           0.30]
    '26-Oct-2017'      [           1.91]    [           1.91]
    '27-Oct-2017'      [           0.65]    [           0.70]
    '28-Oct-2017'      [           2.85]    [           1.05]
    '29-Oct-2017'      [           1.94]    [           0.45]
    '30-Oct-2017'      [          12.29]    [           0.21]
    '31-Oct-2017'      [           2.90]    [           1.19]
    '01-Nov-2017'      [           3.18]    [           0.94]
    '02-Nov-2017'      [           1.05]    [           3.32]
    '03-Nov-2017'      [           0.28]    [           2.23]
    '04-Nov-2017'      [           0.69]    [           2.87]
    '05-Nov-2017'      [           0.47]    [           0.47]
    '06-Nov-2017'      [           0.57]    [           0.39]
    '07-Nov-2017'      [           1.74]    [           0.28]
    '08-Nov-2017'      [           0.57]    [           1.65]
    '09-Nov-2017'      [           0.41]    [          16.27]
    '10-Nov-2017'      [           0.66]    [           2.07]
    '11-Nov-2017'      [           0.85]    [           0.46]
    '12-Nov-2017'      [           1.51]    [           2.31]
    '13-Nov-2017'      [           0.39]    [           0.32]
    '14-Nov-2017'      [           1.37]    [           0.24]
    '15-Nov-2017'      [           1.08]    [           2.05]
    '16-Nov-2017'      [           3.76]    [           0.46]
    '17-Nov-2017'      [           0.81]    [           1.37]
    '18-Nov-2017'      [           0.87]    [           4.08]
    '19-Nov-2017'      [           0.31]    [           1.49]
    '20-Nov-2017'      [           0.25]    [           2.53]
    '21-Nov-2017'      [           1.36]    [           0.20]
    '22-Nov-2017'      [           0.78]    [           1.94]
    '23-Nov-2017'      [           1.65]    [           8.49]
    '24-Nov-2017'      [           0.41]    [           1.72]
    '25-Nov-2017'      [           6.74]    [           0.21]
    '26-Nov-2017'      [           1.13]    [           0.82]
    '27-Nov-2017'      [           2.85]    [           0.61]
    '28-Nov-2017'      [           0.80]    [           1.47]
    '29-Nov-2017'      [           0.85]    [           1.51]
    '30-Nov-2017'      [           1.99]    [           1.50]
    '01-Dec-2017'      [           1.74]    [           0.70]
    '02-Dec-2017'      [           0.33]    [           0.55]
    '03-Dec-2017'      [           0.22]    [           0.55]
    '04-Dec-2017'      [           0.33]    [           2.35]
    '05-Dec-2017'      [           0.24]    [           0.16]
    '06-Dec-2017'      [           1.06]    [           0.81]
    '07-Dec-2017'      [           0.66]    [           1.31]
    '08-Dec-2017'      [           0.69]    [           0.52]
    '09-Dec-2017'      [           0.26]    [           1.61]
    '10-Dec-2017'      [           2.18]    [           0.93]
    '11-Dec-2017'      [           1.55]    [           0.39]
    '12-Dec-2017'      [           0.91]    [           1.18]
    '13-Dec-2017'      [           2.78]    [           0.76]
    '14-Dec-2017'      [           0.42]    [           0.66]
    '15-Dec-2017'      [           1.51]    [           0.49]
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    '16-Dec-2017'      [           1.42]    [           1.06]
    '17-Dec-2017'      [           1.42]    [           0.16]
    '18-Dec-2017'      [           0.48]    [           0.67]
    '19-Dec-2017'      [           1.39]    [           0.58]
    '20-Dec-2017'      [           0.60]    [           0.40]
    '21-Dec-2017'      [           0.41]    [           1.92]
    '22-Dec-2017'      [           0.30]    [           0.48]
    '23-Dec-2017'      [           2.82]    [           1.72]
    '24-Dec-2017'      [           0.43]    [           2.65]
    '25-Dec-2017'      [           0.84]    [           0.85]
    '26-Dec-2017'      [           0.30]    [           1.32]
    '27-Dec-2017'      [           0.74]    [           1.90]
    '28-Dec-2017'      [           0.04]    [           0.92]
    '29-Dec-2017'      [           0.34]    [           1.72]
    '30-Dec-2017'      [           0.24]    [           0.28]
    '31-Dec-2017'      [           0.36]    [           3.04]
    '01-Jan-2018'      [           0.81]    [           0.37]
    '02-Jan-2018'      [           0.72]    [           0.16]
    '03-Jan-2018'      [           6.99]    [           3.99]
    '04-Jan-2018'      [           0.56]    [           0.94]
    '05-Jan-2018'      [           0.78]    [           1.57]
    '06-Jan-2018'      [           0.21]    [           0.70]
    '07-Jan-2018'      [           0.62]    [           0.36]
    '08-Jan-2018'      [           0.26]    [           0.05]
    '09-Jan-2018'      [           1.03]    [           1.87]
    '10-Jan-2018'      [           2.35]    [           0.75]
    '11-Jan-2018'      [           1.50]    [           0.82]

The result is exactly the same as the first syntax. The only difference between the first and second
syntax is the way the inputs are entered into the constructor function.

Time-of-Day Information Included

With this form of the function you can enter the time-of-day information either as a serial date
number or as a date character vector. If more than one serial date and time are present, the entry
must be in the form of a column-oriented matrix. If more than one character vector date and time are
present, the entry must be a column-oriented cell array of character vectors for dates and times.

With date character vector input, the dates and times can initially be separate column-oriented date
and time series, but you must concatenate them into a single column-oriented cell array before
entering them as the first input to fints.

For date character vector input the allowable formats are

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'
• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

The next example shows time-of-day information input as serial date numbers in a column-oriented
matrix:

f = fints([now;now+1],(1:2)')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
f = 
 
    desc:  (none)
    freq:  Unknown (0)
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    'dates:  (2)'    'times:  (2)'    'series1:  (2)'
    '03-Oct-2017'    '16:19'          [         1.00]
    '04-Oct-2017'    '16:19'          [         2.00]

If the time-of-day information is in date character vector format, you must provide it to fints as a
column-oriented cell array:

f = fints({'01-Jan-2001 12:00';'02-Jan-2001 12:00'},(1:2)')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
f = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (2)'    'times:  (2)'    'series1:  (2)'
    '01-Jan-2001'    '12:00'          [         1.00]
    '02-Jan-2001'    '12:00'          [         2.00]

If the dates and times are in date character vector format and contained in separate matrices, you
must concatenate them before using the date and time information as input to fints:

dates = ['01-Jan-2001'; '02-Jan-2001'; '03-Jan-2001'];
times = ['12:00';'12:00';'12:00'];
dates_time = cellstr([dates,repmat(' ',size(dates,1),1),times]);
f = fints(dates_time,(1:3)')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
f = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (3)'    'times:  (3)'    'series1:  (3)'
    '01-Jan-2001'    '12:00'          [         1.00]
    '02-Jan-2001'    '12:00'          [         2.00]
    '03-Jan-2001'    '12:00'          [         3.00]

Data Name Input

fts = fints(dates, data, datanames)

The third syntax lets you specify the names for the data series with the argument datanames. The
datanames argument can be a MATLAB character vector for a single data series. For multiple data
series names, it must be a cell array of character vectors.

Look at two examples, one with a single data series and a second with two. The first example sets the
data series name to the specified name First:
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dates = (today:today+100)';
data = exp(randn(1, 101))';
fts1 = fints(dates, data, 'First')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
fts1 = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'First:  (101)'
    '03-Oct-2017'      [         1.50]
    '04-Oct-2017'      [         0.24]
    '05-Oct-2017'      [         0.48]
    '06-Oct-2017'      [         3.15]
    '07-Oct-2017'      [         1.82]
    '08-Oct-2017'      [         0.28]
    '09-Oct-2017'      [         0.11]
    '10-Oct-2017'      [         0.56]
    '11-Oct-2017'      [         1.24]
    '12-Oct-2017'      [         2.57]
    '13-Oct-2017'      [         1.10]
    '14-Oct-2017'      [         0.33]
    '15-Oct-2017'      [         1.36]
    '16-Oct-2017'      [         0.31]
    '17-Oct-2017'      [         0.38]
    '18-Oct-2017'      [         0.52]
    '19-Oct-2017'      [         0.29]
    '20-Oct-2017'      [         0.76]
    '21-Oct-2017'      [         0.41]
    '22-Oct-2017'      [         0.75]
    '23-Oct-2017'      [         0.63]
    '24-Oct-2017'      [         0.66]
    '25-Oct-2017'      [         0.60]
    '26-Oct-2017'      [         3.43]
    '27-Oct-2017'      [         1.84]
    '28-Oct-2017'      [         1.06]
    '29-Oct-2017'      [         0.23]
    '30-Oct-2017'      [         0.20]
    '31-Oct-2017'      [         0.14]
    '01-Nov-2017'      [        13.53]
    '02-Nov-2017'      [         2.64]
    '03-Nov-2017'      [         1.29]
    '04-Nov-2017'      [         0.38]
    '05-Nov-2017'      [         0.32]
    '06-Nov-2017'      [         1.73]
    '07-Nov-2017'      [         4.78]
    '08-Nov-2017'      [         0.18]
    '09-Nov-2017'      [         0.64]
    '10-Nov-2017'      [         0.92]
    '11-Nov-2017'      [         0.14]
    '12-Nov-2017'      [         2.32]
    '13-Nov-2017'      [         0.66]
    '14-Nov-2017'      [         6.77]
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    '15-Nov-2017'      [         0.68]
    '16-Nov-2017'      [         1.51]
    '17-Nov-2017'      [         0.32]
    '18-Nov-2017'      [         0.54]
    '19-Nov-2017'      [         0.31]
    '20-Nov-2017'      [         1.48]
    '21-Nov-2017'      [         3.68]
    '22-Nov-2017'      [         0.55]
    '23-Nov-2017'      [         1.55]
    '24-Nov-2017'      [         0.60]
    '25-Nov-2017'      [         1.11]
    '26-Nov-2017'      [         3.31]
    '27-Nov-2017'      [         1.13]
    '28-Nov-2017'      [         0.35]
    '29-Nov-2017'      [         0.42]
    '30-Nov-2017'      [         0.84]
    '01-Dec-2017'      [         0.83]
    '02-Dec-2017'      [         0.42]
    '03-Dec-2017'      [         1.20]
    '04-Dec-2017'      [         3.55]
    '05-Dec-2017'      [         0.78]
    '06-Dec-2017'      [         0.81]
    '07-Dec-2017'      [         0.11]
    '08-Dec-2017'      [         0.46]
    '09-Dec-2017'      [         0.25]
    '10-Dec-2017'      [         0.68]
    '11-Dec-2017'      [         1.69]
    '12-Dec-2017'      [         4.59]
    '13-Dec-2017'      [         6.04]
    '14-Dec-2017'      [         0.89]
    '15-Dec-2017'      [         0.73]
    '16-Dec-2017'      [         2.26]
    '17-Dec-2017'      [         1.63]
    '18-Dec-2017'      [         2.15]
    '19-Dec-2017'      [         2.18]
    '20-Dec-2017'      [         0.23]
    '21-Dec-2017'      [         1.72]
    '22-Dec-2017'      [         0.91]
    '23-Dec-2017'      [         0.47]
    '24-Dec-2017'      [         0.50]
    '25-Dec-2017'      [         3.60]
    '26-Dec-2017'      [         0.44]
    '27-Dec-2017'      [         0.29]
    '28-Dec-2017'      [         1.24]
    '29-Dec-2017'      [         7.47]
    '30-Dec-2017'      [         1.03]
    '31-Dec-2017'      [         1.36]
    '01-Jan-2018'      [         0.39]
    '02-Jan-2018'      [         5.33]
    '03-Jan-2018'      [         1.13]
    '04-Jan-2018'      [         1.70]
    '05-Jan-2018'      [         0.39]
    '06-Jan-2018'      [         2.35]
    '07-Jan-2018'      [         1.48]
    '08-Jan-2018'      [         0.31]
    '09-Jan-2018'      [         1.04]
    '10-Jan-2018'      [         0.64]
    '11-Jan-2018'      [         1.12]
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The second example provides two data series named First and Second:

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts2 = fints(dates, data, {'First', 'Second'})

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
fts2 = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'First:  (101)'    'Second:  (101)'
    '03-Oct-2017'      [         0.78]    [          3.36]
    '04-Oct-2017'      [         0.83]    [          1.63]
    '05-Oct-2017'      [         0.36]    [          2.79]
    '06-Oct-2017'      [         0.72]    [          2.39]
    '07-Oct-2017'      [         2.15]    [          0.68]
    '08-Oct-2017'      [         5.72]    [          1.54]
    '09-Oct-2017'      [         0.31]    [          0.74]
    '10-Oct-2017'      [        10.78]    [          0.41]
    '11-Oct-2017'      [         4.60]    [          1.89]
    '12-Oct-2017'      [         1.18]    [          1.07]
    '13-Oct-2017'      [         0.74]    [          0.83]
    '14-Oct-2017'      [         0.50]    [          1.34]
    '15-Oct-2017'      [         2.30]    [          2.69]
    '16-Oct-2017'      [         0.50]    [          1.48]
    '17-Oct-2017'      [         0.63]    [          1.21]
    '18-Oct-2017'      [         2.42]    [          1.32]
    '19-Oct-2017'      [         1.55]    [          1.05]
    '20-Oct-2017'      [         2.45]    [          0.46]
    '21-Oct-2017'      [         1.66]    [          2.20]
    '22-Oct-2017'      [         0.67]    [          4.09]
    '23-Oct-2017'      [         0.60]    [          0.59]
    '24-Oct-2017'      [         2.22]    [          6.87]
    '25-Oct-2017'      [         0.51]    [          0.84]
    '26-Oct-2017'      [         3.28]    [          0.78]
    '27-Oct-2017'      [         2.20]    [          0.41]
    '28-Oct-2017'      [         1.33]    [          0.45]
    '29-Oct-2017'      [         1.00]    [          0.39]
    '30-Oct-2017'      [         1.44]    [          1.42]
    '31-Oct-2017'      [        34.01]    [          4.94]
    '01-Nov-2017'      [         0.89]    [          1.69]
    '02-Nov-2017'      [         0.21]    [          2.35]
    '03-Nov-2017'      [         6.79]    [          3.83]
    '04-Nov-2017'      [         1.84]    [          0.08]
    '05-Nov-2017'      [         0.52]    [          0.85]
    '06-Nov-2017'      [        13.70]    [          1.42]
    '07-Nov-2017'      [         1.73]    [          2.05]
    '08-Nov-2017'      [         1.34]    [          0.27]
    '09-Nov-2017'      [         0.46]    [          0.37]
    '10-Nov-2017'      [         0.34]    [          2.20]
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    '11-Nov-2017'      [         0.17]    [          0.89]
    '12-Nov-2017'      [         0.66]    [          1.74]
    '13-Nov-2017'      [         0.35]    [          0.38]
    '14-Nov-2017'      [         1.91]    [          0.20]
    '15-Nov-2017'      [         0.73]    [          2.14]
    '16-Nov-2017'      [         5.86]    [          3.30]
    '17-Nov-2017'      [         4.53]    [          5.11]
    '18-Nov-2017'      [         1.18]    [          0.22]
    '19-Nov-2017'      [         0.75]    [          0.26]
    '20-Nov-2017'      [         3.17]    [          0.23]
    '21-Nov-2017'      [         0.32]    [          0.96]
    '22-Nov-2017'      [         1.96]    [          0.54]
    '23-Nov-2017'      [         0.51]    [          3.72]
    '24-Nov-2017'      [         0.67]    [          0.23]
    '25-Nov-2017'      [         0.51]    [          0.18]
    '26-Nov-2017'      [         1.78]    [          1.23]
    '27-Nov-2017'      [         0.46]    [          3.30]
    '28-Nov-2017'      [         0.35]    [          0.45]
    '29-Nov-2017'      [         1.74]    [          0.28]
    '30-Nov-2017'      [         0.65]    [          0.86]
    '01-Dec-2017'      [         1.44]    [          0.19]
    '02-Dec-2017'      [         0.70]    [          1.02]
    '03-Dec-2017'      [         1.31]    [          2.29]
    '04-Dec-2017'      [         0.08]    [          1.24]
    '05-Dec-2017'      [         1.59]    [          0.15]
    '06-Dec-2017'      [         6.38]    [          0.58]
    '07-Dec-2017'      [         2.83]    [          0.74]
    '08-Dec-2017'      [         2.49]    [          6.13]
    '09-Dec-2017'      [         0.79]    [          2.50]
    '10-Dec-2017'      [         1.20]    [          0.94]
    '11-Dec-2017'      [         1.28]    [          3.70]
    '12-Dec-2017'      [         1.10]    [          0.35]
    '13-Dec-2017'      [         0.44]    [          0.71]
    '14-Dec-2017'      [         0.70]    [          4.11]
    '15-Dec-2017'      [         0.84]    [          4.49]
    '16-Dec-2017'      [         0.62]    [          2.08]
    '17-Dec-2017'      [         2.31]    [          1.63]
    '18-Dec-2017'      [        12.66]    [          0.56]
    '19-Dec-2017'      [         0.27]    [          2.11]
    '20-Dec-2017'      [         1.14]    [          0.44]
    '21-Dec-2017'      [         0.24]    [          1.78]
    '22-Dec-2017'      [         3.68]    [          1.33]
    '23-Dec-2017'      [         4.10]    [          3.12]
    '24-Dec-2017'      [         0.19]    [          0.65]
    '25-Dec-2017'      [         6.98]    [          1.89]
    '26-Dec-2017'      [         0.34]    [          2.21]
    '27-Dec-2017'      [         1.25]    [          0.41]
    '28-Dec-2017'      [         3.00]    [          1.17]
    '29-Dec-2017'      [         1.16]    [          4.94]
    '30-Dec-2017'      [         9.93]    [          1.12]
    '31-Dec-2017'      [        15.68]    [          0.73]
    '01-Jan-2018'      [         1.15]    [          1.58]
    '02-Jan-2018'      [         0.15]    [          0.76]
    '03-Jan-2018'      [         0.69]    [          1.56]
    '04-Jan-2018'      [         0.43]    [          0.87]
    '05-Jan-2018'      [         0.47]    [          0.98]
    '06-Jan-2018'      [         0.32]    [          1.59]
    '07-Jan-2018'      [         1.08]    [          3.91]
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    '08-Jan-2018'      [         8.22]    [          1.57]
    '09-Jan-2018'      [         0.49]    [          5.20]
    '10-Jan-2018'      [         0.76]    [          0.13]
    '11-Jan-2018'      [         3.21]    [          0.64]

Note Data series names must be valid MATLAB variable names. The only allowed nonalphanumeric
character is the underscore (_) character.

Because freq for fts2 has not been explicitly indicated, the frequency indicator for fts2 is set to
Unknown. Set the frequency indicator field freq before you attempt any operations on the object. You
will not be able to use the object until the frequency indicator field is set to a valid indicator.

Frequency Indicator Input
fts = fints(dates, data, datanames, freq)

With the fourth syntax you can set the frequency indicator field when you create the financial time
series object. The frequency indicator field freq is set as the fourth input argument. You will not be
able to use the financial time series object until freq is set to a valid indicator. Valid frequency
indicators are

UNKNOWN, Unknown, unknown, U, u,0
DAILY, Daily, daily, D, d,1     
WEEKLY, Weekly, weekly, W, w,2     
MONTHLY, Monthly, monthly, M, m,3     
QUARTERLY, Quarterly, quarterly, Q, q,4     
SEMIANNUAL, Semiannual, semiannual, S, s,5   
ANNUAL, Annual, annual, A, a,6

The previous example contained sets of daily data. The freq field displayed as Unknown (0)
because the frequency indicator was not explicitly set. The command

fts = fints(dates, data, {'First', 'Second'}, 1)

sets the freq indicator to Daily(1) when creating the financial time series object:

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
fts = 
 
    desc:  (none)
    freq:  Daily (1)

    'dates:  (101)'    'First:  (101)'    'Second:  (101)'
    '03-Oct-2017'      [         1.27]    [          1.24]
    '04-Oct-2017'      [         0.43]    [          2.40]
    '05-Oct-2017'      [         0.28]    [          1.21]
    '06-Oct-2017'      [         1.85]    [          0.66]
    '07-Oct-2017'      [         1.85]    [          1.43]
    '08-Oct-2017'      [         1.34]    [          1.04]
    '09-Oct-2017'      [         1.48]    [          0.69]
    '10-Oct-2017'      [         0.42]    [          5.88]
    '11-Oct-2017'      [         0.61]    [          1.25]
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    '12-Oct-2017'      [         0.90]    [         15.34]
    '13-Oct-2017'      [         0.50]    [          0.74]
    '14-Oct-2017'      [         1.39]    [          1.76]
    '15-Oct-2017'      [        10.65]    [          4.87]
    '16-Oct-2017'      [         0.62]    [         15.32]
    '17-Oct-2017'      [         1.91]    [          1.35]
    '18-Oct-2017'      [         0.36]    [          0.45]
    '19-Oct-2017'      [         3.82]    [          2.23]
    '20-Oct-2017'      [         0.38]    [          0.27]
    '21-Oct-2017'      [         1.23]    [          0.76]
    '22-Oct-2017'      [         0.54]    [          1.31]
    '23-Oct-2017'      [         1.67]    [          4.44]
    '24-Oct-2017'      [         1.01]    [          4.21]
    '25-Oct-2017'      [         0.96]    [          0.97]
    '26-Oct-2017'      [        19.09]    [          2.52]
    '27-Oct-2017'      [         0.53]    [          0.73]
    '28-Oct-2017'      [         0.95]    [          1.94]
    '29-Oct-2017'      [        14.63]    [          6.79]
    '30-Oct-2017'      [         0.32]    [          1.17]
    '31-Oct-2017'      [         1.74]    [          0.74]
    '01-Nov-2017'      [         0.34]    [          0.61]
    '02-Nov-2017'      [         2.80]    [          2.05]
    '03-Nov-2017'      [         1.39]    [          3.81]
    '04-Nov-2017'      [         1.92]    [          8.38]
    '05-Nov-2017'      [         0.76]    [          1.06]
    '06-Nov-2017'      [         1.28]    [          1.18]
    '07-Nov-2017'      [         4.36]    [          0.53]
    '08-Nov-2017'      [         0.10]    [          5.01]
    '09-Nov-2017'      [         0.20]    [          0.93]
    '10-Nov-2017'      [         1.52]    [          0.62]
    '11-Nov-2017'      [         0.52]    [          8.88]
    '12-Nov-2017'      [         0.74]    [          2.25]
    '13-Nov-2017'      [         0.22]    [          2.05]
    '14-Nov-2017'      [         0.40]    [          0.37]
    '15-Nov-2017'      [         0.67]    [          1.54]
    '16-Nov-2017'      [         0.48]    [          1.68]
    '17-Nov-2017'      [         0.42]    [          0.34]
    '18-Nov-2017'      [         0.66]    [          0.80]
    '19-Nov-2017'      [         0.39]    [          0.67]
    '20-Nov-2017'      [         3.83]    [          1.70]
    '21-Nov-2017'      [         0.37]    [          0.37]
    '22-Nov-2017'      [         6.16]    [          2.97]
    '23-Nov-2017'      [         0.69]    [          5.96]
    '24-Nov-2017'      [         0.23]    [          0.74]
    '25-Nov-2017'      [         0.54]    [          0.99]
    '26-Nov-2017'      [         2.55]    [          1.66]
    '27-Nov-2017'      [         2.87]    [          3.33]
    '28-Nov-2017'      [         1.17]    [          1.69]
    '29-Nov-2017'      [         1.33]    [          1.49]
    '30-Nov-2017'      [         1.88]    [          0.62]
    '01-Dec-2017'      [         0.23]    [          0.79]
    '02-Dec-2017'      [         0.56]    [          1.85]
    '03-Dec-2017'      [         0.16]    [          5.38]
    '04-Dec-2017'      [         0.64]    [          1.77]
    '05-Dec-2017'      [         2.58]    [          0.30]
    '06-Dec-2017'      [         2.05]    [          1.54]
    '07-Dec-2017'      [         9.85]    [          0.91]
    '08-Dec-2017'      [         1.18]    [          0.78]
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    '09-Dec-2017'      [         0.12]    [          0.80]
    '10-Dec-2017'      [         5.42]    [          0.41]
    '11-Dec-2017'      [         3.60]    [          0.73]
    '12-Dec-2017'      [         0.56]    [          0.46]
    '13-Dec-2017'      [         1.25]    [          0.69]
    '14-Dec-2017'      [         2.18]    [          1.12]
    '15-Dec-2017'      [         1.47]    [          1.19]
    '16-Dec-2017'      [         2.01]    [          0.81]
    '17-Dec-2017'      [         0.89]    [          0.86]
    '18-Dec-2017'      [         0.96]    [          1.03]
    '19-Dec-2017'      [         1.09]    [          1.58]
    '20-Dec-2017'      [         0.45]    [          3.60]
    '21-Dec-2017'      [         4.15]    [          1.86]
    '22-Dec-2017'      [         1.01]    [          0.75]
    '23-Dec-2017'      [         1.99]    [          1.82]
    '24-Dec-2017'      [         0.43]    [          0.78]
    '25-Dec-2017'      [         0.34]    [          0.17]
    '26-Dec-2017'      [         0.91]    [          0.10]
    '27-Dec-2017'      [         0.78]    [          0.18]
    '28-Dec-2017'      [         3.30]    [          0.79]
    '29-Dec-2017'      [         1.83]    [          0.54]
    '30-Dec-2017'      [         1.72]    [          0.49]
    '31-Dec-2017'      [         0.24]    [          1.04]
    '01-Jan-2018'      [         0.38]    [          0.52]
    '02-Jan-2018'      [         1.22]    [          0.53]
    '03-Jan-2018'      [         0.71]    [          1.84]
    '04-Jan-2018'      [         3.63]    [          2.19]
    '05-Jan-2018'      [         3.82]    [         11.43]
    '06-Jan-2018'      [         0.56]    [          1.35]
    '07-Jan-2018'      [         2.40]    [          1.06]
    '08-Jan-2018'      [         4.04]    [          0.56]
    '09-Jan-2018'      [         1.38]    [          0.82]
    '10-Jan-2018'      [         5.07]    [          0.95]
    '11-Jan-2018'      [         2.89]    [          0.17]

When you create the object using this syntax, you can use the other valid frequency indicators for a
particular frequency. For a daily data set you can use DAILY, Daily, daily, D, or d. Similarly, with
the other frequencies, you can use the valid character vector indicators or their numeric
counterparts.

Description Field Input

fts = fints(dates, data, datanames, freq, desc)

With the fifth syntax, you can explicitly set the description field as the fifth input argument. The
description can be anything you want. It is not used in any operations performed on the object.

This example sets the desc field to 'Test TS'.

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts = fints(dates, data, {'First', 'Second'}, 1, 'Test TS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
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> In fints/display (line 66) 
 
fts = 
 
    desc:  Test TS
    freq:  Daily (1)

    'dates:  (101)'    'First:  (101)'    'Second:  (101)'
    '03-Oct-2017'      [         0.77]    [          0.36]
    '04-Oct-2017'      [         2.12]    [          0.79]
    '05-Oct-2017'      [         0.57]    [          0.62]
    '06-Oct-2017'      [         1.64]    [          0.72]
    '07-Oct-2017'      [         2.70]    [          1.61]
    '08-Oct-2017'      [         2.94]    [          0.88]
    '09-Oct-2017'      [         2.17]    [          0.55]
    '10-Oct-2017'      [         0.10]    [          0.64]
    '11-Oct-2017'      [         0.57]    [          0.27]
    '12-Oct-2017'      [         2.46]    [          0.42]
    '13-Oct-2017'      [         1.48]    [          0.24]
    '14-Oct-2017'      [         1.00]    [          0.60]
    '15-Oct-2017'      [         1.55]    [          0.34]
    '16-Oct-2017'      [         3.10]    [          0.49]
    '17-Oct-2017'      [         1.17]    [          0.74]
    '18-Oct-2017'      [         0.47]    [          0.30]
    '19-Oct-2017'      [         0.84]    [          0.98]
    '20-Oct-2017'      [         0.81]    [          1.41]
    '21-Oct-2017'      [         2.45]    [          0.38]
    '22-Oct-2017'      [         1.51]    [          3.05]
    '23-Oct-2017'      [         1.73]    [          0.20]
    '24-Oct-2017'      [         1.16]    [          0.68]
    '25-Oct-2017'      [         0.70]    [          0.23]
    '26-Oct-2017'      [         1.06]    [          0.71]
    '27-Oct-2017'      [         1.24]    [          0.27]
    '28-Oct-2017'      [         0.25]    [          0.56]
    '29-Oct-2017'      [         1.20]    [          0.48]
    '30-Oct-2017'      [         2.53]    [          0.31]
    '31-Oct-2017'      [         0.90]    [          0.13]
    '01-Nov-2017'      [         4.82]    [          1.76]
    '02-Nov-2017'      [         1.75]    [          7.39]
    '03-Nov-2017'      [         0.66]    [          9.24]
    '04-Nov-2017'      [         0.86]    [          0.61]
    '05-Nov-2017'      [         0.76]    [          0.96]
    '06-Nov-2017'      [         1.27]    [          0.63]
    '07-Nov-2017'      [         2.13]    [          1.08]
    '08-Nov-2017'      [         0.75]    [          0.40]
    '09-Nov-2017'      [         1.58]    [          0.15]
    '10-Nov-2017'      [         5.79]    [          0.96]
    '11-Nov-2017'      [         2.54]    [          0.29]
    '12-Nov-2017'      [         2.28]    [          0.15]
    '13-Nov-2017'      [         0.44]    [         10.74]
    '14-Nov-2017'      [         0.59]    [          0.79]
    '15-Nov-2017'      [         1.27]    [          1.50]
    '16-Nov-2017'      [         0.90]    [          3.30]
    '17-Nov-2017'      [         0.20]    [          0.19]
    '18-Nov-2017'      [         0.22]    [          1.51]
    '19-Nov-2017'      [         2.79]    [          1.65]
    '20-Nov-2017'      [         0.47]    [          1.09]
    '21-Nov-2017'      [         7.99]    [          1.17]
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    '22-Nov-2017'      [         0.11]    [          0.59]
    '23-Nov-2017'      [         1.57]    [          2.06]
    '24-Nov-2017'      [         1.00]    [          0.43]
    '25-Nov-2017'      [         0.47]    [          0.45]
    '26-Nov-2017'      [         1.50]    [          2.07]
    '27-Nov-2017'      [         0.45]    [          5.40]
    '28-Nov-2017'      [         2.36]    [          0.68]
    '29-Nov-2017'      [         1.07]    [          0.60]
    '30-Nov-2017'      [         0.19]    [          1.50]
    '01-Dec-2017'      [         0.09]    [          2.92]
    '02-Dec-2017'      [         0.75]    [          2.63]
    '03-Dec-2017'      [         3.14]    [          1.31]
    '04-Dec-2017'      [         1.20]    [          0.53]
    '05-Dec-2017'      [         1.06]    [          1.88]
    '06-Dec-2017'      [         1.99]    [          0.92]
    '07-Dec-2017'      [         0.25]    [          3.96]
    '08-Dec-2017'      [         4.16]    [          0.24]
    '09-Dec-2017'      [         0.41]    [          1.15]
    '10-Dec-2017'      [         1.04]    [          3.63]
    '11-Dec-2017'      [         0.70]    [          0.61]
    '12-Dec-2017'      [         1.16]    [          0.54]
    '13-Dec-2017'      [         0.14]    [          0.39]
    '14-Dec-2017'      [         4.59]    [          0.76]
    '15-Dec-2017'      [         1.73]    [          0.82]
    '16-Dec-2017'      [         7.46]    [          1.15]
    '17-Dec-2017'      [         4.12]    [          0.41]
    '18-Dec-2017'      [         1.01]    [          1.09]
    '19-Dec-2017'      [         0.39]    [          0.55]
    '20-Dec-2017'      [         0.18]    [          0.69]
    '21-Dec-2017'      [         1.02]    [          0.43]
    '22-Dec-2017'      [         1.25]    [          0.75]
    '23-Dec-2017'      [         2.85]    [         35.51]
    '24-Dec-2017'      [         0.39]    [         30.19]
    '25-Dec-2017'      [         2.21]    [          3.15]
    '26-Dec-2017'      [         1.07]    [          2.20]
    '27-Dec-2017'      [         0.46]    [          0.28]
    '28-Dec-2017'      [         2.17]    [          0.56]
    '29-Dec-2017'      [         1.30]    [          0.54]
    '30-Dec-2017'      [         0.79]    [          1.71]
    '31-Dec-2017'      [         6.54]    [          1.62]
    '01-Jan-2018'      [         1.84]    [          1.11]
    '02-Jan-2018'      [         0.90]    [          0.71]
    '03-Jan-2018'      [         1.32]    [          0.40]
    '04-Jan-2018'      [         1.09]    [          1.01]
    '05-Jan-2018'      [         1.19]    [          3.12]
    '06-Jan-2018'      [         1.57]    [          1.53]
    '07-Jan-2018'      [         0.55]    [          1.20]
    '08-Jan-2018'      [         0.45]    [          1.93]
    '09-Jan-2018'      [         1.43]    [          1.79]
    '10-Jan-2018'      [         6.59]    [          0.20]
    '11-Jan-2018'      [         0.74]    [          1.02]

Now the description field is filled with the specified character vector 'Test TS' when the
constructor is called.

 Creating Financial Time Series Objects

11-21



Transforming a Text File
The function ascii2fts creates a financial time series object from a text (ASCII) data file if the data
file conforms to a general format. The general format of the text data file is as follows:

• Can contain header text lines.
• Can contain column header information. The column header information must immediately

precede the data series columns unless the skiprows argument (see below) is specified.
• Leftmost column must be the date column.
• Dates must be in a valid date character vector format:

• 'ddmmmyy' or 'ddmmmyyyy'
• 'mm/dd/yy' or 'mm/dd/yyyy'
• 'dd-mmm-yy' or 'dd-mmm-yyyy'
• 'mmm.dd,yy' or 'mmm.dd,yyyy'

• Each column must be separated either by spaces or a tab.

Several example text data files are included with the toolbox. These files are in the ftsdata
subfolder within the folder matlabroot/toolbox/finance.

The syntax of the function

fts = ascii2fts(filename, descrow, colheadrow, skiprows);

takes in the data file name (filename), the row number where the text for the description field is
(descrow), the row number of the column header information (colheadrow), and the row numbers
of rows to be skipped (skiprows). For example, rows need to be skipped when there are intervening
rows between the column head row and the start of the time series data.

Look at the beginning of the ASCII file disney.dat in the ftsdata subfolder:

Walt Disney Company (DIS)                    
Daily prices (3/29/96 to 3/29/99)                    
DATE     OPEN     HIGH     LOW     CLOSE     VOLUME
3/29/99  33.0625  33.188   32.75   33.063    6320500
3/26/99  33.3125  33.375   32.75   32.938    5552800
3/25/99  33.5     33.625   32.875  33.375    7936000
3/24/99  33.0625  33.25    32.625  33.188    6025400...

The command-line

disfts = ascii2fts('disney.dat', 1, 3, 2)

uses disney.dat to create time series object disfts. This example

• Reads the text data file disney.dat
• Uses the first line in the file as the content of the description field
• Skips the second line
• Parses the third line in the file for column header (or data series names)
• Parses the rest of the file for the date vector and the data series values

The resulting financial time series object looks like this.
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

disfts = 

 desc:  Walt Disney Company (DIS)                
 freq:  Unknown (0)

 'dates:  (782)'    'OPEN:  (782)'    'HIGH:  (782)'    'LOW:  (782)'
'29-Mar-1996'     [    21.1938]    [    21.6250]   [   21.2920]
'01-Apr-1996'     [    21.1120]    [    21.6250]   [   21.4170]
'02-Apr-1996'     [    21.3165]    [    21.8750]   [   21.6670]
'03-Apr-1996'     [    21.4802]    [    21.8750]   [   21.7500]
'04-Apr-1996'     [    21.4393]    [    21.8750]   [   21.5000]
'05-Apr-1996'     [        NaN]    [        NaN]   [       NaN]
'09-Apr-1996'     [    21.1529]    [    21.5420]   [   21.2080]
'10-Apr-1996'     [    20.7387]    [    21.1670]   [   20.2500]
'11-Apr-1996'     [    20.0829]    [    20.5000]   [   20.0420]
'12-Apr-1996'     [    19.9189]    [    20.5830]   [   20.0830]
'15-Apr-1996'     [    20.2878]    [    20.7920]   [   20.3750]
'16-Apr-1996'     [    20.3698]    [    20.9170]   [   20.1670]
'17-Apr-1996'     [    20.4927]    [    20.9170]   [   20.7080]
'18-Apr-1996'     [    20.4927]    [    21.0420]   [   20.7920]

There are 782 data points in this object. Only the first few lines are shown here. Also, this object has
two other data series, the CLOSE and VOLUME data series, that are not shown here. In creating the
financial time series object, ascii2fts sorts the data into ascending chronological order.

The frequency indicator field, freq, is set to 0 for Unknown frequency. You can manually reset it to
the appropriate frequency using structure syntax disfts.freq = 1 for Daily frequency.

With a slightly different syntax, the function ascii2fts can create a financial time series object
when time-of-day data is present in the ASCII file. The new syntax has the form

fts = ascii2fts(filename, timedata, descrow, colheadrow, skiprows);

Set timedata to 'T' when time-of-day data is present and to 'NT' when there is no time data. For
an example using this function with time-of-day data, see the reference page for ascii2fts.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
today | tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “Working with Financial Time Series Objects” on page 13-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Using the Financial Time Series App” on page 14-9

 Creating Financial Time Series Objects

11-23



Visualizing Financial Time Series Objects

In this section...
“Introduction” on page 11-24
“Using chartfts” on page 11-24
“Zoom Tool” on page 11-26
“Combine Axes Tool” on page 11-29

Introduction
Financial Toolbox software contains the function chartfts, which provides a visual representation of
a financial time series object. chartfts is an interactive charting and graphing utility for financial
time series objects. With this function, you can observe time series values on the entire range of
dates covered by the time series.

Note Interactive charting is also available from the Graphs menu of the user interface. See
“Interactive Chart” on page 15-13 for additional information.

Using chartfts
chartfts requires a single input argument, tsobj, where tsobj is the name of the financial time
series object you want to explore. Most equity financial time series objects contain four price series,
such as opening, closing, highest, and lowest prices, plus an additional series containing the volume
traded. However, chartfts is not limited to a time series of equity prices and volume traded. It can
be used to display any time series data you may have.

To illustrate the use of chartfts, use the equity price and volume traded data for the Walt Disney
Corporation (NYSE: DIS) provided in the file disney.mat:

load disney.mat

whos

  Name             Size         Bytes  Class

  dis            782x5          39290  fints object
  dis_CLOSE      782x1           6256  double array
  dis_HIGH       782x1           6256  double array
  dis_LOW        782x1           6256  double array
  dis_OPEN       782x1           6256  double array
  dis_VOLUME     782x1           6256  double array
  dis_nv         782x4          32930  fints object
  q_dis           13x4           2196  fints object

For charting purposes look only at the objects dis (daily equity data including volume traded) and
dis_nv (daily data without volume traded). Both objects contain the series OPEN, HIGH, LOW, and
CLOSE, but only dis contains the additional VOLUME series.

Use chartfts(dis) to observe the values.
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The chart contains five plots, each representing one of the series in the time series object. Boxes
indicate the value of each individual plot. The date box is always on the left. The number of data
boxes on the right depends upon the number of data series in the time series object, five in this case.
The order in which these boxes are arranged (left to right) matches the plots from top to bottom.
With more than eight data series in the object, the scroll bar on the right is activated so that
additional data from the other series can be brought into view.

Slide the mouse cursor over the chart. A vertical bar appears across all plots. This bar selects the set
of data shown in the boxes below. Move this bar horizontally and the data changes accordingly.
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Click the plot. A small information box displays the data at the point where you click the mouse
button.

Zoom Tool
The zoom feature of chartfts enables a more detailed look at the data during a selected time frame.
The Zoom tool is found under the Chart Tools menu.
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Note Due to the specialized nature of this feature, do not use the MATLAB zoom command or Zoom
In and Zoom Out from the Tools menu.

When the feature is turned on, you will see two inactive buttons (ZOOM In and Reset ZOOM) above
the boxes. The buttons become active later after certain actions have been performed.

The window title bar displays the status of the chart tool that you are using. With the Zoom tool
turned on, you see Zoom ON in the title bar in addition to the name of the time series you are
working with. When the tool is off, no status is displayed.

To zoom into the chart, you need to define the starting and ending dates. Define the starting date by
moving the cursor over the chart until the desired date appears at the bottom-left box and click the
mouse button. A blue vertical line indicates the starting date that you have selected. Next, again
move the cursor over the chart until the desired ending date appears in the box and click the mouse
once again. This time, a red vertical line appears and the ZOOM In button is activated.
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To zoom into the chart, click the ZOOM In button.

The chart is zoomed in. The Reset ZOOM button now becomes active while the ZOOM In button
becomes inactive again. To return the chart to its original state (not zoomed), click the Reset ZOOM
button. To zoom into the chart even further, repeat the steps above for zooming into the chart.

Turn off the Zoom tool by going back to the Chart Tools menu and choosing Zoom Off.
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With the tool turned off, the chart stays at the last state that it was in. If you turn it off when the chart
is zoomed in, the chart stays zoomed in. If you reset the zoom before turning it off, the chart becomes
the original (not zoomed).

Combine Axes Tool
The Combine Axes tool allows you to combine all axes or specific axes into one. With axes combined,
you can visually spot any trends that can occur among the data series in a financial time series object.

To illustrate this tool, use dis_nv, the financial time series object that does not contain volume
traded data:

chartfts(dis_nv)

To combine axes, choose the Chart Tools menu, followed by Combine Axes and On.

When the Combine Axes tool is on, check boxes appear beside each individual plot. An additional
check box enables the combination of all plots.
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Combining All Axes

To combine all plots, select the Select all plots check box.

Now click the Combine Selected Graphs button to combine the chosen plots. In this case, all plots
are combined.
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The combined plots have a single plot axis with all data series traced. The background of each data
box has changed to the color corresponding to the color of the trace that represents the data series.
After the axes are combined, the tool is turned off.

Combining Selected Axes

You can choose any combination of the available axes to combine. For example, combine the HIGH
and LOW price series of the Disney time series. Click the check boxes next to the corresponding plots.
The Combine Selected Graphs button appears and is active.
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Click the Combine Selected Graphs button. The chart with the combined plots looks like the next
figure.

The plot with the combined axes is located at the top of the chart while the remaining plots follow it.
The data boxes have also been changed. The boxes that correspond to the combined axes are
relocated to the beginning, and the background colors are set to the color of the respective traces.
The data boxes for the remaining axes retain their original formats.
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Resetting Axes

If you have altered the chart by combining axes, you must reset the axes before you can visualize
additional combinations. Reset the axes with the Reset Axes menu item under Chart Tools >
Combine Axes. Now the On and Off features are turned off.

With axes reset, the interactive chart appears in its original format, and you can proceed with
additional axes combinations.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
today | tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “Creating Financial Time Series Objects” on page 11-2
• “Working with Financial Time Series Objects” on page 13-2
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• “Using the Financial Time Series App” on page 14-9
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Using Financial Timetables

• “Convert Financial Time Series Objects fints to Timetables” on page 12-2
• “Using Timetables in Finance” on page 12-7
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Convert Financial Time Series Objects fints to Timetables
In this section...
“Create Time Series” on page 12-2
“Index an Object” on page 12-3
“Transform Time Series” on page 12-3
“Convert Time Series” on page 12-4
“Merge Time Series” on page 12-5
“Analyze Time Series” on page 12-5
“Data Extraction” on page 12-5

In R2018a, financial time series (fints), and its associated methods have been replaced with a
MATLAB timetable function. If you use fints or the associated methods, you receive a warning.
You can use fts2timetable to convert a fints object to a timetable object. To help you convert
from the older fints to the newer timetable functionality, use the following information.

Create Time Series
I/O Related Operations

Task Old Functionality New Functionality
Construct by passing in
data and dates

fints(dates,data,datanames
)

timetable(rowTimes,var1,...,
varN,'VariableNames',
{'a','b',...})

Construct by conversion of
files

ascii2fts(filename,descrow
,colheadrow,skiprows)

T =
readtable(filename,opts,Name
,Value)

TT =
table2timetable(T,'RowTimes'
,timeVarName)

Construct by using App
with user interface

Using the Financial Time Series
app with user interface

Using ImportData from HOME tab

Write files fts2ascii(filename,tsobj,e
xttext)

writetable(TT,filename)

Convert to matrix fts2mat(tsobj) S = vartype('numeric');

TT2 = TT(:,S)

TT2.Variables
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Index an Object
Indexing an Object

Task Old Functionality New Functionality
Indexing with a date myfts('05/11/99') TT({'1999-05-11'},:)
Indexing with a date range myfts

('05/11/99::05/15/99')
S =
timerange('1999-05-11','1999
-05-15');

TT2 = TT(S,:)
Indexing with integers for
rows

myfts.series2(1)

myfts.series2([1, 3, 5])

myfts.series2(16:20)

TT(1,{'series2'})

TT([1, 3, 5],{'series2'})

TT(16:20,{'series2'})
Contents of a specific time
field

myfts.times timeofday(TT.Properties.RowT
imes)

Contents for a specific field
in a matrix

fts2mat(myfts.series2) TT.series2

Transform Time Series
Assume that all variables are numeric within a timetable, or the operations can be applied on TT2:

S = vartype('numeric');

TT2 = TT(:,S)
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Filter Time Series

Task Old Functionality New Functionality
Boxcox transformation newfts = boxcox(oldfts) TT.Variables =

boxcox(TT.Variables)
Differencing diff(myfts) TT{2:end,:} =

diff(TT.Variables)

TT(1,:) = []
Indexing with integers for
rows

fillts(oldfts,fill_method) fillmissing(TT,method)

(Assumes no missing dates)
Linear filtering filter(B,A, myfts) TT.Variables =

filter(b,a,TT.Variables)
Lag or lead time series
object

lagts(myfts,lagperiod)

leadts(myfts,leadperiod)

lag(TT,lagperiod)

lag(TT,-leadperiod)

(Assumes a regularly spaced
timetable)

Periodic average peravg(myfts) retime(TT,newTimes,'mean')
Downsample data resamplets(oldfts,samplest

ep)
retime(TT,newTimeStep,method
)

Smooth data smoothts(input) smoothdata(TT)
Moving average tsmovavg(tsobj,method,lag) movavg(TT,type,windowSize)

Convert Time Series
Assume that all variables are numeric within a timetable, or the operations can be applied on TT2:

S = vartype('numeric');

TT2 = TT(:,S)

Conversion Operations

Task Old Functionality New Functionality
Convert to specified
frequency

convertto(oldfts,newfreq) retime(TT,newTimeStep,method
)

Convert to annual toannual(oldfts,...) convert2annual(TT,…)
Convert to daily todaily(oldfts,...) convert2daily(TT,…)
Convert to monthly tomonthly(oldfts,...) convert2monthly(TT,…)
Convert to quarterly toquarterly(oldfts,...) convert2quarterly(TT,…)
Convert to semiannual tosemi(oldfts,...) convert2semiannual(TT,…)
Convert to weekly toweekly(oldfts,...) convert2weekly(TT,…)
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Merge Time Series
Merge Operations

Task Old Functionality New Functionality
Merge multiple time series
objects

merge(fts1,fts2) [TT1;TT2] (requires variable name
to be the same)

unique(TT)
Concatenate financial time
series objects horizontally

horzcat(fts1,fts2) or
[fts1,fts2]

horzcat[TT1,TT2] (requires
variable name to be the same) or

synchronize(TT1,TT2)
Concatenate financial time
series objects vertically

vertcat(fts1,fts2) or
[fts1;fts2]

vertcat[TT1;TT2]

Analyze Time Series
Due to flexibility of a timetable that can hold heterogeneous variables, a timetable does not support
math operations or descriptive statistical calculations. If you would like to apply any numeric
calculations on a timetable, use the following guidelines.

Assume that all variables are numeric within a timetable, or the operations can be applied on TT2:

S = vartype('numeric');

TT2 = TT(:,S)

Descriptive Statistics and Arithmetic and Math Operations

Task Old Functionality New Functionality
Extract out numerical data srs2 = myfts.series2 TT.Variables
Apply some options
(statistics)

For example: min, max,
mean, median, cov, std,
and var

cov(TT.Variables)

Apply some options
(operations)

For example: sum and
cumsum

TT.Variables =
cumsum(TT.Variables)

Data Extraction
Refer to timetable documentation for data extraction methods and examples.

See Also
timetable | retime | synchronize | timerange | withtol | vartype | issorted | sortrows |
unique | diff | isregular | rmmissing | fillmissing | convert2daily | convert2weekly |
convert2monthly | convert2quarterly | convert2semiannual | convert2annual |
fts2timetable
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Related Examples
• “Using Timetables in Finance” on page 12-7
• “Select Times in Timetable”
• “Resample and Aggregate Data in Timetable”
• “Combine Timetables and Synchronize Their Data”
• “Retime and Synchronize Timetable Variables Using Different Methods”
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times”
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Using Timetables in Finance
This example shows how to use timetables to visualize and calculate weekly statistics from simulated
daily stock data.

Step 1. Load the data.

The data for this example is in the MAT-file SimulatedStock.mat, which loads the following:

• Dates corresponding to the closing stock prices, TMW_DATES
• Opening stock prices, TMW_OPEN
• Daily high of stock prices, TMW_HIGH
• Daily low of stock prices, TMW_LOW
• Closing stock prices, TMW_CLOSE, TMW_CLOSE_MISSING
• Daily volume of traded, TMW_VOLUME
• Data in a table, TMW_TB

load SimulatedStock.mat TMW_*

Step 2. Create timetables.

In timetables, you can work with financial time series rather than with vectors. When using a
timetable, you can easily track the dates. You can manipulate the data series based on the dates,
because a timetable object tracks the administration of a time series.

Use the MATLAB® timetable function to create a timetable object. Alternatively, you can use the
MATLAB conversion function table2timetable to convert a table to a timetable. In this example,
the timetable TMW_TT is constructed from a table and is only for illustration purposes. After you
create a timetable object, you can use the Description field of the timetable object to store
meta-information about the timetable.

% Create a timetable from vector input
TMW = timetable(TMW_OPEN,TMW_HIGH,TMW_LOW,TMW_CLOSE_MISSING,TMW_VOLUME, ... 
    'VariableNames',{'Open','High','Low','Close','Volume'},'RowTimes',TMW_DATES);

% Convert from a table to a timetable
TMW_TT = table2timetable(TMW_TB,'RowTimes',TMW_DATES);

TMW.Properties.Description = 'Simulated stock data.';

TMW.Properties

ans = 
  TimetableProperties with properties:

             Description: 'Simulated stock data.'
                UserData: []
          DimensionNames: {'Time'  'Variables'}
           VariableNames: {'Open'  'High'  'Low'  'Close'  'Volume'}
    VariableDescriptions: {}
           VariableUnits: {}
      VariableContinuity: []
                RowTimes: [1000x1 datetime]
               StartTime: 04-Sep-2012
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              SampleRate: NaN
                TimeStep: NaN
        CustomProperties: No custom properties are set.
      Use addprop and rmprop to modify CustomProperties.

Step 3. Calculate basic data statistics, and fill the missing data.

Use the MATLAB summary function to view basic statistics of the timetable data. By reviewing the
summary for each variable, you can identify missing values. You can then use the MATLAB
fillmissing function to fill in missing data in a timetable by specifying a fill method.

summaryTMW = summary(TMW);
summaryTMW.Close

ans = struct with fields:
           Size: [1000 1]
           Type: 'double'
    Description: ''
          Units: ''
     Continuity: []
            Min: 83.4200
         Median: 116.7500
            Max: 162.1100
     NumMissing: 3

TMW = fillmissing(TMW,'linear');
summaryTMW = summary(TMW);
summaryTMW.Close

ans = struct with fields:
           Size: [1000 1]
           Type: 'double'
    Description: ''
          Units: ''
     Continuity: []
            Min: 83.4200
         Median: 116.7050
            Max: 162.1100
     NumMissing: 0

summaryTMW.Time

ans = struct with fields:
          Size: [1000 1]
          Type: 'datetime'
           Min: 04-Sep-2012
        Median: 31-Aug-2014
           Max: 24-Aug-2016
    NumMissing: 0
      TimeStep: NaN

Step 4. Visualize the data.

To visualize the timetable data, use financial charting functions such as highlow or movavg. For this
example, the moving average information is plotted on the same chart for highlow to provide a
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complete visualization. To obtain the stock performance in 2014, use the MATLAB timerange
function to select rows of the timetable. To visualize a technical indicator such as the Moving
Average Convergence Divergence (MACD), pass the timetable object into the macd function for
analysis.

index = timerange(datetime('01-Jan-2014','Locale','en_US'),datetime('31-Dec-2014','Locale','en_US'),'closed');

highlow(TMW(index,:));
hold on

ema15 = movavg(TMW(:,'Close'),'exponential',15);
ema25 = movavg(TMW(:,'Close'),'exponential',25);

ema15 = ema15(index,:);
ema25 = ema25(index,:);
plot(ema15.Time,ema15.Close,'r');
plot(ema25.Time,ema25.Close,'g');
hold off

legend('Price','15-Day EMA','25-Day EMA')
title('Highlow Plot for TMW')

[macdLine, signalLine] = macd(TMW(:,'Close'));

plot(macdLine.Time,macdLine.Close);
hold on
plot(signalLine.Time,signalLine.Close);
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hold off

title('MACD for TMW')
legend('MACD Line', 'Signal Line')

Step 5. Create a weekly return and volatility series.

To calculate weekly return from the daily stock prices, you must resample the data frequency from
daily to weekly. When working with timetables, use the MATLAB functions retime or synchronize
with various aggregation methods to calculate weekly statistics. To adjust the timetable data to a
time-vector basis, use retime and use synchronize with multiple timetables.

weeklyOpen = retime(TMW(:,'Open'),'weekly','firstvalue');
weeklyHigh = retime(TMW(:,'High'),'weekly','max');
weeklyLow = retime(TMW(:,'Low'),'weekly','min');
weeklyClose = retime(TMW(:,'Close'),'weekly','lastvalue');
weeklyTMW = [weeklyOpen,weeklyHigh,weeklyLow,weeklyClose];

weeklyTMW = synchronize(weeklyTMW,TMW(:,'Volume'),'weekly','sum');
head(weeklyTMW)

ans=8×5 timetable
       Time         Open      High      Low      Close       Volume  
    ___________    ______    ______    ______    ______    __________

    02-Sep-2012       100    102.38     98.45     99.51    2.7279e+07
    09-Sep-2012     99.72    101.55     96.52     97.52    2.8518e+07
    16-Sep-2012     97.35     97.52      92.6     93.73    2.9151e+07
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    23-Sep-2012     93.55     98.03     92.25     97.35     3.179e+07
    30-Sep-2012      97.3    103.15     96.68     99.66    3.3761e+07
    07-Oct-2012     99.76    106.61      98.7    104.23    3.1299e+07
    14-Oct-2012    104.54    109.75    100.55    103.77    3.1534e+07
    21-Oct-2012    103.84    104.32     96.95     97.41    3.1706e+07

To perform calculations on entries in a timetable, use the MATLAB rowfun function to apply a
function to each row of a weekly frequency timetable.

returnFunc = @(open,high,low,close,volume) log(close) - log(open);
weeklyReturn = rowfun(returnFunc,weeklyTMW,'OutputVariableNames',{'Return'});

weeklyStd = retime(TMW(:,'Close'),'weekly',@std);
weeklyStd.Properties.VariableNames{'Close'} = 'Volatility';

weeklyTMW = [weeklyReturn,weeklyStd,weeklyTMW]  

weeklyTMW=208×7 timetable
       Time          Return       Volatility     Open      High      Low      Close       Volume  
    ___________    ___________    __________    ______    ______    ______    ______    __________

    02-Sep-2012      -0.004912     0.59386         100    102.38     98.45     99.51    2.7279e+07
    09-Sep-2012      -0.022309     0.63563       99.72    101.55     96.52     97.52    2.8518e+07
    16-Sep-2012      -0.037894     0.93927       97.35     97.52      92.6     93.73    2.9151e+07
    23-Sep-2012       0.039817      2.0156       93.55     98.03     92.25     97.35     3.179e+07
    30-Sep-2012       0.023965      1.1014        97.3    103.15     96.68     99.66    3.3761e+07
    07-Oct-2012       0.043833      1.3114       99.76    106.61      98.7    104.23    3.1299e+07
    14-Oct-2012     -0.0073929      1.8097      104.54    109.75    100.55    103.77    3.1534e+07
    21-Oct-2012      -0.063922      2.1603      103.84    104.32     96.95     97.41    3.1706e+07
    28-Oct-2012      -0.028309      0.9815       97.45      99.1     92.58     94.73    1.9866e+07
    04-Nov-2012    -0.00010566       1.224       94.65      96.1     90.82     94.64    3.5043e+07
    11-Nov-2012       0.077244      2.4854       94.39    103.98     93.84    101.97    3.0624e+07
    18-Nov-2012       0.022823     0.55896      102.23    105.27    101.24    104.59    2.5803e+07
    25-Nov-2012      -0.012789       1.337      104.66    106.02    100.85    103.33    3.1402e+07
    02-Dec-2012      -0.043801      0.2783      103.37    103.37     97.69     98.94    3.2136e+07
    09-Dec-2012      -0.063475      1.9826       99.02     99.09     91.34     92.93    3.4447e+07
    16-Dec-2012      0.0025787      1.2789       92.95      94.2     88.58     93.19    3.3247e+07
      ⋮

See Also
timetable | retime | synchronize | timerange | withtol | vartype | issorted | sortrows |
unique | diff | isregular | rmmissing | fillmissing

Related Examples
• “Select Times in Timetable”
• “Resample and Aggregate Data in Timetable”
• “Combine Timetables and Synchronize Their Data”
• “Retime and Synchronize Timetable Variables Using Different Methods”
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times”
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Using Financial Time Series

• “Working with Financial Time Series Objects” on page 13-2
• “Financial Time Series Operations” on page 13-6
• “Data Transformation and Frequency Conversion” on page 13-11
• “Indexing a Financial Time Series Object” on page 13-18
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Working with Financial Time Series Objects
In this section...
“Introduction” on page 13-2
“Financial Time Series Object Structure” on page 13-2
“Data Extraction” on page 13-2
“Object-to-Matrix Conversion” on page 13-4

Introduction
A financial time series object is used as if it were a MATLAB structure. (See the MATLAB
documentation for a description of MATLAB structures or how to use MATLAB in general.)

This part of the tutorial assumes that you know how to use MATLAB and are familiar with MATLAB
structures. The terminology is similar to that of a MATLAB structure. The financial time series object
term is interchangeable with the MATLAB structure term field.

Financial Time Series Object Structure
A financial time series object always contains three component names: desc (description field), freq
(frequency indicator field), and dates (date vector). If you build the object using the constructor
fints, the default value for the description field is a blank character vector (''). If you build the
object from a text data file using ascii2fts, the default is the name of the text data file. The default
for the frequency indicator field is 0 (Unknown frequency). Objects created from operations can
default the setting to 0. For example, if you decide to pick out values selectively from an object, the
frequency of the new object might not be the same as that of the object from which it came.

The date vector dates does not have a default set of values. When you create an object, you have to
supply the date vector. You can change the date vector afterward but, at object creation time, you
must provide a set of dates.

The final component of a financial time series object is one or more data series vectors. If you do not
supply a name for the data series, the default name is series1. If you have multiple data series in an
object and do not supply the names, the default is the name series followed by a number, for example,
series1, series2, and series3.

Data Extraction
Here is an exercise on how to extract data from a financial time series object. As mentioned before,
you can think of the object as a MATLAB structure. Highlight each line in the exercise in the MATLAB
Help browser, press the right mouse button, and select Evaluate Selection to execute it.

To begin, create a financial time series object called myfts:

dates = (datenum('05/11/99'):datenum('05/11/99')+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
myfts = fints(dates, data)

The myfts object looks like this:
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

myfts = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'series1:  (101)'    'series2:  (101)'
    '11-May-1999'      [         2.8108]    [         0.9323]
    '12-May-1999'      [         0.2454]    [         0.5608]
    '13-May-1999'      [         0.3568]    [         1.5989]
    '14-May-1999'      [         0.5255]    [         3.6682]
    '15-May-1999'      [         1.1862]    [         5.1284]
    '16-May-1999'      [         3.8376]    [         0.4952]
    '17-May-1999'      [         6.9329]    [         2.2417]
    '18-May-1999'      [         2.0987]    [         0.3579]
    '19-May-1999'      [         2.2524]    [         3.6492]
    '20-May-1999'      [         0.8669]    [         1.0150]
    '21-May-1999'      [         0.9050]    [         1.2445]
    '22-May-1999'      [         0.4493]    [         5.5466]
    '23-May-1999'      [         1.6376]    [         0.1251]
    '24-May-1999'      [         3.4472]    [         1.1195]
    '25-May-1999'      [         3.6545]    [         0.3374]...

There are more dates in the object; only the first few lines are shown here.

Note The actual data in your series1 and series2 differs from the above because of the use of
random numbers.

Now create another object with only the values for series2:

srs2 = myfts.series2

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
srs2 = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (101)'    'series2:  (101)'
    '11-May-1999'      [         0.9323]
    '12-May-1999'      [         0.5608]
    '13-May-1999'      [         1.5989]
    '14-May-1999'      [         3.6682]
    '15-May-1999'      [         5.1284]
    '16-May-1999'      [         0.4952]
    '17-May-1999'      [         2.2417]
    '18-May-1999'      [         0.3579]
    '19-May-1999'      [         3.6492]
    '20-May-1999'      [         1.0150]
    '21-May-1999'      [         1.2445]
    '22-May-1999'      [         5.5466]
    '23-May-1999'      [         0.1251]
    '24-May-1999'      [         1.1195]
    '25-May-1999'      [         0.3374]...

The new object srs2 contains all the dates in myfts, but the only data series is series2. The name
of the data series retains its name from the original object, myfts.
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Note The output from referencing a data series field or indexing a financial time series object is
always another financial time series object. The exceptions are referencing the description, frequency
indicator, and dates fields, and indexing into the dates field.

Object-to-Matrix Conversion
The function fts2mat extracts the dates and/or the data series values from an object and places
them into a vector or a matrix. The default behavior extracts just the values into a vector or a matrix.
Look at the next example:

srs2_vec = fts2mat(myfts.series2)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fts2mat (line 29) 

srs2_vec =

    0.9323
    0.5608
    1.5989
    3.6682
    5.1284
    0.4952
    2.2417
    0.3579
    3.6492
    1.0150
    1.2445
    5.5466
    0.1251
    1.1195
    0.3374...

If you want to include the dates in the output matrix, provide a second input argument and set it to 1.
This results in a matrix whose first column is a vector of serial date numbers:

format long g

srs2_mtx = fts2mat(myfts.series2, 1)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fts2mat (line 29) 

srs2_mtx =

            730251      0.932251754559576
            730252      0.560845677519876
            730253      1.59888712183914
            730254      3.6681500883527
            730255      5.12842215360269
            730256      0.49519254119977
            730257      2.24174134286213
            730258      0.357918065917634
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            730259      3.64915665824198
            730260      1.01504236943148
            730261      1.24446420606078
            730262      5.54661849025711
            730263      0.12507959735904
            730264      1.11953883096805
            730265      0.337398214166607

The vector srs2_vec contains series2 values. The matrix srs2_mtx contains dates in the first
column and the values of the series2 data series in the second. Dates in the first column are in
serial date format. Serial date format is a representation of the date character vector format (for
example, serial date = 1 is equivalent to 01-Jan-0000). (The serial date vector can include time-of-day
information.)

The long g display format displays the numbers without exponentiation. (To revert to the default
display format, use format short. (See the format for a description of MATLAB display formats.)
Remember that both the vector and the matrix have 101 rows of data as in the original object myfts
but are shown truncated here.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Using the Financial Time Series App” on page 14-9
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Financial Time Series Operations
Several MATLAB functions have been overloaded to work with financial time series objects. The
overloaded functions include basic arithmetic functions such as addition, subtraction, multiplication,
and division and other functions such as arithmetic average, filter, and difference. Also, specific
methods have been designed to work with the financial time series object. For a list of functions
grouped by type, enter

help ftseries

at the MATLAB command prompt.

Basic Arithmetic
Financial time series objects permit you to do addition, subtraction, multiplication, and division,
either on the entire object or on specific object fields. This is a feature that MATLAB structures do not
allow. You cannot do arithmetic operations on entire MATLAB structures, only on specific fields of a
structure.

You can perform arithmetic operations on two financial time series objects as long as they are
compatible. (All contents are the same except for the description and the values associated with the
data series.)

Note Compatible time series are not the same as equal time series. Two time series objects are equal
when everything but the description fields are the same.

Here are some examples of arithmetic operations on financial time series objects.

Load a MAT-file that contains some sample financial time series objects:

load dji30short

One of the objects in dji30short is called myfts1:
myfts1 = 

desc:  DJI30MAR94.dat
freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994'  [ 3830.90]   [ 3868.04]  [ 3800.50]   [ 3832.30]
'07-Mar-1994'  [ 3851.72]   [ 3882.40]  [ 3824.71]   [ 3856.22]
'08-Mar-1994'  [ 3858.48]   [ 3881.55]  [ 3822.45]   [ 3851.72]
'09-Mar-1994'  [ 3853.97]   [ 3874.52]  [ 3817.95]   [ 3853.41]
'10-Mar-1994'  [ 3852.57]   [ 3865.51]  [ 3801.63]   [ 3830.62]...

Create another financial time series object that is identical to myfts1:

newfts = fints(myfts1.dates, fts2mat(myfts1)/100,... 
{'Open','High','Low', 'Close'}, 1, 'New FTS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fts2mat (line 29) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

newfts = 

desc:  New FTS
freq:  Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close:(20)'
'04-Mar-1994'  [ 38.31]     [ 38.68]     [ 38.01]    [ 38.32]
'07-Mar-1994'  [ 38.52]     [ 38.82]     [ 38.25]    [ 38.56]
'08-Mar-1994'  [ 38.58]     [ 38.82]     [ 38.22]    [ 38.52]
'09-Mar-1994'  [ 38.54]     [ 38.75]     [ 38.18]    [ 38.53]
'10-Mar-1994'  [ 38.53]     [ 38.66]     [ 38.02]    [ 38.31]...

Perform an addition operation on both time series objects:
addup = myfts1 + newfts

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In  +  (line 22) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

addup = 

desc:  DJI30MAR94.dat
freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994'  [ 3869.21]   [ 3906.72]   [ 3838.51]  [ 3870.62]
'07-Mar-1994'  [ 3890.24]   [ 3921.22]   [ 3862.96]  [ 3894.78]
'08-Mar-1994'  [ 3897.06]   [ 3920.37]   [ 3860.67]  [ 3890.24]
'09-Mar-1994'  [ 3892.51]   [ 3913.27]   [ 3856.13]  [ 3891.94]
'10-Mar-1994'  [ 3891.10]   [ 3904.17]   [ 3839.65]  [ 3868.93]...

Now, perform a subtraction operation on both time series objects:
subout = myfts1 - newfts

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In  -  (line 23) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

subout = 

desc:  DJI30MAR94.dat
freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994'  [ 3792.59]   [ 3829.36]   [ 3762.49]  [ 3793.98]
'07-Mar-1994'  [ 3813.20]   [ 3843.58]   [ 3786.46]  [ 3817.66]
'08-Mar-1994'  [ 3819.90]   [ 3842.73]   [ 3784.23]  [ 3813.20]
'09-Mar-1994'  [ 3815.43]   [ 3835.77]   [ 3779.77]  [ 3814.88]
'10-Mar-1994'  [ 3814.04]   [ 3826.85]   [ 3763.61]  [ 3792.31]...

Operations with Objects and Matrices
You can also perform operations involving a financial time series object and a matrix or scalar:
addscalar = myfts1 + 10000

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In  +  (line 22) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

addscalar = 
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desc:  DJI30MAR94.dat
freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994'  [ 13830.90]  [ 13868.04]  [ 13800.50] [ 13832.30]
'07-Mar-1994'  [ 13851.72]  [ 13882.40]  [ 13824.71] [ 13856.22]
'08-Mar-1994'  [ 13858.48]  [ 13881.55]  [ 13822.45] [ 13851.72]
'09-Mar-1994'  [ 13853.97]  [ 13874.52]  [ 13817.95] [ 13853.41]
'10-Mar-1994'  [ 13852.57]  [ 13865.51]  [ 13801.63] [ 13862.70]...

For operations with both an object and a matrix, the size of the matrix must match the size of the
object. For example, a matrix to be subtracted from myfts1 must be 20-by-4, since myfts1 has 20
dates and 4 data series:
submtx = myfts1 - randn(20, 4)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In  -  (line 23) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

submtx = 

desc:  DJI30MAR94.dat
freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994'  [ 3831.33]   [ 3867.75]   [ 3802.10]  [ 3832.63]
'07-Mar-1994'  [ 3853.39]   [ 3883.74]   [ 3824.45]  [ 3857.06]
'08-Mar-1994'  [ 3858.35]   [ 3880.84]   [ 3823.51]  [ 3851.22]
'09-Mar-1994'  [ 3853.68]   [ 3872.90]   [ 3816.53]  [ 3851.92]
'10-Mar-1994'  [ 3853.72]   [ 3866.20]   [ 3802.44]  [ 3831.17]...

Arithmetic Operations with Differing Data Series Names
Arithmetic operations on two objects that have the same size but contain different data series names
require the function fts2mat. This function extracts the values in an object and puts them into a
matrix or vector, whichever is appropriate.

To see an example, create another financial time series object the same size as myfts1 but with
different values and data series names:

newfts2 = fints(myfts1.dates, fts2mat(myfts1/10000),... 
{'Rat1','Rat2', 'Rat3','Rat4'}, 1, 'New FTS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In  /  (line 25) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fts2mat (line 29) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

newfts2 = 
 
    desc:  New FTS
    freq:  Daily (1)

    'dates:  (20)'    'Rat1:  (20)'    'Rat2:  (20)'    'Rat3:  (20)'    'Rat4:  (20)'
    '04-Mar-1994'     [       0.38]    [       0.39]    [       0.38]    [       0.38]
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    '07-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '08-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '09-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '10-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.38]
    '11-Mar-1994'     [       0.38]    [       0.39]    [       0.38]    [       0.39]
    '14-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '15-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.38]
    '16-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.38]
    '17-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '18-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '21-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '22-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '23-Mar-1994'     [       0.39]    [       0.39]    [       0.38]    [       0.39]
    '24-Mar-1994'     [       0.38]    [       0.39]    [       0.38]    [       0.38]...

If you attempt to add (or subtract, and so on) this new object to myfts1, an error indicates that the
objects are not identical. Although they contain the same dates, number of dates, number of data
series, and frequency, the two time series objects do not have the same data series names. Use
fts2mat to bypass this problem:

addother = myfts1 + fts2mat(newfts2)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fts2mat (line 29) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In  +  (line 22) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
addother = 
 
    desc:  DJI30MAR94.dat
    freq:  Daily (1)

    'dates:  (20)'    'Open:  (20)'    'High:  (20)'    'Low:  (20)'    'Close:  (20)'
    '04-Mar-1994'     [    3831.28]    [    3868.43]    [   3800.88]    [     3832.68]
    '07-Mar-1994'     [    3852.11]    [    3882.79]    [   3825.09]    [     3856.61]
    '08-Mar-1994'     [    3858.87]    [    3881.94]    [   3822.83]    [     3852.11]
    '09-Mar-1994'     [    3854.36]    [    3874.91]    [   3818.33]    [     3853.80]
    '10-Mar-1994'     [    3852.96]    [    3865.90]    [   3802.01]    [     3831.00]
    '11-Mar-1994'     [    3832.96]    [    3873.22]    [   3807.07]    [     3863.09]
    '14-Mar-1994'     [    3870.68]    [    3894.60]    [   3836.34]    [     3863.37]
    '15-Mar-1994'     [    3863.80]    [    3888.85]    [   3827.23]    [     3849.97]
    '16-Mar-1994'     [    3851.42]    [    3879.92]    [   3820.32]    [     3848.53]
    '17-Mar-1994'     [    3854.01]    [    3891.73]    [   3822.04]    [     3865.53]
    '18-Mar-1994'     [    3865.81]    [    3912.17]    [   3839.03]    [     3896.04]
    '21-Mar-1994'     [    3878.77]    [    3898.64]    [   3839.03]    [     3865.24]
    '22-Mar-1994'     [    3866.10]    [    3896.62]    [   3841.04]    [     3862.94]...

This operation adds the matrix that contains the contents of the data series in the object newfts2 to
myfts1. You should carefully consider the effects on your data before deciding to combine financial
time series objects in this manner.
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Other Arithmetic Operations
In addition to the basic arithmetic operations, several other mathematical functions operate directly
on financial time series objects. These functions include exponential (exp), natural logarithm (log),
common logarithm (log10), and many more.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Using the Financial Time Series App” on page 14-9
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Data Transformation and Frequency Conversion
The data transformation and the frequency conversion functions convert a data series into a different
format.

Data Transformation Functions

Function Purpose
boxcox Box-Cox transformation
diff Differencing
fillts Fill missing values
filter Filter
lagts Lag time series object
leadts Lead time series object
peravg Periodic average
smoothts Smooth data
tsmovavg Moving average

Frequency Conversion Functions 

Function New Frequency
convertto As specified
resamplets As specified
toannual Annual
todaily Daily
tomonthly Monthly
toquarterly Quarterly
tosemi Semiannually
toweekly Weekly

As an example look at boxcox, the Box-Cox transformation function. This function transforms the
data series contained in a financial time series object into another set of data series with relatively
normal distributions.

First create a financial time series object from the supplied whirlpool.dat data file.

whrl = ascii2fts('whirlpool.dat', 1, 2, [])

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
whrl = 
 
    desc:  Whirlpool    (WHR)                
    freq:  Unknown (0)

    'dates:  (1108)'    'Open:  (1108)'    'High:  (1108)'    'Low:  (1108)'    'Close:  (1108)'    'Volume:  (1108)'
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    '03-Jan-1995'       [        50.25]    [        50.88]    [       50.13]    [         50.38]    [      159000.00]
    '04-Jan-1995'       [        50.00]    [        50.13]    [       49.63]    [         49.75]    [      365800.00]
    '05-Jan-1995'       [        50.00]    [        50.00]    [       49.25]    [         49.88]    [      410500.00]
    '06-Jan-1995'       [        50.00]    [        50.25]    [       49.88]    [         50.25]    [      192900.00]
    '09-Jan-1995'       [        49.88]    [        50.38]    [       49.63]    [         50.38]    [      180800.00]
    '10-Jan-1995'       [        51.25]    [        51.25]    [       50.25]    [         50.25]    [      157800.00]
    '11-Jan-1995'       [        50.38]    [        50.63]    [       49.75]    [         49.75]    [      266000.00]
    '12-Jan-1995'       [        49.88]    [        50.13]    [       49.25]    [         49.88]    [       70000.00]
    '13-Jan-1995'       [        50.00]    [        50.25]    [       49.75]    [         50.13]    [      128000.00]
    '16-Jan-1995'       [        50.25]    [        50.38]    [       50.00]    [         50.00]    [      228200.00] ...

Fill any missing values denoted with NaNs in whrl with values calculated using the linear method:

f_whrl = fillts(whrl)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fillts (line 213) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
f_whrl = 
 
    desc:  Filled Whirlpool    (WHR)                
    freq:  Unknown (0)

    'dates:  (1108)'    'Open:  (1108)'    'High:  (1108)'    'Low:  (1108)'    'Close:  (1108)'    'Volume:  (1108)'
    '03-Jan-1995'       [        50.25]    [        50.88]    [       50.13]    [         50.38]    [      159000.00]
    '04-Jan-1995'       [        50.00]    [        50.13]    [       49.63]    [         49.75]    [      365800.00]
    '05-Jan-1995'       [        50.00]    [        50.00]    [       49.25]    [         49.88]    [      410500.00]
    '06-Jan-1995'       [        50.00]    [        50.25]    [       49.88]    [         50.25]    [      192900.00]
    '09-Jan-1995'       [        49.88]    [        50.38]    [       49.63]    [         50.38]    [      180800.00]
    '10-Jan-1995'       [        51.25]    [        51.25]    [       50.25]    [         50.25]    [      157800.00]
    '11-Jan-1995'       [        50.38]    [        50.63]    [       49.75]    [         49.75]    [      266000.00]
    '12-Jan-1995'       [        49.88]    [        50.13]    [       49.25]    [         49.88]    [       70000.00]
    '13-Jan-1995'       [        50.00]    [        50.25]    [       49.75]    [         50.13]    [      128000.00]
    '16-Jan-1995'       [        50.25]    [        50.38]    [       50.00]    [         50.00]    [      228200.00]
    '17-Jan-1995'       [        51.00]    [        51.00]    [       50.00]    [         50.63]    [      196200.00]
    '18-Jan-1995'       [        50.50]    [        51.00]    [       50.13]    [         50.13]    [      369700.00]
    '19-Jan-1995'       [        50.25]    [        50.50]    [       50.00]    [         50.50]    [      254300.00]
    '20-Jan-1995'       [        50.50]    [        51.25]    [       50.50]    [         50.50]    [      183400.00] ...

Transform the nonnormally distributed filled data series f_whrl into a normally distributed one
using Box-Cox transformation:

bc_whrl = boxcox(f_whrl)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/boxcox (line 36) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
bc_whrl = 
 
    desc:  Box-Cox: Filled Whirlpool    (WHR)                
    freq:  Unknown (0)

    'dates:  (1108)'    'Open:  (1108)'    'High:  (1108)'    'Low:  (1108)'    'Close:  (1108)'    'Volume:  (1108)'
    '03-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.15]
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    '04-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.62]
    '05-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.68]
    '06-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.26]
    '09-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.23]
    '10-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.15]
    '11-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.44]
    '12-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           8.68]
    '13-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.03]
    '16-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.36]
    '17-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.27]
    '18-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.62]
    '19-Jan-1995'       [         0.56]    [         0.51]    [        0.60]    [          0.60]    [           9.42]...

Compare the result of the Close data series with a normal (Gaussian) probability distribution
function and the nonnormally distributed f_whrl:

subplot(2, 1, 1);
hist(f_whrl.Close);
grid; title('Nonnormally Distributed Data');
subplot(2, 1, 2);
hist(bc_whrl.Close);
grid; title('Box-Cox Transformed Data');

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/hist (line 37) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/hist (line 37) 

Box-Cox Transformation
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The bar chart on the top represents the probability distribution function of the filled data series,
f_whrl, which is the original data series whrl with the missing values interpolated using the linear
method. The distribution is skewed toward the left (not normally distributed). The bar chart on the
bottom is less skewed to the left. If you plot a Gaussian probability distribution function (PDF) with
similar mean and standard deviation, the distribution of the transformed data is very close to normal
(Gaussian).

When you examine the contents of the resulting object bc_whrl, you find an identical object to the
original object whrl but the contents are the transformed data series. If you have the Statistics and
Machine Learning Toolbox software, you can generate a Gaussian PDF with mean and standard
deviation equal to those of the transformed data series and plot it as an overlay to the second bar
chart. In the next figure, you can see that it is an approximately normal distribution.

Overlay of Gaussian PDF

The next example uses the smoothts function to smooth a time series.

To begin, transform ibm9599.dat, a supplied data file, into a financial time series object:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ibm = 
 
    desc:  International Business Machines Corporation (IBM)                    
    freq:  Unknown (0)

    'dates:  (1108)'    'OPEN:  (1108)'    'HIGH:  (1108)'    'LOW:  (1108)'    'CLOSE:  (1108)'    'VOLUME:  (1108)'
    '03-Jan-1995'       [        36.75]    [        36.91]    [       36.66]    [         36.88]    [     1167900.00]
    '04-Jan-1995'       [        37.00]    [        37.28]    [       36.63]    [         37.16]    [     1994700.00]
    '05-Jan-1995'       [        37.13]    [        37.63]    [       36.88]    [         37.00]    [     2270900.00]
    '06-Jan-1995'       [        37.25]    [        37.88]    [       37.03]    [         37.53]    [     3040500.00]
    '09-Jan-1995'       [        37.50]    [        37.91]    [       37.41]    [         37.75]    [     1713000.00]
    '10-Jan-1995'       [        38.00]    [        38.63]    [       37.78]    [         38.28]    [     3420800.00]
    '11-Jan-1995'       [        38.53]    [        38.53]    [       37.63]    [         38.00]    [     2450300.00]
    '12-Jan-1995'       [        37.91]    [        38.16]    [       37.75]    [         38.00]    [     2275900.00]
    '13-Jan-1995'       [        38.25]    [        38.41]    [       37.88]    [         38.16]    [     2030300.00]
    '16-Jan-1995'       [        38.16]    [        39.00]    [       38.16]    [         38.75]    [     2716000.00]
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    '17-Jan-1995'       [        38.63]    [        39.00]    [       38.53]    [         38.75]    [     1596300.00]
    '18-Jan-1995'       [        38.88]    [        38.91]    [       38.28]    [         38.63]    [     1842600.00]
    '19-Jan-1995'       [        38.53]    [        38.78]    [       38.16]    [         38.25]    [     1713900.00]...

Fill the missing data for holidays with data interpolated using the fillts function and the Spline
fill method:

f_ibm = fillts(ibm, 'Spline')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fillts (line 213) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
f_ibm = 
 
    desc:  Filled International Business Machines Corporation (IBM)                    
    freq:  Unknown (0)

    'dates:  (1108)'    'OPEN:  (1108)'    'HIGH:  (1108)'    'LOW:  (1108)'    'CLOSE:  (1108)'    'VOLUME:  (1108)'
    '03-Jan-1995'       [        36.75]    [        36.91]    [       36.66]    [         36.88]    [     1167900.00]
    '04-Jan-1995'       [        37.00]    [        37.28]    [       36.63]    [         37.16]    [     1994700.00]
    '05-Jan-1995'       [        37.13]    [        37.63]    [       36.88]    [         37.00]    [     2270900.00]
    '06-Jan-1995'       [        37.25]    [        37.88]    [       37.03]    [         37.53]    [     3040500.00]
    '09-Jan-1995'       [        37.50]    [        37.91]    [       37.41]    [         37.75]    [     1713000.00]
    '10-Jan-1995'       [        38.00]    [        38.63]    [       37.78]    [         38.28]    [     3420800.00]
    '11-Jan-1995'       [        38.53]    [        38.53]    [       37.63]    [         38.00]    [     2450300.00]
    '12-Jan-1995'       [        37.91]    [        38.16]    [       37.75]    [         38.00]    [     2275900.00]
    '13-Jan-1995'       [        38.25]    [        38.41]    [       37.88]    [         38.16]    [     2030300.00]
    '16-Jan-1995'       [        38.16]    [        39.00]    [       38.16]    [         38.75]    [     2716000.00]
    '17-Jan-1995'       [        38.63]    [        39.00]    [       38.53]    [         38.75]    [     1596300.00]
    '18-Jan-1995'       [        38.88]    [        38.91]    [       38.28]    [         38.63]    [     1842600.00]
    '19-Jan-1995'       [        38.53]    [        38.78]    [       38.16]    [         38.25]    [     1713900.00]
    '20-Jan-1995'       [        38.13]    [        38.25]    [       37.50]    [         37.66]    [     3333400.00]...

Smooth the filled data series using the default Box (rectangular window) method:

sm_ibm = smoothts(f_ibm)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/smoothts (line 44) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
sm_ibm = 
 
    desc:  Box-smoothed of Filled International Business Machines Corporation (IBM)                    
    freq:  Unknown (0)

    'dates:  (1108)'    'OPEN:  (1108)'    'HIGH:  (1108)'    'LOW:  (1108)'    'CLOSE:  (1108)'    'VOLUME:  (1108)'
    '03-Jan-1995'       [        22.18]    [        22.36]    [       22.03]    [         22.21]    [     1086700.00]
    '04-Jan-1995'       [        29.63]    [        29.94]    [       29.44]    [         29.71]    [     1694800.00]
    '05-Jan-1995'       [        37.13]    [        37.52]    [       36.92]    [         37.26]    [     2037400.00]
    '06-Jan-1995'       [        37.38]    [        37.86]    [       37.14]    [         37.54]    [     2487980.00]
    '09-Jan-1995'       [        37.68]    [        38.11]    [       37.34]    [         37.71]    [     2579100.00]
    '10-Jan-1995'       [        37.84]    [        38.22]    [       37.52]    [         37.91]    [     2580100.00]
    '11-Jan-1995'       [        38.04]    [        38.33]    [       37.69]    [         38.04]    [     2378060.00]
    '12-Jan-1995'       [        38.17]    [        38.54]    [       37.84]    [         38.24]    [     2578660.00]
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    '13-Jan-1995'       [        38.29]    [        38.62]    [       37.99]    [         38.33]    [     2213760.00]
    '16-Jan-1995'       [        38.36]    [        38.69]    [       38.12]    [         38.46]    [     2092220.00]
    '17-Jan-1995'       [        38.49]    [        38.82]    [       38.20]    [         38.51]    [     1979820.00]...

Now, plot the original and smoothed closing price series for IBM® stock:

plot(f_ibm.CLOSE('11/01/97::02/28/98'), 'r')
datetick('x', 'mmmyy')
hold on
plot(sm_ibm.CLOSE('11/01/97::02/28/98'), 'b')
hold off
datetick('x', 'mmmyy')
legend('Filled', 'Smoothed')
title('Filled IBM Close Price vs. Smoothed Series')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/plot (line 63) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/plot (line 63) 

Smoothed Data Series

These examples give you an idea of what you can do with a financial time series object. This toolbox
provides some MATLAB functions that have been overloaded to work directly with these objects. The
overloaded functions are those most commonly needed to work with time series data.
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See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Using the Financial Time Series App” on page 14-9

 Data Transformation and Frequency Conversion

13-17



Indexing a Financial Time Series Object
You can also index into the object as with any other MATLAB variable or structure. A financial time
series object lets you use a date character vector on page 13-18, a cell array of date character
vectors, a date character vector range on page 13-19, or normal integer on page 13-20 indexing.
You cannot, however, index into the object using serial dates. If you have serial dates, you must first
use the MATLAB datestr command to convert them into date character vectors.

When indexing by date character vector, note that

• Each date character vector must contain the day, month, and year. Valid formats are

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'
• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

• All data falls at the end of the indicated time period, that is, weekly data falls on Fridays, monthly
data falls on the end of each month, and so on, whenever the data has gone through a frequency
conversion.

Indexing with Date Character Vectors
With date character vector indexing, you get the values in a financial time series object for a specific
date using a date character vector as the index into the object. Similarly, if you want values for
multiple dates in the object, you can put those date character vectors into a cell array of character
vectors and use the cell array as the index to the object. Here are some examples.

This example extracts all values for May 11, 1999 from myfts:

format short
myfts1('05/11/99')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (1)'    'series1:  (1)'    'series2:  (1)'
    '11-May-1999'    [       2.8108]    [       0.9323]

The next example extracts only series2 values for May 11, 1999 from myfts:

myfts1.series2('05/11/99')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (1)'    'series2:  (1)'
    '11-May-1999'    [       0.9323]
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The third example extracts all values for three different dates:

myfts1({'05/11/99', '05/21/99', '05/31/99'})

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (3)'    'series1:  (3)'    'series2:  (3)'
    '11-May-1999'    [       2.8108]    [       0.9323]
    '21-May-1999'    [       0.9050]    [       1.2445]
    '31-May-1999'    [       1.4266]    [       0.6470]

The next example extracts only series2 values for the same three dates:

myfts1.series2({'05/11/99', '05/21/99', '05/31/99'})

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (3)'    'series2:  (3)'
    '11-May-1999'    [       0.9323]
    '21-May-1999'    [       1.2445]
    '31-May-1999'    [       0.6470]

Indexing with Date Character Vector Range
A financial time series is unique because it allows you to index into the object using a date character
vector range. A date character vector range consists of two date character vector separated by two
colons (::). In MATLAB this separator is called the double-colon operator. An example of a MATLAB
date character vector range is '05/11/99::05/31/99'. The operator gives you all data points
available between those dates, including the start and end dates.

Here are some date character vector range examples:

myfts1 ('05/11/99::05/15/99')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (5)'    'series1:  (5)'    'series2:  (5)'
    '11-May-1999'    [       2.8108]    [       0.9323]
    '12-May-1999'    [       0.2454]    [       0.5608]
    '13-May-1999'    [       0.3568]    [       1.5989]
    '14-May-1999'    [       0.5255]    [       3.6682]
    '15-May-1999'    [       1.1862]    [       5.1284]

myfts1.series2('05/11/99::05/15/99')
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (5)'    'series2:  (5)'
    '11-May-1999'    [       0.9323]
    '12-May-1999'    [       0.5608]
    '13-May-1999'    [       1.5989]
    '14-May-1999'    [       3.6682]
    '15-May-1999'    [       5.1284]

As with any other MATLAB variable or structure, you can assign the output to another object
variable:

nfts = myfts1.series2('05/11/99::05/20/99');

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

nfts is the same as ans in the second example.

If one of the dates does not exist in the object, an error message indicates that one or both date
indexes are out of the range of the available dates in the object. You can either display the contents of
the object or use the command ftsbound to determine the first and last dates in the object.

Indexing with Integers
Integer indexing is the normal form of indexing in MATLAB. Indexing starts at 1 (not 0); index = 1
corresponds to the first element, index = 2 to the second element, index = 3 to the third element, and
so on. Here are some examples with and without data series reference.

Get the first item in series2:

myfts1.series2(1)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (1)'    'series2:  (1)'
    '11-May-1999'    [       0.9323]

Get the first, third, and fifth items in series2:

myfts1.series2([1, 3, 5])

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
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ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (3)'    'series2:  (3)'
    '11-May-1999'    [       0.9323]
    '13-May-1999'    [       1.5989]
    '15-May-1999'    [       5.1284]

Get items 16 through 20 in series2:

myfts1.series2(16:20)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (5)'    'series2:  (5)'
    '26-May-1999'    [       0.2105]
    '27-May-1999'    [       1.8916]
    '28-May-1999'    [       0.6673]
    '29-May-1999'    [       0.6681]
    '30-May-1999'    [       1.0877] 

Get items 16 through 20 in the financial time series object myfts:

myfts1(16:20)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans = 

    desc:  (none)
    freq:  Unknown (0)

    'dates:  (5)'    'series1:  (5)'    'series2:  (5)'
    '26-May-1999'    [       0.7571]    [       0.2105]
    '27-May-1999'    [       1.2425]    [       1.8916]
    '28-May-1999'    [       1.8790]    [       0.6673]
    '29-May-1999'    [       0.5778]    [       0.6681]
    '30-May-1999'    [       1.2581]    [       1.0877] 

Get the last item in myfts1:

myfts1(end)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/end (line 57) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

ans = 

    desc:  (none)
    freq:  Unknown (0)
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    'dates:  (1)'    'series1:  (1)'    'series2:  (1)'
    '19-Aug-1999'    [       1.4692]    [       3.4238]

This example uses the MATLAB special variable end, which points to the last element of the object
when used as an index. The example returns an object whose contents are the values in the object
myfts on the last date entry.

Indexing When Time-of-Day Data Is Present
Both integer and date character vector indexing are permitted when time-of-day information is
present in the financial time series object. You can index into the object with both date and time
specifications, but not with time of day alone. To show how indexing works with time-of-day data
present, create a financial time series object called timeday containing a time specification:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 
                       times]);
timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

timeday = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

Use integer indexing to extract the second and third data items from timeday:

timeday(2:3)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

ans = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'
    '01-Jan-2001'    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]

For date character vector indexing, enclose the date and time character vectors in one pair of
quotation marks. If there is one date with multiple times, indexing with only the date returns the data
for all the times for that specific date. For example, the command timeday('01-Jan-2001')
returns the data for all times on January 1, 2001:

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
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> In fints/display (line 66) 

ans = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]

You can also indicate a specific date and time:

timeday('01-Jan-2001 12:00')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

ans = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (1)'    'times:  (1)'    'Data1:  (1)'
    '01-Jan-2001'    '12:00'          [          2]

Use the double-colon operator :: to specify a range of dates and times:

timeday('01-Jan-2001 12:00::03-Jan-2001 11:00')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

ans = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (4)'    'times:  (4)'    'Data1:  (4)'
    '01-Jan-2001'    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]

Treat timeday as a MATLAB structure if you want to obtain the contents of a specific field. For
example, to find the times of day included in this object, enter

datestr(timeday.times)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans =

11:00 AM
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12:00 PM
11:00 AM
12:00 PM
11:00 AM
12:00 PM

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Using the Financial Time Series App” on page 14-9

13 Using Financial Time Series

13-24



Financial Time Series App

• “What Is the Financial Time Series App?” on page 14-2
• “Getting Started with the Financial Time Series App” on page 14-4
• “Loading Data with the Financial Time Series App” on page 14-6
• “Using the Financial Time Series App” on page 14-9
• “Using the Financial Time Series App with GUIs” on page 14-15
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What Is the Financial Time Series App?

Note The Financial Time Series app will be removed in a future release and will no longer accept a
fints object.

Use fts2timetable to convert a fints object to a timetable object. For more information, see
“Convert Financial Time Series Objects fints to Timetables” on page 12-2.

The Financial Time Series app enables you to create and manage financial time series (fints)
objects. The Financial Time Series app interoperates with the Financial Time Series Graphical User
Interface (ftsgui) and Interactive Chart (chartfts). In addition, you can use Datafeed Toolbox™
software to connect to external data sources.

A financial time series object minimally consists of:

• Desc, which is the description field.
• Freq, which is a frequency indicator field.
• Dates, which is a date vector field. If the date vector incorporates time-of-day information, the

object contains an additional field named times.
• In addition, you can have at least one data series vector. You can specify names for any data series

vectors. If you do not specify names, the object uses the default names series1, series2,
series3, and so on.

In general, the workflow for using the Financial Time Series app is:

1 Acquire data.
2 Create a variable.
3 Convert the variable to fints.
4 Convert fints to a MATLAB double object.

To obtain the data for the Financial Time Series app, you need to use a MATLAB double object or a
financial time series (fints) object. You can use previously stored internal data on your computer or
you can connect to external data sources using Datafeed Toolbox software.

Note You must obtain a license for these products from MathWorks before you can use Datafeed
Toolbox.

After creating a financial time series object, you can use the Financial Time Series app to change the
characteristics of the time series object, including merging with other financial time series objects,
removing rows or columns, and changing the frequency. You can also use the Financial Time Series
app to generate various forms of plotted output and you can reconvert a fints object to a MATLAB
double-precision matrix.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

14 Financial Time Series App

14-2



Related Examples
• “Getting Started with the Financial Time Series App” on page 14-4
• “Loading Data with the Financial Time Series App” on page 14-6
• “Using the Financial Time Series App” on page 14-9
• “Using the Financial Time Series App with GUIs” on page 14-15
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Working with Financial Time Series Objects” on page 13-2
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Getting Started with the Financial Time Series App
To start the Financial Time Series app:

1 From the MATLAB command line, enter ftstool.

The Financial Time Series app opens. For an overview of the Financial Time Series app, see
“What Is the Financial Time Series App?” on page 14-2.

2 To load data with the Financial Time Series app, see “Loading Data with the Financial Time
Series App” on page 14-6.

If you plan to load data from Datafeed Toolbox software, ensure that you have a license. For more
information on this toolbox, see the Datafeed Toolbox documentation.

3 For more information on the tasks supported by the Financial Time Series app, see “Using the
Financial Time Series App” on page 14-9 and “Using the Financial Time Series App with GUIs”
on page 14-15.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “What Is the Financial Time Series App?” on page 14-2
• “Loading Data with the Financial Time Series App” on page 14-6
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• “Using the Financial Time Series App” on page 14-9
• “Using the Financial Time Series App with GUIs” on page 14-15
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Working with Financial Time Series Objects” on page 13-2
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Loading Data with the Financial Time Series App
In this section...
“Overview” on page 14-6
“Obtaining Internal Data” on page 14-6
“Viewing the MATLAB Workspace” on page 14-7

Overview
The Data source pane in the Financial Time Series app lets you do the following:

• Load data you previously obtained and stored in a file.
• View data contained within the MATLAB workspace.

Obtaining Internal Data
You can use the Financial Time Series app to load data from files previously stored on your computer.
The types of data files you can load are as follows:

• MATLAB .mat files, with or without fints objects
• ASCII text files (.dat or .txt suffixes)
• Excel .xls files

To obtain internal data:

1 From the Financial Time Series app, select File > Load > File to open the Load a MAT,
ASCII, .XLS File dialog box.

2 Select the data you want to load into the Financial Time Series app.

• If you load a MATLAB MAT-file, the variables in the file are placed into the MATLAB
workspace. The MATLAB Workspace Variables list box shows the variables that have been
added to the workspace. For example, if you load the file disney.mat, which is distributed
with the toolbox, the MATLAB Workspace Variables list box displays the variables in that
MAT-file.

Note The Financial Time Series app automatically generates a line plot for each workspace
variable unless you disable this feature by resetting the default action under File >
Preferences > Generate line plot on load.

• If you load a .dat or an ASCII .txt file, the ASCII File Parameters dialog box opens. Use this
dialog box to transform a text data file into a MATLAB financial time series fints object. The
format for the ascii data must be:

• Dates must be in a valid date character vector format:

• 'ddmmmyy' or 'ddmmmyyyy'
• 'mm/dd/yy' or 'mm/dd/yyyy'
• 'dd-mmm-yy' or 'dd-mmm-yyyy'
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• 'mmm.dd,yy' or 'mmm.dd,yyyy'
• Time information must be in 'hh:mm' format.
• Each column must be separated either by spaces or a tab.

For more information on converting ascii data to a fints object, see ascii2fts.
• If you load an Excel .xls file, the Excel File Parameters dialog box opens. Use this dialog box

to transform Excel worksheet data into a MATLAB financial time series (fints) object.
3 From the Financial Time Series app, select File > Save to save the data you loaded from an

internal file.

Viewing the MATLAB Workspace
The MATLAB Workspace Variables list box displays all existing MATLAB workspace variables.
Double-click any variable to display the data in the Data Table. You can only display financial time
series (fints) objects, MATLAB doubles, and cell arrays of double data in the Data Table.

In addition, you can click Refresh variable list to refresh the MATLAB Workspace Variables list
box. You need to refresh this list periodically because it is refreshed automatically only for operations
performed with the Financial Time Series app, not for operations performed within MATLAB itself.
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Click Remove variable(s) to remove variable from the MATLAB Workspace Variables list and
from the MATLAB workspace.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “What Is the Financial Time Series App?” on page 14-2
• “Getting Started with the Financial Time Series App” on page 14-4
• “Using the Financial Time Series App” on page 14-9
• “Using the Financial Time Series App with GUIs” on page 14-15
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Working with Financial Time Series Objects” on page 13-2
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Using the Financial Time Series App

In this section...
“Creating a Financial Time Series Object” on page 14-9
“Merge Financial Time Series Objects” on page 14-9
“Converting a Financial Time Series Object to a MATLAB Double-Precision Matrix” on page 14-10
“Plotting the Output in Several Formats” on page 14-10
“Viewing Data for a Financial Time Series Object in the Data Table” on page 14-11
“Modifying Data for a Financial Time Series Object in the Data Table” on page 14-12
“Viewing and Modifying the Properties for a FINTS Object” on page 14-13

Creating a Financial Time Series Object
Using the Create tab in the FINTS Objects and Outputs pane for the Financial Time Series app,
you can create a financial time series (fints) object from one or more selected variables.

Note When you first start the Financial Time Series app, the Create tab appears on top, unless you
reset the default using File > Preferences > Show Create tab when ftstool starts.

To create a financial time series (fints) object from one or more selected variables:

1 Load data into the Financial Time Series app from either an external data source using Datafeed
Toolbox software or an internal data source using File > Load > File.

2 Select one or more variables from the MATLAB Workspace Variables list.
3 Click the Create tab and then click Active variable.

When combining multiple variables, you can type a new variable name for the combined
variables in the MATLAB workspace variable box. The new variable name is added to the
MATLAB Workspace Variables list. (If you do not choose a name for the MATLAB workspace
variable, the Financial Time Series app uses the default name myFts.)

4 Click Create FINTS object to display the result in the Data Table.

Merge Financial Time Series Objects
Using the Create tab in the FINTS Objects and Outputs pane for the Financial Time Series app,
you can create a new financial time series object by merging (joining) multiple existing financial time
series objects.

Note When you first start the Financial Time Series app, the Create tab appears on top, unless you
reset the default using File > Preferences.

To create a financial time series (fints) object by merging multiple existing financial time series
objects:
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1 Load data into the Financial Time Series app from either an external data source using Datafeed
Toolbox software or an internal data source using File > Load > File.

2 To merge multiple existing financial time series objects, click the Create tab, click Components,
and then select a value for the Time vector source and one or more items from the Data
sources list.

Note You can merge at once multiple financial time series objects. For more information on
merging fints objects, see merge.

3 Click Create FINTS object to display the result in the Data Table.

Converting a Financial Time Series Object to a MATLAB Double-
Precision Matrix
Using the Convert tab in the FINTS Objects and Outputs pane for the Financial Time Series app,
you can convert a financial time series (fints) object to a MATLAB double-precision matrix.

To create a financial time series object from one or more selected variables:

1 Load data into the Financial Time Series app from either an external data source using Datafeed
Toolbox software or an internal data source using File > Load > File.

2 Select a variable from the MATLAB Workspace Variables list box.
3 Click the Convert tab and then determine whether to include or exclude dates in the conversion

by clicking Include dates or Exclude dates.
4 Type a variable name in the Output variable name box. (If you do not choose a variable name,

the Financial Time Series app uses the default name myDbl.)
5 Click Convert FINTS to double matrix. (This operation is equivalent to performing fts2mat

on a financial time series object.)

Plotting the Output in Several Formats
Using the Plot tab in the FINTS Objects and Outputs pane for the Financial Time Series app, you
can create several forms of plotted output by using a selection list. You can create four types of bar
charts, candle plots, high-low plots, line plots, and interactive charts (the latter is created by using
the interoperation of the Financial Time Series app with the function chartfts).

The set of plots supported by the Financial Time Series app are identical to the set provided by the
Graphs menu of the Financial Time Series GUI. (See “Graphs Menu” on page 15-11.) You can find
more detailed information for the supported plots by consulting the reference page for each
individual type of plot.

To create a plotted output:

1 Load data into the Financial Time Series app from either an external data source using Datafeed
Toolbox software or an internal data source using File > Load > File.

2 Select a variable from the MATLAB Workspace Variables list box or select data from the Data
Table.

3 Click the Plot tab and indicate whether you are plotting based on a workspace variable or data
from the Data Table.
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4 From the Type drop-down list, select the type of plot.
5 Click Plot. The plot is displayed.

Note If the selected workspace variable that you are plotting is not a fints object, a fints
object is created when you click Plot. The new fints object uses the name designated by the
MATLAB workspace variable box on the Create tab.

Viewing Data for a Financial Time Series Object in the Data Table
Once a financial time series (fints) object is created, the Financial Time Series app Data Table
displays user-designated data, including financial time series objects, MATLAB double-precision
variables, and cell arrays of doubles.

When displaying double variables (or a cell array of doubles) in the Data Table, the column headings
for a double variable or cell array of doubles displayed in the Data Table are labeled A, B, C, and so
on.

Overwriting Data in the Data Table Display

If you use the command line to overwrite data previously retrieved using Datafeed Toolbox software,
two events could occur:

• If the new data contains the same number of columns as before, the headers remain unchanged
when you attempt to create a financial time series (fints) object using the modified data.

• If the data contains a different number of columns, a warning dialog box appears.

For example, assume that you use Datafeed Toolbox software to obtain Close, Date, High, Low,
Open, and Volume data for the equity GOOG. You store the data in the MATLAB workspace with the
variable name cur1. From the command line, if you redefine the variable cur1, eliminating the
second column (Close)

cur1(:,2) = [ ]

and then return to the Financial Time Series app and attempt to create a financial time series object,
a warning dialog box appears.
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Modifying Data for a Financial Time Series Object in the Data Table
The Financial Time Series app lets you update your data displayed in the Data Table by adding or
removing rows or columns.

Note Modifying data in the Data Table will not update the MATLAB workspace variable. To update
the workspace variable after modifying the Data Table, click Update workspace variable.

Adding and Removing Rows

To add a row of data displayed in the Data Table:

1 Select a row from the Data Table display where you want to add a row. Click Additional
options to open the Data Table Options dialog box.

2 Click Add row. The default is to add up the row. To add a row down, select Insertion option and
then click Add down. In addition, you can select the Insertion option of Date to designate a
specific date. (If a date is not specified, the added row contains a date that is chronologically in
order with respect to the initial row.)

When you add rows, the Data Table display is immediately updated.

To remove a row of data from the Data Table:

1 Select one or more rows in the Data Table display that you want to remove. Click Additional
options to open the Data Table Options dialog box.

2 Click Remove row(s). The default is to remove the selected rows. In addition, to remove
selected rows, select Removal options and then select other options for row removal from the
Remove rows list box. You can specify a Start and End date or you can click the Non-uniform
range setting option to designate a range.

When you remove rows, the Data Table display is updated immediately.
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Adding and Removing Columns

To add a column of data displayed in the Data Table:

1 Select a column from the Data Table display where you want to add a column. Click Additional
options to open the Data Table Options dialog box.

2 Click Add column. The default is to add the column to the left of the selected column.

Note For time series objects, you cannot add a column to the left of the Date/Times column;
there is no restriction for double data.

To add a column to the right, select Insertion option and then click Add right. In addition, you
can use the Insertion option of New Column Name to designate a specific column name. (If a
New Column Name is not specified, an added column contains a column name of series1,
series2, and so on.)

When you add columns, the Data Table display is updated immediately.

To remove a column of data displayed in the Data Table:

1 Select one or more columns in the Data Table display that you want to remove. Click Additional
options to open the Data Table Options dialog box.

2 Click Remove column(s). The default is to remove the selected rows. In addition, to remove
selected columns, select Removal options and then select columns for removal from the
Remove columns list box.

When you remove columns, the Data Table display is updated immediately.

Viewing and Modifying the Properties for a FINTS Object
The FINTS Object Properties pane in the Financial Time Series app lets you modify financial time
series (fints) object properties. This area becomes active whenever the Data Table displays a
financial time series object.

To modify the properties for a fints object:

1 After you create a fints object, double-click the object name in the MATLAB Workspace
Variables list box to open the Data Table and display the fints object properties.

2 Click to modify the Description, Frequency, or Series Names fields.

The Frequency drop-down list supports the following conversion functions:

Function New Frequency
toannual Annual
todaily Daily
tomonthy Monthly
toquarterly Quarterly
tosemi Semiannually
toweekly Weekly

 Using the Financial Time Series App

14-13



3 Click Update properties to save the changes. This action also updates the associated workspace
variable.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “What Is the Financial Time Series App?” on page 14-2
• “Getting Started with the Financial Time Series App” on page 14-4
• “Using the Financial Time Series App with GUIs” on page 14-15
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Working with Financial Time Series Objects” on page 13-2
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Using the Financial Time Series App with GUIs
The Financial Time Series app works with Datafeed Toolbox software to load data. In addition, the
Financial Time Series app interoperates with chartfts to display an interactive plot and ftsgui to
perform further time series data analysis.

The workflow for using the Financial Time Series app with chartfts is:

1 After loading data from either Datafeed Toolbox software or an internal file, select a variable
from the MATLAB Workspace Variables list box.

2 Click the Plot tab, click Type, and then select Interactive Chart.
3 Click Plot. The interactive plot is displayed in chartfts. You can then use chartfts menu

items for further display options.

For more information on chartfts, select Help > Graphics Help.

The workflow for using the Financial Time Series app with the Financial Time Series GUI (ftsgui)
is:

1 After loading data from either Datafeed Toolbox software or an internal file, select a variable
from the MATLAB Workspace Variables list box.

2 Select Tools > FTSGUI to open the Financial Time Series GUI window.
3 Select a variable from the MATLAB Workspace Variables list box. Click the Plot tab and then

select one of the following from the Type drop-down list: Line Plot, High-Low Plot, or
Candlestick Plot.

4 Click Plot. The plot is displayed in a MATLAB graphic window. In addition, the Financial Time
Series GUI window displays an entry for the plotted fints object. You can then use the menu
items in the Financial Time Series GUI window to perform further analysis.

For more information on ftsgui, select Help > Help on Financial Time Series GUI.

Note If the selected workspace variable that you are plotting is not a fints object, a fints
object is created when you click Plot. The new fints object uses the name designated by the
MATLAB workspace variable box on the Create tab.

See Also
fints | ascii2fts | fts2mat | datestr | ftsbound | boxcox | diff | fillts | filter | lagts |
leadts | peravg | smoothts | tsmovavg | convertto | resamplets | toannual | todaily |
tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “What Is the Financial Time Series App?” on page 14-2
• “Getting Started with the Financial Time Series App” on page 14-4
• “Using the Financial Time Series App” on page 14-9
• “Creating Financial Time Series Objects” on page 11-2
• “Visualizing Financial Time Series Objects” on page 11-24
• “Working with Financial Time Series Objects” on page 13-2
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Financial Time Series User Interface

• “Financial Time Series User Interface” on page 15-2
• “Using the Financial Time Series GUI” on page 15-6
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Financial Time Series User Interface

Note The Financial Time Series User Interface will be removed in a future release and will no longer
accept a fints object.

Use fts2timetable to convert a fints object to a timetable object. For more information, see
“Convert Financial Time Series Objects fints to Timetables” on page 12-2.

Use the Financial Time Series User Interface to analyze your time series data and display the results
graphically without resorting to the command line. The Financial Time Series User Interface lets you
visualize the data and the results at the same time.

“Using the Financial Time Series GUI” on page 15-6 discusses how to use this user interface.

Main Window
Start the Financial Time Series User Interface with the command

ftsgui

The Financial Time Series GUI window opens.

The title bar acts as an active time series object indicator (indicates the currently active financial
time series object). For example, if you load the file disney.mat and want to use the time series data
in the file dis, the title bar on the main GUI would read as shown.

The menu bar consists of six menu items: File on page 15-3, Data on page 15-3, Analysis on
page 15-4, Graphs on page 15-4, Window on page 15-5, and Help on page 15-5. Under the
menu bar is a status box that displays the steps you are doing.
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File Menu

The File menu contains the commands for input and output. You can read and save (Load, Save, and
Save As) MATLAB MAT-files, ASCII (text) data files. To load MATLAB MAT-files, the MAT-file must
contain a fints object. You can also import (Import) Excel XLS files.

The File menu also contains the printing suite (Page Setup, Print Preview, and Print). Lastly, from
this menu you can close the GUI itself (Close FTS GUI) and quit MATLAB (Exit MATLAB).

Data Menu

The Data menu provides a collection of data manipulation functions and data conversion functions.

To use any of the functions here, make sure that the correct financial time series object is displayed
in the title bar of the main GUI window.
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Analysis Menu

The Analysis menu provides

• A set of exponentiation and logarithmic functions.
• Statistical tools (Basic Statistics), which calculate and display the minimum, maximum, average

(mean), standard deviation, and variance of the current (active) time series object; these basic
statistics numbers are displayed in a dialog box.

• Data difference (Difference) and periodic average (Periodic Average) calculations. Data
difference generates a vector of data that is the difference between the first data point and the
second, the second, and the third, and so on. The periodic average function calculates the average
per defined length period, for example, averages of every five days.

• Technical analysis functions. See “Chart Technical Indicators” for a list of the technical analysis
functions.

As with the Data menu, to use any of the Analysis menu functions, make sure that the correct
financial time series object is displayed in the title bar of the main GUI window.

Graphs Menu

The Graphs menu contains functions that graphically display the current (active) financial time
series object. You can also start up the interactive charting function (chartfts) from this menu.
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Window Menu

The Window menu lists open windows under the current MATLAB session.

Help Menu

The Help menu provides a standard set of Help menu links.

See Also
ftstool | ftsgui

Related Examples
• “Using the Financial Time Series GUI” on page 15-6
• “Working with Financial Time Series Objects” on page 13-2
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Using the Financial Time Series GUI

In this section...
“Getting Started” on page 15-6
“Data Menu” on page 15-7
“Analysis Menu” on page 15-10
“Graphs Menu” on page 15-11
“Saving Time Series Data” on page 15-14

Getting Started
To use the Financial Time Series GUI, start the financial time series user interface with the command
ftsgui. Then load (or import) the time series data.

For example, if your data is in a MATLAB MAT-file, select Load from the File menu.

For illustration purposes, choose the file ftsdata.mat from the dialog box presented.

If you do not see the MAT-file, look in the folder matlabroot\toolbox\finance\findemos, where
matlabroot is the MATLAB root folder (the folder where MATLAB is installed).
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Note Data loaded through the Financial Time Series GUI is not available in the MATLAB workspace.
You can access this data only through the GUI itself, not with any MATLAB command-line functions.

Each financial time series object inside the MAT-file is presented as a line plot in a separate window.
The status window is updated accordingly.

Whirlpool (WHR) is the last plot displayed, as indicated on the title bar of the main window.

Data Menu
The Data menu provides functions that manipulate time series data.

Here are some example tasks that illustrate the use of the functions on this menu.

Fill Missing Data

First, look at filling missing data. The Fill Missing Data item uses the toolbox function fillts. With
the data loaded from the file ftsdata, you have three time series: IBM Corp. (IBM), Walt Disney Co.
(DIS), and Whirlpool (WHR). Click the window that shows the time series data for Walt Disney Co.
(DIS).
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To view any missing data in this time series data set, zoom into the plot using the Zoom tool (the
magnifying glass icon with the plus sign) from the toolbar and select a region.

The gaps represent the missing data in the series. To fill these gaps, select Data > Fill Missing
Data. This selection automatically fills the gaps and generates a new plot that displays the filled time
series data.
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You cannot see the filled gaps when you display the entire data set. However, when you zoom into the
plot, you see that the gaps have been eliminated. The title bar has changed; the title has been
prefixed with the word Filled to reflect the filled time series data.

Frequency Conversion

The Data menu also provides access to frequency conversion functions.

This example changes the DIS time series data frequency from daily to monthly. Close the Filled Walt
Disney Company (DIS) window, and click the Walt Disney Company (DIS) window to make it active
(current) again. Then, from the Data menu, select Convert Data Frequency To and To Monthly.

A new figure window displays the result of this conversion.
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The title reflects that the data displayed had its frequency changed to monthly.

Analysis Menu
The Analysis menu provides functions that analyze time series data, including the technical analysis
functions. (See “Chart Technical Indicators” for a complete list of the technical analysis functions and
several usage examples.)

For example, you can use the Analysis menu to calculate the natural logarithm (log) of the data
contained within the data set ftsdata.mat. This data file provides time series data for IBM (IBM),
Walt Disney (DIS), and Whirlpool (WHR). Click the window displaying the data for IBM Corporation
(IBM) to make it active (current). Then select the Analysis menu, followed by Log( ... ). The result
appears in its own window.

Close the above window and click again on the IBM data window to make it active (current).
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Note Before proceeding with any time series analysis, make certain that the title bar confirms that
the active data series is the correct one.

From the Analysis menu on the main window on page 15-2, select Technical Analysis and MACD.
The result, again, is displayed in its own window.

Other analysis functions work similarly.

Graphs Menu
The Graphs menu displays time series data using the provided graphics functions. Included in the
Graphs menu are several types of bar charts (bar, barh and bar3, bar3h), line plot (plot),
candle plot (candle), and High-Low plot (highlow). The Graphs menu also provides access to the
interactive charting function, chartfts.

Candle Plot

For example, you can display the candle plot of a set of time series data and start up the interactive
chart on the same data set.

Load the ftsdata.mat data set, and click the window that displays the Whirlpool (WHR) time series
data to make it active (current). From the main window on page 15-2, select the Graphs menu and
then Candle Plot.
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The result is shown below.

This does not look much like a candle plot because there are too many data points in the data set. All
the candles are too compressed for effective viewing. However, when you zoom into a region of this
plot, the candles become apparent.
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Interactive Chart

To create an interactive chart (chartfts) on the Whirlpool data, click the window that displays the
Whirlpool (WHR) data to make it active (current). Then, go to the Graphs menu and select
Interactive Chart.

The chart that results is shown below.
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You can use this interactive chart as if you had invoked it with the chartfts command from the
MATLAB command line. For a tutorial on the use of chartfts, see “Visualizing Financial Time Series
Objects” on page 11-24.

Saving Time Series Data
The Save and Save As items on the main window File menu let you save the time series data that
results from your analyses and computations. These items save all time series data that has been
loaded or processed during the current session, even if the window displaying the results of a
computation has previously been dismissed.

Note The Save and Save As items on the File menu of the individual plot windows will not save the
time series data, but will save the actual plot.

You can save your time series data in two ways:

• Into the latest MAT-file loaded (Save on page 15-15)
• Into a MAT-file chosen (or named) from the window (Save As on page 15-15)

To illustrate this, start by loading the data file testftsdata.mat (located in matlabroot/
toolbox/finance/findemos). Then, convert the Disney (DIS) data from daily (the original
frequency) to monthly data. Next, run the MACD analysis on the Whirlpool (WHR) data. You now have
a set of five open figure windows.
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Saving into the Original File (Save)

To save the data back into the original file (testftsdata.mat), select Save from the File menu.

A confirmation window appears. It confirms that the data has been saved in the latest MAT-file loaded
(testftsdata.mat in this example).

Saving into a New File (Save As)

To save the data in a different file, choose Save As from the File menu.

The dialog box that appears lets you choose an existing MAT-file from a list or type in the name of a
new MAT-file you want to create.
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After you click the Save button, another confirmation window appears.

This confirmation window indicates that the data has been saved in a new file named
myftstestdata.mat.

See Also
ftstool | ftsgui

Related Examples
• “Working with Financial Time Series Objects” on page 13-2

More About
• “Financial Time Series User Interface” on page 15-2
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Trading Date Utilities

• “Trading Calendars User Interface” on page 16-2
• “UICalendar User Interface” on page 16-4
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Trading Calendars User Interface
Use the createholidays function to open the Trading Calendars user interface.

The createholidays function supports https://www.FinancialCalendar.com trading
calendars. This function can be used from the command line or from the Trading Calendars user
interface. To use createholidays or the Trading Calendars user interface, you must obtain data,
codes, and info files from https://www.FinancialCalendar.com trading calendars. For more
information on using the command line to programmatically generate the market-specific
holidays.m files without displaying the interface, see createholidays.

To use the Trading Calendars user interface:

1 From the command line, type the following command to open the Trading Calendars user
interface.

createholidays
2 Click Choose data file to select the data file.
3 Click Choose codes file to select the codes file.
4 Click Choose info file to select the info file.
5 Click Choose directory for writing holiday files to select the output folder.
6 Select Include weekends to include weekends in the holiday list and click Prompt for target

directory to be prompted for the file location for each holidays.m file that is created.
7 Click Create holiday files to convert FinancialCalendar.com financial center holiday data

into market-specific holidays.m files.

The market-specific holidays.m files can be used in place of the standard holidays.m that
ships with Financial Toolbox software.
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See Also
createholidays | holidays | nyseclosures

Related Examples
• “Handle and Convert Dates” on page 2-2
• “UICalendar User Interface” on page 16-4
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UICalendar User Interface
In this section...
“Using UICalendar in Standalone Mode” on page 16-4
“Using UICalendar with an Application” on page 16-4

Using UICalendar in Standalone Mode
You can use the UICalendar user interface in standalone mode to look up any date. To use the
standalone mode:

1 Type the following command to open the UICalendar GUI:

uicalendar

The UICalendar interface is displayed:

2 Click the date and year controls to locate any date.

Using UICalendar with an Application
You can use the UICalendar user interface with an application to look up any date. To use the
UICalendar graphical interface with an application, use the following command:

uicalendar('PARAM1', VALUE1, 'PARAM2', VALUE2', ...)

For more information, see uicalendar.

Example of Using UICalendar with an Application

The UICalendar example creates a function that displays a user interface that lets you select a date
from the UICalendar user interface and fill in a text field with that date.

1 Create a figure.
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function uicalendarGUIExample
f = figure('Name', 'uicalendarGUIExample');

2 Add a text control field.

dateTextHandle = uicontrol(f, 'Style', 'Text', ...
'String', 'Date:', ...
'Horizontalalignment', 'left', ...
'Position', [100 200 50 20]);

3 Add an uicontrol editable text field to display the selected date.

dateEditBoxHandle = uicontrol(f, 'Style', 'Edit', ...  
'Position', [140 200 100 20], ...  
'BackgroundColor', 'w');

4 Create a push button that starts up the UICalendar.

calendarButtonHandle = uicontrol(f, 'Style', 'PushButton', ...  
'String', 'Select a single date', ...  
'Position', [275 200 200 20], ...  
'callback', @pushbutton_cb);

5 To start up UICalendar, create a nested function (callback function) for the push button.

function pushbutton_cb(hcbo, eventStruct)  
% Create a UICALENDAR with the following properties:  
% 1) Highlight weekend dates.  
% 2) Only allow a single date to be selected at a time.  
% 3) Send the selected date to the edit box uicontrol.  
uicalendar('Weekend', [1 0 0 0 0 0 1], ...  
'SelectionType', 1, ...  
'DestinationUI', dateEditBoxHandle);
end  
end

6 Run the function uicalendarGUIExample to display the application interface:

7 Click Select a single date to display the UICalendar user interface:
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8 Select a date and click OK to display the date in the text field:

See Also
createholidays | holidays | nyseclosures

Related Examples
• “Trading Calendars User Interface” on page 16-2
• “Handle and Convert Dates” on page 2-2
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Technical Analysis

• “Technical Indicators” on page 17-2
• “Technical Analysis Examples” on page 17-4
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Technical Indicators
Technical analysis (or charting) is used by some investment managers to help manage portfolios.
Technical analysis relies heavily on the availability of historical data. Investment managers calculate
different indicators from available data and plot them as charts. Observations of price, direction, and
volume on the charts assist managers in making decisions on their investment portfolios.

The technical analysis functions in Financial Toolbox are tools to help analyze your investments. The
functions in themselves will not make any suggestions or perform any qualitative analysis of your
investment.

Technical Analysis: Oscillators

Function Type
adosc Accumulation/distribution oscillator
chaikosc Chaikin oscillator
macd Moving Average Convergence/Divergence
stochosc Stochastic oscillator
tsaccel Acceleration
tsmom Momentum

Technical Analysis: Stochastics

Function Type
chaikvolat Chaikin volatility
fpctkd Fast stochastics
spctkd Slow stochastics
willpctr Williams %R

Technical Analysis: Indexes

Function Type
negvolidx Negative volume index
posvolidx Positive volume index
rsindex Relative strength index
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Technical Analysis: Indicators

Function Type
adline Accumulation/distribution line
bollinger Bollinger band
hhigh Highest high
llow Lowest low
medprice Median price
onbalvol On balance volume
prcroc Price rate of change
pvtrend Price-volume trend
typprice Typical price
volroc Volume rate of change
wclose Weighted close
willad Williams accumulation/distribution

See Also
adosc | chaikosc | macd | stochosc | tsaccel | tsmom | chaikvolat | fpctkd | spctkd |
willpctr | negvolidx | posvolidx | rsindex | adline | bollinger | hhigh | llow | medprice |
onbalvol | prcroc | pvtrend | typprice | volroc | wclose | willad
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Technical Analysis Examples
In this section...
“Overview” on page 17-4
“Moving Average Convergence/Divergence (MACD)” on page 17-4
“Williams %R” on page 17-5
“Relative Strength Index (RSI)” on page 17-7
“On-Balance Volume (OBV)” on page 17-8

Overview
To illustrate some of the technical analysis functions, this section uses the IBM stock price data
contained in the supplied file ibm9599.dat. First create a financial time series object from the data
using ascii2fts:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 

The time series data contains the open, close, high, and low prices, and the volume traded on each
day. The time series dates start on January 3, 1995, and end on April 1, 1999, with some values
missing for weekday holidays; weekend dates are not included.

Moving Average Convergence/Divergence (MACD)
Moving Average Convergence/Divergence (MACD) is an oscillator function used by technical analysts
to spot overbought and oversold conditions. Use the IBM® stock price data contained in the supplied
file ibm9599.dat. First, create a financial time series object from the data using ascii2fts. Look
at the portion of the time series covering the 3-month period between October 1, 1995 and December
31, 1995. At the same time fill any missing values due to holidays within the time period specified:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Calculate the MACD, which when plotted produces two lines; the first line is the MACD line itself and
the second is the nine-period moving average line:

macd_ibm = macd(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

When you call macd without giving it a second input argument to specify a particular data series
name, it searches for a closing price series named Close (in all combinations of letter cases).

Plot the MACD lines and the High-Low plot of the IBM stock prices in two separate plots in one
window.
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subplot(2, 1, 1);
plot(macd_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('MACD of IBM Close Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
subplot(2, 1, 2);
highlow(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy')

Williams %R
Williams %R is an indicator that measures overbought and oversold levels. The function willpctr is
from the stochastics category. All the technical analysis functions can accept a different name for a
required data series. If, for example, a function needs the high, low, and closing price series but your
time series object does not have the data series names exactly as High, Low, and Close, you can
specify the correct names as follows:

wpr = willpctr(tsobj,14,'HighName','Hi','LowName','Lo','CloseName','Closing').

The function willpctr now assumes that your high price series is named Hi, low price series is
named Lo, and closing price series is named Closing. Use the IBM® stock price data contained in
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the supplied file ibm9599.dat. First, create a financial time series object from the data using 
ascii2fts. Look at the portion of the time series covering the 3-month period between October 1,
1995 and December 31, 1995. At the same time fill any missing values due to holidays within the time
period specified:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Since the time series object part_ibm has its data series names identical to the required names,
name adjustments are not needed. The input argument to the function is only the name of the time
series object itself.

Calculate and plot the Williams %R indicator for IBM stock along with the price range using these
commands:

wpctr_ibm = willpctr(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

subplot(2, 1, 1);
plot(wpctr_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Williams %R of IBM stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
hold on;
plot(wpctr_ibm.dates, -80*ones(1, length(wpctr_ibm)),...  
'color', [0.5 0 0], 'linewidth', 2)
plot(wpctr_ibm.dates, -20*ones(1, length(wpctr_ibm)),... 
'color', [0 0.5 0], 'linewidth', 2)
subplot(2, 1, 2);
highlow(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
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The top plot has the Williams %R line plus two lines at -20% and -80%. The bottom plot is the High-
Low plot of the IBM stock price for the corresponding time period.

Relative Strength Index (RSI)
The Relative Strength Index (RSI) is a momentum indicator that measures an equity's price relative
to itself and its past performance. The function name is rsindex. The rsindex function needs a
series that contains the closing price of a stock. The default period length for the RSI calculation is 14
periods. This length can be changed by providing a second input argument to the function. First,
create a financial time series object from the data using ascii2fts. Look at the portion of the time
series covering the 3-month period between October 1, 1995 and December 31, 1995. At the same
time fill any missing values due to holidays within the time period specified:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Calculate and plot the RSI for IBM® stock along with the price range using these commands:

rsi_ibm = rsindex(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 Technical Analysis Examples

17-7



subplot(2, 1, 1);
plot(rsi_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('RSI of IBM stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
hold on;
wpctr_ibm = willpctr(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

plot(rsi_ibm.dates, 30*ones(1, length(wpctr_ibm)),... 
'color', [0.5 0 0], 'linewidth', 2)
plot(rsi_ibm.dates, 70*ones(1, length(wpctr_ibm)),...  
'color',[0 0.5 0], 'linewidth', 2)
subplot(2, 1, 2);
highlow(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

On-Balance Volume (OBV)
On-Balance Volume (OBV) relates volume to price change. The function onbalvol requires you to
have the closing price (Close) series and the volume traded (Volume) series. First, create a financial
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time series object from the data using ascii2fts. Look at the portion of the time series covering the
3-month period between October 1, 1995 and December 31, 1995. At the same time fill any missing
values due to holidays within the time period specified:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Calculate and plot the OBV for IBM® stock along with the price range using these commands:

obv_ibm = onbalvol(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

subplot(2, 1, 1);
plot(obv_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('On-Balance Volume of IBM Stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
subplot(2, 1, 2);
highlow(part_ibm);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
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See Also
adosc | chaikosc | macd | stochosc | tsaccel | tsmom | chaikvolat | fpctkd | spctkd |
willpctr | negvolidx | posvolidx | rsindex | adline | bollinger | hhigh | llow | medprice |
onbalvol | prcroc | pvtrend | typprice | volroc | wclose | willad
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Stochastic Differential Equations

• “SDEs” on page 18-2
• “SDE Class Hierarchy” on page 18-5
• “SDE Models” on page 18-7
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21
• “Simulating Equity Prices” on page 18-28
• “Simulating Interest Rates” on page 18-48
• “Stratified Sampling” on page 18-57
• “Performance Considerations” on page 18-62
• “Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on page 18-85
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SDEs

In this section...
“SDE Modeling” on page 18-2
“Trials vs. Paths” on page 18-3
“NTrials, NPeriods, and NSteps” on page 18-3

SDE Modeling
Financial Toolbox enables you to model dependent financial and economic variables, such as interest
rates and equity prices, by performing Monte Carlo simulation of stochastic differential equations
(SDEs). The flexible architecture of the SDE engine provides efficient simulation methods that allow
you to create new simulation and derivative pricing methods.

The following table lists tasks you can perform using the SDE functionality.

To perform this task ... Use these types of models ...
“Simulating Equity Prices” on page 18-28 • Geometric Brownian Motion (GBM) on page

18-22
• Constant Elasticity of Variance (CEV) on page

18-22
• Stochastic Differential Equation (SDE) on

page 18-14
• Stochastic Differential Equations from Drift

and Diffusion Objects (SDEDDO) on page 18-
16

• Stochastic Differential Equations from Linear
Drift (SDELD) on page 18-19

• Heston Stochastic Volatility (Heston) on page
18-26

“Simulating Interest Rates” on page 18-48 • Hull-White-Vasicek (HWV) on page 18-25
• Cox-Ingersoll-Ross (CIR) on page 18-24
• Stochastic Differential Equation (SDE) on

page 18-14
• Stochastic Differential Equations from Drift

and Diffusion Objects (SDEDDO) on page 18-
16

• Stochastic Differential Equations from Mean-
Reverting Drift (SDEMRD) Models on page
18-23

“Pricing Equity Options” on page 18-45 Geometric Brownian Motion (GBM) on page 18-
22

“Stratified Sampling” on page 18-57 All supported models on page 18-11
“Performance Considerations” on page 18-62 All supported models on page 18-11
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Trials vs. Paths
Monte Carlo simulation literature often uses different terminology for the evolution of the simulated
variables of interest, such as trials and paths. The following sections use the terms trial and path
interchangeably.

However, there are situations where you should distinguish between these terms. Specifically, the
term trial often implies the result of an independent random experiment (for example, the evolution
of the price of a single stock or portfolio of stocks). Such an experiment computes the average or
expected value of a variable of interest (for example, the price of a derivative security) and its
associated confidence interval.

By contrast, the term path implies the result of a random experiment that is different or unique from
other results, but that may or may not be independent.

The distinction between these terms is unimportant. It may, however, be useful when applied to
variance reduction techniques that attempt to increase the efficiency of Monte Carlo simulation by
inducing dependence across sample paths. A classic example involves pairwise dependence induced
by antithetic sampling, and applies to more sophisticated variance reduction techniques, such as
stratified sampling which is a variance reduction technique that constrains a proportion of sample
paths to specific subsets (or strata) of the sample space.

NTrials, NPeriods, and NSteps
SDE functions in the Financial Toolbox software use the parameters NTrials, NPeriods, and
NSteps as follows:

• The input argument NTrials specifies the number of simulated trials or sample paths to
generate. This argument always determines the size of the third dimension (the number of pages)
of the output three-dimensional time series array Paths. Indeed, in a traditional Monte Carlo
simulation of one or more variables, each sample path is independent and represents an
independent trial.

• The parameters NPeriods and NSteps represent the number of simulation periods and time
steps, respectively. Both periods and time steps are related to time increments that determine the
exact sequence of observed sample times. The distinction between these terms applies only to
issues of accuracy and memory management. For more information, see “Optimizing Accuracy:
About Solution Precision and Error” on page 18-63 and “Managing Memory” on page 18-62.

See Also
sde | bm | gbm | bates | merton | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByQuadExp | simByEuler | simBySolution | | interpolate

Related Examples
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21
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More About
• “SDE Class Hierarchy” on page 18-5
• “SDE Models” on page 18-7
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SDE Class Hierarchy
The Financial Toolbox SDE class structure represents a generalization and specialization hierarchy.
The top-level class provides the most general model interface and offers the default Monte Carlo
simulation and interpolation methods. In turn, derived classes offer restricted interfaces that simplify
model creation and manipulation while providing detail regarding model structure.

The following table lists the SDE classes. The introductory examples in “Available Models” on page
18-11 show how to use these classes to create objects associated with univariate models. Although
the Financial Toolbox SDE engine supports multivariate models, univariate models facilitate object
creation and display, and allow you to easily associate inputs with object parameters.

SDE Classes

Class Name For More Information, See ...
SDE sde and “Base SDE Models” on page 18-14
Drift, Diffusion drift, diffusion, and “Overview” on page 18-16
SDEDDO sdeddo and “Drift and Diffusion Models” on page 18-

16
SDELD sdeld and “Linear Drift Models” on page 18-19
CEV cev and “Creating Constant Elasticity of Variance

(CEV) Models” on page 18-22
BM bm and “Creating Brownian Motion (BM) Models” on

page 18-21
SDEMRD sdemrd and “Creating Stochastic Differential Equations

from Mean-Reverting Drift (SDEMRD) Models” on page
18-23

GBM gbm and “Creating Geometric Brownian Motion (GBM)
Models” on page 18-22

HWV hwv and “Creating Hull-White/Vasicek (HWV) Gaussian
Diffusion Models” on page 18-25

CIR cir and “Creating Cox-Ingersoll-Ross (CIR) Square
Root Diffusion Models” on page 18-24

Heston heston and “Creating Heston Stochastic Volatility
Models” on page 18-26

Merton merton
Bates bates

The following figure illustrates the inheritance relationships among SDE classes.
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See Also
sde | bm | gbm | bates | merton | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simByQuadExp | simBySolution | simBySolution
| interpolate

Related Examples
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21

More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
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SDE Models

In this section...
“Introduction” on page 18-7
“Creating SDE Objects” on page 18-7
“Drift and Diffusion” on page 18-10
“Available Models” on page 18-11
“SDE Simulation and Interpolation Methods” on page 18-12

Introduction
Most models and utilities available with Monte Carlo Simulation of SDEs are represented as MATLAB
objects. Therefore, this documentation often uses the terms model and object interchangeably.

However, although all models are represented as objects, not all objects represent models. In
particular, drift, diffusion objects are used in model specification, but neither of these types of
objects in and of themselves makes up a complete model. Usually, you do not need to create drift,
diffusion objects directly, so you do not need to differentiate between objects and models. It is
important, however, to understand the distinction between these terms.

In many of the following examples, most model parameters are evaluated or invoked like any
MATLAB function. Although it is helpful to examine and access model parameters as you would data
structures, think of these parameters as functions that perform actions.

Creating SDE Objects
• “Creating Objects” on page 18-7
• “Displaying Objects” on page 18-7
• “Assigning and Referencing Object Parameters” on page 18-8
• “Creating and Evaluating Models” on page 18-8
• “Specifying SDE Simulation Parameters” on page 18-8

Creating Objects

For examples and more information on creating SDE objects, see:

• “Available Models” on page 18-11
• “Simulating Equity Prices” on page 18-28
• “Simulating Interest Rates” on page 18-48

Displaying Objects

• Objects display like traditional MATLAB data structures.
• Displayed object parameters appear as nouns that begin with capital letters. In contrast,

parameters such as simulate and interpolate appear as verbs that begin with lowercase
letters, which indicate tasks to perform.
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Assigning and Referencing Object Parameters

• Objects support referencing similar to data structures. For example, statements like the following
are valid:

A = obj.A 
• Objects support complete parameter assignment similar to data structures. For example,

statements like the following are valid:

obj.A = 3
• Objects do not support partial parameter assignment as data structures do. Therefore, statements

like the following are invalid:

obj.A(i,j) = 0.3   

Creating and Evaluating Models

• You can create objects of any model class only if enough information is available to determine
unambiguously the dimensionality of the model. Because each object offers unique input
interfaces, some models require additional information to resolve model dimensionality.

• You need only enter required input parameters in placeholder format, where a given input
argument is associated with a specific position in an argument list. You can enter optional inputs
in any order as parameter name-value pairs, where the name of a given parameter appears in
single quotation marks and precedes its corresponding value.

• Association of dynamic (time-variable) behavior with function evaluation, where time and state
(t,Xt) are passed to a common, published interface, is pervasive throughout the SDE class system.
You can use this function evaluation approach to model or construct powerful analytics. For a
simple example, see “Example: Univariate GBM Models” on page 18-23.

Specifying SDE Simulation Parameters

The SDE engine allows the simulation of generalized multivariate stochastic processes, and provides
a flexible and powerful simulation architecture. The framework also provides you with utilities and
model classes that offer various parametric specifications and interfaces. The architecture is fully
multidimensional in both the state vector and the Brownian motion, and offers both linear and mean-
reverting drift-rate specifications.

You can specify most parameters as MATLAB arrays or as functions accessible by a common
interface, that supports general dynamic/nonlinear relationships common in SDE simulation.
Specifically, you can simulate correlated paths of any number of state variables driven by a vector-
valued Brownian motion of arbitrary dimensionality. This simulation approximates the underlying
multivariate continuous-time process using a vector-valued stochastic difference equation.

Consider the following general stochastic differential equation:

dXt = F(t, Xt)dt + G(t, Xt)dWt  (18-1)

where:

• X is an NVars-by-1 state vector of process variables (for example, short rates or equity prices) to
simulate.

• W is an NBrowns-by-1 Brownian motion vector.
• F is an NVars-by-1 vector-valued drift-rate function.
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• G is an NVars-by-NBrowns matrix-valued diffusion-rate function.

The drift and diffusion rates, F and G, respectively, are general functions of a real-valued scalar
sample time t and state vector Xt. Also, static (non-time-variable) coefficients are simply a special
case of the more general dynamic (time-variable) situation, just as a function can be a trivial
constant; for example, f(t,Xt) = 4. The SDE in “Equation 18-1” is useful in implementing derived
classes that impose additional structure on the drift and diffusion-rate functions.
Specifying User-Defined Functions as Model Parameters

Several examples in this documentation emphasize the evaluation of object parameters as functions
accessible by a common interface. In fact, you can evaluate object parameters by passing to them
time and state, regardless of whether the underlying user-specified parameter is a function. However,
it is helpful to compare the behavior of object parameters that are specified as functions to that of
user-specified noise and end-of-period processing functions.

Model parameters that are specified as functions are evaluated in the same way as user-specified
random number (noise) generation functions. (For more information, see “Evaluating Different Types
of Functions” on page 18-9.) Model parameters that are specified as functions are inputs to remove
object constructors. User-specified noise and processing functions are optional inputs to simulation
methods.

Because class constructors offer unique interfaces, and simulation methods of any given model have
different implementation details, models often call parameter functions for validation purposes a
different number of times, or in a different order, during object creation, simulation, and
interpolation.

Therefore, although parameter functions, user-specified noise generation functions, and end-of-period
processing functions all share the interface and are validated at the same initial time and state
(obj.StartTime and obj.StartState), parameter functions are not guaranteed to be invoked
only once before simulation as noise generation and end-of-period processing functions are. In fact,
parameter functions might not even be invoked the same number of times during a given Monte Carlo
simulation process.

In most applications in which you specify parameters as functions, they are simple, deterministic
functions of time and/or state. There is no need to count periods, count trials, or otherwise
accumulate information or synchronize time.

However, if parameter functions require more sophisticated bookkeeping, the correct way to
determine when a simulation has begun (or equivalently, to determine when model validation is
complete) is to determine when the input time and/or state differs from the initial time and state
(obj.StartTime and obj.StartState, respectively). Because the input time is a known scalar,
detecting a change from the initial time is likely the best choice in most situations. This is a general
mechanism that you can apply to any type of user-defined function.
Evaluating Different Types of Functions

It is useful to compare the evaluation rules of user-specified noise generation functions to those of
end-of-period processing functions. These functions have the following in common:

• They both share the same general interface, returning a column vector of appropriate length when
evaluated at the current time and state:

Xt = f (t, Xt)

zt = Z(t, Xt)
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• Before simulation, the simulation method itself calls each function once to validate the size of the
output at the initial time and state, obj.StartTime, and obj.StartState, respectively.

• During simulation, the simulation method calls each function the same number of times:
NPeriods * NSteps.

However, there is an important distinction regarding the timing between these two types of functions.
It is most clearly drawn directly from the generic SDE model:

dXt = F(t, Xt)dt + G(t, Xt)dWt

This equation is expressed in continuous time, but the simulation methods approximate the model in
discrete time as:

Xt + Δt = Xt + F(t, Xt)Δt + G(t, Xt) ΔtZ(t, Xt)

where Δt > 0 is a small (and not necessarily equal) period or time increment into the future. This
equation is often referred to as a Euler approximation, a simulation technique that provides a
discrete-time approximation of a continuous-time stochastic process. All functions on the rightmost
side are evaluated at the current time and state (t, Xt).

In other words, over the next small time increment, the simulation evolves the state vector based only
on information available at the current time and state. In this sense, you can think of the noise
function as a beginning-of-period function, or as a function evaluated from the left. This is also true
for any user-supplied drift or diffusion function.

In contrast, user-specified end-of-period processing functions are applied only at the end of each
simulation period or time increment. For more information about processing functions, see “Pricing
Equity Options” on page 18-45.

Therefore, all simulation methods evaluate noise generation functions as:

zt = Z(t, Xt)

for t = t0, t0 + Δt, t0 + 2Δt, ..., T – Δt.

Yet simulation methods evaluate end-of-period processing functions as:

Xt = f (t, Xt)

for t = t0 + Δt, t0 + 2Δt, ..., T.

where t0 and T are the initial time (taken from the object) and the terminal time (derived from inputs
to the simulation method), respectively. These evaluations occur on all sample paths. Therefore,
during simulation, noise functions are never evaluated at the final (terminal) time, and end-of-period
processing functions are never evaluated at the initial (starting) time.

Drift and Diffusion
For example, an SDE with a linear drift rate has the form:

F(t, Xt) = A(t) + B(t)Xt  (18-2)

where A is an NVars-by-1 vector-valued function and B is an NVars-by-NVars matrix-valued function.

As an alternative, consider a drift-rate specification expressed in mean-reverting form:
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F(t, Xt) = S(t)[L(t)− Xt]  (18-3)

where S is an NVars-by-NVars matrix-valued function of mean reversion speeds (that is, rates of mean
reversion), and L is an NVars-by-1 vector-valued function of mean reversion levels (that is, long run
average level).

Similarly, consider the following diffusion-rate specification:

G(t, Xt) = D(t, Xt
α(t))V(t)  (18-4)

where D is an NVars-by-NVars diagonal matrix-valued function. Each diagonal element of D is the
corresponding element of the state vector raised to the corresponding element of an exponent Alpha,
which is also an NVars-by-1 vector-valued function. V is an NVars-by-NBrowns matrix-valued function
of instantaneous volatility rates. Each row of V corresponds to a particular state variable, and each
column corresponds to a particular Brownian source of uncertainty. V associates the exposure of state
variables with sources of risk.

The parametric specifications for the drift and diffusion-rate functions associate parametric
restrictions with familiar models derived from the general SDE class, and provide coverage for many
models.

The class system and hierarchy of the SDE engine use industry-standard terminology to provide
simplified interfaces for many models by placing user-transparent restrictions on drift and diffusion
specifications. This design allows you to mix and match existing models, and customize drift-rate or
diffusion-rate functions.

Available Models
For example, the following models are special cases of the general SDE model.
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SDE Models

Model Name Specification
Brownian Motion (BM) dXt = A(t)dt + V(t)dWt

Geometric Brownian Motion (GBM) dXt = B(t)Xtdt + V(t)XtdWt

Constant Elasticity of Variance (CEV) dXt = B(t)Xtdt + V(t)Xt
α(t)dWt

Cox-Ingersoll-Ross (CIR)
dXt = S(t)(L(t)− Xt)dt + V(t)Xt

1
2dWt

Hull-White/Vasicek (HWV) dXt = S(t)(L(t)− Xt)dt + V(t)dWt

Heston dX1t = B(t)X1tdt + X2tX1tdW1t

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

Merton dXt = B(t, Xt)Xtdt + D(t, Xt)V(t, xt)dWt + Y(t, Xt)XtdNt

Bates Bates models are bivariate composite models. Each Bates
model consists of two coupled univariate models:

• A geometric Brownian motion (gbm) model with a
stochastic volatility function.

dX1t = B(t)X1tdt + X2tX1tdW1t

• A Cox-Ingersoll-Ross (cir) square root diffusion model.

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

SDE Simulation and Interpolation Methods
The sde class provides default simulation and interpolation methods for all derived classes:

• simulate: High-level wrapper around the user-specified simulation method stored in the
Simulation property

• simByEuler: Default Euler approximation simulation method
• interpolate: Stochastic interpolation method (that is, Brownian bridge)

A simBySolution function that simulates approximate solutions of diagonal-drift processes is
supported for the following classes:

• gbm supports simBySolution
• hwv supports simBySolution
• merton supports simBySolution

In addition, you can also use:

• simByTransition with a cir object to approximates a continuous-time Cox-Ingersoll-Ross (CIR)
model by an approximation of the transition density function.

• simByTransition with a bates object to approximates a continuous-time Bates model by an
approximation of the transition density function.
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• simByTransition with a heston object to approximates a continuous-time Heston model by an
approximation of the transition density function.

• simByQuadExp with a heston, bates, or cir object to generate sample paths by using a
Quadratic-Exponential discretization scheme.

.

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simBySolution | simByQuadExp | simBySolution
| interpolate

Related Examples
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21

More About
• “SDEs” on page 18-2
• “SDE Class Hierarchy” on page 18-5
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Base SDE Models
In this section...
“Overview” on page 18-14
“Example: Base SDE Models” on page 18-14

Overview
The base sde object

dXt = F(t, Xt)dt + G(t, Xt)dWt

represents the most general model.

Tip The sde class is not an abstract class. You can instantiate sde objects directly to extend the set
of core models.

Creating an sde object using sde requires the following inputs:

• A drift-rate function F. This function returns an NVars-by-1 drift-rate vector when run with the
following inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

• A diffusion-rate function G. This function returns an NVars-by-NBrowns diffusion-rate matrix when
run with the inputs t and Xt.

Evaluating object parameters by passing (t, Xt) to a common, published interface allows most
parameters to be referenced by a common input argument list that reinforces common method
programming. You can use this simple function evaluation approach to model or construct powerful
analytics, as in the following example.

Example: Base SDE Models
Create an sde object using sde to represent a univariate geometric Brownian Motion model of the
form:

dXt = 0.1Xtdt + 0.3XtdWt

1 Create drift and diffusion functions that are accessible by the common (t,Xt) interface:

F = @(t,X) 0.1 * X;
G = @(t,X) 0.3 * X;

2 Pass the functions to sde to create an sde object:

obj = sde(F, G)    % dX = F(t,X)dt + G(t,X)dW

obj = 
   Class SDE: Stochastic Differential Equation
   -------------------------------------------
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     Dimensions: State = 1, Brownian = 1
   -------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler

The sde object displays like a MATLAB structure, with the following information:

• The object's class
• A brief description of the object
• A summary of the dimensionality of the model

The object's displayed parameters are as follows:

• StartTime: The initial observation time (real-valued scalar)
• StartState: The initial state vector (NVars-by-1 column vector)
• Correlation: The correlation structure between Brownian process
• Drift: The drift-rate function F(t,Xt)
• Diffusion: The diffusion-rate function G(t,Xt)
• Simulation: The simulation method or function.

Of these displayed parameters, only Drift and Diffusion are required inputs.

The only exception to the (t, Xt) evaluation interface is Correlation. Specifically, when you enter
Correlation as a function, the SDE engine assumes that it is a deterministic function of time, C(t).
This restriction on Correlation as a deterministic function of time allows Cholesky factors to be
computed and stored before the formal simulation. This inconsistency dramatically improves run-time
performance for dynamic correlation structures. If Correlation is stochastic, you can also include it
within the simulation architecture as part of a more general random number generation function.

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simBySolution | simByQuadExp | simBySolution
| interpolate

Related Examples
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21

More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
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Drift and Diffusion Models
In this section...
“Overview” on page 18-16
“Example: Drift and Diffusion Rates” on page 18-16
“Example: SDEDDO Models” on page 18-17

Overview
Because base-level sde objects accept drift and diffusion objects in lieu of functions accessible by (t,
Xt), you can create sde objects with combinations of customized drift or diffusion functions and
objects. The drift and diffusion rate objects encapsulate the details of input parameters to
optimize run-time efficiency for any given combination of input parameters.

Although drift and diffusion objects differ in the details of their representation, they are
identical in their basic implementation and interface. They look, feel like, and are evaluated as
functions:

• The drift object allows you to create drift-rate objects of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

• Similarly, the diffusion object allows you to create diffusion-rate objects:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

Note You can express drift and diffusion objects in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that
adhere to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: Drift and Diffusion Rates
In this example, you create drift and diffusion rate objects to create the same model as in
“Example: Base SDE Models” on page 18-14.

Create a drift-rate function F and a diffusion-rate function G:
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F = drift(0, 0.1)      % Drift rate function F(t,X)

F = 
   Class DRIFT: Drift Rate Specification  
   -------------------------------------  
      Rate: drift rate function F(t,X(t)) 
         A: 0
         B: 0.1

G = diffusion(1, 0.3)  % Diffusion rate function G(t,X)

G = 
   Class DIFFUSION: Diffusion Rate Specification 
   --------------------------------------------- 
       Rate: diffusion rate function G(t,X(t))  
      Alpha: 1
      Sigma: 0.3

Each object displays like a MATLAB structure and contains supplemental information, namely, the
object's class and a brief description. However, in contrast to the SDE representation, a summary of
the dimensionality of the model does not appear, because drift and diffusion objects create
model components rather than models. Neither F nor G contains enough information to characterize
the dimensionality of a problem.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Again, Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The
Rate functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Example: SDEDDO Models
The sdeddo object derives from the basesde object. To use this object, you must pass drift and
diffusion-rate objects to sdeddo.

1 Create drift and diffusion rate objects:

F = drift(0, 0.1);      % Drift rate function F(t,X)
G = diffusion(1, 0.3);  % Diffusion rate function G(t,X)

2 Pass these objects to the sdeddo object:
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obj = sdeddo(F, G)      % dX = F(t,X)dt + G(t,X)dW

obj = 
   Class SDEDDO: SDE from Drift and Diffusion Objects
   --------------------------------------------------
     Dimensions: State = 1, Brownian = 1
   --------------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
              A: 0
              B: 0.1
          Alpha: 1
          Sigma: 0.3

In this example, the object displays the additional parameters associated with input drift and
diffusion objects.

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simBySolution | simBySolution | interpolate |
simByQuadExp

Related Examples
• “Base SDE Models” on page 18-14
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21

More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
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Linear Drift Models
In this section...
“Overview” on page 18-19
“Example: SDELD Models” on page 18-19

Overview
The sdeld class derives from the sdeddo class. The sdeld objects allow you to simulate correlated
paths of NVars state variables expressed in linear drift-rate form:

dXt = (A(t) + B(t)Xt)dt + D(t, Xt
α(t))V(t)dWt

sdeld objects provide a parametric alternative to the mean-reverting drift form, as discussed in
“Example: SDEMRD Models” on page 18-23. They also provide an alternative interface to the
sdeddo parent class, because you can create an object without first having to create its drift and
diffusion-rate components.

Example: SDELD Models
Create the same model as in “Example: Base SDE Models” on page 18-14 using sdeld:

obj = sdeld(0, 0.1, 1, 0.3) % (A, B, Alpha, Sigma)

obj = 
   Class SDELD: SDE with Linear Drift
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
              A: 0
              B: 0.1
          Alpha: 1
          Sigma: 0.3

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByQuadExp | simByEuler | simBySolution | simBySolution
| interpolate

Related Examples
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Parametric Models” on page 18-21
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More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
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Parametric Models
In this section...
“Creating Brownian Motion (BM) Models” on page 18-21
“Example: BM Models” on page 18-21
“Creating Constant Elasticity of Variance (CEV) Models” on page 18-22
“Creating Geometric Brownian Motion (GBM) Models” on page 18-22
“Creating Stochastic Differential Equations from Mean-Reverting Drift (SDEMRD) Models” on page
18-23
“Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models” on page 18-24
“Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page 18-25
“Creating Heston Stochastic Volatility Models” on page 18-26

Creating Brownian Motion (BM) Models
The Brownian Motion (BM) model (bm) derives directly from the linear drift (sdeld) model:

dXt = μ(t)dt + V(t)dWt

Example: BM Models
Create a univariate Brownian motion (bm) object to represent the model using bm:

dXt = 0.3dWt .

obj = bm(0, 0.3) % (A = Mu, Sigma)

obj = 
   Class BM: Brownian Motion
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 0
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
             Mu: 0
          Sigma: 0.3

bm objects display the parameter A as the more familiar Mu.

The bm object also provides an overloaded Euler simulation method that improves run-time
performance in certain common situations. This specialized method is invoked automatically only if
all the following conditions are met:

• The expected drift, or trend, rate Mu is a column vector.
• The volatility rate, Sigma, is a matrix.
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• No end-of-period adjustments and/or processes are made.
• If specified, the random noise process Z is a three-dimensional array.
• If Z is unspecified, the assumed Gaussian correlation structure is a double matrix.

Creating Constant Elasticity of Variance (CEV) Models
The Constant Elasticity of Variance (CEV) model (cev) also derives directly from the linear drift
(sdeld) model:

dXt = μ(t)Xtdt + D(t, Xt
α(t))V(t)dWt

The cev object constrains A to an NVars-by-1 vector of zeros. D is a diagonal matrix whose elements
are the corresponding element of the state vector X, raised to an exponent α(t).

Example: Univariate CEV Models

Create a univariate cev object to represent the model using cev:

dXt = 0.25Xt + 0.3Xt

1
2dWt .

obj = cev(0.25, 0.5, 0.3) % (B = Return, Alpha, Sigma)

obj = 
   Class CEV: Constant Elasticity of Variance
   ------------------------------------------
     Dimensions: State = 1, Brownian = 1
   ------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.25
          Alpha: 0.5
          Sigma: 0.3

cev and gbm objects display the parameter B as the more familiar Return.

Creating Geometric Brownian Motion (GBM) Models
The Geometric Brownian Motion (GBM) model (gbm) derives directly from the CEV (cev) model:

dXt = μ(t)Xtdt + D(t, Xt)V(t)dWt

Compared to the cev object, a gbm object constrains all elements of the alpha exponent vector to one
such that D is now a diagonal matrix with the state vector X along the main diagonal.

The gbm object also provides two simulation methods that can be used by separable models:

• An overloaded Euler simulation method that improves run-time performance in certain common
situations. This specialized method is invoked automatically only if all the following conditions are
true:
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• The expected rate of return (Return) is a diagonal matrix.
• The volatility rate (Sigma) is a matrix.
• No end-of-period adjustments/processes are made.
• If specified, the random noise process Z is a three-dimensional array.
• If Z is unspecified, the assumed Gaussian correlation structure is a double matrix.

• An approximate analytic solution (simBySolution) obtained by applying a Euler approach to the
transformed (using Ito's formula) logarithmic process. In general, this is not the exact solution to
this GBM model, as the probability distributions of the simulated and true state vectors are
identical only for piecewise constant parameters. If the model parameters are piecewise constant
over each observation period, the state vector Xt is lognormally distributed and the simulated
process is exact for the observation times at which Xt is sampled.

Example: Univariate GBM Models

Create a univariate gbm object to represent the model using gbm:

dXt = 0.25Xtdt + 0.3XtdWt

obj = gbm(0.25, 0.3)  % (B = Return, Sigma)

obj = 
   Class GBM: Generalized Geometric Brownian Motion
   ------------------------------------------------
     Dimensions: State = 1, Brownian = 1
   ------------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.25
          Sigma: 0.3

Creating Stochastic Differential Equations from Mean-Reverting Drift
(SDEMRD) Models
The sdemrd object derives directly from the sdeddo object. It provides an interface in which the
drift-rate function is expressed in mean-reverting drift form:

dXt = S(t)[L(t)− Xt]dt + D(t, Xt
α(t))V(t)dWt

sdemrd objects provide a parametric alternative to the linear drift form by reparameterizing the
general linear drift such that:

A(t) = S(t)L(t), B(t) = − S(t)

Example: SDEMRD Models

Create an sdemrd object using sdemrd with a square root exponent to represent the model:

dXt = 0.2(0.1− Xt)dt + 0.05Xt

1
2dWt .
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obj = sdemrd(0.2, 0.1, 0.5, 0.05)

obj = 
   Class SDEMRD: SDE with Mean-Reverting Drift
   -------------------------------------------
     Dimensions: State = 1, Brownian = 1
   -------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Alpha: 0.5
          Sigma: 0.05
          Level: 0.1
          Speed: 0.2

    % (Speed, Level, Alpha, Sigma)

sdemrd objects display the familiar Speed and Level parameters instead of A and B.

Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models
The Cox-Ingersoll-Ross (CIR) short-rate object, cir, derives directly from the SDE with mean-
reverting drift (sdemrd) class:

dXt = S(t)[L(t)− Xt]dt + D(t, Xt

1
2)V(t)dWt

where D is a diagonal matrix whose elements are the square root of the corresponding element of the
state vector.

Example: CIR Models

Create a cir object using cir to represent the same model as in “Example: SDEMRD Models” on
page 18-23:

obj = cir(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

obj = 
   Class CIR: Cox-Ingersoll-Ross
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.05
          Level: 0.1
          Speed: 0.2

Although the last two objects are of different classes, they represent the same mathematical model.
They differ in that you create the cir object by specifying only three input arguments. This
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distinction is reinforced by the fact that the Alpha parameter does not display – it is defined to be
1/2.

Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models
The Hull-White/Vasicek (HWV) short-rate object, hwv, derives directly from SDE with mean-reverting
drift (sdemrd) class:

dXt = S(t)[L(t)− Xt]dt + V(t)dWt

Example: HWV Models

Using the same parameters as in the previous example, create an hwv object using hwv to represent
the model:

dXt = 0.2(0.1− Xt)dt + 0.05dWt .

obj = hwv(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

obj = 
   Class HWV: Hull-White/Vasicek
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.05
          Level: 0.1
          Speed: 0.2

cir and hwv share the same interface and display methods. The only distinction is that cir and hwv
model objects constrain Alpha exponents to 1/2 and 0, respectively. Furthermore, the hwv object
also provides an additional method that simulates approximate analytic solutions (simBySolution)
of separable models. This method simulates the state vector Xt using an approximation of the closed-
form solution of diagonal drift HWV models. Each element of the state vector Xt is expressed as the
sum of NBrowns correlated Gaussian random draws added to a deterministic time-variable drift.

When evaluating expressions, all model parameters are assumed piecewise constant over each
simulation period. In general, this is not the exact solution to this hwv model, because the probability
distributions of the simulated and true state vectors are identical only for piecewise constant
parameters. If S(t,Xt), L(t,Xt), and V(t,Xt) are piecewise constant over each observation period, the
state vector Xt is normally distributed, and the simulated process is exact for the observation times at
which Xt is sampled.

Hull-White vs. Vasicek Models

Many references differentiate between Vasicek models and Hull-White models. Where such
distinctions are made, Vasicek parameters are constrained to be constants, while Hull-White
parameters vary deterministically with time. Think of Vasicek models in this context as constant-
coefficient Hull-White models and equivalently, Hull-White models as time-varying Vasicek models.
However, from an architectural perspective, the distinction between static and dynamic parameters is
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trivial. Since both models share the same general parametric specification as previously described, a
single hwv object encompasses the models.

Creating Heston Stochastic Volatility Models
The Heston (heston) object derives directly from SDE from the Drift and Diffusion (sdeddo) class.
Each Heston model is a bivariate composite model, consisting of two coupled univariate models:

dX1t = B(t)X1tdt + X2tX1tdW1t  (18-5)

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t  (18-6)

“Equation 18-5” is typically associated with a price process. “Equation 18-6” represents the evolution
of the price process' variance. Models of type heston are typically used to price equity options.

Example: Heston Models

Create a heston object using heston to represent the model:

dX1t = 0.1X1tdt + X2tX1tdW1t

dX2t = 0.2[0.1− X2t]dt + 0.05 X2tdW2t

obj = heston (0.1, 0.2, 0.1, 0.05)

obj = 
   Class HESTON: Heston Bivariate Stochastic Volatility
   ----------------------------------------------------
     Dimensions: State = 2, Brownian = 2
   ----------------------------------------------------
      StartTime: 0
     StartState: 1 (2x1 double array) 
    Correlation: 2x2 diagonal double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.1
          Speed: 0.2
          Level: 0.1
     Volatility: 0.05

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simByQuadExp | simBySolution | simBySolution
| interpolate

Related Examples
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
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More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
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Simulating Equity Prices
In this section...
“Simulating Multidimensional Market Models” on page 18-28
“Inducing Dependence and Correlation” on page 18-40
“Dynamic Behavior of Market Parameters” on page 18-41
“Pricing Equity Options” on page 18-45

Simulating Multidimensional Market Models
This example compares alternative implementations of a separable multivariate geometric Brownian
motion process that is often referred to as a multidimensional market model. It simulates sample
paths of an equity index portfolio using sde, sdeddo, sdeld, cev, and gbm objects.

The market model to simulate is:

dXt = μXtdt + D(Xt)σdWt  (18-7)

where:

• μ is a diagonal matrix of expected index returns.
• D is a diagonal matrix with Xt along the diagonal.
• σ is a diagonal matrix of standard deviations of index returns.

Representing Market Models Using SDE Objects

Create an sde object using sde to represent the equity market model.

1 Load the Data_GlobalIdx2 data set:

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];

2 Convert daily prices to returns:

returns =  tick2ret(prices);
3 Compute data statistics to input to simulation methods:

nVariables  = size(returns, 2);
expReturn   = mean(returns);
sigma       = std(returns);
correlation = corrcoef(returns);
t           = 0;
X           = 100;
X           = X(ones(nVariables,1));

4 Create simple anonymous drift and diffusion functions accessible by (t, Xt):

F = @(t,X) diag(expReturn) * X;
G = @(t,X) diag(X) * diag(sigma);

5 Use these functions with sde to create an sde object to represent the market model in
“Equation 18-7”:
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SDE = sde(F, G, 'Correlation', correlation, 'StartState', X)

SDE = 
   Class SDE: Stochastic Differential Equation
   -------------------------------------------
     Dimensions: State = 6, Brownian = 6
   -------------------------------------------
      StartTime: 0
     StartState: 100 (6x1 double array) 
    Correlation: 6x6 double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler

The sde object requires additional information to determine the dimensionality of the model,
because the functions passed to thesde object are known only by their (t, Xt) interface. In other
words, thesde object requires only two inputs: a drift-rate function and a diffusion-rate function,
both accessible by passing the sample time and the corresponding state vector (t, Xt).

In this case, this information is insufficient to determine unambiguously the dimensionality of the
state vector and Brownian motion. You resolve the dimensionality by specifying an initial state
vector, StartState. The SDE engine has assigned the default simulation method, simByEuler,
to the Simulation parameter.

Representing Market Models Using SDEDDO Objects

Create an sdeddo object using sdeddo to represent the market model in “Equation 18-7”:

1 Load the Data_GlobalIdx2 data set:

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
Dataset.NIK Dataset.FTSE Dataset.SP];

2 Convert daily prices to returns:

returns =  tick2ret(prices);
3 Compute data statistics to input to simulation methods:

nVariables  = size(returns, 2);
expReturn   = mean(returns);
sigma       = std(returns);
correlation = corrcoef(returns);

4 Create drift and diffusion objects using drift and diffusion:

F = drift(zeros(nVariables,1), diag(expReturn))

F = 
   Class DRIFT: Drift Rate Specification  
   -------------------------------------  
      Rate: drift rate function F(t,X(t)) 
         A: 6x1 double array
         B: 6x6 diagonal double array

G = diffusion(ones(nVariables,1), diag(sigma))

G = 
   Class DIFFUSION: Diffusion Rate Specification 
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   --------------------------------------------- 
       Rate: diffusion rate function G(t,X(t))  
      Alpha: 6x1 double array
      Sigma: 6x6 diagonal double array

5 Pass the drift and diffusion objects to sdeddo:

SDEDDO = sdeddo(F, G, 'Correlation', correlation, ...
'StartState', 100)

SDEDDO = 
   Class SDEDDO: SDE from Drift and Diffusion Objects
   --------------------------------------------------
     Dimensions: State = 6, Brownian = 6
   --------------------------------------------------
      StartTime: 0
     StartState: 100 (6x1 double array) 
    Correlation: 6x6 double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
              A: 6x1 double array
              B: 6x6 diagonal double array
          Alpha: 6x1 double array
          Sigma: 6x6 diagonal double array

The sdeddo object requires two input objects that provide more information than the two
functions from step 4 of “Representing Market Models Using SDE Objects” on page 18-28. Thus,
the dimensionality is more easily resolved. In fact, the initial price of each index is as a scalar
(StartState = 100). This is in contrast to the sde object, which required an explicit state
vector to uniquely determine the dimensionality of the problem.

Once again, the class of each object is clearly identified, and parameters display like fields of a
structure. In particular, the Rate parameter of drift and diffusion objects is identified as a
callable function of time and state, F(t,Xt) and G(t,Xt), respectively. The additional parameters, A,
B, Alpha, and Sigma, are arrays of appropriate dimension, indicating static (non-time-varying)
parameters. In other words, A(t,Xt), B(t,Xt), Alpha(t,Xt), and Sigma(t,Xt) are constant functions of
time and state.

Representing Market Models Using SDELD, CEV, and GBM Objects

Create sdeld, cev, and gbm objects to represent the market model in “Equation 18-7”.

1 Load the Data_GlobalIdx2 data set:

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
    Dataset.NIK Dataset.FTSE Dataset.SP];

2 Convert daily prices to returns:

returns =  tick2ret(prices);
3 Compute data statistics to input to simulation methods:

nVariables  = size(returns, 2);
expReturn   = mean(returns);
sigma       = std(returns);
correlation = corrcoef(returns);
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t           = 0;
X           = 100;
X           = X(ones(nVariables,1));

4 Create an sdeld object using sdeld:

SDELD = sdeld(zeros(nVariables,1), diag(expReturn), ...
    ones(nVariables,1), diag(sigma),'Correlation', ... 
    correlation, 'StartState', X)

SDELD = 
   Class SDELD: SDE with Linear Drift
   ----------------------------------------
     Dimensions: State = 6, Brownian = 6
   ----------------------------------------
      StartTime: 0
     StartState: 100 (6x1 double array) 
    Correlation: 6x6 double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
              A: 6x1 double array
              B: 6x6 diagonal double array
          Alpha: 6x1 double array
          Sigma: 6x6 diagonal double array

5 Create a cev object using cev:

CEV = cev(diag(expReturn), ones(nVariables,1), ... 
    diag(sigma), 'Correlation', correlation, ...
    'StartState', X)

CEV = 
   Class CEV: Constant Elasticity of Variance
   ------------------------------------------
     Dimensions: State = 6, Brownian = 6
   ------------------------------------------
      StartTime: 0
     StartState: 100 (6x1 double array) 
    Correlation: 6x6 double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 6x6 diagonal double array
          Alpha: 6x1 double array
          Sigma: 6x6 diagonal double array

6 Create a gbm object using gbm:

GBM = gbm(diag(expReturn), diag(sigma), 'Correlation', ...
    correlation, 'StartState', X)

GBM = 
   Class GBM: Generalized Geometric Brownian Motion
   ------------------------------------------------
     Dimensions: State = 6, Brownian = 6
   ------------------------------------------------
      StartTime: 0
     StartState: 100 (6x1 double array) 
    Correlation: 6x6 double array 
          Drift: drift rate function F(t,X(t)) 
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      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 6x6 diagonal double array
          Sigma: 6x6 diagonal double array

Note the succession of interface restrictions:

• sdeld objects require you to specify A, B, Alpha, and Sigma.
• cev objects require you to specify Return, Alpha, and Sigma.
• gbm objects require you to specify only Return and Sigma.

However, all three objects represent the same multidimensional market model.

Also, cev and gbm objects display the underlying parameter B derived from the sdeld object as
Return. This is an intuitive name commonly associated with equity models.

Simulating Equity Markets Using the Default Simulate Method

1 Load the Data_GlobalIdx2 data set and use sde to specify the SDE model as in “Representing
Market Models Using SDE Objects” on page 18-28.

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);
expReturn   = mean(returns);
sigma       = std(returns);
correlation = corrcoef(returns);
t           = 0;
X           = 100;
X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;
G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...
    correlation, 'StartState', X);

2 Simulate a single path of correlated equity index prices over one calendar year (defined as
approximately 250 trading days) using the defaultsimulate method:

nPeriods = 249;      % # of simulated observations
dt       =   1;      % time increment = 1 day
rng(142857,'twister')
[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt);

whos S

  Name        Size            Bytes  Class     Attributes

  S         250x6             12000  double              

The output array S is a 250-by-6 = (NPeriods + 1-by-nVariables-by-1) array with the same
initial value, 100, for all indices. Each row of S is an observation of the state vector Xt at time t.
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3 Plot the simulated paths.

plot(T, S), xlabel('Trading Day'), ylabel('Price')
title('Single Path of Multi-Dimensional Market Model')
legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'}, ... 
    'Location', 'Best')

Simulating Equity Markets Using the SimByEuler Method

Because simByEuler is a valid simulation method, you can call it directly, overriding the
Simulation parameter's current method or function (which in this case is simByEuler). The
following statements produce the same price paths as generated in “Simulating Equity Markets Using
the Default Simulate Method” on page 18-32:

1 Load the Data_GlobalIdx2 data set and use sde to specify the SDE model as in “Representing
Market Models Using SDE Objects” on page 18-28.

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);
expReturn   = mean(returns);
sigma       = std(returns);
correlation = corrcoef(returns);
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t           = 0;
X           = 100;
X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;
G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...
    correlation, 'StartState', X);

2 Simulate a single path using simByEuler.

nPeriods = 249;      % # of simulated observations
dt       =   1;      % time increment = 1 day
rng(142857,'twister')
[S,T] = simByEuler(SDE, nPeriods, 'DeltaTime', dt);

3 Simulate 10 trials with the same initial conditions, and examine S:

rng(142857,'twister')
[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt, 'nTrials', 10);

whos S

  Name        Size               Bytes  Class     Attributes

  S         250x6x10            120000  double              

Now the output array S is an NPeriods + 1-by-nVariables-by-NTrials time series array.
4 Plot the first paths.

plot(T, S(:,:,1)), xlabel('Trading Day'), ylabel('Price')
title('First Path of Multi-Dimensional Market Model')
legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'},...
    'Location', 'Best')
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The first realization of S is identical to the paths in the plot.

Simulating Equity Markets Using GBM Simulation Methods

Finally, consider simulation using GBM simulation methods. Separable GBM models have two specific
simulation methods:

• An overloaded Euler simulation method, simByEuler, designed for optimal performance
• A function, simBySolution, provides an approximate solution of the underlying stochastic
differential equation, designed for accuracy

1 Load the Data_GlobalIdx2 data set and use sde to specify the SDE model as in “Representing
Market Models Using SDE Objects” on page 18-28, and the GBM model as in “Representing
Market Models Using SDELD, CEV, and GBM Objects” on page 18-30.

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);
expReturn   = mean(returns);
sigma       = std(returns);
correlation = corrcoef(returns);
t           = 0;
X           = 100;
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X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;
G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...
    correlation, 'StartState', X);

GBM = gbm(diag(expReturn),diag(sigma), 'Correlation', ...
    correlation, 'StartState', X);

2 To illustrate the performance benefit of the overloaded Euler approximation method, increase the
number of trials to 10000.

nPeriods = 249;      % # of simulated observations
dt       =   1;      % time increment = 1 day
rng(142857,'twister')
[X,T] = simulate(GBM, nPeriods, 'DeltaTime', dt, ...
    'nTrials', 10000);

whos X

  Name        Size                     Bytes  Class     Attributes

  X         250x6x10000            120000000  double              

The output X is a much larger time series array.
3 Using this sample size, examine the terminal distribution of Canada's TSX Composite to verify

qualitatively the lognormal character of the data.

histogram(squeeze(X(end,1,:)), 30), xlabel('Price'), ylabel('Frequency')
title('Histogram of Prices after One Year: Canada (TSX Composite)')
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4 Simulate 10 trials of the solution and plot the first trial:

rng(142857,'twister')
[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt, 'nTrials', 10);
rng(142857,'twister')
[X,T] = simBySolution(GBM, nPeriods,...
    'DeltaTime', dt, 'nTrials', 10);
subplot(2,1,1)
plot(T, S(:,:,1)), xlabel('Trading Day'),ylabel('Price')
title('1st Path of Multi-Dim Market Model:Euler Approximation')
subplot(2,1,2)
plot(T, X(:,:,1)), xlabel('Trading Day'),ylabel('Price')
title('1st Path of Multi-Dim Market Model:Analytic Solution')
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In this example, all parameters are constants, and simBySolution does indeed sample the
exact solution. The details of a single index for any given trial show that the price paths of the
Euler approximation and the exact solution are close, but not identical.

5 The following plot illustrates the difference between the two methods:

subplot(1,1,1)
plot(T, S(:,1,1) - X(:,1,1), 'blue'), grid('on')
xlabel('Trading Day'), ylabel('Price Difference')
title('Euler Approx Minus Exact Solution:Canada(TSX Composite)')
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The simByEuler Euler approximation literally evaluates the stochastic differential equation directly
from the equation of motion, for some suitable value of the dt time increment. This simple
approximation suffers from discretization error. This error is attributed to the discrepancy between
the choice of the dt time increment and what in theory is a continuous-time parameter.

The discrete-time approximation improves as DeltaTime approaches zero. The Euler method is often
the least accurate and most general method available. All models shipped in the simulation suite have
this method.

In contrast, thesimBySolution method provides a more accurate description of the underlying
model. This method simulates the price paths by an approximation of the closed-form solution of
separable models. Specifically, it applies a Euler approach to a transformed process, which in general
is not the exact solution to this GBM model. This is because the probability distributions of the
simulated and true state vectors are identical only for piecewise constant parameters.

When all model parameters are piecewise constant over each observation period, the simulated
process is exact for the observation times at which the state vector is sampled. Since all parameters
are constants in this example,simBySolution does indeed sample the exact solution.

For an example of how to use simBySolution to optimize the accuracy of solutions, see “Optimizing
Accuracy: About Solution Precision and Error” on page 18-63.
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Inducing Dependence and Correlation
This example illustrates two techniques that induce dependence between individual elements of a
state vector. It also illustrates the interaction between Sigma and Correlation.

The first technique generates correlated Gaussian variates to form a Brownian motion process with
dependent components. These components are then weighted by a diagonal volatility or exposure
matrix Sigma.

The second technique generates independent Gaussian variates to form a standard Brownian motion
process, which is then weighted by the lower Cholesky factor of the desired covariance matrix.
Although these techniques can be used on many models, the relationship between them is most easily
illustrated by working with a separable GBM model (see Simulating Equity Prices Using GBM
Simulation Methods on page 18-35). The market model to simulate is:

dXt = μXtdt + σXtdWt

where μ is a diagonal matrix.

1 Load the data set:

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
    Dataset.NIK Dataset.FTSE Dataset.SP];

2 Convert the daily prices to returns:

returns =  tick2ret(prices);
3 Specify Sigma and Correlation using the first technique:

a Using the first technique, specify Sigma as a diagonal matrix of asset return standard
deviations:

expReturn   = diag(mean(returns));  % expected return vector
sigma       = diag(std(returns));   % volatility of returns

b Specify Correlation as the sample correlation matrix of those returns. In this case, the
components of the Brownian motion are dependent:

correlation = corrcoef(returns);    
GBM1        = gbm(expReturn,sigma,'Correlation',...
                  correlation);

4 Specify Sigma and Correlation using the second technique:

a Using the second technique, specify Sigma as the lower Cholesky factor of the asset return
covariance matrix:

covariance = cov(returns);
sigma      = cholcov(covariance)';

b Set Correlation to an identity matrix:

GBM2       = gbm(expReturn,sigma);

Here, sigma captures both the correlation and magnitude of the asset return uncertainty. In
contrast to the first technique, the components of the Brownian motion are independent.
Also, this technique accepts the default assignment of an identity matrix to Correlation,
and is more straightforward.
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5 Simulate a single trial of 1000 observations (roughly four years of daily data) using both
techniques. By default, all state variables start at 1:

rng(22814,'twister')
[X1,T] = simByEuler(GBM1,1000);  % correlated Brownian motion
rng(22814,'twister')
[X2,T] = simByEuler(GBM2,1000);  % standard Brownian motion

When based on the same initial random number state, each technique generates identical asset price
paths:

subplot(2,1,1)
plot(T, X1)
title('Sample Paths from Correlated Brownian Motion')
ylabel('Asset Price')
subplot(2,1,2)
plot(T, X2)
title('Sample Paths from Standard Brownian Motion')
xlabel('Trading Day')
ylabel('Asset Price')

Dynamic Behavior of Market Parameters
As discussed in “Creating SDE Objects” on page 18-7, object parameters may be evaluated as if they
are MATLAB functions accessible by a common interface. This accessibility provides the impression
of dynamic behavior regardless of whether the underlying parameters are truly time-varying.
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Furthermore, because parameters are accessible by a common interface, seemingly simple linear
constructs may in fact represent complex, nonlinear designs.

For example, consider a univariate geometric Brownian motion (GBM) model of the form:

dXt = μ(t)Xtdt + σ(t)XtdWt

In this model, the return, μ(t), and volatility, σ(t), are dynamic parameters of time alone. However,
when creating a gbm object to represent the underlying model, such dynamic behavior must be
accessible by the common (t, Xt) interface. This reflects the fact that GBM models (and others) are
restricted parameterizations that derive from the general SDE class.

As a convenience, you can specify parameters of restricted models, such as GBM models, as traditional
MATLAB arrays of appropriate dimension. In this case, such arrays represent a static special case of
the more general dynamic situation accessible by the (t, Xt) interface.

Moreover, when you enter parameters as functions, object constructors can verify that they return
arrays of correct size by evaluating them at the initial time and state. Otherwise, object constructors
have no knowledge of any particular functional form.

The following example illustrates a technique that includes dynamic behavior by mapping a
traditional MATLAB time series array to a callable function with a (t, Xt) interface. It also compares
the function with an otherwise identical model with constant parameters.

Because time series arrays represent dynamic behavior that must be captured by functions accessible
by the (t, Xt) interface, you need utilities to convert traditional time series arrays into callable
functions of time and state. The following example shows how to do this using the conversion function
ts2func (time series to function).

1 Load the data. Load a daily historical data set containing three-month Euribor rates and closing
index levels of France's CAC 40 spanning the time interval February 7, 2001 to April 24, 2006:

load Data_GlobalIdx2
2 Simulate risk-neutral sample paths. Simulate risk-neutral sample paths of the CAC 40 index

using a geometric Brownian motion (GBM) model:

dXt = r(t)Xtdt + σXtdWt

where r(t) represents evolution of the risk-free rate of return.

Furthermore, assume that you need to annualize the relevant information derived from the daily
data (annualizing the data is optional, but is useful for comparison to other examples), and that
each calendar year comprises 250 trading days:

dt      = 1/250;
returns = tick2ret(Dataset.CAC);
sigma   = std(returns)*sqrt(250);
yields  = Dataset.EB3M;
yields  = 360*log(1 + yields);

3 Compare the sample paths from two risk-neutral historical simulation approaches.
Compare the resulting sample paths obtained from two risk-neutral historical simulation
approaches, where the daily Euribor yields serve as a proxy for the risk-free rate of return.

a The first approach specifies the risk-neutral return as the sample average of Euribor yields,
and therefore assumes a constant (non-dynamic) risk-free return:
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nPeriods = length(yields);  % Simulated observations
rng(5713,'twister')
obj    = gbm(mean(yields),diag(sigma),'StartState',100)

obj = 
   Class GBM: Generalized Geometric Brownian Motion
   ------------------------------------------------
     Dimensions: State = 1, Brownian = 1
   ------------------------------------------------
      StartTime: 0
     StartState: 100
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.0278117
          Sigma: 0.231906

[X1,T] = simulate(obj,nPeriods,'DeltaTime',dt);
b In contrast, the second approach specifies the risk-neutral return as the historical time

series of Euribor yields. It therefore assumes a dynamic, yet deterministic, rate of return;
this example does not illustrate stochastic interest rates. To illustrate this dynamic effect,
use the ts2func utility:

r = ts2func(yields,'Times',(0:nPeriods - 1)');

ts2func packages a specified time series array inside a callable function of time and state,
and synchronizes it with an optional time vector. For instance:

r(0,100)

ans = 0.0470

evaluates the function at (t = 0, X t = 100) and returns the first observed Euribor yield.
However, you can also evaluate the resulting function at any intermediate time t and state Xt:

r(7.5,200)

ans = 0.0472

Furthermore, the following command produces the same result when called with time alone:

r(7.5)

ans = 0.0472

The equivalence of these last two commands highlights some important features.

When you specify parameters as functions, they must evaluate properly when passed a
scalar, real-valued sample time (t), and an NVars-by-1 state vector (Xt). They must also
generate an array of appropriate dimensions, which in the first case is a scalar constant, and
in the second case is a scalar, piecewise constant function of time alone.

You are not required to use either time (t) or state (Xt). In the current example, the function
evaluates properly when passed time followed by state, thereby satisfying the minimal
requirements. The fact that it also evaluates correctly when passed only time simply
indicates that the function does not require the state vector Xt. The important point to make
is that it works when you pass it (t, Xt).
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Furthermore, the ts2func function performs a zero-order-hold (ZOH) piecewise constant
interpolation. The notion of piecewise constant parameters is pervasive throughout the SDE
architecture, and is discussed in more detail in “Optimizing Accuracy: About Solution
Precision and Error” on page 18-63.

4 Perform a second simulation using the same initial random number state. Complete the
comparison by performing the second simulation using the same initial random number state:

rng(5713,'twister')
obj = gbm(r, diag(sigma),'StartState',100)

obj = 
   Class GBM: Generalized Geometric Brownian Motion
   ------------------------------------------------
     Dimensions: State = 1, Brownian = 1
   ------------------------------------------------
      StartTime: 0
     StartState: 100
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: function ts2func/vector2Function
          Sigma: 0.231906

X2  = simulate(obj,nPeriods,'DeltaTime',dt);
5 Compare the two simulation trials. Plot the series of risk-free reference rates to compare the

two simulation trials:

subplot(2,1,1)
plot(dates,100*yields)
datetick('x')
xlabel('Date')
ylabel('Annualized Yield (%)')
title('Risk Free Rate(3-Mo Euribor Continuously-Compounded)')
subplot(2,1,2)
plot(T,X1,'red',T,X2,'blue')
xlabel('Time (Years)')
ylabel('Index Level')
title('Constant vs. Dynamic Rate of Return: CAC 40')
legend({'Constant Interest Rates' 'Dynamic Interest Rates'},...
    'Location', 'Best')
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The paths are close but not exact. The blue line in the last plot uses all the historical Euribor
data, and illustrates a single trial of a historical simulation.

Pricing Equity Options
As discussed in “Ensuring Positive Interest Rates” on page 18-53, all simulation and interpolation
methods allow you to specify one or more functions of the form:

Xt = f (t, Xt)

to evaluate at the end of every sample time.

The related example illustrates a simple, common end-of-period processing function to ensure
nonnegative interest rates. This example illustrates a processing function that allows you to avoid
simulation outputs altogether.

Consider pricing European stock options by Monte Carlo simulation within a Black-Scholes-Merton
framework. Assume that the stock has the following characteristics:

• The stock currently trades at 100.
• The stock pays no dividends.
• The stock's volatility is 50% per annum.
• The option strike price is 95.
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• The option expires in three months.
• The risk-free rate is constant at 10% per annum.

To solve this problem, model the evolution of the underlying stock by a univariate geometric
Brownian motion (GBM) model with constant parameters:

dXt = 0.1Xtdt + 0.5XtdWt

Furthermore, assume that the stock price is simulated daily, and that each calendar month comprises
21 trading days:

strike   = 95;
rate     = 0.1;
sigma    = 0.5;
dt       = 1/252;
nPeriods = 63;
T        = nPeriods*dt;
obj = gbm(rate,sigma,'StartState',100);

The goal is to simulate independent paths of daily stock prices, and calculate the price of European
options as the risk-neutral sample average of the discounted terminal option payoff at expiration 63
days from now. This example calculates option prices by two approaches:

• A Monte Carlo simulation that explicitly requests the simulated stock paths as an output. The
output paths are then used to price the options.

• An end-of-period processing function, accessible by time and state, that records the terminal stock
price of each sample path. This processing function is implemented as a nested function with
access to shared information. For more information, see Example_BlackScholes.m.

1 Before simulation, invoke the example file to access the end-of-period processing function:

nTrials = 10000; % Number of independent trials (i.e., paths)
f = Example_BlackScholes(nPeriods,nTrials)

f = struct with fields:
    BlackScholes: @Example_BlackScholes/saveTerminalStockPrice
       CallPrice: @Example_BlackScholes/getCallPrice
        PutPrice: @Example_BlackScholes/getPutPrice

2 Simulate 10000 independent trials (sample paths). Request the simulated stock price paths as an
output, and specify an end-of-period processing function:

rng(88161,'twister')
X = simBySolution(obj,nPeriods,'DeltaTime',dt,... 
    'nTrials',nTrials,'Processes',f.BlackScholes);

3 Calculate the option prices directly from the simulated stock price paths. Because these are
European options, ignore all intermediate stock prices:

call = mean(exp(-rate*T)*max(squeeze(X(end,:,:)) - strike, 0))

call = 13.9342

put  = mean(exp(-rate*T)*max(strike - squeeze(X(end,:,:)), 0))

put = 6.4166
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4 Price the options indirectly by invoking the nested functions:

f.CallPrice(strike,rate)

ans = 13.9342

f.PutPrice(strike,rate)

ans = 6.4166

For reference, the theoretical call and put prices computed from the Black-Scholes option
formulas are 13.6953 and 6.3497, respectively.

5 Although steps 3 and 4 produce the same option prices, the latter approach works directly with
the terminal stock prices of each sample path. Therefore, it is much more memory efficient. In
this example, there is no compelling reason to request an output.

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simBySolution | simByQuadExp | simBySolution
| interpolate

Related Examples
• “Simulating Interest Rates” on page 18-48
• “Stratified Sampling” on page 18-57
• “Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on page 18-85
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21

More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
• “Performance Considerations” on page 18-62
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Simulating Interest Rates
In this section...
“Simulating Interest Rates” on page 18-48
“Ensuring Positive Interest Rates” on page 18-53

Simulating Interest Rates
All simulation methods require that you specify a time grid by specifying the number of periods
(NPeriods). You can also optionally specify a scalar or vector of strictly positive time increments
(DeltaTime) and intermediate time steps (NSteps). These parameters, along with an initial sample
time associated with the object (StartTime), uniquely determine the sequence of times at which the
state vector is sampled. Thus, simulation methods allow you to traverse the time grid from beginning
to end (that is, from left to right).

In contrast, interpolation methods allow you to traverse the time grid in any order, allowing both
forward and backward movements in time. They allow you to specify a vector of interpolation times
whose elements do not have to be unique.

Many references define the Brownian Bridge as a conditional simulation combined with a scheme for
traversing the time grid, effectively merging two distinct algorithms. In contrast, the interpolation
method offered here provides additional flexibility by intentionally separating the algorithms. In this
method for moving about a time grid, you perform an initial Monte Carlo simulation to sample the
state at the terminal time, and then successively sample intermediate states by stochastic
interpolation. The first few samples determine the overall behavior of the paths, while later samples
progressively refine the structure. Such algorithms are often called variance reduction techniques.
This algorithm is simple when the number of interpolation times is a power of 2. In this case, each
interpolation falls midway between two known states, refining the interpolation using a method like
bisection. This example highlights the flexibility of refined interpolation by implementing this power-
of-two algorithm.

1 Load the data. Load a historical data set of three-month Euribor rates, observed daily, and
corresponding trading dates spanning the time interval from February 7, 2001 through April 24,
2006:

load Data_GlobalIdx2
plot(dates, 100 * Dataset.EB3M)
datetick('x'), xlabel('Date'), ylabel('Daily Yield (%)')
title('3-Month Euribor as a Daily Effective Yield')
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2 Fit a model to the data. Now fit a simple univariate Vasicek model to the daily equivalent
yields of the three-month Euribor data:

dXt = S(L− Xt)dt + σdWt

Given initial conditions, the distribution of the short rate at some time T in the future is Gaussian
with mean:

E(XT) = X0e−ST + L(1− e−ST)

and variance:

Var(XT) = σ2(1− e−ST)/2S

To calibrate this simple short-rate model, rewrite it in more familiar regression format:

yt = α + βxt + εt

where:

yt = dXt, α = SLdt, β = − Sdt

perform an ordinary linear regression where the model volatility is proportional to the standard
error of the residuals:

σ = Var(εt)/dt
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yields     = Dataset.EB3M;
regressors = [ones(length(yields) - 1, 1) yields(1:end-1)];
[coefficients, intervals, residuals] = ...
   regress(diff(yields), regressors);
dt    = 1;  % time increment = 1 day
speed = -coefficients(2)/dt;
level = -coefficients(1)/coefficients(2);
sigma =  std(residuals)/sqrt(dt);

3 Create an object and set its initial StartState. Create an hwv object with StartState set to
the most recently observed short rate:

obj = hwv(speed, level, sigma, 'StartState', yields(end))

obj = 
   Class HWV: Hull-White/Vasicek
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 7.70408e-05
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 4.77637e-07
          Level: 6.00424e-05
          Speed: 0.00228854

4 Simulate the fitted model. Assume, for example, that you simulate the fitted model over 64 (26)
trading days, using a refined Brownian bridge with the power-of-two algorithm instead of the
usual beginning-to-end Monte Carlo simulation approach. Furthermore, assume that the initial
time and state coincide with those of the last available observation of the historical data, and that
the terminal state is the expected value of the Vasicek model 64 days into the future. In this case,
you can assess the behavior of various paths that all share the same initial and terminal states,
perhaps to support pricing path-dependent interest rate options over a three-month interval.

Create a vector of interpolation times to traverse the time grid by moving both forward and
backward in time. Specifically, the first interpolation time is set to the most recent short-rate
observation time, the second interpolation time is set to the terminal time, and subsequent
interpolation times successively sample intermediate states:

T      = 64;
times  = (1:T)';
t      = NaN(length(times) + 1, 1);
t(1)   = obj.StartTime;
t(2)   = T;
delta  = T;
jMax   = 1;
iCount = 3;

for k = 1:log2(T)
    i = delta / 2;
    for j = 1:jMax
        t(iCount) = times(i);
        i         = i + delta;
        iCount    = iCount + 1;
    end
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    jMax  = 2 * jMax;
    delta = delta / 2;
end

5 Plot the interpolation times. Examine the sequence of interpolation times generated by this
algorithm:

stem(1:length(t), t, 'filled')
xlabel('Index'), ylabel('Interpolation Time (Days)')
title ('Sampling Scheme for the Power-of-Two Algorithm')

The first few samples are widely separated in time and determine the course structure of the
paths. Later samples are closely spaced and progressively refine the detailed structure.

6 Initialize the time series grid. Now that you have generated the sequence of interpolation
times, initialize a course time series grid to begin the interpolation. The sampling process begins
at the last observed time and state taken from the historical short-rate series, and ends 64 days
into the future at the expected value of the Vasicek model derived from the calibrated
parameters:

average = obj.StartState * exp(-speed * T) + level * ...
(1 - exp(-speed * T));
X       = [obj.StartState ; average];

7 Generate five sample paths. Generate five sample paths, setting the Refine input flag to TRUE
to insert each new interpolated state into the time series grid as it becomes available. Perform
interpolation on a trial-by-trial basis. Because the input time series X has five trials (where each
page of the three-dimensional time series represents an independent trial), the interpolated
output series Y also has five pages:
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nTrials = 5;
rng(63349,'twister')
Y = obj.interpolate(t, X(:,:,ones(nTrials,1)), ...
'Times',[obj.StartTime  T], 'Refine', true);

8 Plot the resulting sample paths. Because the interpolation times do not monotonically
increase, sort the times and reorder the corresponding short rates:

[t,i] = sort(t);
Y     = squeeze(Y);
Y     = Y(i,:);
plot(t, 100 * Y), hold('on')
plot(t([1 end]), 100 * Y([1 end],1),'. black','MarkerSize',20)
xlabel('Interpolation Time (Days into the Future)')
ylabel('Yield (%)'), hold('off')
title ('Euribor Yields from Brownian Bridge Interpolation')

The short rates in this plot represent alternative sample paths that share the same initial and
terminal values. They illustrate a special, though simplistic, case of a broader sampling technique
known as stratified sampling. For a more sophisticated example of stratified sampling, see
“Stratified Sampling” on page 18-57.

Although this simple example simulated a univariate Vasicek interest rate model, it applies to
problems of any dimensionality.

Tip Brownian-bridge methods also apply more general variance-reduction techniques. For more
information, see “Stratified Sampling” on page 18-57.
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Ensuring Positive Interest Rates
All simulation and interpolation methods allow you to specify a sequence of functions, or background
processes, to evaluate at the end of every sample time period. This period includes any intermediate
time steps determined by the optional NSteps input, as discussed in “Optimizing Accuracy: About
Solution Precision and Error” on page 18-63. These functions are specified as callable functions of
time and state, and must return an updated state vector Xt:

Xt = f (t, Xt)

You must specify multiple processing functions as a cell array of functions. These functions are
invoked in the order in which they appear in the cell array.

Processing functions are not required to use time (t) or state (Xt). They are also not required to
update or change the input state vector. In fact, simulation and interpolation methods have no
knowledge of any implementation details, and in this respect, they only adhere to a published
interface.

Such processing functions provide a powerful modeling tool that can solve various problems. Such
functions allow you to, for example, specify boundary conditions, accumulate statistics, plot graphs,
and price path-dependent options.

Except for Brownian motion (BM) models, the individual components of the simulated state vector
typically represent variables whose real-world counterparts are inherently positive quantities, such as
asset prices or interest rates. However, by default, most of the simulation and interpolation methods
provided here model the transition between successive sample times as a scaled (possibly
multivariate) Gaussian draw. So, when approximating a continuous-time process in discrete time, the
state vector may not remain positive. The only exception is simBySolution for gbm objects and
simBySolution for hwv objects, a logarithmic transform of separable geometric Brownian motion
models. Moreover, by default, none of the simulation and interpolation methods make adjustments to
the state vector. Therefore, you are responsible for ensuring that all components of the state vector
remain positive as appropriate.

Fortunately, specifying nonnegative states ensures a simple end-of-period processing adjustment.
Although this adjustment is widely applicable, it is revealing when applied to a univariate cir square-
root diffusion model:

dXt = 0.25(0.1− Xt)dt + 0.2Xt

1
2dWt = S(L− Xt)dt + σXt

1
2dWt

Perhaps the primary appeal of univariate cir models where:

2SL ≥ σ2

is that the short rate remains positive. However, the positivity of short rates only holds for the
underlying continuous-time model.

1 Simulate daily short rates of the cir model. To illustrate the latter statement, simulate daily
short rates of the cir model, using cir, over one calendar year (approximately 250 trading
days):

rng(14151617,'twister')
obj   = cir(0.25,@(t,X)0.1,0.2,'StartState',0.02);
[X,T] = simByEuler(obj,250,'DeltaTime',1/250,'nTrials',5);
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sprintf('%0.4f\t%0.4f+i%0.4f\n',[T(195:205)';...
    real(X(195:205,1,4))'; imag(X(195:205,1,4))'])

ans = 
    '0.7760    0.0003+i0.0000
     0.7800    0.0004+i0.0000
     0.7840    0.0002+i0.0000
     0.7880    -0.0000+i0.0000
     0.7920    0.0001+i0.0000
     0.7960    0.0002+i0.0000
     0.8000    0.0002+i0.0000
     0.8040    0.0008+i0.0001
     0.8080    0.0004+i0.0001
     0.8120    0.0008+i0.0001
     0.8160    0.0008+i0.0001
     '

Interest rates can become negative if the resulting paths are simulated in discrete time.
Moreover, since cir models incorporate a square root diffusion term, the short rates might even
become complex.

2 Repeat the simulation with a processing function. Repeat the simulation, this time
specifying a processing function that takes the absolute magnitude of the short rate at the end of
each period. You can access the processing function by time and state (t, Xt), but it only uses the
state vector of short rates Xt:

rng(14151617,'twister')
[Y,T] = simByEuler(obj,250,'DeltaTime',1/250,... 
    'nTrials',5,'Processes',@(t,X)abs(X));

3 Compare the adjusted and non-adjusted paths. Graphically compare the magnitude of the
unadjusted path (with negative and complex numbers!) to the corresponding path kept positive
by using an end-of-period processing function over the time span of interest:

clf
plot(T,100*abs(X(:,1,4)),'red',T,100*Y(:,1,4),'blue')
axis([0.75 1 0 0.4])
xlabel('Time (Years)'), ylabel('Short Rate (%)')
title('Univariate CIR Short Rates')
legend({'Negative/Complex Rates' 'Positive Rates'}, ... 
    'Location', 'Best')
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Tip You can use this method to obtain more accurate SDE solutions. For more information, see
“Performance Considerations” on page 18-62.

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simByQuadExp | simBySolution | simBySolution
| interpolate

Related Examples
• “Simulating Equity Prices” on page 18-28
• “Stratified Sampling” on page 18-57
• “Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on page 18-85
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21
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More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
• “Performance Considerations” on page 18-62
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Stratified Sampling
Simulation methods allow you to specify a noise process directly, as a callable function of time and
state:

zt = Z(t, Xt)

Stratified sampling is a variance reduction technique that constrains a proportion of sample paths to
specific subsets (or strata) of the sample space.

This example specifies a noise function to stratify the terminal value of a univariate equity price
series. Starting from known initial conditions, the function first stratifies the terminal value of a
standard Brownian motion, and then samples the process from beginning to end by drawing
conditional Gaussian samples using a Brownian bridge.

The stratification process assumes that each path is associated with a single stratified terminal value
such that the number of paths is equal to the number of strata. This technique is called proportional
sampling. This example is similar to, yet more sophisticated than, the one discussed in “Simulating
Interest Rates” on page 18-48. Since stratified sampling requires knowledge of the future, it also
requires more sophisticated time synchronization; specifically, the function in this example requires
knowledge of the entire sequence of sample times. For more information, see the example
Example_StratifiedRNG.m.

The function implements proportional sampling by partitioning the unit interval into bins of equal
probability by first drawing a random number uniformly distributed in each bin. The inverse
cumulative distribution function of a standard N(0,1) Gaussian distribution then transforms these
stratified uniform draws. Finally, the resulting stratified Gaussian draws are scaled by the square root
of the terminal time to stratify the terminal value of the Brownian motion.

The noise function does not return the actual Brownian paths, but rather the Gaussian draws Z(t,Xt)
that drive it.

This example first stratifies the terminal value of a univariate, zero-drift, unit-variance-rate Brownian
motion (bm) model:

dXt = dWt

1 Assume that 10 paths of the process are simulated daily over a three-month period. Also assume
that each calendar month and year consist of 21 and 252 trading days, respectively:

rng(10203,'twister')
dt       = 1 / 252;        % 1 day = 1/252 years
nPeriods = 63;             % 3 months = 63 trading days
T        = nPeriods * dt;  % 3 months = 0.25 years
nPaths   = 10;            % # of simulated paths
obj      = bm(0, 1, 'StartState', 0);
sampleTimes = cumsum([obj.StartTime; ...
    dt(ones(nPeriods,1))]);
z        = Example_StratifiedRNG(nPaths, sampleTimes);

2 Simulate the standard Brownian paths by explicitly passing the stratified sampling function to
the simulation method:

X = obj.simulate(nPeriods, 'DeltaTime', dt, ...
    'nTrials', nPaths, 'Z', z);

 Stratified Sampling

18-57



3 For convenience, reorder the output sample paths by reordering the three-dimensional output to
a two-dimensional equivalent array:

X = squeeze(X);
4 Verify the stratification:

a Recreate the uniform draws with proportional sampling:

rng(10203,'twister')
U  = ((1:nPaths)' - 1 + rand(nPaths,1))/nPaths;

b Transform them to obtain the terminal values of standard Brownian motion:

WT = norminv(U) * sqrt(T);  % Stratified Brownian motion.
c Plot the terminal values and output paths on the same figure:

plot(sampleTimes, X), hold('on')
xlabel('Time (Years)'), ylabel('Brownian State')
title('Terminal Stratification: Standard Brownian Motion')
plot(T, WT, '. black', T, WT, 'o black')
hold('off')

The last value of each sample path (the last row of the output array X) coincides with the
corresponding element of the stratified terminal value of the Brownian motion. This occurs because
the simulated model and the noise generation function both represent the same standard Brownian
motion.

18 Stochastic Differential Equations

18-58



However, you can use the same stratified sampling function to stratify the terminal price of constant-
parameter geometric Brownian motion models. In fact, you can use the stratified sampling function to
stratify the terminal value of any constant-parameter model driven by Brownian motion if the model's
terminal value is a monotonic transformation of the terminal value of the Brownian motion.

To illustrate this, load the data set and simulate risk-neutral sample paths of the FTSE 100 index
using a geometric Brownian motion (GBM) model with constant parameters:

dXt = rXtdt + σXtdWt

where the average Euribor yield represents the risk-free rate of return.

1 Assume that the relevant information derived from the daily data is annualized, and that each
calendar year comprises 252 trading days:

load Data_GlobalIdx2
returns = tick2ret(Dataset.FTSE);
sigma   = std(returns) * sqrt(252);
rate    = Dataset.EB3M;
rate    = mean(360 * log(1 + rate));

2 Create the GBM model using gbm, assuming the FTSE 100 starts at 100:

obj = gbm(rate, sigma, 'StartState', 100);
3 Determine the sample time and simulate the price paths.

In what follows, NSteps specifies the number of intermediate time steps within each time
increment DeltaTime. Each increment DeltaTime is partitioned into NSteps subintervals of
length DeltaTime/NSteps each, refining the simulation by evaluating the simulated state vector
at NSteps–1 intermediate points. This refinement improves accuracy by allowing the simulation
to more closely approximate the underlying continuous-time process without storing the
intermediate information:

nSteps      = 1;
sampleTimes = cumsum([obj.StartTime ; ...
dt(ones(nPeriods * nSteps,1))/nSteps]);
z           = Example_StratifiedRNG(nPaths, sampleTimes);
rng(10203,'twister')
[Y, Times]  = obj.simBySolution(nPeriods, 'nTrials', nPaths,...
'DeltaTime', dt, 'nSteps', nSteps,  'Z', z);
Y = squeeze(Y);   % Reorder to a 2-D array
plot(Times, Y)
xlabel('Time (Years)'), ylabel('Index Level')
title('FTSE 100 Terminal Stratification:Geometric Brownian Motion')
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Although the terminal value of the Brownian motion shown in the latter plot is normally distributed,
and the terminal price in the previous plot is lognormally distributed, the corresponding paths of each
graph are similar.

Tip For another example of variance reduction techniques, see “Simulating Interest Rates” on page
18-48.

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simBySolution | simByQuadExp | simBySolution
| interpolate

Related Examples
• “Simulating Equity Prices” on page 18-28
• “Simulating Interest Rates” on page 18-48
• “Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on page 18-85
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
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• “Parametric Models” on page 18-21

More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
• “Performance Considerations” on page 18-62
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Performance Considerations
In this section...
“Managing Memory” on page 18-62
“Enhancing Performance” on page 18-63
“Optimizing Accuracy: About Solution Precision and Error” on page 18-63

Managing Memory
There are two general approaches for managing memory when solving most problems supported by
the SDE engine:

• “Managing Memory with Outputs” on page 18-62
• “Managing Memory Using End-of-Period Processing Functions” on page 18-63

Managing Memory with Outputs

Perform a traditional simulation to simulate the underlying variables of interest, specifically
requesting and then manipulating the output arrays.

This approach is straightforward and the best choice for small or medium-sized problems. Since its
outputs are arrays, it is convenient to manipulate simulated results in the MATLAB matrix-based
language. However, as the scale of the problem increases, the benefit of this approach decreases,
because the output arrays must store large quantities of possibly extraneous information.

For example, consider pricing a European option in which the terminal price of the underlying asset
is the only value of interest. To ease the memory burden of the traditional approach, reduce the
number of simulated periods specified by the required input NPeriods and specify the optional input
NSteps. This enables you to manage memory without sacrificing accuracy (see “Optimizing
Accuracy: About Solution Precision and Error” on page 18-63).

In addition, simulation methods can determine the number of output arguments and allocate memory
accordingly. Specifically, all simulation methods support the same output argument list:

[Paths,Times,Z]

where Paths and Z can be large, three-dimensional time series arrays. However, the underlying noise
array is typically unnecessary, and is only stored if requested as an output. In other words, Z is stored
only at your request; do not request it if you do not need it.

If you need the output noise array Z, but do not need the Paths time series array, then you can avoid
storing Paths two ways:

• It is best practice to use the ~ output argument placeholder. For example, use the following output
argument list to store Z and Times, but not Paths:

[~,Times,Z]

• Use the optional input flag StorePaths, which all simulation methods support. By default, Paths
is stored (StorePaths = true). However, setting StorePaths to false returns Paths as an
empty matrix.
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Managing Memory Using End-of-Period Processing Functions

Specify one or more end-of-period processing functions to manage and store only the information of
interest, avoiding simulation outputs altogether.

This approach requires you to specify one or more end-of-period processing functions, and is often
the preferred approach for large-scale problems. This approach allows you to avoid simulation
outputs altogether. Since no outputs are requested, the three-dimensional time series arrays Paths
and Z are not stored.

This approach often requires more effort, but is far more elegant and allows you to customize tasks
and dramatically reduce memory usage. See “Pricing Equity Options” on page 18-45.

Enhancing Performance
The following approaches improve performance when solving SDE problems:

• Specifying model parameters as traditional MATLAB arrays and functions, in various
combinations. This provides a flexible interface that can support virtually any general nonlinear
relationship. However, while functions offer a convenient and elegant solution for many problems,
simulations typically run faster when you specify parameters as double-precision vectors or
matrices. Thus, it is a good practice to specify model parameters as arrays when possible.

• Use models that have overloaded Euler simulation methods, when possible. Using
Brownian motion (BM) and geometric Brownian motion (GBM) models that provide overloaded
Euler simulation methods take advantage of separable, constant-parameter models. These
specialized methods are exceptionally fast, but are only available to models with constant
parameters that are simulated without specifying end-of-period processing and noise generation
functions.

• Replace the simulation of a constant-parameter, univariate model derived from the
SDEDDO class with that of a diagonal multivariate model. Treat the multivariate model as a
portfolio of univariate models. This increases the dimensionality of the model and enhances
performance by decreasing the effective number of simulation trials.

Note This technique is applicable only to constant-parameter univariate models without
specifying end-of-period processing and noise generation functions.

• Take advantage of the fact that simulation methods are designed to detect the presence
of NaN (not a number) conditions returned from end-of-period processing functions. A
NaN represents the result of an undefined numerical calculation, and any subsequent calculation
based on a NaN produces another NaN. This helps improve performance in certain situations. For
example, consider simulating paths of the underlier of a knock-out barrier option (that is, an
option that becomes worthless when the price of the underlying asset crosses some prescribed
barrier). Your end-of-period function could detect a barrier crossing and return a NaN to signal
early termination of the current trial.

Optimizing Accuracy: About Solution Precision and Error
The simulation architecture does not, in general, simulate exact solutions to any SDE. Instead, the
simulation architecture provides a discrete-time approximation of the underlying continuous-time
process, a simulation technique often known as a Euler approximation.
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In the most general case, a given simulation derives directly from an SDE. Therefore, the simulated
discrete-time process approaches the underlying continuous-time process only in the limit as the time
increment dt approaches zero. In other words, the simulation architecture places more importance on
ensuring that the probability distributions of the discrete-time and continuous-time processes are
close, than on the pathwise proximity of the processes.

Before illustrating techniques to improve the approximation of solutions, it is helpful to understand
the source of error. Throughout this architecture, all simulation methods assume that model
parameters are piecewise constant over any time interval of length dt. In fact, the methods even
evaluate dynamic parameters at the beginning of each time interval and hold them fixed for the
duration of the interval. This sampling approach introduces discretization error.

However, there are certain models for which the piecewise constant approach provides exact
solutions:

• “Creating Brownian Motion (BM) Models” on page 18-21 with constant parameters, simulated by
Euler approximation (simByEuler).

• “Creating Geometric Brownian Motion (GBM) Models” on page 18-22 with constant parameters,
simulated by closed-form solution (simBySolution).

• “Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page 18-25 with constant
parameters, simulated by closed-form solution (simBySolution)

More generally, you can simulate the exact solutions for these models even if the parameters vary
with time, if they vary in a piecewise constant way such that parameter changes coincide with the
specified sampling times. However, such exact coincidence is unlikely; therefore, the previously
discussed constant parameter condition is commonly used in practice.

One obvious way to improve accuracy involves sampling the discrete-time process more frequently.
This decreases the time increment (dt), causing the sampled process to more closely approximate the
underlying continuous-time process. Although decreasing the time increment is universally
applicable, however, there is a tradeoff among accuracy, run-time performance, and memory usage.

To manage this tradeoff, specify an optional input argument, NSteps, for all simulation methods.
NSteps indicates the number of intermediate time steps within each time increment dt, at which the
process is sampled but not reported.

It is important and convenient at this point to emphasize the relationship of the inputs NSteps,
NPeriods, and DeltaTime to the output vector Times, which represents the actual observation
times at which the simulated paths are reported.

• NPeriods, a required input, indicates the number of simulation periods of length DeltaTime,
and determines the number of rows in the simulated three-dimensional Paths time series array (if
an output is requested).

• DeltaTime is optional, and indicates the corresponding NPeriods-length vector of positive time
increments between successive samples. It represents the familiar dt found in stochastic
differential equations. If DeltaTime is unspecified, the default value of 1 is used.

• NSteps is also optional, and is only loosely related to NPeriods and DeltaTime. NSteps
specifies the number of intermediate time steps within each time increment DeltaTime.

Specifically, each time increment DeltaTime is partitioned into NSteps subintervals of length
DeltaTime/NSteps each, and refines the simulation by evaluating the simulated state vector at
(NSteps - 1) intermediate times. Although the output state vector (if requested) is not reported
at these intermediate times, this refinement improves accuracy by causing the simulation to more
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closely approximate the underlying continuous-time process. If NSteps is unspecified, the default
is 1 (to indicate no intermediate evaluation).

• The output Times is an NPeriods + 1-length column vector of observation times associated with
the simulated paths. Each element of Times is associated with a corresponding row of Paths.

The following example illustrates this intermediate sampling by comparing the difference between a
closed-form solution and a sequence of Euler approximations derived from various values of NSteps.

Example: Improving Solution Accuracy

Consider a univariate geometric Brownian motion (GBM) model using gbm with constant parameters:

dXt = 0.1Xtdt + 0.4XtdWt .

Assume that the expected rate of return and volatility parameters are annualized, and that a calendar
year comprises 250 trading days.

1 Simulate approximately four years of univariate prices for both the exact solution and the Euler
approximation for various values of NSteps:

nPeriods = 1000;    
dt       = 1/250;
obj      = gbm(0.1,0.4,'StartState',100);
rng(575,'twister')
[X1,T1]    = simBySolution(obj,nPeriods,'DeltaTime',dt);
rng(575,'twister')
[Y1,T1]    = simByEuler(obj,nPeriods,'DeltaTime',dt);
rng(575,'twister')
[X2,T2]    = simBySolution(obj,nPeriods,'DeltaTime',... 
    dt,'nSteps',2);
rng(575,'twister')
[Y2,T2]    = simByEuler(obj,nPeriods,'DeltaTime',...
    dt,'nSteps',2);
rng(575,'twister')
[X3,T3]    = simBySolution(obj,nPeriods, 'DeltaTime',... 
    dt,'nSteps',10);
rng(575,'twister')
[Y3,T3]    = simByEuler(obj,nPeriods,'DeltaTime',... 
    dt,'nSteps',10);
rng(575,'twister')
[X4,T4]    = simBySolution(obj,nPeriods,'DeltaTime',... 
    dt,'nSteps',100);
rng(575,'twister')
[Y4,T4]    = simByEuler(obj,nPeriods,'DeltaTime',... 
    dt,'nSteps',100);

2 Compare the error (the difference between the exact solution and the Euler approximation)
graphically:

clf; 
plot(T1,X1 - Y1,'red')
hold on;
plot(T2,X2 - Y2,'blue')
plot(T3,X3 - Y3,'green')
plot(T4,X4 - Y4,'black')
hold off
xlabel('Time (Years)')
ylabel('Price Difference')
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title('Exact Solution Minus Euler Approximation')
legend({'# of Steps = 1'  '# of Steps = 2' ...
    '# of Steps = 10' '# of Steps = 100'},...
    'Location', 'Best')
hold off

whos T X Y

As expected, the simulation error decreases as the number of intermediate time steps increases.
Because the intermediate states are not reported, all simulated time series have the same number of
observations regardless of the actual value of NSteps.

Furthermore, since the previously simulated exact solutions are correct for any number of
intermediate time steps, additional computations are not needed for this example. In fact, this
assessment is correct. The exact solutions are sampled at intermediate times to ensure that the
simulation uses the same sequence of Gaussian random variates in the same order. Without this
assurance, there is no way to compare simulated prices on a pathwise basis. However, there might be
valid reasons for sampling exact solutions at closely spaced intervals, such as pricing path-dependent
options.

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | interpolate | simByQuadExp | simBySolution |
simBySolution
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Related Examples
• “Simulating Equity Prices” on page 18-28
• “Simulating Interest Rates” on page 18-48
• “Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on page 18-85
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21

More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
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Pricing American Basket Options by Monte Carlo Simulation
This example shows how to model the fat-tailed behavior of asset returns and assess the impact of
alternative joint distributions on basket option prices. Using various implementations of a separable
multivariate Geometric Brownian Motion (GBM) process, often referred to as a multi-dimensional
market model, the example simulates risk-neutral sample paths of an equity index portfolio and prices
basket put options using the technique of Longstaff & Schwartz.

In addition, this example also illustrates salient features of the Stochastic Differential Equation (SDE)
architecture, including

• Customized random number generation functions that compare Brownian motion and Brownian
copulas

• End-of-period processing functions that form an equity index basket and price American options
on the underlying basket based on the least squares method of Longstaff & Schwartz

• Piecewise probability distributions and Extreme Value Theory (EVT)

This example also highlights important issues of volatility and interest rate scaling. It illustrates how
equivalent results can be achieved by working with daily or annualized data. For more information
about EVT and copulas, see “Using Extreme Value Theory and Copulas to Evaluate Market Risk”
(Econometrics Toolbox).

Overview of the Modeling Framework

The ultimate objective of this example is to compare basket option prices derived from different noise
processes. The first noise process is a traditional Brownian motion model whose index portfolio price
process is driven by correlated Gaussian random draws. As an alternative, the Brownian motion
benchmark is compared to noise processes driven by Gaussian and Student's t copulas, referred to
collectively as a Brownian copula.

A copula is a multivariate cumulative distribution function (CDF) with uniformly-distributed margins.
Although the theoretical foundations were established decades ago, copulas have experienced a
tremendous surge in popularity over the last few years, primarily as a technique for modeling non-
Gaussian portfolio risks.

Although numerous families exist, all copulas represent a statistical device for modeling the
dependence structure between two or more random variables. In addition, important statistics, such
as rank correlation and tail dependence are properties of a given copula and are unchanged by
monotonic transforms of their margins.

These copula draws produce dependent random variables, which are subsequently transformed to
individual variables (margins). This transformation is achieved with a semi-parametric probability
distribution with generalized Pareto tails.

The risk-neutral market model to simulate is

dXt = rXtdt + σXtdWt

where the risk-free rate, r, is assumed constant over the life of the option. Because this is a separable
multivariate model, the risk-free return is a diagonal matrix in which the same riskless return is
applied to all indices. Dividend yields are ignored to simplify the model and its associated data
collection.
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In contrast, the specification of the exposure matrix, sigma, depends on how the driving source of
uncertainty is modeled. You can model it directly as a Brownian motion (correlated Gaussian random
numbers implicitly mapped to Gaussian margins) or model it as a Brownian copula (correlated
Gaussian or t random numbers explicitly mapped to semi-parametric margins).

Because the CDF and inverse CDF (quantile function) of univariate distributions are both monotonic
transforms, a copula provides a convenient way to simulate dependent random variables whose
margins are dissimilar and arbitrarily distributed. Moreover, because a copula defines a given
dependence structure regardless of its margins, copula parameter calibration is typically easier than
estimation of the joint distribution function.

Once you have simulated sample paths, options are priced by the least squares regression method of
Longstaff & Schwartz (see Valuing American Options by Simulation: A Simple Least-Squares
Approach, The Review of Financial Studies, Spring 2001). This approach uses least squares to
estimate the expected payoff of an option if it is not immediately exercised. It does so by regressing
the discounted option cash flows received in the future on the current price of the underlier
associated with all in-the-money sample paths. The continuation function is estimated by a simple
third-order polynomial, in which all cash flows and prices in the regression are normalized by the
option strike price, improving numerical stability.

Import the Supporting Historical Dataset

Load a daily historical dataset of 3-month Euribor, the trading dates spanning the interval 07-
Feb-2001 to 24-Apr-2006, and the closing index levels of the following representative large-cap equity
indices:

• TSX Composite (Canada)
• CAC 40 (France)
• DAX (Germany)
• Nikkei 225 (Japan)
• FTSE 100 (UK)
• S&P 500 (US)

clear
load Data_GlobalIdx2
dates = datetime(dates,'ConvertFrom','datenum');

The following plots illustrate this data. Specifically, the plots show the relative price movements of
each index and the Euribor risk-free rate proxy. The initial level of each index has been normalized to
unity to facilitate the comparison of relative performance over the historical record.

nIndices  = size(Data,2)-1;     % # of indices

prices = Data(:,1:end-1);

yields = Data(:,end);             % daily effective yields
yields = 360 * log(1 + yields);   % continuously-compounded, annualized yield

plot(dates, ret2tick(tick2ret(prices,'Method','continuous'),'Method','continuous'))

xlabel('Date')
ylabel('Index Value')
title ('Normalized Daily Index Closings')
legend(series{1:end-1}, 'Location', 'NorthWest')
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plot(dates, 100 * yields)
xlabel('Date')
ylabel('Annualized Yield (%)')
title('Risk Free Rate (3-Month Euribor Continuously-Compounded)')
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Extreme Value Theory & Piecewise Probability Distributions

To prepare for copula modeling, characterize individually the distribution of returns of each index.
Although the distribution of each return series may be characterized parametrically, it is useful to fit
a semi-parametric model using a piecewise distribution with generalized Pareto tails. This uses
Extreme Value Theory to better characterize the behavior in each tail.

The Statistics and Machine Learning Toolbox™ software currently supports two univariate probability
distributions related to EVT, a statistical tool for modeling the fat-tailed behavior of financial data
such as asset returns and insurance losses:

• Generalized Extreme Value (GEV) distribution, which uses a modeling technique known as the
block maxima or minima method. This approach, divides a historical dataset into a set of sub-
intervals, or blocks, and the largest or smallest observation in each block is recorded and fitted to
a GEV distribution.

• Generalized Pareto (GP) distribution, uses a modeling technique known as the distribution of
exceedances or peaks over threshold method. This approach sorts a historical dataset and fits the
amount by which those observations that exceed a specified threshold to a GP distribution.

The following analysis highlights the Pareto distribution, which is more widely used in risk
management applications.

Suppose we want to create a complete statistical description of the probability distribution of daily
asset returns of any one of the equity indices. Assume that this description is provided by a piecewise
semi-parametric distribution, where the asymptotic behavior in each tail is characterized by a
generalized Pareto distribution.

 Pricing American Basket Options by Monte Carlo Simulation

18-71



Ultimately, a copula will be used to generate random numbers to drive the simulations. The CDF and
inverse CDF transforms will capture the volatility of simulated returns as part of the diffusion term of
the SDE. The mean return of each index is governed by the riskless rate and incorporated in the drift
term of the SDE. The following code segment centers the returns (that is, extracts the mean) of each
index.

Because the following analysis uses extreme value theory to characterize the distribution of each
equity index return series, it is helpful to examine details for a particular country:

returns = tick2ret(prices,'Method','continuous');        % convert prices to returns
returns = returns - mean(returns);  % center the returns
index   = 3;                                       % Germany stored in column 3

plot(dates(2:end), returns(:,index))
xlabel('Date')
ylabel('Return')
title(['Daily Logarithmic Centered Returns: ' series{index}])

Note that this code segment can be changed to examine details for any country.

Using these centered returns, estimate the empirical, or non-parametric, CDF of each index with a
Gaussian kernel. This smoothes the CDF estimates, eliminating the staircase pattern of unsmoothed
sample CDFs. Although non-parametric kernel CDF estimates are well-suited for the interior of the
distribution, where most of the data is found, they tend to perform poorly when applied to the upper
and lower tails. To better estimate the tails of the distribution, apply EVT to the returns that fall in
each tail.
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Specifically, find the upper and lower thresholds such that 10% of the returns are reserved for each
tail. Then fit the amount by which the extreme returns in each tail fall beyond the associated
threshold to a Pareto distribution by maximum likelihood.

The following code segment creates one object of type paretotails for each index return series.
These Pareto tail objects encapsulate the estimates of the parametric Pareto lower tail, the non-
parametric kernel-smoothed interior, and the parametric Pareto upper tail to construct a composite
semi-parametric CDF for each index.

tailFraction = 0.1;               % decimal fraction allocated to each tail
tails = cell(nIndices,1);  % cell array of Pareto tail objects

for i = 1:nIndices
    tails{i} = paretotails(returns(:,i), tailFraction, 1 - tailFraction, 'kernel');
end

The resulting piecewise distribution object allows interpolation within the interior of the CDF and
extrapolation (function evaluation) in each tail. Extrapolation allows estimation of quantiles outside
the historical record, which is invaluable for risk management applications.

Pareto tail objects also provide methods to evaluate the CDF and inverse CDF (quantile function), and
to query the cumulative probabilities and quantiles of the boundaries between each segment of the
piecewise distribution.

Now that three distinct regions of the piecewise distribution have been estimated, graphically
concatenate and display the result.

The following code calls the CDF and inverse CDF methods of the Pareto tails object of interest with
data other than that upon which the fit is based. The referenced methods have access to the fitted
state. They are now invoked to select and analyze specific regions of the probability curve, acting as a
powerful data filtering mechanism.

For reference, the plot also includes a zero-mean Gaussian CDF of the same standard deviation. To a
degree, the variation in options prices reflect the extent to which the distribution of each asset differs
from this normal curve.

minProbability = cdf(tails{index}, (min(returns(:,index))));
maxProbability = cdf(tails{index}, (max(returns(:,index))));

pLowerTail = linspace(minProbability  , tailFraction    , 200); % lower tail
pUpperTail = linspace(1 - tailFraction, maxProbability  , 200); % upper tail
pInterior  = linspace(tailFraction    , 1 - tailFraction, 200); % interior

plot(icdf(tails{index}, pLowerTail), pLowerTail, 'red'  , 'LineWidth', 2)
hold on
grid on
plot(icdf(tails{index}, pInterior) , pInterior , 'black', 'LineWidth', 2)
plot(icdf(tails{index}, pUpperTail), pUpperTail, 'blue' , 'LineWidth', 2)

limits = axis;
x = linspace(limits(1), limits(2));
plot(x, normcdf(x, 0, std(returns(:,index))), 'green', 'LineWidth', 2)

fig = gcf;
fig.Color = [1 1 1];
hold off
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xlabel('Centered Return')
ylabel('Probability')
title (['Semi-Parametric/Piecewise CDF: ' series{index}])
legend({'Pareto Lower Tail' 'Kernel Smoothed Interior' ...
        'Pareto Upper Tail' 'Gaussian with Same \sigma'}, 'Location', 'NorthWest')

The lower and upper tail regions, displayed in red and blue, respectively, are suitable for
extrapolation, while the kernel-smoothed interior, in black, is suitable for interpolation.

Copula Calibration

The Statistics and Machine Learning Toolbox software includes functionality that calibrates and
simulates Gaussian and t copulas.

Using the daily index returns, estimate the parameters of the Gaussian and t copulas using the
function copulafit. Since a t copula becomes a Gaussian copula as the scalar degrees of freedom
parameter (DoF) becomes infinitely large, the two copulas are really of the same family, and therefore
share a linear correlation matrix as a fundamental parameter.

Although calibration of the linear correlation matrix of a Gaussian copula is straightforward, the
calibration of a t copula is not. For this reason, the Statistics and Machine Learning Toolbox software
offers two techniques to calibrate a t copula:

• The first technique performs maximum likelihood estimation (MLE) in a two-step process. The
inner step maximizes the log-likelihood with respect to the linear correlation matrix, given a fixed
value for the degrees of freedom. This conditional maximization is placed within a 1-D
maximization with respect to the degrees of freedom, thus maximizing the log-likelihood over all
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parameters. The function being maximized in this outer step is known as the profile log-likelihood
for the degrees of freedom.

• The second technique is derived by differentiating the log-likelihood function with respect to the
linear correlation matrix, assuming the degrees of freedom is a fixed constant. The resulting
expression is a non-linear equation that can be solved iteratively for the correlation matrix. This
technique approximates the profile log-likelihood for the degrees of freedom parameter for large
sample sizes. This technique is usually significantly faster than the true maximum likelihood
technique outlined above; however, you should not use it with small or moderate sample sizes as
the estimates and confidence limits may not be accurate.

When the uniform variates are transformed by the empirical CDF of each margin, the calibration
method is often known as canonical maximum likelihood (CML). The following code segment first
transforms the daily centered returns to uniform variates by the piecewise, semi-parametric CDFs
derived above. It then fits the Gaussian and t copulas to the transformed data:

U = zeros(size(returns));

for i = 1:nIndices
    U(:,i) = cdf(tails{i}, returns(:,i));    % transform each margin to uniform
end

options     = statset('Display', 'off', 'TolX', 1e-4);
[rhoT, DoF] = copulafit('t', U, 'Method', 'ApproximateML', 'Options', options);
rhoG        = copulafit('Gaussian', U);

The estimated correlation matrices are quite similar but not identical.

corrcoef(returns)  % linear correlation matrix of daily returns

ans = 6×6

    1.0000    0.4813    0.5058    0.1854    0.4573    0.6526
    0.4813    1.0000    0.8485    0.2261    0.8575    0.5102
    0.5058    0.8485    1.0000    0.2001    0.7650    0.6136
    0.1854    0.2261    0.2001    1.0000    0.2295    0.1439
    0.4573    0.8575    0.7650    0.2295    1.0000    0.4617
    0.6526    0.5102    0.6136    0.1439    0.4617    1.0000

rhoG               % linear correlation matrix of the optimized Gaussian copula

rhoG = 6×6

    1.0000    0.4745    0.5018    0.1857    0.4721    0.6622
    0.4745    1.0000    0.8606    0.2393    0.8459    0.4912
    0.5018    0.8606    1.0000    0.2126    0.7608    0.5811
    0.1857    0.2393    0.2126    1.0000    0.2396    0.1494
    0.4721    0.8459    0.7608    0.2396    1.0000    0.4518
    0.6622    0.4912    0.5811    0.1494    0.4518    1.0000

rhoT               % linear correlation matrix of the optimized t copula

rhoT = 6×6

    1.0000    0.4671    0.4858    0.1907    0.4734    0.6521
    0.4671    1.0000    0.8871    0.2567    0.8500    0.5122
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    0.4858    0.8871    1.0000    0.2326    0.7723    0.5877
    0.1907    0.2567    0.2326    1.0000    0.2503    0.1539
    0.4734    0.8500    0.7723    0.2503    1.0000    0.4769
    0.6521    0.5122    0.5877    0.1539    0.4769    1.0000

Note the relatively low degrees of freedom parameter obtained from the t copula calibration,
indicating a significant departure from a Gaussian situation.

DoF                % scalar degrees of freedom parameter of the optimized t copula

DoF = 4.8613

Copula Simulation

Now that the copula parameters have been estimated, simulate jointly-dependent uniform variates
using the function copularnd.

Then, by extrapolating the Pareto tails and interpolating the smoothed interior, transform the uniform
variates derived from copularnd to daily centered returns via the inverse CDF of each index. These
simulated centered returns are consistent with those obtained from the historical dataset. The
returns are assumed to be independent in time, but at any point in time possess the dependence and
rank correlation induced by the given copula.

The following code segment illustrates the dependence structure by simulating centered returns
using the t copula. It then plots a 2-D scatter plot with marginal histograms for the French CAC 40
and German DAX using the Statistics and Machine Learning Toolbox scatterhist function. The
French and German indices were chosen simply because they have the highest correlation of the
available data.

nPoints = 10000;                          % # of simulated observations

s = RandStream.getGlobalStream();
reset(s)

R = zeros(nPoints, nIndices);             % pre-allocate simulated returns array
U = copularnd('t', rhoT, DoF, nPoints);   % simulate U(0,1) from t copula

for j = 1:nIndices
    R(:,j) = icdf(tails{j}, U(:,j));
end

h = scatterhist(R(:,2), R(:,3),'Color','r','Marker','.','MarkerSize',1); 
fig = gcf;
fig.Color = [1 1 1];
y1 = ylim(h(1));
y3 = ylim(h(3));
xlim(h(1), [-.1 .1])
ylim(h(1), [-.1 .1])
xlim(h(2), [-.1 .1])
ylim(h(3), [(y3(1) + (-0.1 - y1(1)))  (y3(2) + (0.1 - y1(2)))])
xlabel('France')
ylabel('Germany')
title(['t Copula (\nu = ' num2str(DoF,2) ')'])
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Now simulate and plot centered returns using the Gaussian copula.

reset(s)
R = zeros(nPoints, nIndices);             % pre-allocate simulated returns array
U = copularnd('Gaussian', rhoG, nPoints); % simulate U(0,1) from Gaussian copula

for j = 1:nIndices
    R(:,j) = icdf(tails{j}, U(:,j));
end

h = scatterhist(R(:,2), R(:,3),'Color','r','Marker','.','MarkerSize',1); 
fig = gcf;
fig.Color = [1 1 1];
y1 = ylim(h(1));
y3 = ylim(h(3));
xlim(h(1), [-.1 .1])
ylim(h(1), [-.1 .1])
xlim(h(2), [-.1 .1])
ylim(h(3), [(y3(1) + (-0.1 - y1(1)))  (y3(2) + (0.1 - y1(2)))])
xlabel('France')
ylabel('Germany')
title('Gaussian Copula')
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Examine these two figures. There is a strong similarity between the miniature histograms on the
corresponding axes of each figure. This similarity is not coincidental.

Both copulas simulate uniform random variables, which are then transformed to daily centered
returns by the inverse CDF of the piecewise distribution of each index. Therefore, the simulated
returns of any given index are identically distributed regardless of the copula.

However, the scatter graph of each figure indicates the dependence structure associated with the
given copula, and in contrast to the univariate margins shown in the histograms, the scatter graphs
are distinct.

Once again, the copula defines a dependence structure regardless of its margins, and therefore offers
many features not limited to calibration alone.

For reference, simulate and plot centered returns using the Gaussian distribution, which underlies
the traditional Brownian motion model.

reset(s)
R = mvnrnd(zeros(1,nIndices), cov(returns), nPoints);
h = scatterhist(R(:,2), R(:,3),'Color','r','Marker','.','MarkerSize',1); 
fig = gcf;
fig.Color = [1 1 1];
y1 = ylim(h(1));
y3 = ylim(h(3));
xlim(h(1), [-.1 .1])
ylim(h(1), [-.1 .1])
xlim(h(2), [-.1 .1])
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ylim(h(3), [(y3(1) + (-0.1 - y1(1)))  (y3(2) + (0.1 - y1(2)))])
xlabel('France')
ylabel('Germany')
title('Gaussian Distribution')

American Option Pricing Using the Longstaff & Schwartz Approach

Now that the copulas have been calibrated, compare the prices of at-the-money American basket
options derived from various approaches. To simply the analysis, assume that:

• All indices begin at 100.
• The portfolio holds a single unit, or share, of each index such that the value of the portfolio at any

time is the sum of the values of the individual indices.
• The option expires in 3 months.
• The information derived from the daily data is annualized.
• Each calendar year is composed of 252 trading days.
• Index levels are simulated daily.
• The option may be exercised at the end of every trading day and approximates the American

option as a Bermudan option.

Now compute the parameters common to all simulation methods:

dt       = 1 / 252;                  % time increment = 1 day = 1/252 years
yields   = Data(:,end);              % daily effective yields
yields   = 360 * log(1 + yields);    % continuously-compounded, annualized yields

 Pricing American Basket Options by Monte Carlo Simulation

18-79



r        = mean(yields);             % historical 3M Euribor average
X        = repmat(100, nIndices, 1); % initial state vector
strike   = sum(X);                   % initialize an at-the-money basket

nTrials  = 100;                      % # of independent trials
nPeriods = 63;   % # of simulation periods: 63/252 = 0.25 years = 3 months

Now create two separable multi-dimensional market models in which the riskless return and volatility
exposure matrices are both diagonal.

While both are diagonal GBM models with identical risk-neutral returns, the first is driven by a
correlated Brownian motion and explicitly specifies the sample linear correlation matrix of centered
returns. This correlated Brownian motion process is then weighted by a diagonal matrix of annualized
index volatilities or standard deviations.

As an alternative, the same model could be driven by an uncorrelated Brownian motion (standard
Brownian motion) by specifying correlation as an identity matrix, or by simply accepting the
default value. In this case, the exposure matrix sigma is specified as the lower Cholesky factor of the
index return covariance matrix. Because the copula-based approaches simulate dependent random
numbers, the diagonal exposure form is chosen for consistency. For further details, see “Inducing
Dependence and Correlation” on page 18-40.

sigma       = std(returns) * sqrt(252);    % annualized volatility
correlation = corrcoef(returns);           % correlated Gaussian disturbances
GBM1        = gbm(diag(r(ones(1,nIndices))), diag(sigma), 'StartState', X, ...
                 'Correlation'             , correlation);

Now create the second model driven by the Brownian copula with an identity matrix sigma.

GBM2 = gbm(diag(r(ones(1,nIndices))), eye(nIndices), 'StartState', X);

The newly created model may seem unusual, but it highlights the flexibility of the SDE architecture.

When working with copulas, it is often convenient to allow the random number generator function
Z(t,X) to induce dependence (of which the traditional notion of linear correlation is a special case)
with the copula, and to induce magnitude or scale of variation (similar to volatility or standard
deviation) with the semi-parametric CDF and inverse CDF transforms. Since the CDF and inverse
CDF transforms of each index inherit the characteristics of historical returns, this also explains why
the returns are now centered.

In the following sections, statements like:

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 'Gaussian');

or

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 't');

fit the Gaussian and t copula dependence structures, respectively, and the semi-parametric margins
to the centered returns scaled by the square root of the number of trading days per year (252). This
scaling does not annualize the daily centered returns. Instead, it scales them such that the volatility
remains consistent with the diagonal annualized exposure matrix sigma of the traditional Brownian
motion model (GBM1) created previously.

In this example, you also specify an end-of-period processing function that accepts time followed by
state (t,X), and records the sample times and value of the portfolio as the single-unit weighted
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average of all indices. This function also shares this information with other functions designed to
price American options with a constant riskless rate using the least squares regression approach of
Longstaff & Schwartz.

f = Example_LongstaffSchwartz(nPeriods, nTrials)

f = struct with fields:
    LongstaffSchwartz: @Example_LongstaffSchwartz/saveBasketPrices
            CallPrice: @Example_LongstaffSchwartz/getCallPrice
             PutPrice: @Example_LongstaffSchwartz/getPutPrice
               Prices: @Example_LongstaffSchwartz/getBasketPrices

Now simulate independent trials of equity index prices over 3 calendar months using the default
simByEuler method. No outputs are requested from the simulation methods; in fact, the simulated
prices of the individual indices which comprise the basket are unnecessary. Call option prices are
reported for convenience:

reset(s)

simByEuler(GBM1, nPeriods, 'nTrials'  , nTrials, 'DeltaTime', dt, ...
                          'Processes', f.LongstaffSchwartz);

BrownianMotionCallPrice = f.CallPrice(strike, r);
BrownianMotionPutPrice  = f.PutPrice (strike, r);

reset(s)

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 'Gaussian');
f = Example_LongstaffSchwartz(nPeriods, nTrials);

simByEuler(GBM2, nPeriods, 'nTrials'  , nTrials, 'DeltaTime', dt, ...
                          'Processes', f.LongstaffSchwartz, 'Z', z);

GaussianCopulaCallPrice = f.CallPrice(strike, r);
GaussianCopulaPutPrice  = f.PutPrice (strike, r);

Now repeat the copula simulation with the t copula dependence structure. You use the same model
object for both copulas; only the random number generator and option pricing functions need to be
re-initialized.

reset(s)

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 't');
f = Example_LongstaffSchwartz(nPeriods, nTrials);

simByEuler(GBM2, nPeriods, 'nTrials'  , nTrials, 'DeltaTime', dt, ...
                          'Processes', f.LongstaffSchwartz, 'Z', z);

tCopulaCallPrice = f.CallPrice(strike, r);
tCopulaPutPrice  = f.PutPrice (strike, r);

Finally, compare the American put and call option prices obtained from all models.

disp(' ')

 

fprintf('                    # of Monte Carlo Trials: %8d\n'    , nTrials)
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                    # of Monte Carlo Trials:      100

fprintf('                    # of Time Periods/Trial: %8d\n\n'  , nPeriods)

                    # of Time Periods/Trial:       63

fprintf(' Brownian Motion American Call Basket Price: %8.4f\n'  , BrownianMotionCallPrice)

 Brownian Motion American Call Basket Price:  25.9456

fprintf(' Brownian Motion American Put  Basket Price: %8.4f\n\n', BrownianMotionPutPrice)

 Brownian Motion American Put  Basket Price:  16.4132

fprintf(' Gaussian Copula American Call Basket Price: %8.4f\n'  , GaussianCopulaCallPrice)

 Gaussian Copula American Call Basket Price:  24.5711

fprintf(' Gaussian Copula American Put  Basket Price: %8.4f\n\n', GaussianCopulaPutPrice)

 Gaussian Copula American Put  Basket Price:  17.4229

fprintf('        t Copula American Call Basket Price: %8.4f\n'  , tCopulaCallPrice)

        t Copula American Call Basket Price:  22.6220

fprintf('        t Copula American Put  Basket Price: %8.4f\n'  , tCopulaPutPrice)

        t Copula American Put  Basket Price:  20.9983

This analysis represents only a small-scale simulation. If the simulation is repeated with 100,000
trials, the following results are obtained:

                   # of Monte Carlo Trials:   100000
                   # of Time Periods/Trial:       63

Brownian Motion American Call Basket Price:  20.2214
Brownian Motion American Put  Basket Price:  16.5355

Gaussian Copula American Call Basket Price:  20.6097
Gaussian Copula American Put  Basket Price:  16.5539

       t Copula American Call Basket Price:  21.1273
       t Copula American Put  Basket Price:  16.6873

Interestingly, the results agree closely. Put option prices obtained from copulas exceed those of
Brownian motion by less than 1%.

A Note on Volatility and Interest Rate Scaling

The same option prices could also be obtained by working with unannualized (in this case, daily)
centered returns and riskless rates, where the time increment dt = 1 day rather than 1/252 years. In
other words, portfolio prices would still be simulated every trading day; the data is simply scaled
differently.

Although not executed, and by first resetting the random stream to its initial internal state, the
following code segments work with daily centered returns and riskless rates and produce the same
option prices.

Gaussian Distribution/Brownian Motion & Daily Data:
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reset(s)

f    = Example_LongstaffSchwartz(nPeriods, nTrials);
GBM1 = gbm(diag(r(ones(1,nIndices))/252), diag(std(returns)), 'StartState', X, ...
          'Correlation', correlation);

simByEuler(GBM1, nPeriods, 'nTrials'  , nTrials, 'DeltaTime', 1, ...
                          'Processes', f.LongstaffSchwartz);

BrownianMotionCallPrice = f.CallPrice(strike, r/252)
BrownianMotionPutPrice  = f.PutPrice (strike, r/252)

Gaussian Copula & Daily Data:

reset(s)

z    = Example_CopulaRNG(returns, nPeriods, 'Gaussian');
f    = Example_LongstaffSchwartz(nPeriods, nTrials);
GBM2 = gbm(diag(r(ones(1,nIndices))/252),   eye(nIndices), 'StartState', X);

simByEuler(GBM2, nPeriods, 'nTrials'  , nTrials, 'DeltaTime',   1, ...
                          'Processes', f.LongstaffSchwartz , 'Z', z);

GaussianCopulaCallPrice = f.CallPrice(strike, r/252)
GaussianCopulaPutPrice  = f.PutPrice (strike, r/252)

t Copula & Daily Data:

reset(s)

z = Example_CopulaRNG(returns, nPeriods, 't');
f = Example_LongstaffSchwartz(nPeriods, nTrials);

simByEuler(GBM2, nPeriods, 'nTrials'  , nTrials, 'DeltaTime',   1, ...
                          'Processes', f.LongstaffSchwartz , 'Z', z);

tCopulaCallPrice = f.CallPrice(strike, r/252)
tCopulaPutPrice  = f.PutPrice (strike, r/252)

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simBySolution | simBySolution | interpolate |
simByQuadExp

Related Examples
• “Simulating Equity Prices” on page 18-28
• “Simulating Interest Rates” on page 18-48
• “Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on page 18-85
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21
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More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
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Improving Performance of Monte Carlo Simulation with Parallel
Computing

This example shows how to improve the performance of a Monte Carlo simulation using Parallel
Computing Toolbox.

Consider a geometric Brownian motion (GBM) process in which you want to incorporate alternative
asset price dynamics. Specifically, suppose that you want to include a time-varying short rate and a
volatility surface. The process to simulate is written as

dS(t) = r(t)S(t)dt + V(t, S(t))S(t)dW(t)

for stock price S(t), rate of return r(t), volatility V(t,S(t)), and Brownian motion W(t). In this example,
the rate of return is a deterministic function of time and the volatility is a function of both time and
current stock price. Both the return and volatility are defined on a discrete grid such that
intermediate values are obtained by linear interpolation. For example, such a simulation can be used
to support the pricing of thinly traded options.

To include a time series of riskless short rates, suppose that you derive the following deterministic
short-rate process as a function of time.

times = [0 0.25 0.5 1 2 3 4 5 6 7 8 9 10];  % in years
rates = [0.1 0.2 0.3 0.4 0.5 0.8 1.25 1.75 2.0 2.2 2.25 2.50 2.75]/100;

Suppose that you then derive the following volatility surface whose columns correspond to simple
relative moneyness, or the ratio of the spot price to strike price, and whose rows correspond to time
to maturity, or tenor.

surface = [28.1 25.3 20.6 16.3 11.2  6.2  4.9  4.9  4.9  4.9  4.9  4.9
           22.7 19.8 15.4 12.6  9.6  6.7  5.2  5.2  5.2  5.2  5.2  5.2
           21.7 17.6 13.7 11.5  9.4  7.3  5.7  5.4  5.4  5.4  5.4  5.4
           19.8 16.4 12.9 11.1  9.3  7.6  6.2  5.6  5.6  5.6  5.6  5.6
           18.6 15.6 12.5 10.8  9.3  7.8  6.6  5.9  5.9  5.9  5.9  5.9
           17.4 13.8 11.7 10.8  9.9  9.1  8.5  7.9  7.4  7.3  7.3  7.3
           17.1 13.7 12.0 11.2 10.6 10.0  9.5  9.1  8.8  8.6  8.4  8.0
           17.5 13.9 12.5 11.9 11.4 10.9 10.5 10.2  9.9  9.6  9.4  9.0
           18.3 14.9 13.7 13.2 12.8 12.4 12.0 11.7 11.4 11.2 11.0 10.8
           19.2 19.6 14.2 13.9 13.4 13.0 13.2 12.5 12.1 11.9 11.8 11.4]/100;

tenor = [0 0.25 0.50 0.75 1 2 3 5 7 10];   % in years
moneyness = [0.25 0.5 0.75 0.8 0.9 1 1.10 1.25 1.50 2 3 5];

Set the simulation parameters. The following assumes that the price of the underlying asset is
initially equal to the strike price and that the price of the underlying asset is simulated monthly for 10
years, or 120 months. As a simple illustration, 100 sample paths are simulated.

price = 100;
strike = 100;
dt = 1/12;
NPeriods = 120;
NTrials = 100;

For reproducibility, set the random number generator to its default, and draw the Gaussian random
variates that drive the simulation. Generating the random variates is not necessary to incur the
performance improvement of parallel computation, but doing so allows the resulting simulated paths

 Improving Performance of Monte Carlo Simulation with Parallel Computing

18-85



to match those of the conventional (that is, non-parallelized) simulation. Also, generating independent
Gaussian random variates as inputs also guarantees that all simulated paths are independent.

rng default
Z = randn(NPeriods,1,NTrials);

Create the return and volatility functions and the GBM model using gbm. Notice that the rate of
return is a deterministic function of time, and therefore accepts simulation time as its only input
argument. In contrast, the volatility must account for the moneyness and is a function of both time
and stock price. Moreover, since the volatility surface is defined as a function of time to maturity
rather than simulation time, the volatility function subtracts the current simulation time from the last
time at which the price process is simulated (10 years). This ensures that as the simulation time
approaches its terminal value, the time to maturity of the volatility surface approaches zero. Although
far more elaborate return and volatility functions could be used if desired, the following assumes
simple linear interpolation.

mu = @(t) interp1(times,rates,t);
sigma = @(t,S) interp2(moneyness,tenor,surface,S/strike,tenor(end)-t);
mdl = gbm(mu,sigma,'StartState',price);

Simulate the paths of the underlying geometric Brownian motion without parallelization.

tStart = tic;
paths = simBySolution(mdl,NPeriods,'NTrials',NTrials,'DeltaTime',dt,'Z',Z);
time1 = toc(tStart);

Simulate the paths in parallel using a parfor loop. For users licensed to access the Parallel
Computing Toolbox, the following code segment automatically creates a parallel pool using the
default local profile. If desired, this behavior can be changed by first calling the parpool function. If
a parallel pool is not already created, the following simulation will likely be slower than the previous
simulation without parallelization. In this case, rerun the following simulation to assess the true
benefits of parallelization.

tStart = tic;
parPaths = zeros(NPeriods+1,1,NTrials);
parfor i = 1:NTrials
    parPaths(:,:,i) = simBySolution(mdl,NPeriods,'DeltaTime',dt,'Z',Z(:,:,i));
end
time2 = toc(tStart);

If you examine any given path obtained without parallelization to the corresponding path with
parallelization, you see that they are identical. Moreover, although relative performance varies, the
results obtained with parallelization will generally incur a significant improvement. To assess the
performance improvement, examine the runtime of each approach in seconds and the speedup
gained from simulating the paths in parallel.

time1                 % elapsed time of conventional simulation, in seconds
time2                 % elapsed time of parallel simulation, in seconds
speedup = time1/time2 % speedup factor

time1 =
    6.1329
time2 =
    2.5918
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speedup =
    2.3663

See Also
sde | bm | gbm | merton | bates | drift | diffusion | sdeddo | sdeld | cev | cir | heston | hwv |
sdemrd | ts2func | simulate | simByEuler | simBySolution | simBySolution | interpolate |
simByQuadExp

Related Examples
• “Simulating Equity Prices” on page 18-28
• “Simulating Interest Rates” on page 18-48
• “Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
• “Base SDE Models” on page 18-14
• “Drift and Diffusion Models” on page 18-16
• “Linear Drift Models” on page 18-19
• “Parametric Models” on page 18-21

More About
• “SDEs” on page 18-2
• “SDE Models” on page 18-7
• “SDE Class Hierarchy” on page 18-5
• “Performance Considerations” on page 18-62
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bm
Brownian motion models

Description
Creates and displays Brownian motion (sometimes called arithmetic Brownian motion or generalized
Wiener process) bm objects that derive from the sdeld (SDE with drift rate expressed in linear form)
class.

Use bm objects to simulate sample paths of NVars state variables driven by NBrowns sources of risk
over NPeriods consecutive observation periods, approximating continuous-time Brownian motion
stochastic processes. This enables you to transform a vector of NBrowns uncorrelated, zero-drift,
unit-variance rate Brownian components into a vector of NVars Brownian components with arbitrary
drift, variance rate, and correlation structure.

Use bm to simulate any vector-valued BM process of the form:

dXt = μ(t)dt + V(t)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• μ is an NVars-by-1 drift-rate vector.
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWt is an NBrowns-by-1 vector of (possibly) correlated zero-drift/unit-variance rate Brownian

components.

Creation

Syntax
BM = bm(Mu,Sigma)
BM = bm( ___ ,Name,Value)

Description

BM = bm(Mu,Sigma) creates a default BM object.

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric
specification. This array fully captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually any static,
dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all
implementation details are hidden and fully encapsulated by the function.
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Note You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar
time t as its only input argument. Otherwise, a parameter is assumed to be a function of time t and
state X(t) and is invoked with both input arguments.

BM = bm( ___ ,Name,Value) creates a bm object with additional options specified by one or more
Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN

The BM object has the following “Properties” on page 19-4:

• StartTime — Initial observation time
• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument, callable as a function of

time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• Simulation — A simulation function or method

Input Arguments

Mu — Mu represents the parameter μ
array or deterministic function of time | deterministic function of time and state

Mu represents the parameter μ, specified as an array or deterministic function of time.

If you specify Mu as an array, it must be an NVars-by-1 column vector representing the drift rate (the
expected instantaneous rate of drift, or time trend).

As a deterministic function of time, when Mu is called with a real-valued scalar time t as its only
input, Mu must produce an NVars-by-NVars matrix. If you specify Mu as a function of time and state,
it calculates the expected instantaneous rate of drift. This function must generate an NVars-by-1
column vector when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time | deterministic function of time and state

Sigma represents the parameter V, specified as an array or deterministic function of time.

If you specify Sigma as an array, it must be an NVars-by-NBrowns matrix of instantaneous volatility
rates or as a deterministic function of time. In this case, each row of Sigma corresponds to a
particular state variable. Each column corresponds to a particular Brownian source of uncertainty,
and associates the magnitude of the exposure of state variables with sources of uncertainty.
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As a deterministic function of time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVars-by-NBrowns matrix. If you specify Sigma as a function of time
and state, it must return an NVars-by-NBrowns matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Although the gbm constructor enforces no restrictions on the sign of Sigma volatilities, they are
specified as positive values.
Data Types: double | function_handle

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a numeric.
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, bm applies the same initial value to all state variables on all trials.

If StartState is a column vector, bm applies a unique initial value to each state variable on all trials.

If StartState is a matrix, bm applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method
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User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects using drift of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: object

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.
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Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects using diffusion:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: object

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)

Examples

Create a bm Object

Create a univariate Brownian motion (bm) object to represent the model: dXt = 0 . 3dWt.

obj = bm(0, 0.3) % (A = Mu, Sigma)
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obj = 
   Class BM: Brownian Motion
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 0
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
             Mu: 0
          Sigma: 0.3

bm objects display the parameter A as the more familiar Mu.

The bm class also provides an overloaded Euler simulation method that improves run-time
performance in certain common situations. This specialized method is invoked automatically only if
all the following conditions are met:

• The expected drift, or trend, rate Mu is a column vector.
• The volatility rate, Sigma, is a matrix.
• No end-of-period adjustments and/or processes are made.
• If specified, the random noise process Z is a three-dimensional array.
• If Z is unspecified, the assumed Gaussian correlation structure is a double matrix.

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.
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For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, bm treats it as a
static function of time and state, by that means guaranteeing that all parameters are accessible by
the same interface.

References
[1] Aït-Sahalia, Yacine. “Testing Continuous-Time Models of the Spot Interest Rate.” Review of

Financial Studies, vol. 9, no. 2, Apr. 1996, pp. 385–426.

[2] Aït-Sahalia, Yacine. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.” The
Journal of Finance, vol. 54, no. 4, Aug. 1999, pp. 1361–95.

[3] Glasserman, Paul. Monte Carlo Methods in Financial Engineering. Springer, 2004.

[4] Hull, John. Options, Futures and Other Derivatives. 7th ed, Prentice Hall, 2009.
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[5] Johnson, Norman Lloyd, et al. Continuous Univariate Distributions. 2nd ed, Wiley, 1994.

[6] Shreve, Steven E. Stochastic Calculus for Finance. Springer, 2004.

See Also
drift | diffusion | sdeld | simulate | interpolate | simByEuler | nearcorr

Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2008a
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cev
Constant Elasticity of Variance (CEV) model

Description
Creates and displays cev objects, which derive from the sdeld (SDE with drift rate expressed in
linear form) class.

Use cev objects to simulate sample paths of NVars state variables driven by NBrowns Brownian
motion sources of risk over NPeriods consecutive observation periods, approximating continuous-
time stochastic processes.

This model allows you to simulate any vector-valued CEV of the form:

dXt = μ(t)Xtdt + D(t, Xt
α(t))V(t)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• μ is an NVars-by-NVars (generalized) expected instantaneous rate of return matrix.
• D is an NVars-by-NVars diagonal matrix, where each element along the main diagonal is the

corresponding element of the state vector raised to the corresponding power of α.
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWt is an NBrowns-by-1 Brownian motion vector.

Creation
Syntax
CEV = cev(Return,Alpha,Sigma)
CEV = cev( ___ ,Name,Value)

Description

CEV = cev(Return,Alpha,Sigma) creates a default CEV object.

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric
specification. This array fully captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually any static,
dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all
implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.
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Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar
time t as its only input argument. Otherwise, a parameter is assumed to be a function of time t and
state X(t) and is invoked with both input arguments.

CEV = cev( ___ ,Name,Value) creates a CEV object with additional options specified by one or
more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN

The CEV object has the following “Properties” on page 19-12:

• StartTime — Initial observation time
• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument, callable as a function of

time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• Simulation — A simulation function or method
• Return — Access function for the input argument Return, callable as a function of time and state
• Alpha — Access function for the input argument Alpha, callable as a function of time and state
• Sigma — Access function for the input argument Sigma, callable as a function of time and state

Input Arguments

Return — Return represents the parameter μ
array or deterministic function of time or deterministic function of time and state

Return represents the parameter μ, specified as an array or deterministic function of time.

If you specify Return as an array, it must be an NVars-by-NVars matrix representing the expected
(mean) instantaneous rate of return.

As a deterministic function of time, when Return is called with a real-valued scalar time t as its only
input, Return must produce an NVars-by-NVars matrix. If you specify Return as a function of time
and state, it must return an NVars-by-NVars matrix when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Alpha — Return represents the parameter D
array or deterministic function of time or deterministic function of time and state

Alpha represents the parameter D, specified as an array or deterministic function of time.

If you specify Alpha as an array, it represents an NVars-by-1 column vector of exponents.

As a deterministic function of time, when Alpha is called with a real-valued scalar time t as its only
input, Alpha must produce an NVars-by-1 matrix.
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If you specify it as a function of time and state, Alpha must return an NVars-by-1 column vector of
exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of time.

If you specify Sigma as an array, it must be an NVars-by-NBrowns matrix of instantaneous volatility
rates. In this case, each row of Sigma corresponds to a particular state variable. Each column
corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the
exposure of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVars-by-NBrowns matrix. If you specify Sigma as a function of time
and state, it must return an NVars-by-NBrowns matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Note Although cev does not enforce restrictions on the signs of these input arguments, each
argument is specified as a positive value.

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, cev applies the same initial value to all state variables on all trials.

If StartState is a column vector, cev applies a unique initial value to each state variable on all
trials.

If StartState is a matrix, cev applies a unique initial value to each state variable on each trial.
Data Types: double
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Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects using drift of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.
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When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as an
object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects using diffusion:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.
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Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: struct | double

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)

Examples

Create a cev Object

Create a univariate cev object to represent the model: dXt = 0 . 25Xt + 0 . 3Xt

1
2dWt.

obj = cev(0.25, 0.5, 0.3) % (B = Return, Alpha, Sigma)

obj = 
   Class CEV: Constant Elasticity of Variance
   ------------------------------------------
     Dimensions: State = 1, Brownian = 1
   ------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.25
          Alpha: 0.5
          Sigma: 0.3

cev objects display the parameter B as the more familiar Return

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.
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For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, cev treats it as a
static function of time and state, by that means guaranteeing that all parameters are accessible by
the same interface.

References
[1] Aït-Sahalia, Yacine. “Testing Continuous-Time Models of the Spot Interest Rate.” Review of
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See Also
drift | diffusion | sdeld | simulate | interpolate | simByEuler | nearcorr

Topics
“Creating Constant Elasticity of Variance (CEV) Models” on page 18-22
Implementing Multidimensional Equity Market Models, Implementation 3: Using SDELD, CEV, and
GBM Objects on page 18-30
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2008a
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cir
Cox-Ingersoll-Ross mean-reverting square root diffusion model

Description
Creates and displays cir objects, which derive from the sdemrd (SDE with drift rate expressed in
mean-reverting form) class.

Use cir objects to simulate sample paths of NVars state variables expressed in mean-reverting drift-
rate form. These state variables are driven by NBrowns Brownian motion sources of risk over
NPeriods consecutive observation periods, approximating continuous-time CIR stochastic processes
with square root diffusions.

You can simulate any vector-valued CIR process of the form:

dXt = S(t)[L(t)− Xt]dt + D(t, Xt

1
2)V(t)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• S is an NVars-by-NVars matrix of mean reversion speeds (the rate of mean reversion).
• L is an NVars-by-1 vector of mean reversion levels (long-run mean or level).
• D is an NVars-by-NVars diagonal matrix, where each element along the main diagonal is the

square root of the corresponding element of the state vector.
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWt is an NBrowns-by-1 Brownian motion vector.

Creation

Syntax
CIR = cir(Speed,Level,Sigma)
CIR = cir( ___ ,Name,Value)

Description

CIR = cir(Speed,Level,Sigma) creates a default CIR object.

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric
specification. This array fully captures all implementation details, which are clearly associated
with a parametric form.
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• A MATLAB function. Specifying a function provides indirect support for virtually any static,
dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all
implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar
time t as its only input argument. Otherwise, a parameter is assumed to be a function of time t and
state X(t) and is invoked with both input arguments.

CIR = cir( ___ ,Name,Value) creates a CIR object with additional options specified by one or
more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN

The CIR object has the following “Properties” on page 19-20:

• StartTime — Initial observation time
• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument, callable as a function of

time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• Simulation — A simulation function or method
• Speed — Access function for the input argument Speed, callable as a function of time and state
• Level — Access function for the input argument Level, callable as a function of time and state
• Sigma — Access function for the input argument Sigma, callable as a function of time and state

Input Arguments

Speed — Speed represents the parameter S
array or deterministic function of time or deterministic function of time and state

Speed represents the parameter S, specified as an array or deterministic function of time.

If you specify Speed as an array, it must be an NVars-by-NVars matrix of mean-reversion speeds (the
rate at which the state vector reverts to its long-run average Level).

As a deterministic function of time, when Speed is called with a real-valued scalar time t as its only
input, Speed must produce an NVars-by-NVars matrix. If you specify Speed as a function of time and
state, it calculates the speed of mean reversion. This function must generate an NVars-by-NVars
matrix of reversion rates when called with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle
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Level — Level represents the parameter L
array or deterministic function of time or deterministic function of time and state

Level represents the parameter L, specified as an array or deterministic function of time.

If you specify Level as an array, it must be an NVars-by-1 column vector of reversion levels.

As a deterministic function of time, when Level is called with a real-valued scalar time t as its only
input, Level must produce an NVars-by-1 column vector. If you specify Level as a function of time
and state, it must generate an NVars-by-1 column vector of reversion levels when called with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of time.

If you specify Sigma as an array, it must be an NVars-by-NBrowns matrix of instantaneous volatility
rates or as a deterministic function of time. In this case, each row of Sigma corresponds to a
particular state variable. Each column corresponds to a particular Brownian source of uncertainty,
and associates the magnitude of the exposure of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVars-by-NBrowns matrix. If you specify Sigma as a function of time
and state, it must return an NVars-by-NBrowns matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Note Although cir does not enforce restrictions on the signs of these input arguments, each
argument is specified as a positive value.

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.
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If StartState is a scalar, cir applies the same initial value to all state variables on all trials.

If StartState is a column vector, cir applies a unique initial value to each state variable on all
trials.

If StartState is a matrix, cir applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects using drift of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:
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• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects using diffusion:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
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functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: struct | double

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)
simByTransition Simulate Cox-Ingersoll-Ross sample paths with transition density
simByQuadExp Simulate Bates, Heston, and CIR sample paths by quadratic-exponential

discretization scheme

Examples

Create a cir Object

The Cox-Ingersoll-Ross (CIR) short rate class derives directly from SDE with mean-reverting drift

(SDEMRD): dXt = S(t)[L(t)− Xt]dt + D(t, Xt

1
2)V(t)dW

where D is a diagonal matrix whose elements are the square root of the corresponding element of the
state vector.

Create a cir object to represent the model: dXt = 0 . 2(0 . 1− Xt)dt + 0 . 05Xt

1
2dW.

obj = cir(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

obj = 
   Class CIR: Cox-Ingersoll-Ross
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.05
          Level: 0.1
          Speed: 0.2

Although the last two objects are of different classes, they represent the same mathematical model.
They differ in that you create the cir object by specifying only three input arguments. This
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distinction is reinforced by the fact that the Alpha parameter does not display – it is defined to be
1/2.

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.

For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, cir treats it as a
static function of time and state, by that means guaranteeing that all parameters are accessible by
the same interface.
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diffusion
Diffusion-rate model component

Description
The diffusion object specifies the diffusion-rate component of continuous-time stochastic
differential equations (SDEs).

The diffusion-rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion-rate specification can be any NVars-by-NBrowns matrix-valued function G of the
general form:

G(t, Xt) = D(t, Xt
α(t))V(t)  (19-1)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

And a diffusion-rate specification is associated with a vector-valued SDE of the form:

dXt = F(t, Xt)dt + G(t, Xt)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• dWt is an NBrowns-by-1 Brownian motion vector.
• D is an NVars-by-NVars diagonal matrix, in which each element along the main diagonal is the

corresponding element of the state vector raised to the corresponding power of α.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.

The diffusion-rate specification is flexible, and provides direct parametric support for static
volatilities and state vector exponents. It is also extensible, and provides indirect support for
dynamic/nonlinear models via an interface. This enables you to specify virtually any diffusion-rate
specification.
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Creation

Syntax
DiffusionRate = diffusion(Alpha,Sigma)

Description

DiffusionRate = diffusion(Alpha,Sigma) creates default DiffusionRate model
component.

Specify required input parameters A and B as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric
specification. This array fully captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually any static,
dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all
implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar
time t as its only input argument. Otherwise, a parameter is assumed to be a function of time t and
state X(t) and is invoked with both input arguments.

The diffusion object that you create encapsulates the composite drift-rate specification and returns
the following displayed parameters:

• Rate — The diffusion-rate function, G. Rate is the diffusion-rate calculation engine. It accepts the
current time t and an NVars-by-1 state vector Xt as inputs, and returns an NVars-by-1 diffusion-
rate vector.

• Alpha — Access function for the input argument Alpha.
• Sigma — Access function for the input argument Sigma.

Input Arguments

Alpha — Return represents the parameter D
array or deterministic function of time

Alpha represents the parameter D, specified as an array or deterministic function of time.

If you specify Alpha as an array, it represents an NVars-by-1 column vector of exponents.

As a deterministic function of time, when Alpha is called with a real-valued scalar time t as its only
input, Alpha must produce an NVars-by-1 matrix.

If you specify it as a function of time and state, Alpha must return an NVars-by-1 column vector of
exponents when invoked with two inputs:

• A real-valued scalar observation time t.

 diffusion

19-27



• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time

Sigma represents the parameter V, specified as an array or a deterministic function of time.

If you specify Sigma as an array, it must be an NVars-by-NBrowns two-dimensional matrix of
instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular state
variable. Each column corresponds to a particular Brownian source of uncertainty, and associates the
magnitude of the exposure of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVars-by-NBrowns matrix. If you specify Sigma as a function of time
and state, it must return an NVars-by-NBrowns matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Note Although diffusion enforces no restrictions on the signs of these volatility parameters, each
parameter is specified as a positive value.

Properties
Rate — Composite diffusion-rate function
value stored from diffusion-rate function (default) | function accessible by (t, Xt)

This property is read-only.

Composite diffusion-rate function, specified as: G(t,Xt)). The function stored in Rate fully
encapsulates the combined effect of Alpha and Sigma where:

• Alpha is the state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma is the volatility rate, V(t,Xt), of G(t,Xt).

Data Types: struct | double

Examples

Create a diffusion Object

Create a diffusion-rate function G:

G = diffusion(1, 0.3)  % Diffusion rate function G(t,X)

G = 
   Class DIFFUSION: Diffusion Rate Specification 
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   --------------------------------------------- 
       Rate: diffusion rate function G(t,X(t))  
      Alpha: 1
      Sigma: 0.3

The diffusion object displays like a MATLAB® structure and contains supplemental information,
namely, the object's class and a brief description. However, in contrast to the SDE representation, a
summary of the dimensionality of the model does not appear, because the diffusion class creates a
model component rather than a model. G does not contain enough information to characterize the
dimensionality of a problem.

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.

For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the input arguments Alpha and Sigma as MATLAB arrays, they are associated with
a specific parametric form. By contrast, when you specify either Alpha or Sigma as a function, you
can customize virtually any diffusion-rate specification.

Accessing the output diffusion-rate parameters Alpha and Sigma with no inputs simply returns the
original input specification. Thus, when you invoke diffusion-rate parameters with no inputs, they
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behave like simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and designing
methods.

When you invoke diffusion-rate parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters Alpha and Sigma accept the observation time t and
a state vector Xt, and return an array of appropriate dimension. Specifically, parameters Alpha and
Sigma evaluate the corresponding diffusion-rate component. Even if you originally specified an input
as an array, diffusion treats it as a static function of time and state, by that means guaranteeing
that all parameters are accessible by the same interface.
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drift
Drift-rate model component

Description
The drift object specifies the drift-rate component of continuous-time stochastic differential
equations (SDEs).

The drift-rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift-rate specification can be any NVars-by-1 vector-valued function F of the general form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

And a drift-rate specification is associated with a vector-valued SDE of the form

dXt = F(t, Xt)dt + G(t, Xt)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• dWt is an NBrowns-by-1 Brownian motion vector.
• A and B are model parameters.

The drift-rate specification is flexible, and provides direct parametric support for static/linear drift
models. It is also extensible, and provides indirect support for dynamic/nonlinear models via an
interface. This enables you to specify virtually any drift-rate specification.

Creation

Syntax
DriftRate = drift(A,B)

Description

DriftRate = drift(A,B) creates a default DriftRate model component.

Specify required input parameters A and B as one of the following types:
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• A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric
specification. This array fully captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually any static,
dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all
implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar
time t as its only input argument. Otherwise, a parameter is assumed to be a function of time t and
state X(t) and is invoked with both input arguments.

The drift object that you create encapsulates the composite drift-rate specification and returns the
following displayed parameters:

• Rate — The drift-rate function, F. Rate is the drift-rate calculation engine. It accepts the current
time t and an NVars-by-1 state vector Xt as inputs, and returns an NVars-by-1 drift-rate vector.

• A — Access function for the input argument A.
• B — Access function for the input argument B.

Input Arguments

A — A represents the parameter A
array or deterministic function of time

A represents the parameter A, specified as an array or deterministic function of time.

If you specify A as an array, it must be an NVars-by-1 column vector of intercepts.

As a deterministic function of time, when A is called with a real-valued scalar time t as its only input,
A must produce an NVars-by-1 column vector. If you specify A as a function of time and state, it must
generate an NVars-by-1 column vector of intercepts when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

B — B represents the parameter B
array or deterministic function of time

B represents the parameter B, specified as an array or deterministic function of time.

If you specify B as an array, it must be an NVars-by-NVars two-dimensional matrix of state vector
coefficients.

As a deterministic function of time, when B is called with a real-valued scalar time t as its only input,
B must produce an NVars-by-NVars matrix. If you specify B as a function of time and state, it must
generate an NVars-by-NVars matrix of state vector coefficients when invoked with two inputs:

• A real-valued scalar observation time t.
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• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Properties
Rate — Composite drift-rate function
value stored from drift-rate function (default) | function accessible by F(t,Xt)

This property is read-only.

Composite drift-rate function, specified as F(t,Xt). The function stored in Rate fully encapsulates the
combined effect of A and B, where A and B are:

• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

Data Types: struct | double

Examples

Create a drift Object

Create a drift-rate function F:

F = drift(0, 0.1)   % Drift rate function F(t,X)

F = 
   Class DRIFT: Drift Rate Specification  
   -------------------------------------  
      Rate: drift rate function F(t,X(t)) 
         A: 0
         B: 0.1

The drift object displays like a MATLAB® structure and contains supplemental information, namely,
the object's class and a brief description. However, in contrast to the SDE representation, a summary
of the dimensionality of the model does not appear, because the drift class creates a model
component rather than a model. F does not contain enough information to characterize the
dimensionality of a problem.

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.
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For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the input arguments A and B as MATLAB arrays, they are associated with a linear
drift parametric form. By contrast, when you specify either A or B as a function, you can customize
virtually any drift-rate specification.

Accessing the output drift-rate parameters A and B with no inputs simply returns the original input
specification. Thus, when you invoke drift-rate parameters with no inputs, they behave like simple
properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and designing methods.

When you invoke drift-rate parameters with inputs, they behave like functions, giving the impression
of dynamic behavior. The parameters A and B accept the observation time t and a state vector Xt, and
return an array of appropriate dimension. Specifically, parameters A and B evaluate the
corresponding drift-rate component. Even if you originally specified an input as an array, drift
treats it as a static function of time and state, by that means guaranteeing that all parameters are
accessible by the same interface.
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Financial Time Series
Create and manage Financial Time Series

Note The Financial Time Series app will be removed in a future release and will no longer accept a
fints object.

Use fts2timetable to convert a fints object to a timetable object. For more information, see
“Convert Financial Time Series Objects fints to Timetables”.

Description
The Financial Time Series app enables you to create and manage Financial Time Series (fints)
objects.
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Open the Financial Time Series App
From the MATLAB command prompt: Enter ftstool.

Examples
• “Loading Data with the Financial Time Series App” on page 14-6
• “Using the Financial Time Series App” on page 14-9
• “Using the Financial Time Series App with GUIs” on page 14-15
• “Getting Started with the Financial Time Series App” on page 14-4

Programmatic Use
ftstool

See Also
Functions
ftsgui

Topics
“Loading Data with the Financial Time Series App” on page 14-6
“Using the Financial Time Series App” on page 14-9
“Using the Financial Time Series App with GUIs” on page 14-15
“Getting Started with the Financial Time Series App” on page 14-4
“What Is the Financial Time Series App?” on page 14-2

Introduced in R2006b
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gbm
Geometric Brownian motion model

Description
Creates and displays geometric Brownian motion (GBM) models, which derive from the cev (constant
elasticity of variance) class.

Geometric Brownian motion (GBM) models allow you to simulate sample paths of NVars state
variables driven by NBrowns Brownian motion sources of risk over NPeriods consecutive
observation periods, approximating continuous-time GBM stochastic processes. Specifically, this
model allows the simulation of vector-valued GBM processes of the form

dXt = μ(t)Xtdt + D(t, Xt)V(t)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• μ is an NVars-by-NVars generalized expected instantaneous rate of return matrix.
• D is an NVars-by-NVars diagonal matrix, where each element along the main diagonal is the

corresponding element of the state vector Xt.
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWt is an NBrowns-by-1 Brownian motion vector.

Creation

Syntax
GBM = gbm(Return,Sigma)
GBM = gbm( ___ ,Name,Value)

Description

GBM = gbm(Return,Sigma) creates a default GBM object.

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric
specification. This array fully captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually any static,
dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all
implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.
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Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar
time t as its only input argument. Otherwise, a parameter is assumed to be a function of time t and
state X(t) and is invoked with both input arguments.

GBM = gbm( ___ ,Name,Value) creates a GBM object with additional options specified by one or
more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN

The GBM object has the following “Properties” on page 19-40:

• StartTime — Initial observation time
• StartState — Initial state at StartTime
• Correlation — Access function for the Correlation input, callable as a function of time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• Simulation — A simulation function or method
• Return — Access function for the input argument Return, callable as a function of time and state
• Sigma — Access function for the input argument Sigma, callable as a function of time and state

Input Arguments

Return — Return represents the parameter μ
array or deterministic function of time or deterministic function of time and state

Return represents the parameter μ, specified as an array or deterministic function of time.

If you specify Return as an array, it must be an NVars-by-NVars matrix representing the expected
(mean) instantaneous rate of return.

As a deterministic function of time, when Return is called with a real-valued scalar time t as its only
input, Return must produce an NVars-by-NVars matrix. If you specify Return as a function of time
and state, it must return an NVars-by-NVars matrix when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of time.

If you specify Sigma as an array, it must be an NVars-by-NBrowns matrix of instantaneous volatility
rates or as a deterministic function of time. In this case, each row of Sigma corresponds to a
particular state variable. Each column corresponds to a particular Brownian source of uncertainty,
and associates the magnitude of the exposure of state variables with sources of uncertainty.
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As a deterministic function of time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVars-by-NBrowns matrix. If you specify Sigma as a function of time
and state, it must return an NVars-by-NBrowns matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Although the gbm object enforces no restrictions on the sign of Sigma volatilities, they are specified
as positive values.
Data Types: double | function_handle

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm object applies the same initial value to all state variables on all
trials.

If StartState is a column vector, the gbm object applies a unique initial value to each state variable
on all trials.

If StartState is a matrix, the gbm object applies a unique initial value to each state variable on each
trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double
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Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using drift) of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)
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Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using diffusion):

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: struct | double

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)
simBySolution Simulate approximate solution of diagonal-drift GBM processes

Examples

Create a gbm Object

Create a univariate gbm object to represent the model: dXt = 0 . 25Xtdt + 0 . 3XtdWt.
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obj = gbm(0.25, 0.3)  % (B = Return, Sigma)

obj = 
   Class GBM: Generalized Geometric Brownian Motion
   ------------------------------------------------
     Dimensions: State = 1, Brownian = 1
   ------------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.25
          Sigma: 0.3

gbm objects display the parameter B as the more familiar Return

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.

For more information, see “SDE Class Hierarchy” on page 18-5.
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Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, gbm treats it as a
static function of time and state, by that means guaranteeing that all parameters are accessible by
the same interface.

References
[1] Aït-Sahalia, Yacine. “Testing Continuous-Time Models of the Spot Interest Rate.” Review of

Financial Studies, vol. 9, no. 2, Apr. 1996, pp. 385–426.

[2] Aït-Sahalia, Yacine. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.” The
Journal of Finance, vol. 54, no. 4, Aug. 1999, pp. 1361–95.

[3] Glasserman, Paul. Monte Carlo Methods in Financial Engineering. Springer, 2004.

[4] Hull, John. Options, Futures and Other Derivatives. 7th ed, Prentice Hall, 2009.

[5] Johnson, Norman Lloyd, et al. Continuous Univariate Distributions. 2nd ed, Wiley, 1994.

[6] Shreve, Steven E. Stochastic Calculus for Finance. Springer, 2004.

See Also
drift | diffusion | cev | bm | simulate | interpolate | simByEuler | nearcorr

Topics
“Creating Geometric Brownian Motion (GBM) Models” on page 18-22
“Representing Market Models Using SDELD, CEV, and GBM Objects” on page 18-30
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62
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Introduced in R2008a
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simBySolution
Simulate approximate solution of diagonal-drift GBM processes

Syntax
[Paths,Times,Z] = simBySolution(MDL,NPeriods)
[Paths,Times,Z] = simBySolution( ___ ,Name,Value)

Description
[Paths,Times,Z] = simBySolution(MDL,NPeriods) simulates approximate solution of
diagonal-drift for geometric Brownian motion (GBM) processes.

[Paths,Times,Z] = simBySolution( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Simulating Equity Markets Using GBM Simulation Functions

Use GBM simulation functions. Separable GBM models have two specific simulation functions:

• An overloaded Euler simulation function (simulate), designed for optimal performance.
• A simBySolution function that provides an approximate solution of the underlying stochastic
differential equation, designed for accuracy.

Load the Data_GlobalIdx2 data set and specify the SDE model as in “Representing Market Models
Using SDE Objects” on page 18-28, and the GBM model as in “Representing Market Models Using
SDELD, CEV, and GBM Objects” on page 18-30.

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);
expReturn   = mean(returns);
sigma       = std(returns);
correlation = corrcoef(returns);
t           = 0;
X           = 100;
X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;
G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...
    correlation, 'StartState', X);
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GBM = gbm(diag(expReturn),diag(sigma), 'Correlation', ...
    correlation, 'StartState', X);

To illustrate the performance benefit of the overloaded Euler approximation function (simulate),
increase the number of trials to 10000.

nPeriods = 249;      % # of simulated observations
dt       =   1;      % time increment = 1 day
rng(142857,'twister')
[X,T] = simulate(GBM, nPeriods, 'DeltaTime', dt, ...
    'nTrials', 10000);

whos X

  Name        Size                     Bytes  Class     Attributes

  X         250x6x10000            120000000  double              

Using this sample size, examine the terminal distribution of Canada's TSX Composite to verify
qualitatively the lognormal character of the data.

histogram(squeeze(X(end,1,:)), 30), xlabel('Price'), ylabel('Frequency')
title('Histogram of Prices after One Year: Canada (TSX Composite)')

Simulate 10 trials of the solution and plot the first trial:

rng('default')
[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt, 'nTrials', 10);
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rng('default')
[X,T] = simBySolution(GBM, nPeriods,...
    'DeltaTime', dt, 'nTrials', 10);
subplot(2,1,1)
plot(T, S(:,:,1)), xlabel('Trading Day'),ylabel('Price')
title('1st Path of Multi-Dim Market Model:Euler Approximation')
subplot(2,1,2)
plot(T, X(:,:,1)), xlabel('Trading Day'),ylabel('Price')
title('1st Path of Multi-Dim Market Model:Analytic Solution')

In this example, all parameters are constants, and simBySolution does indeed sample the exact
solution. The details of a single index for any given trial show that the price paths of the Euler
approximation and the exact solution are close, but not identical.

The following plot illustrates the difference between the two functions:

subplot(1,1,1)
plot(T, S(:,1,1) - X(:,1,1), 'blue'), grid('on')
xlabel('Trading Day'), ylabel('Price Difference')
title('Euler Approx Minus Exact Solution:Canada(TSX Composite)')
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The simByEuler Euler approximation literally evaluates the stochastic differential equation directly
from the equation of motion, for some suitable value of the dt time increment. This simple
approximation suffers from discretization error. This error can be attributed to the discrepancy
between the choice of the dt time increment and what in theory is a continuous-time parameter.

The discrete-time approximation improves as DeltaTime approaches zero. The Euler function is
often the least accurate and most general method available. All models shipped in the simulation
suite have the simByEuler function.

In contrast, the simBySolution function provides a more accurate description of the underlying
model. This function simulates the price paths by an approximation of the closed-form solution of
separable models. Specifically, it applies a Euler approach to a transformed process, which in general
is not the exact solution to this GBM model. This is because the probability distributions of the
simulated and true state vectors are identical only for piecewise constant parameters.

When all model parameters are piecewise constant over each observation period, the simulated
process is exact for the observation times at which the state vector is sampled. Since all parameters
are constants in this example, simBySolution does indeed sample the exact solution.

For an example of how to use simBySolution to optimize the accuracy of solutions, see “Optimizing
Accuracy: About Solution Precision and Error” on page 18-63.

 simBySolution

19-49



Input Arguments
MDL — Geometric Brownian motion (GBM) model
gbm object

Geometric Brownian motion (GBM) model, specified as a gbm object that is created using gbm.
Data Types: object

NPeriods — Number of simulation periods
positive integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times,Z] =
simBySolution(GBM,NPeriods,'DeltaTime',dt,'NTrials',10)

NTrials — Simulated trials (sample paths) of NPERIODS observations each
1 (single path of correlated state variables) (default) | positive integer

Simulated trials (sample paths) of NPERIODS observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or a NPERIODS-by-1 column vector.

DeltaTime represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps within each time increment dt (specified as
DeltaTime)
1 (indicating no intermediate evaluation) (default) | positive integer

Number of intermediate time steps within each time increment dt (specified as DeltaTime),
specified as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simBySolution function partitions each time increment dt into NSteps subintervals of length
dt/NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
intermediate points. Although simBySolution does not report the output state vector at these
intermediate points, the refinement improves accuracy by allowing the simulation to more closely
approximate the underlying continuous-time process.
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Data Types: double

Antithetic — Flag to indicate whether simBySolution uses antithetic sampling to
generate the Gaussian random variates
False (no antithetic sampling) (default) | logical with values True or False

Flag to indicate whether simBySolution uses antithetic sampling to generate the Gaussian random
variates that drive the Brownian motion vector (Wiener processes), specified as the comma-separated
pair consisting of 'Antithetic' and a scalar logical flag with a value of True or False.

When you specify True, simBySolution performs sampling such that all primary and antithetic
paths are simulated and stored in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary Gaussian paths.
• Even trials (2,4,6,...) are the matching antithetic paths of each pair derived by negating the

Gaussian draws of the corresponding primary (odd) trial.

Note If you specify an input noise process (see Z), simBySolution ignores the value of
Antithetic.

Data Types: logical

Z — Direct specification of the dependent random noise process used to generate the
Brownian motion vector
generates correlated Gaussian variates based on the Correlation member of the SDE object
(default) | function | three-dimensional array of dependent random variates

Direct specification of the dependent random noise process used to generate the Brownian motion
vector (Wiener process) that drives the simulation, specified as the comma-separated pair consisting
of 'Z' and a function or as an (NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS three-dimensional
array of dependent random variates.

The input argument Z allows you to directly specify the noise generation process. This process takes
precedence over the Correlation parameter of the input gbm object and the value of the
Antithetic input flag.

Note If you specify Z as a function, it must return an NBROWNS-by-1 column vector, and you must call
it with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function

StorePaths — Flag that indicates how the output array Paths is stored and returned
True (default) | logical with values True or False

Flag that indicates how the output array Paths is stored and returned, specified as the comma-
separated pair consisting of 'StorePaths' and a scalar logical flag with a value of True or False.
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If StorePaths is True (the default value) or is unspecified, simBySolution returns Paths as a
three-dimensional time series array.

If StorePaths is False (logical 0), simBySolution returns the Paths output array as an empty
matrix.
Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments of the form
simBySolution makes no adjustments and performs no processing (default) | function | cell array of
functions

Sequence of end-of-period processes or state vector adjustments of the form, specified as the comma-
separated pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

The simBySolution function runs processing functions at each interpolation time. They must accept
the current interpolation time t, and the current state vector Xt, and return a state vector that may be
an adjustment to the input state.

simBySolution applies processing functions at the end of each observation period. These functions
must accept the current observation time t and the current state vector Xt, and return a state vector
that may be an adjustment to the input state.

The end-of-period Processes argument allows you to terminate a given trial early. At the end of each
time step, simBySolution tests the state vector Xt for an all-NaN condition. Thus, to signal an early
termination of a given trial, all elements of the state vector Xt must be NaN. This test enables a user-
defined Processes function to signal early termination of a trial, and offers significant performance
benefits in some situations (for example, pricing down-and-out barrier options).

If you specify more than one processing function, simBySolution invokes the functions in the order
in which they appear in the cell array. You can use this argument to specify boundary conditions,
prevent negative prices, accumulate statistics, plot graphs, and more.
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as a (NPERIODS + 1)-by-NVARS-by-NTRIALS
three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When the input
flag StorePaths = False, simBySolution returns Paths as an empty matrix.

Times — Observation times associated with the simulated paths
column vector

Observation times associated with the simulated paths, returned as a (NPERIODS + 1)-by-1 column
vector. Each element of Times is associated with the corresponding row of Paths.
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Z — Dependent random variates used to generate the Brownian motion vector
array

Dependent random variates used to generate the Brownian motion vector (Wiener processes) that
drive the simulation, returned as a (NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS three-
dimensional time series array.

More About
Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique called antithetic
sampling.

This technique attempts to replace one sequence of random observations with another of the same
expected value, but smaller variance. In a typical Monte Carlo simulation, each sample path is
independent and represents an independent trial. However, antithetic sampling generates sample
paths in pairs. The first path of the pair is referred to as the primary path, and the second as the
antithetic path. Any given pair is independent of any other pair, but the two paths within each pair
are highly correlated. Antithetic sampling literature often recommends averaging the discounted
payoffs of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between paired input
samples, ideally resulting in negative dependence between paired output samples. The greater the
extent of negative dependence, the more effective antithetic sampling is.

Algorithms
The simBySolution function simulates NTRIALS sample paths of NVARS correlated state variables,
driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation periods,
approximating continuous-time GBM short-rate models by an approximation of the closed-form
solution.

Consider a separable, vector-valued GBM model of the form:

dXt = μ(t)Xtdt + D(t, Xt)V(t)dWt

where:

• Xt is an NVARS-by-1 state vector of process variables.
• μ is an NVARS-by-NVARS generalized expected instantaneous rate of return matrix.
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

The simBySolution function simulates the state vector Xt using an approximation of the closed-form
solution of diagonal-drift models.

When evaluating the expressions, simBySolution assumes that all model parameters are piecewise-
constant over each simulation period.

In general, this is not the exact solution to the models, because the probability distributions of the
simulated and true state vectors are identical only for piecewise-constant parameters.
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When parameters are piecewise-constant over each observation period, the simulated process is
exact for the observation times at which Xt is sampled.

Gaussian diffusion models, such as hwv, allow negative states. By default, simBySolution does
nothing to prevent negative states, nor does it guarantee that the model be strictly mean-reverting.
Thus, the model may exhibit erratic or explosive growth.
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See Also
simByEuler | simulate | gbm | simBySolution

Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2008a
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simBySolution
Simulate approximate solution of diagonal-drift HWV processes

Syntax
[Paths,Times,Z] = simBySolution(MDL,NPeriods)
[Paths,Times,Z] = simBySolution( ___ ,Name,Value)

Description
[Paths,Times,Z] = simBySolution(MDL,NPeriods) simulates approximate solution of
diagonal-drift for Hull-White/Vasicek Gaussian Diffusion (HWV) processes.

[Paths,Times,Z] = simBySolution( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Use simBySolution with an hwv Object

Create an hwv object to represent the model:

dXt = 0.2(0.1− Xt)dt + 0.05dWt .

hwv = hwv(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

hwv = 

   Class HWV: Hull-White/Vasicek
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.05
          Level: 0.1
          Speed: 0.2

The simBySolution function simulates the state vector Xt using an approximation of the closed-form
solution of diagonal drift HWV models. Each element of the state vector Xt is expressed as the sum of
NBrowns correlated Gaussian random draws added to a deterministic time-variable drift.
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NPeriods = 100
[Paths,Times,Z] = simBySolution(hwv, NPeriods,'NTrials', 10);

Input Arguments
MDL — Hull-White/Vasicek (HWV) model
hwv object

Hull-White/Vasicek (HWV) mode, specified as a hwv object that is created using hwv.
Data Types: object

NPeriods — Number of simulation periods
positive integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times,Z] =
simBySolution(HWV,NPeriods,'DeltaTime',dt,'NTrials',10)

NTrials — Simulated trials (sample paths) of NPeriods observations each
1 (single path of correlated state variables) (default) | positive integer

Simulated trials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or a NPeriods-by-1 column vector.

DeltaTime represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps within each time increment dt (specified as
DeltaTime)
1 (indicating no intermediate evaluation) (default) | positive integer

Number of intermediate time steps within each time increment dt (specified as DeltaTime),
specified as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simBySolution function partitions each time increment dt into NSteps subintervals of length
dt/NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
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intermediate points. Although simBySolution does not report the output state vector at these
intermediate points, the refinement improves accuracy by allowing the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

Antithetic — Flag to indicate whether simBySolution uses antithetic sampling to
generate the Gaussian random variates
False (no antithetic sampling) (default) | logical with values True or False

Flag to indicate whether simBySolution uses antithetic sampling to generate the Gaussian random
variates that drive the Brownian motion vector (Wiener processes), specified as the comma-separated
pair consisting of 'Antithetic' and a scalar logical flag with a value of True or False.

When you specify True, simBySolution performs sampling such that all primary and antithetic
paths are simulated and stored in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary Gaussian paths.
• Even trials (2,4,6,...) are the matching antithetic paths of each pair derived by negating the

Gaussian draws of the corresponding primary (odd) trial.

Note If you specify an input noise process (see Z), simBySolution ignores the value of
Antithetic.

Data Types: logical

Z — Direct specification of the dependent random noise process used to generate the
Brownian motion vector
generates correlated Gaussian variates based on the Correlation member of the SDE object
(default) | function | three-dimensional array of dependent random variates

Direct specification of the dependent random noise process used to generate the Brownian motion
vector (Wiener process) that drives the simulation, specified as the comma-separated pair consisting
of 'Z' and a function or as an (NPeriods * NSteps)-by-NBrowns-by-NTrials three-dimensional
array of dependent random variates.

The input argument Z allows you to directly specify the noise generation process. This process takes
precedence over the Correlation parameter of the input gbm object and the value of the
Antithetic input flag.

Note If you specify Z as a function, it must return an NBrowns-by-1 column vector, and you must call
it with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function

StorePaths — Flag that indicates how the output array Paths is stored and returned
True (default) | logical with values True or False
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Flag that indicates how the output array Paths is stored and returned, specified as the comma-
separated pair consisting of 'StorePaths' and a scalar logical flag with a value of True or False.

If StorePaths is True (the default value) or is unspecified, simBySolution returns Paths as a
three-dimensional time series array.

If StorePaths is False (logical 0), simBySolution returns the Paths output array as an empty
matrix.
Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments of the form
simBySolution makes no adjustments and performs no processing (default) | function | cell array of
functions

Sequence of end-of-period processes or state vector adjustments of the form, specified as the comma-
separated pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

The simBySolution function runs processing functions at each interpolation time. They must accept
the current interpolation time t, and the current state vector Xt, and return a state vector that may be
an adjustment to the input state.

simBySolution applies processing functions at the end of each observation period. These functions
must accept the current observation time t and the current state vector Xt, and return a state vector
that may be an adjustment to the input state.

The end-of-period Processes argument allows you to terminate a given trial early. At the end of each
time step, simBySolution tests the state vector Xt for an all-NaN condition. Thus, to signal an early
termination of a given trial, all elements of the state vector Xt must be NaN. This test enables a user-
defined Processes function to signal early termination of a trial, and offers significant performance
benefits in some situations (for example, pricing down-and-out barrier options).

If you specify more than one processing function, simBySolution invokes the functions in the order
in which they appear in the cell array. You can use this argument to specify boundary conditions,
prevent negative prices, accumulate statistics, plot graphs, and more.
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as a (NPeriods + 1)-by-NVars-by-NTrials
three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When the input
flag StorePaths = False, simBySolution returns Paths as an empty matrix.

Times — Observation times associated with the simulated paths
column vector
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Observation times associated with the simulated paths, returned as a (NPeriods + 1)-by-1 column
vector. Each element of Times is associated with the corresponding row of Paths.

Z — Dependent random variates used to generate the Brownian motion vector
array

Dependent random variates used to generate the Brownian motion vector (Wiener processes) that
drive the simulation, returned as a (NPeriods * NSteps)-by-NBrowns-by-NTrials three-
dimensional time series array.

More About
Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique called antithetic
sampling.

This technique attempts to replace one sequence of random observations with another of the same
expected value, but smaller variance. In a typical Monte Carlo simulation, each sample path is
independent and represents an independent trial. However, antithetic sampling generates sample
paths in pairs. The first path of the pair is referred to as the primary path, and the second as the
antithetic path. Any given pair is independent of any other pair, but the two paths within each pair
are highly correlated. Antithetic sampling literature often recommends averaging the discounted
payoffs of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between paired input
samples, ideally resulting in negative dependence between paired output samples. The greater the
extent of negative dependence, the more effective antithetic sampling is.

Algorithms
The simBySolution method simulates NTrials sample paths of NVars correlated state variables,
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time Hull-White/Vasicek (HWV) by an approximation of the closed-form
solution.

Consider a separable, vector-valued HWV model of the form:

dXt = S(t)[L(t)− Xt]dt + V(t)dWt

where:

• X is an NVars-by-1 state vector of process variables.
• S is an NVars-by-NVars matrix of mean reversion speeds (the rate of mean reversion).
• L is an NVars-by-1 vector of mean reversion levels (long-run mean or level).
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• W is an NBrowns-by-1 Brownian motion vector.

The simBySolution method simulates the state vector Xt using an approximation of the closed-form
solution of diagonal-drift models.
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When evaluating the expressions, simBySolution assumes that all model parameters are piecewise-
constant over each simulation period.

In general, this is not the exact solution to the models, because the probability distributions of the
simulated and true state vectors are identical only for piecewise-constant parameters.

When parameters are piecewise-constant over each observation period, the simulated process is
exact for the observation times at which Xt is sampled.

Gaussian diffusion models, such as hwv, allow negative states. By default, simBySolution does
nothing to prevent negative states, nor does it guarantee that the model be strictly mean-reverting.
Thus, the model may exhibit erratic or explosive growth.
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[3] Glasserman, Paul. Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag,
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See Also
simByEuler | simulate | hwv | simBySolution

Topics
“Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page 18-25
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62
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heston
Heston model

Description
Creates and displays heston objects, which derive from the sdeddo (SDE from drift and diffusion
objects).

Use heston objects to simulate sample paths of two state variables. Each state variable is driven by a
single Brownian motion source of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic volatility processes.

Heston models are bivariate composite models. Each Heston model consists of two coupled univariate
models:

• A geometric Brownian motion (gbm) model with a stochastic volatility function.

dX1t = B(t)X1tdt + X2tX1tdW1t

This model usually corresponds to a price process whose volatility (variance rate) is governed by
the second univariate model.

• A Cox-Ingersoll-Ross (cir) square root diffusion model.

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

This model describes the evolution of the variance rate of the coupled GBM price process.

Creation

Syntax
heston = heston(Return,Level,Speed,Volatility)
heston = heston( ___ ,Name,Value)

Description

heston = heston(Return,Level,Speed,Volatility) creates a default heston object.

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric
specification. This array fully captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually any static,
dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all
implementation details are hidden and fully encapsulated by the function.
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Note You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar
time t as its only input argument. Otherwise, a parameter is assumed to be a function of time t and
state X(t) and is invoked with both input arguments.

heston = heston( ___ ,Name,Value) constructs a heston object with additional options
specified by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN

The heston object has the following “Properties” on page 19-64:

• StartTime — Initial observation time
• StartState — Initial state at StartTime
• Correlation — Access function for the Correlation input, callable as a function of time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• Simulation — A simulation function or method
• Return — Access function for the input argument Return, callable as a function of time and state
• Speed — Access function for the input argument Speed, callable as a function of time and state
• Level — Access function for the input argument Level, callable as a function of time and state
• Volatility — Access function for the input argument Volatility, callable as a function of

time and state

Input Arguments

Return — Return represents the parameter μ
array or deterministic function of time or deterministic function of time and state

Return represents the parameter μ, specified as an array or deterministic function of time.

If you specify Return as an array, it must be an NVars-by-NVars matrix representing the expected
(mean) instantaneous rate of return.

As a deterministic function of time, when Return is called with a real-valued scalar time t as its only
input, Return must produce an NVars-by-NVars matrix. If you specify Return as a function of time
and state, it must return an NVars-by-NVars matrix when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Level — Level represents the parameter L
array or deterministic function of time or deterministic function of time and state

Level represents the parameter L, specified as an array or deterministic function of time.
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If you specify Level as an array, it must be an NVars-by-1 column vector of reversion levels.

As a deterministic function of time, when Level is called with a real-valued scalar time t as its only
input, Level must produce an NVars-by-1 column vector. If you specify Level as a function of time
and state, it must generate an NVars-by-1 column vector of reversion levels when called with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Speed — Return represents the parameter S
array or deterministic function of time or deterministic function of time and state

Speed represents the parameter S, specified as an array or deterministic function of time.

If you specify Speed as an array, it must be an NVars-by-NVars matrix of mean-reversion speeds (the
rate at which the state vector reverts to its long-run average Level).

As a deterministic function of time, when Speed is called with a real-valued scalar time t as its only
input, Speed must produce an NVars-by-NVars matrix. If you specify Speed as a function of time and
state, it calculates the speed of mean reversion. This function must generate an NVars-by-NVars
matrix of reversion rates when called with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Volatility — Volatility represents the instantaneous volatility of the CIR stochastic
variance model
scalar or deterministic function of time or deterministic function of time and state

Volatility (often called the volatility of volatility or volatility of variance) represents the
instantaneous volatility of the CIR stochastic variance model, specified as a scalar, or deterministic
function of time.

If you specifyVolatility as a scalar, it represents the instantaneous volatility of the CIR stochastic
variance model.

As a deterministic function of time, when Volatility is called with a real-valued scalar time t as its
only input, Volatility must produce a scalar. If you specify it as a function time and state,
Volatility generates a scalar when invoked with two inputs:

• A real-valued scalar observation time t.
• A 2-by-1 state vector Xt.

Data Types: double | function_handle

Note Although heston does not enforce restrictions on the signs of any of these input arguments,
each argument is specified as a positive value.

 heston

19-63



Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, heston applies the same initial value to all state variables on all trials.

If StartState is a column vector, heston applies a unique initial value to each state variable on all
trials.

If StartState is a matrix, heston applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.
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The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects using drift of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects using diffusion:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:
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• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: struct | double

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)
simByQuadExp Simulate Bates, Heston, and CIR sample paths by quadratic-exponential

discretization scheme
simByTransition Simulate Heston sample paths with transition density

Examples

Create a heston Object

The Heston (heston) class derives directly from SDE from Drift and Diffusion (sdeddo). Each Heston
model is a bivariate composite model, consisting of two coupled univariate models:

dX1t = B(t)X1tdt + X2tX1tdW1t

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

Create a heston object to represent the model:

dX1t = 0 . 1X1tdt + X2tX1tdW1t

dX2t = 0 . 2[0 . 1− X2t]dt + 0 . 05 X2tdW2t
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obj = heston (0.1, 0.2, 0.1, 0.05)  % (Return, Speed, Level, Volatility)

obj = 
   Class HESTON: Heston Bivariate Stochastic Volatility
   ----------------------------------------------------
     Dimensions: State = 2, Brownian = 2
   ----------------------------------------------------
      StartTime: 0
     StartState: 1 (2x1 double array) 
    Correlation: 2x2 diagonal double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.1
          Speed: 0.2
          Level: 0.1
     Volatility: 0.05

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.

For more information, see “SDE Class Hierarchy” on page 18-5.
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Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, heston treats it
as a static function of time and state, by that means guaranteeing that all parameters are accessible
by the same interface.
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See Also
drift | diffusion | sdeddo | simulate | interpolate | simByEuler | nearcorr

Topics
“Creating Heston Stochastic Volatility Models” on page 18-26
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62
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hwv
Hull-White/Vasicek Gaussian Diffusion model

Description
Create and displays hwv objects, which derive from the sdemrd (SDE with drift rate expressed in
mean-reverting form) class.

Use hwv objects to simulate sample paths of NVars state variables expressed in mean-reverting drift-
rate form. These state variables are driven by NBrowns Brownian motion sources of risk over
NPeriods consecutive observation periods, approximating continuous-time Hull-White/Vasicek
stochastic processes with Gaussian diffusions.

This model allows you to simulate vector-valued Hull-White/Vasicek processes of the form:

dXt = S(t)[L(t)− Xt]dt + V(t)dWt  (19-2)

where:

• Xt is an NVars-by-1 state vector of process variables.
• S is an NVars-by-NVars of mean reversion speeds (the rate of mean reversion).
• L is an NVars-by-1 vector of mean reversion levels (long-run mean or level).
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWtis an NBrowns-by-1 Brownian motion vector.

Creation

Syntax
HWV = hwv(Speed,Level,Sigma)
HWV = hwv( ___ ,Name,Value)

Description

HWV = hwv(Speed,Level,Sigma) creates a default HWV object.

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying) parametric
specification. This array fully captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually any static,
dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all
implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed.
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Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar
time t as its only input argument. Otherwise, a parameter is assumed to be a function of time t and
state X(t) and is invoked with both input arguments.

HWV = hwv( ___ ,Name,Value) creates a HWV object with additional options specified by one or
more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN

The HWV object has the following “Properties” on page 19-71:

• StartTime — Initial observation time
• StartState — Initial state at StartTime
• Correlation — Access function for the Correlation input, callable as a function of time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• Simulation — A simulation function or method
• Speed — Access function for the input argument Speed, callable as a function of time and state
• Level — Access function for the input argument Level, callable as a function of time and state
• Sigma — Access function for the input argument Sigma, callable as a function of time and state

Input Arguments

Speed — Speed represents the parameter S
array or deterministic function of time or deterministic function of time and state

Speed represents the parameter S, specified as an array or deterministic function of time.

If you specify Speed as an array, it must be an NVars-by-NVars matrix of mean-reversion speeds (the
rate at which the state vector reverts to its long-run average Level).

As a deterministic function of time, when Speed is called with a real-valued scalar time t as its only
input, Speed must produce an NVars-by-NVars matrix. If you specify Speed as a function of time and
state, it calculates the speed of mean reversion. This function must generate an NVars-by-NVars
matrix of reversion rates when called with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Level — Level represents the parameter L
array or deterministic function of time or deterministic function of time and state

Level represents the parameter L, specified as an array or deterministic function of time.

If you specify Level as an array, it must be an NVars-by-1 column vector of reversion levels.

As a deterministic function of time, when Level is called with a real-valued scalar time t as its only
input, Level must produce an NVars-by-1 column vector. If you specify Level as a function of time
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and state, it must generate an NVars-by-1 column vector of reversion levels when called with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of time.

If you specify Sigma as an array, it must be an NVars-by-NBrowns matrix of instantaneous volatility
rates or as a deterministic function of time. In this case, each row of Sigma corresponds to a
particular state variable. Each column corresponds to a particular Brownian source of uncertainty,
and associates the magnitude of the exposure of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVars-by-NBrowns matrix. If you specify Sigma as a function of time
and state, it must return an NVars-by-NBrowns matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Note Although the hwv object does not enforce restrictions on the signs of any of these input
arguments, each argument is specified as a positive value.

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the hwv object applies the same initial value to all state variables on all
trials.

If StartState is a column vector, the hwv object applies a unique initial value to each state variable
on all trials.

If StartState is a matrix, the hwv object applies a unique initial value to each state variable on each
trial.
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Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects using drift of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)
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A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects using diffusion:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.
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Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: struct | double

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)
simBySolution Simulate approximate solution of diagonal-drift HWV processes

Examples

Create a hwv Object

The Hull-White/Vasicek (HWV) short rate class derives directly from SDE with mean-reverting drift
(that is, sdemrd): dXt = S(t)[L(t)− Xt]dt + V(t)dWt.

Create an hwv object to represent the model: dXt = 0 . 2(0 . 1− Xt)dt + 0 . 05dWt.

obj = hwv(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

obj = 
   Class HWV: Hull-White/Vasicek
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.05
          Level: 0.1
          Speed: 0.2

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.
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For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, hwv treats it as a
static function of time and state, by that means guaranteeing that all parameters are accessible by
the same interface.

References
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See Also
drift | diffusion | sdeddo | simulate | interpolate | simByEuler | nearcorr

Topics
“Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page 18-25
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2008a
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interpolate
Brownian interpolation of stochastic differential equations

Syntax
[XT,T] = interpolate(MDL,Times,Paths)
[XT,T] = interpolate( ___ ,Name,Value)

Description
[XT,T] = interpolate(MDL,Times,Paths) performs a Brownian interpolation into a user-
specified time series array, based on a piecewise-constant Euler sampling approach.

[XT,T] = interpolate( ___ ,Name,Value) adds optional name-value pair arguments.

Examples
Stochastic Interpolation Without Refinement

Many applications require knowledge of the state vector at intermediate sample times that are
initially unavailable. One way to approximate these intermediate states is to perform a deterministic
interpolation. However, deterministic interpolation techniques fail to capture the correct probability
distribution at these intermediate times. Brownian (or stochastic) interpolation captures the correct
joint distribution by sampling from a conditional Gaussian distribution. This sampling technique is
sometimes referred to as a Brownian Bridge.

The default stochastic interpolation technique is designed to interpolate into an existing time series
and ignore new interpolated states as additional information becomes available. This technique is the
usual notion of interpolation, which is called Interpolation without refinement.

Alternatively, the interpolation technique may insert new interpolated states into the existing time
series upon which subsequent interpolation is based, by that means refining information available at
subsequent interpolation times. This technique is called interpolation with refinement.

Interpolation without refinement is a more traditional technique, and is most useful when the input
series is closely spaced in time. In this situation, interpolation without refinement is a good technique
for inferring data in the presence of missing information, but is inappropriate for extrapolation.
Interpolation with refinement is more suitable when the input series is widely spaced in time, and is
useful for extrapolation.

The stochastic interpolation method is available to any model. It is best illustrated, however, by way
of a constant-parameter Brownian motion process. Consider a correlated, bivariate Brownian motion
(BM) model of the form:

dX1t = 0.3dt + 0.2dW1t − 0.1dW2t
dX2t = 0.4dt + 0.1dW1t − 0.2dW2t
E[dW1tdW2t] = ρdt = 0.5dt
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1 Create a bm object to represent the bivariate model:

mu    = [0.3; 0.4];
sigma = [0.2 -0.1; 0.1 -0.2];
rho   = [1 0.5; 0.5 1];
obj   = bm(mu,sigma,'Correlation',rho);

2 Assuming that the drift (Mu) and diffusion (Sigma) parameters are annualized, simulate a single
Monte Carlo trial of daily observations for one calendar year (250 trading days):

rng default                 % make output reproducible
dt    = 1/250;  % 1 trading day = 1/250 years
[X,T] = simulate(obj,250,'DeltaTime',dt);

3 It is helpful to examine a small interval in detail.

a Interpolate into the simulated time series with a Brownian bridge:

t = ((T(1) + dt/2):(dt/2):(T(end) - dt/2));
x = interpolate(obj,t,X,'Times',T);

b Plot both the simulated and interpolated values:

plot(T,X(:,1),'.-r',T,X(:,2),'.-b')
grid on;
hold on;
plot(t,x(:,1),'or',t,x(:,2),'ob')
hold off;
xlabel('Time (Years)')
ylabel('State')
title('Bi-Variate Brownian Motion: \rho = 0.5')
axis([0.4999 0.6001 0.25 0.4])
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In this plot:

• The solid red and blue dots indicate the simulated states of the bivariate model.
• The straight lines that connect the solid dots indicate intermediate states that would be

obtained from a deterministic linear interpolation.
• Open circles indicate interpolated states.
• Open circles associated with every other interpolated state encircle solid dots associated

with the corresponding simulated state. However, interpolated states at the midpoint of
each time increment typically deviate from the straight line connecting each solid dot.

Simulation of Conditional Gaussian Distributions

You can gain additional insight into the behavior of stochastic interpolation by regarding a Brownian
bridge as a Monte Carlo simulation of a conditional Gaussian distribution.

This example examines the behavior of a Brownian bridge over a single time increment.

1 Divide a single time increment of length dt into 10 subintervals:

mu    = [0.3; 0.4];
sigma = [0.2 -0.1; 0.1 -0.2];
rho   = [1 0.5; 0.5 1];
obj   = bm(mu,sigma,'Correlation',rho);

rng default; % make output reproducible
dt    = 1/250;  % 1 trading day = 1/250 years
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[X,T] = simulate(obj,250,'DeltaTime',dt);

n        = 125;    % index of simulated state near middle
times    = (T(n):(dt/10):T(n + 1));
nTrials  = 25000;  % # of Trials at each time

2 In each subinterval, take 25000 independent draws from a Gaussian distribution, conditioned on
the simulated states to the left, and right:

average  = zeros(length(times),1);
variance = zeros(length(times),1);
for i = 1:length(times)
    t = times(i);
    x = interpolate(obj,t(ones(nTrials,1)),...
        X,'Times',T);
    average(i)  = mean(x(:,1));
    variance(i) = var(x(:,1));
end

3 Plot the sample mean and variance of each state variable:

Note The following graph plots the sample statistics of the first state variable only, but similar
results hold for any state variable.

subplot(2,1,1);
hold on;
grid on;
plot([T(n) T(n + 1)],[X(n,1) X(n + 1,1)],'.-b')
plot(times, average, 'or')
hold off;
title('Brownian Bridge without Refinement: Sample Mean') 
ylabel('Mean')
limits = axis;
axis([T(n) T(n + 1) limits(3:4)]);

subplot(2,1,2)
hold on;
grid on;
plot(T(n),0,'.-b',T(n + 1),0,'.-b')
plot(times, variance, '.-r')
hold('off');
title('Brownian Bridge without Refinement: Sample Variance')
xlabel('Time (Years)')
ylabel('Variance')
limits = axis;
axis([T(n) T(n + 1) limits(3:4)]);
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The Brownian interpolation within the chosen interval, dt, illustrates the following:

• The conditional mean of each state variable lies on a straight-line segment between the
original simulated states at each endpoint.

• The conditional variance of each state variable is a quadratic function. This function attains
its maximum midway between the interval endpoints, and is zero at each endpoint.

• The maximum variance, although dependent upon the actual model diffusion-rate function
G(t,X), is the variance of the sum of NBrowns correlated Gaussian variates scaled by the
factor dt/4.

The previous plot highlights interpolation without refinement, in that none of the interpolated
states take into account new information as it becomes available. If you had performed
interpolation with refinement, new interpolated states would have been inserted into the time
series and made available to subsequent interpolations on a trial-by-trial basis. In this case, all
random draws for any given interpolation time would be identical. Also, the plot of the sample
mean would exhibit greater variability, but would still cluster around the straight-line segment
between the original simulated states at each endpoint. The plot of the sample variance, however,
would be zero for all interpolation times, exhibiting no variability.

Input Arguments
MDL — Stochastic differential equation model
object
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Stochastic differential equation model, specified as an sde, bm, gbm, cev, cir, hwv, heston, sdeddo,
sdeld, or sdemrd object.

All MDL parameters are assumed piecewise constant, evaluated from the most recent observation
time in Times that precedes a specified interpolation time in T. This is consistent with the Euler
approach of Monte Carlo simulation.
Data Types: object

Times — Interpolation times
vector

Interpolation times, specified as a NTimes element vector. The length of this vector determines the
number of rows in the interpolated output time series XT.
Data Types: double

Paths — Sample paths of correlated state variables
time series array

Sample paths of correlated state variables, specified as a NPeriods-by-NVars-by-NTrials time
series array.

For a given trial, each row of this array is the transpose of the state vector Xt at time t. Paths is the
initial time series array into which the interpolate function performs the Brownian interpolation.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [XT,T] = interpolate(MDL,T,Paths,'Times',t)

Times — Observation times associated with the time series input Paths
zero-based, unit-increment column vector of length NPeriods (default) | column vector

Observation times associated with the time series input Paths, specified as the comma-separated
pair consisting of 'Times' and a column vector.
Data Types: double

Refine — Flag that indicates whether interpolate uses the interpolation times you
request
False (interpolate bases the interpolation only on the state information specified in Paths)
(default) | logical with values True or False

Flag that indicates whether interpolate uses the interpolation times you request (see T) to refine
the interpolation as new information becomes available, specified as the comma-separated pair
consisting of 'Refine' and a logical with a value of True or False.
Data Types: logical

Processes — Sequence of background processes or state vector adjustments
interpolate makes no adjustments and performs no processing (default) | function | cell array of
functions
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Sequence of background processes or state vector adjustments, specified as the comma-separated
pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

The interpolate function runs processing functions at each interpolation time. They must accept
the current interpolation time t, and the current state vector Xt, and return a state vector that may be
an adjustment to the input state.

If you specify more than one processing function, interpolate invokes the functions in the order in
which they appear in the cell array. You can use this argument to specify boundary conditions,
prevent negative prices, accumulate statistics, plot graphs, and so on.
Data Types: cell | function

Output Arguments
XT — Interpolated state variables
array

Interpolated state variables, returned as a NTimes-by-NVars-by-NTrials time series array.

For a given trial, each row of this array is the transpose of the interpolated state vector Xt at time t.
XT is the interpolated time series formed by interpolating into the input Paths time series array.

T — Interpolation times associated with the output time series XT
column vector

Interpolation times associated with the output time series XT, returned as a NTimes-by-1 column
vector.

If the input interpolation time vector Times contains no missing observations (NaNs), the output of T
is the same time vector as Times, but with the NaNs removed. This reduces the length of T and the
number of rows of XT.

Algorithms
This function performs a Brownian interpolation into a user-specified time series array, based on a
piecewise-constant Euler sampling approach.

Consider a vector-valued SDE of the form:

dXt = F(t, Xt)dt + G(t, Xt)dWt

where:

• X is an NVars-by-1 state vector.
• F is an NVars-by-1 drift-rate vector-valued function.
• G is an NVars-by-NBrowns diffusion-rate matrix-valued function.
• W is an NBrowns-by-1 Brownian motion vector.

Given a user-specified time series array associated with this equation, this function performs a
Brownian (stochastic) interpolation by sampling from a conditional Gaussian distribution. This
sampling technique is sometimes called a Brownian bridge.
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Note Unlike simulation methods, the interpolation function does not support user-specified noise
processes.

• The interpolate function assumes that all model parameters are piecewise-constant, and
evaluates them from the most recent observation time in Times that precedes a specified
interpolation time in T. This is consistent with the Euler approach of Monte Carlo simulation.

• When an interpolation time falls outside the interval specified by Times, a Euler simulation
extrapolates the time series by using the nearest available observation.

• The user-defined time series Paths and corresponding observation Times must be fully observed
(no missing observations denoted by NaNs).

• The interpolate function assumes that the user-specified time series array Paths is associated
with the sde object. For example, the Times and Paths input pair are the result of an initial
course-grained simulation. However, the interpolation ignores the initial conditions of the sde
object (StartTime and StartState), allowing the user-specified Times and Paths input series
to take precedence.
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See Also
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Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
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“Performance Considerations” on page 18-62
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sde
Stochastic Differential Equation (SDE) model

Description
Creates and displays general stochastic differential equation (SDE) models from user-defined drift and
diffusion rate functions.

Use sde objects to simulate sample paths of NVars state variables driven by NBROWNS Brownian
motion sources of risk over NPeriods consecutive observation periods, approximating continuous-
time stochastic processes.

An sde object enables you to simulate any vector-valued SDE of the form:

dXt = F(t, Xt)dt + G(t, Xt)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• dWt is an NBROWNS-by-1 Brownian motion vector.
• F is an NVars-by-1 vector-valued drift-rate function.
• G is an NVars-by-NBROWNS matrix-valued diffusion-rate function.

Creation

Syntax
SDE = sde(DriftRate,DiffusionRate)
SDE = sde( ___ ,Name,Value)

Description

SDE = sde(DriftRate,DiffusionRate) creates a default SDE object.

SDE = sde( ___ ,Name,Value) creates a SDE object with additional options specified by one or
more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

The SDE object has the following “Properties” on page 19-87:

• StartTime — Initial observation time
• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument, callable as a function of

time
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• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• Simulation — A simulation function or method

Input Arguments

DriftRate — DriftRate is a user-defined drift-rate function and represents the parameter
F
vector or object of class drift

DriftRate is a user-defined drift-rate function and represents the parameter F, specified as a vector
or object of class drift.

DriftRate is a function that returns an NVars-by-1 drift-rate vector when called with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Alternatively, DriftRate can also be an object of class drift that encapsulates the drift-rate
specification. In this case, however, sde uses only the Rate parameter of the object. For more
information on the drift object, see drift.
Data Types: double | object

DiffusionRate — DiffusionRate is a user-defined drift-rate function and represents the
parameter G
matrix or object of class diffusion

DiffusionRate is a user-defined drift-rate function and represents the parameter G, specified as a
matrix or object of class diffusion.

DiffusionRate is a function that returns an NVars-by-NBROWNS diffusion-rate matrix when called
with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Alternatively, DiffusionRate can also be an object of class diffusion that encapsulates the
diffusion-rate specification. In this case, however, sde uses only the Rate parameter of the object.
For more information on the diffusion object, see diffusion.
Data Types: double | object

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix
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Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, sde applies the same initial value to all state variables on all trials.

If StartState is a column vector, sde applies a unique initial value to each state variable on all
trials.

If StartState is a matrix, sde applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBROWNS-by-NBROWNS identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBROWNS-by-NBROWNS positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBROWNS Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using drift) of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
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• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: object

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBROWNS Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using diffusion):

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
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• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: object

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)

Examples

Create an SDE Object

Construct an SDE object obj to represent a univariate geometric Brownian Motion model of the form:
dXt = 0 . 1Xtdt + 0 . 3XtdWt.

Create drift and diffusion functions that are accessible by the common (t, Xt) interface:

F = @(t,X) 0.1 * X;
G = @(t,X) 0.3 * X;

Pass the functions to sde to create an object (obj) of class sde:

obj = sde(F, G)    % dX = F(t,X)dt + G(t,X)dW

obj = 
   Class SDE: Stochastic Differential Equation
   -------------------------------------------
     Dimensions: State = 1, Brownian = 1
   -------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler

obj displays like a MATLAB® structure, with the following information:
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• The object's class
• A brief description of the object
• A summary of the dimensionality of the model

The object's displayed parameters are as follows:

• StartTime: The initial observation time (real-valued scalar)
• StartState: The initial state vector (NVARS-by-1 column vector)
• Correlation: The correlation structure between Brownian process
• Drift: The drift-rate function F(t, Xt)
• Diffusion: The diffusion-rate function G(t, Xt)
• Simulation: The simulation method or function.

Of these displayed parameters, only Drift and Diffusion are required inputs.

The only exception to the (t, Xt) evaluation interface is Correlation. Specifically, when you enter
Correlation as a function, the SDE engine assumes that it is a deterministic function of time, C(t).
This restriction on Correlation as a deterministic function of time allows Cholesky factors to be
computed and stored before the formal simulation. This inconsistency dramatically improves run-time
performance for dynamic correlation structures. If Correlation is stochastic, you can also include it
within the simulation architecture as part of a more general random number generation function.

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.
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For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, sde treats it as a
static function of time and state, by that means guaranteeing that all parameters are accessible by
the same interface.
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Introduced in R2008a
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sdeddo
Stochastic Differential Equation (SDE) model from Drift and Diffusion components

Description
Creates and displays sdeddo objects, instantiated with objects of classdrift and diffusion. These
restricted sdeddo objects contain the input drift and diffusion objects; therefore, you can
directly access their displayed parameters.

This abstraction also generalizes the notion of drift and diffusion-rate objects as functions that
sdeddo evaluates for specific values of time t and state Xt. Like sde objects, sdeddo objects allow
you to simulate sample paths of NVars state variables driven by NBrowns Brownian motion sources
of risk over NPeriods consecutive observation periods, approximating continuous-time stochastic
processes.

This method enables you to simulate any vector-valued SDEDDO of the form:

dXt = F(t, Xt)dt + G(t, Xt)dWt  (19-3)

where:

• Xt is an NVars-by-1 state vector of process variables.
• dWt is an NBrowns-by-1 Brownian motion vector.
• F is an NVars-by-1 vector-valued drift-rate function.
• G is an NVars-by-NBrowns matrix-valued diffusion-rate function.

Creation

Syntax
SDEDDO = sdeddo(DriftRate,DiffusionRate)
SDEDDO = sdeddo( ___ ,Name,Value)

Description

SDEDDO = sdeddo(DriftRate,DiffusionRate) creates a default SDEDDO object.

SDEDDO = sdeddo( ___ ,Name,Value) creates a SDEDDO object with additional options specified
by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

The SDEDDO object has the following displayed “Properties” on page 19-96:

• StartTime — Initial observation time
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• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument, callable as a function of

time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• A — Access function for the drift-rate property A, callable as a function of time and state
• B — Access function for the drift-rate property B, callable as a function of time and state
• Alpha — Access function for the diffusion-rate property Alpha, callable as a function of time and

state
• Sigma — Access function for the diffusion-rate property Sigma, callable as a function of time and

state
• Simulation — A simulation function or method

Input Arguments

DriftRate — DriftRate is a user-defined drift-rate function and represents the parameter
F
vector or object of class Drift

DriftRate is a user-defined drift-rate function and represents the parameter F, specified as a vector
or object of class drift.

DriftRate is a function that returns an NVars-by-1 drift-rate vector when called with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Alternatively, DriftRate can also be an object of class drift that encapsulates the drift-rate
specification. In this case, however, sde uses only the Rate parameter of the object. For more
information on the drift object, see drift.
Data Types: double

DiffusionRate — DiffusionRate is a user-defined drift-rate function and represents the
parameter G
matrix or object of class Diffusion

DiffusionRate is a user-defined drift-rate function and represents the parameter G, specified as a
matrix or object of class diffusion.

DiffusionRate is a function that returns an NVars-by-NBrowns diffusion-rate matrix when called
with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Alternatively, DiffusionRate can also be an object of class diffusion that encapsulates the
diffusion-rate specification. In this case, however, sde uses only the Rate parameter of the object.
For more information on the diffusion object, see diffusion.
Data Types: double
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Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, sdeddo applies the same initial value to all state variables on all trials.

If StartState is a column vector, sdeddo applies a unique initial value to each state variable on all
trials.

If StartState is a matrix, sdeddo applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.
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The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects using drift of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects using diffusion:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:
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• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: struct | double

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)

Examples

Create a sdeddo Object

The sdeddo class derives from the base sde class. To use this class, you must pass drift and
diffusion-rate objects to the sdeddo function.

Create drift and diffusion rate objects:

F = drift(0, 0.1);      % Drift rate function F(t,X)
G = diffusion(1, 0.3);  % Diffusion rate function G(t,X)

Pass the functions to the sdeddo function to create an object obj of class sdeddo:

obj = sdeddo(F, G)      % dX = F(t,X)dt + G(t,X)dW

obj = 
   Class SDEDDO: SDE from Drift and Diffusion Objects
   --------------------------------------------------
     Dimensions: State = 1, Brownian = 1
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   --------------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
              A: 0
              B: 0.1
          Alpha: 1
          Sigma: 0.3

In this example, the object displays the additional parameters associated with input drift and
diffusion objects.

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.

For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.
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Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, sdeddo treats it
as a static function of time and state, by that means guaranteeing that all parameters are accessible
by the same interface.
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sdeld
SDE with Linear Drift model

Description
Creates and displays SDE objects whose drift rate is expressed in linear drift-rate form and that
derive from the sdeddo (SDE from drift and diffusion objects class).

Use sdeld objects to simulate sample paths of NVars state variables expressed in linear drift-rate
form. They provide a parametric alternative to the mean-reverting drift form (see sdemrd).

These state variables are driven by NBrowns Brownian motion sources of risk over NPeriods
consecutive observation periods, approximating continuous-time stochastic processes with linear
drift-rate functions.

The sdeld object allows you to simulate any vector-valued SDELD of the form:

dXt = (A(t) + B(t)Xt)dt + D(t, Xt
α(t))V(t)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• A is an NVars-by-1 vector.
• B is an NVars-by-NVars matrix.
• D is an NVars-by-NVars diagonal matrix, where each element along the main diagonal is the

corresponding element of the state vector raised to the corresponding power of α.
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWt is an NBrowns-by-1 Brownian motion vector.

Creation

Syntax
SDELD = sdeld(A,B,Alpha,Sigma)
SDELD = sdeld( ___ ,Name,Value)

Description

SDELD = sdeld(A,B,Alpha,Sigma) creates a default SDELD object.

SDELD = sdeld( ___ ,Name,Value) creates a SDELD object with additional options specified by
one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.
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The SDELD object has the following displayed “Properties” on page 19-103:

• StartTime — Initial observation time
• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument, callable as a function of

time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• A — Access function for the input argument A, callable as a function of time and state
• B — Access function for the input argument B, callable as a function of time and state
• Alpha — Access function for the input argument Alpha, callable as a function of time and state
• Sigma — Access function for the input argument Sigma, callable as a function of time and state
• Simulation — A simulation function or method

Input Arguments

A — A represents the parameter A
array or deterministic function of time or deterministic function of time and state

A represents the parameter A, specified as an array or deterministic function of time.

If you specify A as an array, it must be an NVars-by-1 column vector of intercepts.

As a deterministic function of time, when A is called with a real-valued scalar time t as its only input,
A must produce an NVars-by-1 column vector. If you specify A as a function of time and state, it must
generate an NVars-by-1 column vector of intercepts when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

B — B represents the parameter B
array or deterministic function of time or deterministic function of time and state

B represents the parameter B, specified as an array or deterministic function of time.

If you specify A as an array, it must be an NVars-by-NVars matrix of state vector coefficients.

As a deterministic function of time, when B is called with a real-valued scalar time t as its only input,
B must produce an NVars-by-NVars matrix. If you specify B as a function of time and state, it must
generate an NVars-by-NVars matrix of state vector coefficients when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Alpha — Alpha represents the parameter D
array or deterministic function of time or deterministic function of time and state

Alpha represents the parameter D, specified as an array or deterministic function of time.
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If you specify Alpha as an array, it represents an NVars-by-1 column vector of exponents.

As a deterministic function of time, when Alpha is called with a real-valued scalar time t as its only
input, Alpha must produce an NVars-by-1 matrix.

If you specify it as a function of time and state, Alpha must return an NVars-by-1 column vector of
exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of time.

If you specify Sigma as an array, it must be an NVars-by-NBrowns matrix of instantaneous volatility
rates or as a deterministic function of time. In this case, each row of Sigma corresponds to a
particular state variable. Each column corresponds to a particular Brownian source of uncertainty,
and associates the magnitude of the exposure of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVars-by-NBrowns matrix. If you specify Sigma as a function of time
and state, it must return an NVars-by-NBrowns matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Although thegbm constructor enforces no restrictions on the sign of Sigma volatilities, they are
specified as positive values.
Data Types: double | function_handle

Note Although sdeld does not enforce restrictions on the signs of Alpha or Sigma, each parameter
is specified as a positive value.

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, sdeld applies the same initial value to all state variables on all trials.
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If StartState is a column vector, sdeld applies a unique initial value to each state variable on all
trials.

If StartState is a matrix, sdeld applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects using drift of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:
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• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects using diffusion:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
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functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: struct | double

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)

Examples

Create a sdeld Object

The sdeld class derives from the sdeddo class. These objects allow you to simulate correlated paths
of NVARS state variables expressed in linear drift-rate form:
dXt = (A(t) + B(t)Xt)dt + D(t, Xt

α(t))V(t)dWt.

obj = sdeld(0, 0.1, 1, 0.3) % (A, B, Alpha, Sigma)

obj = 
   Class SDELD: SDE with Linear Drift
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
              A: 0
              B: 0.1
          Alpha: 1
          Sigma: 0.3

sdeld objects provide a parametric alternative to the mean-reverting drift form and also provide an
alternative interface to the sdeddo parent class, because you can create an object without first
having to create its drift and diffusion-rate components.

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.
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The following figure illustrates the inheritance relationships.

For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, sdeld treats it
as a static function of time and state, by that means guaranteeing that all parameters are accessible
by the same interface.
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See Also
drift | diffusion | sdeddo | simByEuler | nearcorr

Topics
“Linear Drift Models” on page 18-19
Implementing Multidimensional Equity Market Models, Implementation 3: Using SDELD, CEV, and
GBM Objects on page 18-30
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
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sdemrd
SDE with Mean-Reverting Drift model

Description
Creates and displays SDE objects whose drift rate is expressed in mean-reverting drift-rate form and
which derive from the sdeddo class (SDE from drift and diffusion objects).

Use sdemrd objects to simulate of sample paths of NVars state variables expressed in mean-
reverting drift-rate form, and provide a parametric alternative to the linear drift form (see sdeld).
These state variables are driven by NBrowns Brownian motion sources of risk over NPeriods
consecutive observation periods, approximating continuous-time stochastic processes with mean-
reverting drift-rate functions.

The sdemrd object allows you to simulate any vector-valued SDEMRD of the form:

dXt = S(t)[L(t)− Xt]dt + D(t, Xt
α(t))V(t)dWt

where:

• Xt is an NVars-by-1 state vector of process variables.
• S is an NVars-by-NVars matrix of mean reversion speeds.
• L is an NVars-by-1 vector of mean reversion levels.
• D is an NVars-by-NVars diagonal matrix, where each element along the main diagonal is the

corresponding element of the state vector raised to the corresponding power of α.
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWt is an NBrowns-by-1 Brownian motion vector.

Creation
Syntax
SDEMRD = sdemrd(Speed,Level,Alpha,Sigma)
SDEMRD = sdemrd( ___ ,Name,Value)

Description

SDEMRD = sdemrd(Speed,Level,Alpha,Sigma) creates a default SDEMRD object.

SDEMRD = sdemrd( ___ ,Name,Value) creates a SDEMRD object with additional options specified
by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

The SDELD object has the following displayed “Properties” on page 19-111:
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• StartTime — Initial observation time
• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument, callable as a function of

time
• Drift — Composite drift-rate function, callable as a function of time and state
• Diffusion — Composite diffusion-rate function, callable as a function of time and state
• Speed — Access function for the input argument Speed, callable as a function of time and state
• Level — Access function for the input argument Level, callable as a function of time and state
• Alpha — Access function for the input argument Alpha, callable as a function of time and state
• Sigma — Access function for the input argument Sigma, callable as a function of time and state
• Simulation — A simulation function or method

Input Arguments

Speed — Speed represents the parameter S
array or deterministic function of time or deterministic function of time and state

Speed represents the parameter S, specified as an array or deterministic function of time.

If you specify Speed as an array, it must be an NVars-by-NVars matrix of mean-reversion speeds (the
rate at which the state vector reverts to its long-run average Level).

As a deterministic function of time, when Speed is called with a real-valued scalar time t as its only
input, Speed must produce an NVars-by-NVars matrix. If you specify Speed as a function of time and
state, it calculates the speed of mean reversion. This function must generate an NVars-by-NVars
matrix of reversion rates when called with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Level — Level represents the parameter L
array or deterministic function of time or deterministic function of time and state

Level represents the parameter L, specified as an array or deterministic function of time.

If you specify Level as an array, it must be an NVars-by-1 column vector of reversion levels.

As a deterministic function of time, when Level is called with a real-valued scalar time t as its only
input, Level must produce an NVars-by-1 column vector. If you specify Level as a function of time
and state, it must generate an NVars-by-1 column vector of reversion levels when called with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Alpha — Alpha represents the parameter D
array or deterministic function of time or deterministic function of time and state
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Alpha represents the parameter D, specified as an array or deterministic function of time.

If you specify Alpha as an array, it represents an NVars-by-1 column vector of exponents.

As a deterministic function of time, when Alpha is called with a real-valued scalar time t as its only
input, Alpha must produce an NVars-by-1 matrix.

If you specify it as a function of time and state, Alpha must return an NVars-by-1 column vector of
exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of time.

If you specify Sigma as an array, it must be an NVars-by-NBrowns matrix of instantaneous volatility
rates or as a deterministic function of time. In this case, each row of Sigma corresponds to a
particular state variable. Each column corresponds to a particular Brownian source of uncertainty,
and associates the magnitude of the exposure of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVars-by-NBrowns matrix. If you specify Sigma as a function of time
and state, it must return an NVars-by-NBrowns matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function_handle

Note Although sdemrd does not enforce restrictions on the signs of Alpha or Sigma, each
parameter is specified as a positive value.

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, sdemrd applies the same initial value to all state variables on all trials.
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If StartState is a column vector, sdemrd applies a unique initial value to each state variable on all
trials.

If StartState is a matrix, sdemrd applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate the
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function C(t) that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to specify a dynamic correlation
structure.
Data Types: double

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects using drift of the form:

F(t, Xt) = A(t) + B(t)Xt

where:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:
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• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with a linear drift
rate parametric form. However, specifying either A or B as a function allows you to customize
virtually any drift rate specification.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)
Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t, Xt)

This property is read-only.

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects using diffusion:

G(t, Xt) = D(t, Xt
α(t))V(t)

where:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
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functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion classes in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
Data Types: struct | double

Object Functions
interpolate Brownian interpolation of stochastic differential equations
simulate Simulate multivariate stochastic differential equations (SDEs)
simByEuler Euler simulation of stochastic differential equations (SDEs)

Examples

Create a sdemrd Object

The sdemrd class derives directly from the sdeddo class. It provides an interface in which the drift-
rate function is expressed in mean-reverting drift form: dXt = S(t)[L(t)− Xt]dt + D(t, Xt

α(t))V(t)dWt.

sdemrd objects provide a parametric alternative to the linear drift form by reparameterizing the
general linear drift such that: A(t) = S(t)L(t), B(t) = − S(t).

Create an sdemrd object obj with a square root exponent to represent the model:

dXt = 0 . 2(0 . 1− Xt)dt + 0 . 05Xt

1
2dWt.

obj = sdemrd(0.2, 0.1, 0.5, 0.05)   % (Speed, Level, Alpha, Sigma)

obj = 
   Class SDEMRD: SDE with Mean-Reverting Drift
   -------------------------------------------
     Dimensions: State = 1, Brownian = 1
   -------------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Alpha: 0.5
          Sigma: 0.05
          Level: 0.1
          Speed: 0.2

sdemrd objects display the familiar Speed and Level parameters instead of A and B.
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More About
Instance Hierarchy

There are inheritance relationships among the SDE classes.

The following figure illustrates the inheritance relationships.

For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
When you specify the required input parameters as arrays, they are associated with a specific
parametric form. By contrast, when you specify either required input parameter as a function, you
can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus,
when you invoke these parameters with no inputs, they behave like simple properties and allow you
to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of
dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input as an array, sdemrd treats it
as a static function of time and state, by that means guaranteeing that all parameters are accessible
by the same interface.
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bates
Bates stochastic volatility model

Description
The bates function creates a bates object, which represents a Bates model.

The Bates model is a bivariate composite model that derives from the heston object. The Bates
model is composed of two coupled and dissimilar univariate models, each driven by a single Brownian
motion source of risk and a single compound Poisson process representing the arrivals of important
events over NPeriods consecutive observation periods. The Bates model approximates continuous-
time Bates stochastic volatility processes.

The first univariate model is a GBM model with a stochastic volatility function and a stochastic jump
process, and usually corresponds to a price process whose variance rate is governed by the second
univariate model. The second model is a Cox-Ingersoll-Ross (CIR) square root diffusion model that
describes the evolution of the variance rate of the coupled GBM price process.

Bates models are bivariate composite models. Each Bates model consists of two coupled univariate
models:

• A geometric Brownian motion (gbm) model with a stochastic volatility function and jumps.

dX1t = B(t)X1tdt + X2tX1tdW1t + Y(t)X1tdNt

This model usually corresponds to a price process whose volatility (variance rate) is governed by
the second univariate model.

• A Cox-Ingersoll-Ross (cir) square root diffusion model.

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

This model describes the evolution of the variance rate of the coupled Bates price process.

Creation

Syntax
Bates = bates(Return,Speed,Level,Volatility,JumpFreq,JumpMean,JumpVol)
Bates = bates( ___ ,Name,Value)

Description

Bates = bates(Return,Speed,Level,Volatility,JumpFreq,JumpMean,JumpVol) create a
bates object with the default options.

Since Bates models are bivariate models composed of coupled univariate models, all required inputs
correspond to scalar parameters. Specify required inputs as one of two types:
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• MATLAB array. Specify an array to indicate a static (non-time-varying) parametric specification.
This array fully captures all implementation details, which are clearly associated with a
parametric form.

• MATLAB function. Specify a function to provide indirect support for virtually any static, dynamic,
linear, or nonlinear model. This parameter is supported by an interface because all
implementation details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input parameters as needed. Moreover, a
parameter is identified as a deterministic function of time if the function accepts a scalar time t as its
only input argument. Otherwise, a parameter is assumed to be a function of time t and state Xt and is
invoked with both input arguments.

Bates = bates( ___ ,Name,Value) sets “Properties” on page 19-121 using name-value pair
arguments in addition to the input arguments in the preceding syntax. Enclose each property name in
quotes.

The bates object has the following “Properties” on page 19-121:

• StartTime — Initial observation time
• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument
• Drift — Composite drift-rate function
• Diffusion — Composite diffusion-rate function
• Simulation — A simulation function or method

Input Arguments

Return — Expected mean instantaneous rate of return of GBM price process
array | deterministic function of time | deterministic function of time and state

Expected mean instantaneous rate of return of the GBM price process, specified as an array, or a
deterministic function of time.

If you specify Return as an array, it must be scalar.

If you specify Return as a deterministic function of time, you call Return with a real-valued scalar
time t as its only input, it must return a scalar.

If you specify Return as a deterministic function of time and state, it must return a scalar when you
call it with two inputs:

• A real-valued scalar observation time t
• A 2-by-1 bivariate state vector Xt

Data Types: double | function_handle

Speed — Mean-reversion speed of CIR stochastic variance process
array | deterministic function of time | deterministic function of time and state

Mean-reversion speed of the CIR stochastic variance process, specified as an array or deterministic
function of time.
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If you specify Speed as an array, it must be a scalar.

If you specify Speed as a deterministic function of time, you call Speed with a real-valued scalar time
t as its only input, it must return a scalar.

If you specify Speed as a function of time and state, the function calculates the speed of mean
reversion. This function must return a scalar of reversion rates when you call it with two inputs:

• A real-valued scalar observation time t
• A 2-by-1 bivariate state vector Xt

Note Although bates enforces no restrictions on Speed, the mean-reversion speed is nonnegative
such that the underlying process reverts to some stable level.

Data Types: double | function_handle

Level — Reversion level or long-run average of CIR stochastic variance process
array | deterministic function of time | deterministic function of time and state

Reversion level or long-run average of the CIR stochastic variance process, specified as an array, or
deterministic function of time.

If you specify Level as an array, it must be a scalar.

If you specify Level as a deterministic function of time, you call Level with a real-valued scalar time
t as its only input, it must return a scalar.

If you specify Level as a deterministic function of time and state, it must return a scalar of reversion
levels when you call it with two inputs:

• A real-valued scalar observation time t
• A 2-by-1 bivariate state vector Xt

Data Types: double | function_handle

Volatility — Instantaneous volatility CIR stochastic variance process
scalar | deterministic function of time | deterministic function of time and state

Instantaneous volatility of the CIR stochastic variance process (often called the volatility of volatility
or volatility of variance), specified as a scalar, a deterministic function of time, or a deterministic
function of time and state.

If you specify Volatility as a scalar, it represents the instantaneous volatility of the CIR stochastic
variance model.

If you specify Volatility as a deterministic function of time, you call Volatility with a real-
valued scalar time t as its only input, it must return a scalar.

If you specify Volatility as a deterministic function time and state, Volatility must return a
scalar when you call it with two inputs:

• A real-valued scalar observation time t
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• A 2-by-1 bivariate state vector Xt

Note Although bates enforces no restrictions on Volatility, the volatility is usually nonnegative.

Data Types: double | function_handle

JumpFreq — Instantaneous jump frequencies representing intensities of Poisson processes
array | deterministic function of time | deterministic function of time and state

Instantaneous jump frequencies representing the intensities (the mean number of jumps per unit
time) of Poisson processes (Nt) that drive the jump simulation, specified as an array, a deterministic
function of time, or a deterministic function of time and state.

If you specify JumpFreq as an array, it must be a scalar.

If you specify JumpFreq as a deterministic function of time, you call JumpFreq with a real-valued
scalar time t as its only input, it must return a scalar.

If you specify JumpFreq as a function of time and state, JumpFreq must return a scalar when you
call it with two inputs:

• A real-valued scalar observation time t
• A 2-by-1 bivariate state vector Xt

Data Types: double | function_handle

JumpMean — Instantaneous mean of random percentage jump sizes
array | deterministic function of time | deterministic function of time and state

Instantaneous mean of random percentage jump sizes J, where log(1+J) is normally distributed with
mean (log(1+JumpMean) - 0.5 × JumpVol2) and standard deviation JumpVol, specified as an array, a
deterministic function of time, or a deterministic function of time and state.

If you specify JumpMean as an array, it must be a scalar.

If you specify JumpMean as a deterministic function of time, you call JumpMean with a real-valued
scalar time t as its only input, it must return a scalar.

If you specify JumpMean as a function of time and state, JumpMean must return a scalar when you
call it with two inputs:

• A real-valued scalar observation time t
• A 2-by-1 bivariate state vector Xt

Data Types: double | function_handle

JumpVol — Instantaneous standard deviation
array | deterministic function of time | deterministic function of time and state

Instantaneous standard deviation of log(1+J), specified as an array, a deterministic function of time,
or a deterministic function of time and state.

If you specify JumpVol as an array, it must be a scalar.
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If you specify JumpVol as a deterministic function of time, you call JumpVol with a real-valued scalar
time t as its only input, it must return a scalar.

If you specify JumpVol as a function of time and state, JumpVol must return a scalar when you call it
with two inputs:

• A real-valued scalar observation time t
• A 2-by-1 bivariate state vector Xt

Data Types: double | function_handle

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar.
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar | column vector | matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, bates applies the same initial value to all state variables on all trials.

If StartState is a bivariate column vector, bates applies a unique initial value to each state
variable on all trials.

If StartState is a matrix, bates applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate
Brownian motion vector (Wiener processes)
2-by-2 identity matrix representing independent Gaussian processes (default) | positive semidefinite
matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as a scalar, a 2-by-2 positive semidefinite matrix, or as a deterministic
function Ct that accepts the current time t and returns an 2-by-2 positive semidefinite correlation
matrix. If Correlation is not a symmetric positive semidefinite matrix, use nearcorr to create a
positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

If you specify Correlation as a deterministic function of time, Correlation allows you to specify a
dynamic correlation structure.
Data Types: double

Drift — Drift-rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.
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Drift-rate component of continuous-time stochastic differential equations (SDEs), specified as a drift
object or function accessible by (t, Xt).

The drift rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

Use the drift function to create drift objects of the form

F(t, Xt) = A(t) + B(t)Xt

Here:

• A is an NVars-by-1 vector-valued function accessible by the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible by the (t, Xt) interface.

The displayed parameters for a drift object follow.

• Rate — Drift-rate function, F(t,Xt)
• A — Intercept term, A(t,Xt), of F(t,Xt)
• B — First-order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

Specifying AB as MATLAB double arrays clearly associates them with a linear drift rate parametric
form. However, specifying either A or B as a function allows you to customize virtually any drift-rate
specification.

Note You can express drift and diffusion objects in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift-rate function F(t,X)
Data Types: object

Diffusion — Diffusion-rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t,
Xt)

This property is read-only.

Diffusion-rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt).

The diffusion-rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods
for approximating continuous-time stochastic processes.

Use the diffusion function to create diffusion objects of the form
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G(t, Xt) = D(t, Xt
α(t))V(t)

Here:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate — Diffusion-rate function, G(t,Xt)
• Alpha — State vector exponent, which determines the format of D(t,Xt) of G(t,Xt)
• Sigma — Volatility rate, V(t,Xt), of G(t,Xt)

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion objects in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion-rate function G(t,X)
Data Types: object

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Object Functions
simByEuler Simulate Bates sample paths by Euler approximation
simByQuadExp Simulate Bates, Heston, and CIR sample paths by quadratic-exponential

discretization scheme
simulate Simulate multivariate stochastic differential equations (SDEs)
simByTransition Simulate Bates sample paths with transition density

Examples

Create bates Object

Bates models are bivariate composite models, composed of two coupled and dissimilar univariate
models, each driven by a single Brownian motion source of risk and a single compound Poisson
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process representing the arrivals of important events over NPeriods consecutive observation
periods. The simulation approximates continuous-time Bates stochastic volatility processes.

Create a bates object.

AssetPrice = 80;
            Return = 0.03;
            JumpMean = 0.02;
            JumpVol = 0.08;
            JumpFreq = 0.1;
            
            V0 = 0.04;
            Level = 0.05;
            Speed = 1.0;
            Volatility = 0.2;
            Rho = -0.7;
            StartState = [AssetPrice;V0]; 
            Correlation = [1 Rho;Rho 1];

batesObj = bates(Return, Speed, Level, Volatility,...
                JumpFreq, JumpMean, JumpVol,'startstate',StartState,...
                'correlation',Correlation)

batesObj = 
   Class BATES: Bates Bivariate Stochastic Volatility
   --------------------------------------------------
     Dimensions: State = 2, Brownian = 2
   --------------------------------------------------
      StartTime: 0
     StartState: 2x1 double array 
    Correlation: 2x2 double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.03
          Speed: 1
          Level: 0.05
     Volatility: 0.2
       JumpFreq: 0.1
       JumpMean: 0.02
        JumpVol: 0.08

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes, as follows.
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For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
The Bates model (Bates 1996) is an extension of the Heston model and adds not only stochastic
volatility, but also the jump diffusion parameters as in Merton (1976) were also added to model
sudden asset price movements.

Under the risk-neutral measure the model is expressed as follows

dSt = (γ− q− λpμ j)Stdt + υtStdWt + JStdPt

dυt = κ(θ− υt)dt + συ υtdWt
υ

E dWtdWt
υ = pdt

prob(dPt = 1) = λpdt

Here:

ᵞ is the continuous risk-free rate.

q is the continuous dividend yield.

J is the random percentage jump size conditional on the jump occurring, where

ln(1 + J) N(ln(1+u j)−
δ2

2 , δ2

(1+J) has a lognormal distribution:
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1
(1 + J)δ 2πexp

− ln(1 + J)− (ln(1+μ j)−
δ2
2

2

2δ2

Here:

μj is the mean of J(μj > -1).

ƛp is the annual frequency (intensity) of the Poisson process Pt (ƛp ≥ 0).

υ is the initial variance of the underlying asset (υ0 > 0).

θ is the long-term variance level (θ > 0).

κ is the mean reversion speed for the variance (κ > 0).

συ is the volatility of volatility (συ > 0).

p is the correlation between the Weiner processes Wt and Wt
υ (-1 ≤ p ≤ 1).

The "Feller condition" ensures positive variance: (2κθ > συ
2).

The stochastic volatility along with the jump help better model the asymmetric leptokurtic features,
the volatility smile, and the large random fluctuations such as crashes and rallies.
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See Also
simByEuler | merton | simulate

Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
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“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2020a
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merton
Merton jump diffusion model

Description
The merton function creates a merton object, which derives from the gbm object.

The merton model, based on the Merton76 model, allows you to simulate sample paths of NVars
state variables driven by NBrowns Brownian motion sources of risk and NJumps compound Poisson
processes representing the arrivals of important events over NPeriods consecutive observation
periods. The simulation approximates continuous-time merton stochastic processes.

You can simulate any vector-valued merton process of the form

dXt = B(t, Xt)Xtdt + D(t, Xt)V(t, xt)dWt + Y(t, Xt, Nt)XtdNt

Here:

• Xt is an NVars-by-1 state vector of process variables.
• B(t,Xt) is an NVars-by-NVars matrix of generalized expected instantaneous rates of return.
• D(t,Xt) is an NVars-by-NVars diagonal matrix in which each element along the main diagonal is

the corresponding element of the state vector.
• V(t,Xt) is an NVars-by-NVars matrix of instantaneous volatility rates.
• dWt is an NBrowns-by-1 Brownian motion vector.
• Y(t,Xt,Nt) is an NVars-by-NJumps matrix-valued jump size function.
• dNt is an NJumps-by-1 counting process vector.

Creation

Syntax
Merton = merton(Return,Sigma,JumpFreq,JumpMean,JumpVol)
Merton = merton( ___ ,Name,Value)

Description

Merton = merton(Return,Sigma,JumpFreq,JumpMean,JumpVol) creates a default merton
object. Specify required inputs as one of two types:

• MATLAB array. Specify an array to indicate a static (non-time-varying) parametric specification.
This array fully captures all implementation details, which are clearly associated with a
parametric form.

• MATLAB function. Specify a function to provide indirect support for virtually any static, dynamic,
linear, or nonlinear model. This parameter is supported by an interface because all
implementation details are hidden and fully encapsulated by the function.
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Note You can specify combinations of array and function input parameters as needed. Moreover, a
parameter is identified as a deterministic function of time if the function accepts a scalar time t as its
only input argument. Otherwise, a parameter is assumed to be a function of time t and state Xt and is
invoked with both input arguments.

Merton = merton( ___ ,Name,Value) sets “Properties” on page 19-131 using name-value pair
arguments in addition to the input arguments in the preceding syntax. Enclose each property name in
quotes.

The merton object has the following “Properties” on page 19-131:

• StartTime — Initial observation time
• StartState — Initial state at time StartTime
• Correlation — Access function for the Correlation input argument
• Drift — Composite drift-rate function
• Diffusion — Composite diffusion-rate function
• Simulation — A simulation function or method

Input Arguments

Return — Expected mean instantaneous rates of asset return
array | deterministic function of time | deterministic function of time and state

Expected mean instantaneous rates of asset return, denoted as B(t,Xt), specified as an array, a
deterministic function of time, or a deterministic function of time and state.

If you specify Return as an array, it must be an NVars-by-NVars matrix representing the expected
(mean) instantaneous rate of return.

If you specify Return as a deterministic function of time, when you call Return with a real-valued
scalar time t as its only input, it must return an NVars-by-NVars matrix.

If you specify Return as a deterministic function of time and state, it must return an NVars-by-
NVars matrix when you call it with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Data Types: double | function_handle

Sigma — Instantaneous volatility rates
array | deterministic function of time | deterministic function of time and state

Instantaneous volatility rates, denoted as V(t,Xt), specified as an array, a deterministic function of
time, or a deterministic function of time and state.

If you specify Sigma as an array, it must be an NVars-by-NBrowns matrix of instantaneous volatility
rates or a deterministic function of time. In this case, each row of Sigma corresponds to a particular
state variable. Each column corresponds to a particular Brownian source of uncertainty, and
associates the magnitude of the exposure of state variables with sources of uncertainty.

If you specify Sigma as a deterministic function of time, when you call Sigma with a real-valued
scalar time t as its only input, it must return an NVars-by-NBrowns matrix.
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If you specify Sigma as a deterministic function of time and state, it must return an NVars-by-
NBrowns matrix when you call it with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Note Although merton enforces no restrictions for Sigma, volatilities are usually nonnegative.

Data Types: double | function_handle

JumpFreq — Instantaneous jump frequencies representing intensities of Poisson processes
array | deterministic function of time | deterministic function of time and state

Instantaneous jump frequencies representing the intensities (the mean number of jumps per unit
time) of the Poisson processes Nt that drive the jump simulation, specified as an array, a deterministic
function of time, or a deterministic function of time and state.

If you specify JumpFreq as an array, it must be an NJumps-by-1 vector.

If you specify JumpFreq as a deterministic function of time, when you call JumpFreq with a real-
valued scalar time t as its only input, JumpFreq must produce an NJumps-by-1 vector.

If you specify JumpFreq as a deterministic function of time and state, it must return an NVars-by-
NBrowns matrix when you call it with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Data Types: double | function_handle

JumpMean — Instantaneous mean of random percentage jump sizes
array | deterministic function of time | deterministic function of time and state

Instantaneous mean of random percentage jump sizes J, where log(1+J) is normally distributed with
mean (log(1+JumpMean) - 0.5 × JumpVol2) and standard deviation JumpVol, specified as an array, a
deterministic function of time, or a deterministic function of time and state.

If you specify JumpMean as an array, it must be an NVars-by-NJumps matrix.

If you specify JumpMean as a deterministic function of time, when you cal JumpMean with a real-
valued scalar time t as its only input, it must return an NVars-by-NJumps matrix.

If you specify JumpMean as a deterministic function of time and state, it must return an NVars-by-
NJumps matrix when you call it with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Data Types: double | function_handle

JumpVol — Instantaneous standard deviation
array | deterministic function of time | deterministic function of time and state
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Instantaneous standard deviation of log(1+J), specified as an array, a deterministic function of time,
or a deterministic function of time and state.

If you specify JumpVol as an array, it must be an NVars-by-NJumps matrix.

If you specify JumpVol as a deterministic function of time, when you call JumpVol with a real-valued
scalar time t as its only input, it must return an NVars-by-NJumps matrix.

If you specify JumpVol as a deterministic function of time and state, it must return an NVars-by-
NJumps matrix when you call it with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Data Types: double | function_handle

Properties
StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar.
Data Types: double

StartState — Initial values of state variables
1 (default) | scalar | column vector | matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, merton applies the same initial value to all state variables on all trials.

If StartState is a column vector, merton applies a unique initial value to each state variable on all
trials.

If StartState is a matrix, merton applies a unique initial value to each state variable on each trial.
Data Types: double

Correlation — Correlation between Gaussian random variates drawn to generate
Brownian motion vector (Wiener processes)
NBrowns-by-NBrowns identity matrix representing independent Gaussian processes (default) |
positive semidefinite matrix | deterministic function

Correlation between Gaussian random variates drawn to generate the Brownian motion vector
(Wiener processes), specified as an NBrowns-by-NBrowns positive semidefinite matrix, or as a
deterministic function Ct that accepts the current time t and returns an NBrowns-by-NBrowns
positive semidefinite correlation matrix. If Correlation is not a symmetric positive semidefinite
matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.

A Correlation matrix represents a static condition.

If you specify Correlation as a deterministic function of time, you can specify a dynamic
correlation structure.
Data Types: double
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Drift — Drift-rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t, Xt)

This property is read-only.

Drift-rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt).

The drift-rate specification supports the simulation of sample paths of NVars state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods,
approximating continuous-time stochastic processes.

Use the drift function to create drift objects of the form

F(t, Xt) = A(t) + B(t)Xt

Here:

• A is an NVars-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVars-by-NVars matrix-valued function accessible using the (t, Xt) interface.

The displayed parameters for a drift object are:

• Rate — Drift-rate function, F(t,Xt)
• A — Intercept term, A(t,Xt), of F(t,Xt)
• B — First-order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully encapsulates the
combined effect of A and B.

Specifying AB as MATLAB double arrays clearly associates them with a linear drift rate parametric
form. However, specifying either A or B as a function allows you to customize virtually any drift-rate
specification.

Note You can express drift and diffusion objects in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: F = drift(0, 0.1) % Drift-rate function F(t,X)
Data Types: object

Diffusion — Diffusion-rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions accessible by (t,
Xt)

This property is read-only.

Diffusion-rate component of continuous-time stochastic differential equations (SDEs), specified as a
drift object or function accessible by (t, Xt).
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The diffusion-rate specification supports the simulation of sample paths of NVars state variables
driven by NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods
for approximating continuous-time stochastic processes.

Use the diffusion function to create diffusion objects of the form

G(t, Xt) = D(t, Xt
α(t))V(t)

Here:

• D is an NVars-by-NVars diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised to the

corresponding element of an exponent Alpha, which is an NVars-by-1 vector-valued function.
• V is an NVars-by-NBrowns matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The displayed parameters for a diffusion object are:

• Rate — Diffusion-rate function, G(t,Xt)
• Alpha — State vector exponent, which determines the format of D(t,Xt) of G(t,Xt)
• Sigma — Volatility rate, V(t,Xt), of G(t,Xt)

Alpha and Sigma enable you to query the original inputs. (The combined effect of the individual
Alpha and Sigma parameters is fully encapsulated by the function stored in Rate.) The Rate
functions are the calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

Note You can express drift and diffusion objects in the most general form to emphasize the
functional (t, Xt) interface. However, you can specify the components A and B as functions that adhere
to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion-rate function G(t,X)
Data Types: object

Simulation — User-defined simulation function or SDE simulation method
simulation by Euler approximation (simByEuler) (default) | function | SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation
method.
Data Types: function_handle

Object Functions
simByEuler Simulate Merton jump diffusion sample paths by Euler approximation
simBySolution Simulate approximate solution of diagonal-drift Merton jump diffusion process
simulate Simulate multivariate stochastic differential equations (SDEs)

Examples
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Create merton Object

Merton jump diffusion models allow you to simulate sample paths of NVARS state variables driven by
NBROWNS Brownian motion sources of risk and NJumps compound Poisson processes representing the
arrivals of important events over NPeriods consecutive observation periods. The simulation
approximates continuous-time merton stochastic processes.

Create a merton object.

AssetPrice = 80;
            Return = 0.03;
            Sigma = 0.16;
            JumpMean = 0.02;
            JumpVol = 0.08;
            JumpFreq = 2;
            
            mertonObj = merton(Return,Sigma,JumpFreq,JumpMean,JumpVol,...
                'startstat',AssetPrice)

mertonObj = 
   Class MERTON: Merton Jump Diffusion
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 80
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.16
         Return: 0.03
       JumpFreq: 2
       JumpMean: 0.02
        JumpVol: 0.08

More About
Instance Hierarchy

There are inheritance relationships among the SDE classes, as follows.
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For more information, see “SDE Class Hierarchy” on page 18-5.

Algorithms
The Merton jump diffusion model (Merton 1976) is an extension of the Black-Scholes model, and
models sudden asset price movements (both up and down) by adding the jump diffusion parameters
with the Poisson process Pt.

Under the risk-neutral measure the model is expressed as follows

dSt = (γ− q− λpμ j)Stdt + σMStdWt + JStdPt
prob(dPt = 1) = λpdt

Here:

ᵞ is the continuous risk-free rate.

q is the continuous dividend yield.

J is the random percentage jump size conditional on the jump occurring, where

ln(1 + J) N(ln(1+u j)−
δ2

2 , δ2

(1+J) has a lognormal distribution:

1
(1 + J)δ 2πexp

− ln(1 + J)− (ln(1+μ j)−
δ2
2

2

2δ2
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Here:

μj is the mean of J(μj > -1).

ƛp is the annual frequency (intensity) of the Poisson process Pt (ƛp ≥ 0).

σM is the volatility of the asset price (σM> 0).

Under this formulation, extreme events are explicitly included in the stochastic differential equation
as randomly occurring discontinuous jumps in the diffusion trajectory. Therefore, the disparity
between observed tail behavior of log returns and that of Brownian motion is mitigated by the
inclusion of a jump mechanism.
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See Also
bates | simByEuler | simBySolution | simulate

Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62
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backtestStrategy
Create backtestStrategy object to define portfolio allocation strategy

Description
Create a backtestStrategy object which defines a portfolio allocation strategy.

Use this workflow to develop and run a backtest:

1 Define the strategy logic using a backtestStrategy object to specify how the strategy
rebalances a portfolio of assets.

2 Use backtestEngine to create a backtestEngine object that specifies the parameters of the
backtest.

3 Use runBacktest to run the backtest against historical asset price data and, optionally, trading
signal data.

4 Use equityCurve to plot the equity curves of each strategy.
5 Use summary to summarize the backtest results in a table format.

For more detailed information on this workflow, see “Backtest Investment Strategies” on page 4-220.

Creation
Syntax
strategy = backtestStrategy(name,rebalanceFcn)
strategy = backtestStrategy( ___ ,Name,Value)

Description

strategy = backtestStrategy(name,rebalanceFcn) creates a backtestStrategy object.

strategy = backtestStrategy( ___ ,Name,Value) sets properties on page 19-140 using name-
value pair arguments and any of the arguments in the previous syntax. You can specify multiple
name-value pair arguments. For example, strat =
backtestStrategy('MyStrategy',@myRebalFcn,'TransactionCost',0.005,'LookbackWi
ndow',20).

Input Arguments

name — Strategy name
string

Strategy name, specified as a string.
Data Types: string

rebalanceFcn — Rebalance function
function handle
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Rebalance function, specified as a function handle. A function handle computes new portfolio weights
during the backtest. The rebalanceFcn argument implements the core logic of the trading strategy
and must have one of the following signatures:

• new_weights = rebalanceFcn(weights,assetPrices)
• new_weights = rebalanceFcn(weights,assetPrices,signalData)

The rebalance function is called by the backtestEngine object each time the strategy must be
rebalanced. The backtestEngine object calls the rebalance function with the following arguments:

• weights — The current portfolio weights before rebalancing, specified as decimal percentages.
• assetPrices — A timetable containing a rolling window of adjusted asset prices.
• signalData — A timetable containing a rolling window of signal data. If you provide signal

data is to the backtestEngine object, then the engine object passes it to the strategy rebalance
function using the three input argument syntax. If do not provide signal data the
backtestEngine object, then the engine object calls the rebalance function with the two input
argument syntax.

The rebalance function must return a single output argument for new_weights which is a vector
of asset weights specified as decimal percentages.

• If the new_weights sum to 1, then the portfolio is fully invested.
• If the new_weights sum to less than 1, then the portfolio will has the remainder in cash,

earning the RiskFreeRate specified in the backtestEngine object.
• If the new_weights sum to more than 1, then there is a negative cash position (margin) and

the cash borrowed accrues interest at the cash borrowing rate specified in the
CashBorrowRate property of the backtestEngine object.

For more information on developing a rebalanceFcn function handle, see “Backtest Investment
Strategies” on page 4-220.

Data Types: function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: strat =
backtestStrategy('MyStrategy',@myRebalFcn,'TransactionCost',0.005,'LookbackWi
ndow',20)

RebalanceFrequency — Rebalance frequency during backtest
1 (default) | integer | duration object | calendarDuration object | vector of datetime objects

Rebalance frequency during the backtest, specified as the comma-separated pair consisting of
'RebalanceFrequency' and a scalar integer, duration object, calendarDuration object, or a
vector of datetime objects.

If using an integer, the integer represents the number of time steps between rebalancing. For
example, if you provide the backtestEngine object with daily price data, then the
RebalanceFrequency specifies the number of days between rebalancing. The default is 1, meaning
the strategy rebalances with each time step.

19 Functions

19-138



If using a duration object or calendarDuration, the backtest engine creates a rebalance
schedule of times, starting at the backtest start time, with rebalance times occurring after each step
of the specified duration.

If using a vector of datetime objects, the RebalanceFrequency defines an explicit schedule of
rebalance times. The backtest engine will rebalance at each datetime in the provided schedule.

Note For both the duration and datetime syntaxes, if a rebalance time is not found in the backtest
dataset, the engine will rebalance at the nearest time prior to the scheduled time. For example, if the
rebalance schedule contains a weekend, the rebalance will occur on the Friday before.

Data Types: double | object

TransactionCosts — Transaction costs for trades
0 (not computed) (default) | numeric | vector | function handle

Transaction costs for trades, specified as the comma-separated pair consisting of
'TransactionCosts' and a scalar numeric, vector, or function handle. You can specify transaction
costs in three ways:

• rate — A scalar decimal percentage charge to both purchases and sales of assets. For example ,if
you set TransactionCosts to 0.001, then each transaction (buys and sells) would pay 0.1% in
transaction fees.

• [buyRate, sellRate] — A 1-by-2 vector of decimal percentage rates that specifies separate
rates for buying and selling of assets.

• computeTransactionCostsFcn — A function handle to compute customized transaction fees. If
you specify a function handle, the backtestEngine object calls the TransactionCosts function
to compute the fees for each rebalance. The user-defined function handle must have the following
signature:

[buyCosts,sellCosts] = computeCostsFcn(deltaPositions)

The user-defined function handle takes a single input argument deltaPositions, which is a
vector of changes in asset positions for all assets (in currency units) as a result of a rebalance.
Positive elements in the deltaPositions vector indicate purchases while negative entries
represent sales. The user-defined function handle must return two output arguments buyCosts
and sellCosts, which contain the total costs (in currency) for the entire rebalance for each type
of transaction.

Data Types: double | function_handle

LookbackWindow — Lookback window
[0 Inf] (default) | 1-by-2 vector using integers | duration object | calendarDuration object

Lookback window, specified as the comma-separated pair consisting of 'LookbackWindow' and a 1-
by-2 vector of integers, a duration object, or calendarDuration object.

When using a 1-by-2 vector with integers that defines the minimum and maximum size of the rolling
window of data (asset prices and signal data) that you provide to the rebalanceFcn argument. You
specify these limits in terms of the number of time steps. When specified as integers, the lookback
window is defined in terms of rows of data from the asset (pricesTT) and signal (signalTT)
timetables used in the backtest. The lookback minimum sets the minimum number of rows of asset
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price data that must be available to the rebalance function before a strategy rebalance can occur. The
lookback maximum sets the maximum size for the rolling window of price data that is passed to the
rebalance function.

For example, if the backtestEngine object is provided with daily price data, then LookbackWindow
specifies the size bounds of the rolling window in days. The default is [0 Inf], meaning that all
available past data is given to the rebalance function. If you specify a non-zero minimum, then the
software does not call rebalanceFcn until enough time steps process to meet the minimum size.

If you specify LookbackWindow as a single scalar value, then the value is both the minimum and
maximum of the LookbackWindow (that is, a fixed-sized window).

If using a duration object or calendarDuration, the lookback window minimum and maximum
are defined in terms of timespans relative to the time at a rebalance. For example if the lookback
minimum was set to five days (that is, days(5)), the rebalance will only occur if the backtest start
time is at least five days prior to the rebalance time. Similarly, if the lookback maximum was set to six
months (that is, calmonths(6)), the lookback window would contain only data that occurred at six
months prior to the rebalance time or later.

Note Alternatively, the LookbackWindow can be set to a single scalar value indicating that the
rolling window should be exactly that size (either in terms of rows or a time duration). The minimum
and maximum size will both be set to the provided value.

Data Types: double | object

InitialWeights — Initial portfolio weights
[ ] (default) | vector

Initial portfolio weights, specified as the comma-separated pair consisting of 'InitialWeights'
and a vector. The InitialWeights vector sets the portfolio weights before the backtestEngine
object begins the backtest. The size of the initial weights vector must match the number of assets
used in the backtest.

Alternatively, you can set the InitialWeights name-value pair argument to empty ([ ]) to indicate
the strategy will begin with no investments and in a 100% cash position. The default for
InitialWeights is empty ([ ]).
Data Types: double

Properties
Name — Strategy name
string

Strategy name, specified as a string.
Data Types: string

RebalanceFcn — Rebalance function
function handle

Rebalance function, specified as a function handle.
Data Types: function_handle
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RebalanceFrequency — Rebalance frequency during backtest
1 (default) | numeric

Rebalance frequency during the backtest, specified as a scalar numeric.
Data Types: double

TransactionCosts — Transaction costs
0 (default) | numeric | vector | function handle

Transaction costs, specified as a scalar numeric, vector, or function handle.
Data Types: double | function_handle

LookbackWindow — Lookback window
[0 Inf] (default) | numeric | vector

Lookback window, specified as a scalar numeric or vector.
Data Types: double

InitialWeights — Initial weights
[ ] (default) | vector

Initial weights, specified as a vector.
Data Types: double

Examples

Create Backtesting Strategies

Define a backtest strategy by using a backtestStrategy object. backtestStrategy objects
contain properties specific to a trading strategy, such as the rebalance frequency, transaction costs,
and a rebalance function. The rebalance function implements the core logic of the strategy and is
used by the backtesting engine during the backtest to allow the strategy to change its asset allocation
and to make trades. In this example, to illustrate how to create and use backtest strategies in
MATLAB®, you prepare two simple strategies for backtesting:

1 An equal weighted strategy
2 A strategy that attempts to "chase returns"

The strategy logic for these two strategies is defined in the rebalance functions on page 19-0 .

Set Strategy Properties

A backtestStrategy object has several properties that you set using parameters for the
backtestStrategy function.

Initial Weights

The InitialWeights property contains the asset allocation weights at the start of the backtest. The
default value for InitialWeights is empty ([]), which indicates that the strategy begins the
backtest uninvested, meaning that 100% of the capital is in cash earning the risk-free rate.
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Set the InitialWeights to a specific asset allocation. The size of the initial weights vector must
match the number of assets in the backtest.

% Initialize the strategies with 30 weights, since the backtest
% data comes from a year of the 30 DJIA stocks.
numAssets = 30;

% Give the initial weights for both strategies equal weighting. Weights
% must sum to 1 to be fully invested.
initialWeights = ones(1,numAssets);
initialWeights = initialWeights / sum(initialWeights);

Transaction Costs

The TransactionCosts property allows you to set the fees that the strategy pays for trading assets.
Transaction costs are paid as a percentage of the total change in position for each asset. Specify costs
in decimal percentages. For example, if TransactionCosts is set to 1% (0.01) and the strategy
buys $100 worth of a stock, then the transaction costs incurred are $1.

Transaction costs are set using a 1-by-2 vector that sets separate fee rates for purchases and sales of
assets. In this example, both strategies pay the same transaction costs — 25 basis points for asset
purchases and 50 basis points for sales.

% Define the Transaction costs as [buyCosts sellCost] and specify the costs
% as decimal percentages.
tradingCosts = [0.0025 0.005];

You can also set the TransactionCosts property to a function handle if you need to implement
arbitrarily complex transaction cost structures. For more information on creating transaction cost
functions, see backtestStrategy.

Rebalance Frequency

The RebalanceFrequency property determines how often the backtesting engine rebalances and
reallocates the portfolio of a strategy using the rebalance function. Set the RebalanceFrequency in
terms of time steps in the backtest. For example, if the backtesting engine is testing a strategy with a
set of daily price data, then set the rebalance function in days. Essentially, RebalanceFrequency
represents the number of rows of price data to process between each call to the strategy rebalance
function.

% Both strategies rebalance every 4 weeks (20 days).
rebalFreq = 20;

Lookback Window

Each time the backtesting engine calls a strategy rebalance function, a window of asset price data
(and possibly signal data) is passed to the rebalance function. The rebalance function can then make
trading and allocation decisions based on a rolling window of market data. The LookbackWindow
property sets the size of these rolling windows. Set the window in terms of time steps. The window
determines the number of rows of data from the asset price timetable that are passed to the
rebalance function.

The LookbackWindow property can be set in two ways. For a fixed-sized rolling window of data (for
example, "50 days of price history"), the LookbackWindow property is set to a single scalar value (N
= 50). The software then calls the rebalance function with a price timetable containing exactly N rows
of rolling price data.
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Alternatively, you can define the LookbackWindow property by using a 1-by-2 vector [min max] that
specifies the minimum and maximum size for an expanding window of data. In this way, you can set
flexible window sizes. For example:

• [10 Inf] — At least 10 rows of data
• [0 50] — No more than 50 rows of data
• [0 Inf] — All available data (that is, no minimum, no maximum); this is the default value
• [20 20] — Exactly 20 rows of data; this is equivalent to setting LookbackWindow to the scalar

value 20

The software does not call the rebalance function if the data is insufficient to create a valid rolling
window, regardless of the value of the RebalanceFrequency property.

If the strategy does not require any price or signal data history, then you can indicate that the
rebalance function requires no data by setting the LookbackWindow property to 0.

% The equal weight strategy does not require any price history data.
ewLookback = 0;

% The "chase returns" strategy bases its decisions on the trailing
% 10-day asset returns. The lookback window is set to 11 since computing 10 days 
% of returns requires the close price from day 0.
chaseLookback = 11;

Rebalance Function

The rebalance function (rebalanceFcn) is the user-authored function that contains the logic of the
strategy. The backtesting engine calls the strategy rebalance function with a fixed set of parameters
and expects it to return a vector of asset weights representing the new, desired portfolio allocation
after a rebalance. For more information, see the rebalance functions on page 19-0 .

Create Strategies

Using the prepared strategy properties, you can create the two strategy objects.

% Create the equal weighted strategy. The rebalance function @equalWeights
% is defined in the Rebalance Functions section at the end of this example.
equalWeightStrategy = backtestStrategy("EqualWeight",@equalWeight,...
    'RebalanceFrequency',rebalFreq,...
    'TransactionCosts',tradingCosts,...
    'LookbackWindow',ewLookback,...
    'InitialWeights',initialWeights)

equalWeightStrategy = 
  backtestStrategy with properties:

                  Name: "EqualWeight"
          RebalanceFcn: @equalWeight
    RebalanceFrequency: 20
      TransactionCosts: [0.0025 0.0050]
        LookbackWindow: 0
        InitialWeights: [0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 ... ]

% Create the "chase returns" strategy.  The rebalance function
% @chaseReturns is defined in the Rebalance Functions section at the end of this example.
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chaseReturnsStrategy = backtestStrategy("ChaseReturns",@chaseReturns,...
    'RebalanceFrequency',rebalFreq,...
    'TransactionCosts',tradingCosts,...
    'LookbackWindow',chaseLookback,...
    'InitialWeights',initialWeights)

chaseReturnsStrategy = 
  backtestStrategy with properties:

                  Name: "ChaseReturns"
          RebalanceFcn: @chaseReturns
    RebalanceFrequency: 20
      TransactionCosts: [0.0025 0.0050]
        LookbackWindow: 11
        InitialWeights: [0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 ... ]

Set Up Backtesting Engine

To backtest the two strategies, use the backtestEngine object. The backtesting engine sets
parameters of the backtest that apply to all strategies, such as the risk-free rate and initial portfolio
value. For more information, see backtestEngine.

% Create an array of strategies for the backtestEngine.
strategies = [equalWeightStrategy chaseReturnsStrategy];

% Create backtesting engine to test both strategies.
backtester = backtestEngine(strategies);

Rebalance Functions

Strategy rebalance functions defined using the rebalanceFcn argument for backtestStrategy
must adhere to a fixed API that the backtest engine expects when interacting with each strategy.
Rebalance functions must implement one of the following two syntaxes:

function new_weights = exampleRebalanceFcn(current_weights,assetPriceTimeTable)

function new_weights = exampleRebalanceFcn(current_weights,assetPriceTimeTable,signalDataTimeTable)

All rebalance functions take as their first input argument the current allocation weights of the
portfolio. current_weights represents the asset allocation just before the rebalance occurs. During
a rebalance, you can use current_weights in a variety of ways. For example, you can use
current_weights to determine how far the portfolio allocation has drifted from the target
allocation or to size trades during the rebalance to limit turnover.

The second and third arguments of the rebalance function syntax are the rolling windows of asset
prices and optional signal data. The two tables contain the trailing N rows of the asset and signal
timetables that are passed to the runBacktest function, where N is set using the LookbackWindow
property of each strategy.

If optional signal data is provided to the runBacktest function, then the backtest engine passes the
rolling window of signal data to each strategy that supports it.

The equalWeight strategy simply invests equally across all assets.

function new_weights = equalWeight(current_weights,assetPrices) %#ok<INUSD> 
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% Invest equally across all assets.
num_assets = numel(current_weights);
new_weights = ones(1,num_assets) / num_assets;

end

The chaseReturns strategy invests only in the top X stocks based on their rolling returns in the
lookback window. This naive strategy is used simply as an illustrative example.

function new_weights = chaseReturns(current_weights,assetPrices) 

% Set number of stocks to invest in.
numStocks = 15;

% Compute rolling returns from lookback window.
rollingReturns = assetPrices{end,:} ./ assetPrices{1,:};

% Select the X best performing stocks over the lookback window
[~,idx] = sort(rollingReturns,'descend');
bestStocksIndex = idx(1:numStocks);

% Initialize new weights to all zeros.
new_weights = zeros(size(current_weights));

% Invest equally across the top performing stocks.
new_weights(bestStocksIndex) = 1;
new_weights = new_weights / sum(new_weights);

end

See Also
runBacktest | summary | backtestEngine | equityCurve | timetable

Topics
“Backtest Investment Strategies” on page 4-220
“Backtest Investment Strategies with Trading Signals” on page 4-233

Introduced in R2020b
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backtestEngine
Create backtestEngine object to backtest strategies and analyze results

Description
Create a backtestEngine to run a backtest of portfolio investment strategies on historical data.

Use this workflow to develop and run a backtest:

1 Define the strategy logic using a backtestStrategy object to specify how a strategy
rebalances a portfolio of assets.

2 Use backtestEngine to create a backtestEngine object that specifies parameters of the
backtest.

3 Use runBacktest to run the backtest against historical asset price data and, optionally, trading
signal data.

4 Use equityCurve to plot the equity curves of each strategy.
5 Use summary to summarize the backtest results in a table format.

For more detailed information on this workflow, see “Backtest Investment Strategies” on page 4-220.

Creation

Syntax
backtester = backtestEngine(strategies)
backtester = backtestEngine( ___ ,Name,Value)

Description

backtester = backtestEngine(strategies) creates a backtestEngine object. Use the
backtestEngine object to backtest the portfolio trading strategies defined in the
backtestStrategy objects.

backtester = backtestEngine( ___ ,Name,Value) sets properties on page 19-148 using name-
value pair arguments and any of the arguments in the previous syntax. You can specify multiple
name-value pair arguments. For example, backtester =
backtestEngine(strategies,'RiskFreeRate',0.02,'InitialPortfolioValue',1000,'R
atesConvention',"Annualized",'Basis',2).

Input Arguments

strategies — Backtest strategies
vector of backtestStrategy objects

Backtest strategies, specified as a vector of backtestStrategy objects. Each backtestStrategy
object defines a portfolio trading strategy.
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Data Types: object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: backtester =
backtestEngine(strategies,'RiskFreeRate',0.02,'InitialPortfolioValue',1000,'R
atesConvention',"Annualized",'Basis',2)

RiskFreeRate — Risk free rate
0 (default) | numeric

Risk free rate, specified as the comma-separated pair consisting of 'RiskFreeRate' and a scalar
numeric.

If RatesConvention is "Annualized", then RiskFreeRate specifies an annualized rate.

If RatesConvention is "PerStep", then the RiskFreeRate is a decimal percentage and
represents the risk free rate for one time step in the backtest. For example, if the backtest uses daily
asset price data, then the RiskFreeRate value must be the daily rate of return for cash.
Data Types: double

CashBorrowRate — Cash borrowing rate
0 (default) | numeric

Cash borrowing rate, specified as the comma-separated pair consisting of 'CashBorrowRate' and a
scalar numeric. The CashBorrowRate specifies the rate of interest accrual on negative cash
balances (margin) during the backtest.

If RatesConvention is "Annualized", then CashBorrowRate specifies an annualized rate.

If RatesConvention is "PerStep", then the CashBorrowRate value is a decimal percentage and
represents the interest accrual rate for one time step in the backtest. For example, if the backtest is
using daily asset price data, then the CashBorrowRate value must be the daily interest rate for
negative cash balances.
Data Types: double

InitialPortfolioValue — Initial portfolio value
10000 (default) | numeric

Initial portfolio value, specified as the comma-separated pair consisting of
'InitialPortfolioValue' and a scalar numeric.
Data Types: double

RatesConvention — Defines how backtest engine uses RiskFreeRate and CashBorrowRate
to compute interest
"Annualized" (default) | character vector with value 'Annualized' or 'PerStep' | string with
value "Annualized" or "PerStep"
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Defines how backtest engine uses RiskFreeRate and CashBorrowRate to compute interest,
specified as the comma-separated pair consisting of 'RatesConvention' and a character vector or
string.

• 'Annualized' — The rates are treated as annualized rates and the backtest engine computes
incremental interest based on the day count convention specified in the Basis property. This is
the default.

• 'PerStep' — The rates are treated as per-step rates and the backtest engine computes interest
at the provided rates at each step of the backtest.

Data Types: char | string

Basis — Defines day-count convention when computing interest at RiskFreeRate or
CashBorrowRate
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Defines the day-count convention when computing interest at the RiskFreeRate or
CashBorrowRate, specified as the comma-separated pair consisting of 'Basis' and a scalar integer
using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note Basis is only used when the RatesConvention property is set to "Annualized". If the
RatesConvention is "PerStep", and Basis is set, backtestEngine ignores the Basis value.

Data Types: double

Properties
Strategies — Backtest strategies
vector of backtestStrategy objects

Backtest strategies, specified as a vector of backtestStrategy objects.
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Data Types: object

RiskFreeRate — Risk free rate
0 (default) | numeric

Risk free rate, specified as a scalar numeric.
Data Types: double

CashBorrowRate — Cash borrowing rate
0 (default) | numeric

Cash borrowing rate, specified as a scalar numeric.
Data Types: double

InitialPortfolioValue — Initial portfolio value
10000 (default) | numeric

Initial portfolio value, specified as a scalar numeric.
Data Types: double

AnnualizedRates — Use annualized rates for RiskFreeRate and CashBorrowRate
true (default) | logical with value true or false

Use annualized rates for RiskFreeRate and CashBorrowRate, specified as a scalar logical.
Data Types: logical

Basis — Day-count basis of annualized rates for RiskFreeRate and CashBorrowRate
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of annualized rates for RiskFreeRate and CashBorrowRate, specified a scalar integer.
Data Types: double

NumAssets — Number of assets in portfolio universe
[ ] (default) | numeric

This property is read-only.

Number of assets in the portfolio universe, a numeric. NumAssets is derived from the timetable of
adjusted prices passed to runBacktest. NumAssets is empty until you run the backtest using the
runBacktest function.
Data Types: double

Returns — Strategy returns
[ ] (default) | timetable

This property is read-only.

Strategy returns, a NumTimeSteps-by-NumStrategies timetable of strategy returns. Returns are
per time step. For example, if you use daily prices with runBacktest, then Returns is the daily
strategy returns. Returns is empty until you run the backtest using the runBacktest function.
Data Types: timetable
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Positions — Asset positions for each strategy
[ ] (default) | structure

This property is read-only.

Asset positions for each strategy, a structure containing a NumTimeSteps-by-NumAssets timetable of
asset positions for each strategy. For example, if you use daily prices in the runBacktest, then the
Positions structure holds timetables containing the daily asset positions. Positions is empty until
you run the backtest using the runBacktest function.
Data Types: struct

Turnover — Strategy turnover
[ ] (default) | timetable

This property is read-only.

Strategy turnover, a NumTimeSteps-by-NumStrategies timetable. Turnover is empty until you run
the backtest using the runBacktest function.
Data Types: timetable

BuyCost — Transaction costs for asset purchases of each strategy
[ ] (default) | timetable

This property is read-only.

Transaction costs for the asset purchases of each strategy, a NumTimeSteps-by-NumStrategies
timetable. BuyCost is empty until you run the backtest using the runBacktest function.
Data Types: timetable

SellCost — Transaction costs for asset sales of each strategy
[ ] (default) | timetable

This property is read-only.

Transaction costs for the asset sales of each strategy, a NumTimeSteps-by-NumStrategies
timetable. SellCost is empty until you run the backtest using the runBacktest function.
Data Types: timetable

Object Functions
runBacktest Run backtest on one or more strategies
summary Generate summary table of backtest results
equityCurve Plot equity curves of strategies

Examples

Backtest Strategy Using backtestEngine

Use a backtesting engine in MATLAB® to run a backtest on an investment strategy over a time series
of market data. You can define a backtesting engine by using backtestEngine object. A
backtestEngine object sets properties of the backtesting environment, such as the risk-free rate,
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and holds the results of the backtest. In this example, you can create a backtesting engine to run a
simple backtest and examine the results.

Create Strategy

Define an investment strategy by using the backtestStrategy function. This example builds a
simple equal-weighted investment strategy that invests equally across all assets. For more
information on creating backtest strategies, see backtestStrategy.

% The rebalance function is simple enough that you can use an anonymous function
equalWeightRebalanceFcn = @(current_weights,~) ones(size(current_weights)) / numel(current_weights);

% Create the strategy
strategy = backtestStrategy("EqualWeighted",equalWeightRebalanceFcn,...
    'RebalanceFrequency',20,...
    'TransactionCosts',[0.0025 0.005],...
    'LookbackWindow',0)

strategy = 
  backtestStrategy with properties:

                  Name: "EqualWeighted"
          RebalanceFcn: [function_handle]
    RebalanceFrequency: 20
      TransactionCosts: [0.0025 0.0050]
        LookbackWindow: 0
        InitialWeights: [1x0 double]

Set Backtesting Engine Properties

The backtesting engine has several properties that you set by using parameters to the
backtestEngine function.

Risk-Free Rate

The RiskFreeRate property holds the interest rate earned for uninvested capital (that is, cash).
When the sum of portfolio weights is below 1, the remaining capital is invested in cash and earns the
risk-free rate. The risk-free rate and the cash-borrow rate can be defined in annualized terms or as
explicit "per-time-step" interest rates. The RatesConvention property is used to specify how the
backtestEngine interprets the two rates (the default interpretation is "Annualized"). For this
example, set the risk-free rate to 2% annualized.

% 2% annualized risk-free rate
riskFreeRate = 0.02;

Cash Borrow Rate

The CashBorrowRate property sets the interest accrual rate applied to negative cash balances. If at
any time the portfolio weights sum to a value greater than 1, then the cash position is negative by the
amount in excess of 1. This behavior of portfolio weights is analogous to borrowing capital on margin
to invest with leverage. Like the RiskFreeRate property, the CashBorrowRate property can either
be annualized or per-time-step depending on the value of the RatesConvention property.

% 6% annualized margin interest rate
cashBorrowRate = 0.06;

 backtestEngine
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Initial Portfolio Value

The InitialPortfolioValue property sets the value of the portfolio at the start of the backtest for
all strategies. The default is $10,000.

% Start backtest with $1M
initPortfolioValue = 1000000;

Create Backtest Engine

Using the prepared properties, create the backtesting engine using the backtestEngine function.

% The backtesting engine takes an array of backtestStrategy objects as the first argument
backtester = backtestEngine(strategy,...
    'RiskFreeRate',riskFreeRate,...
    'CashBorrowRate',cashBorrowRate,...
    'InitialPortfolioValue',initPortfolioValue)

backtester = 
  backtestEngine with properties:

               Strategies: [1x1 backtestStrategy]
             RiskFreeRate: 0.0200
           CashBorrowRate: 0.0600
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 1000000
                NumAssets: []
                  Returns: []
                Positions: []
                 Turnover: []
                  BuyCost: []
                 SellCost: []

Several additional properties of the backtesting engine are initialized to empty. The backtesting
engine populates these properties, which contain the results of the backtest, upon completion of the
backtest.

Load Data and Run Backtest

Run the backtest over daily price data from the 30 component stocks of the DJIA.

% Read table of daily adjusted close prices for 2006 DJIA stocks
T = readtable('dowPortfolio.xlsx');

% Remove the DJI index column and convert to timetable
pricesTT = table2timetable(T(:,[1 3:end]),'RowTimes','Dates');

Run the backtest using the runBacktest function.

backtester = runBacktest(backtester,pricesTT)

backtester = 
  backtestEngine with properties:

               Strategies: [1x1 backtestStrategy]
             RiskFreeRate: 0.0200
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           CashBorrowRate: 0.0600
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 1000000
                NumAssets: 30
                  Returns: [250x1 timetable]
                Positions: [1x1 struct]
                 Turnover: [250x1 timetable]
                  BuyCost: [250x1 timetable]
                 SellCost: [250x1 timetable]

Examine Results

The backtesting engine populates the read-only properties of the backtestEngine object with the
backtest results. Daily values for portfolio returns, asset positions, turnover, and transaction costs are
available to examine.

% Generate a histogram of daily portfolio returns
histogram(backtester.Returns{:,1})
title('Daily Portfolio Returns')

Use equityCurve to plot the equity curve for the simple equal-weighted investment strategy.

equityCurve(backtester)

 backtestEngine
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See Also
backtestStrategy | runBacktest | summary | equityCurve

Topics
“Backtest Investment Strategies” on page 4-220
“Backtest Investment Strategies with Trading Signals” on page 4-233

Introduced in R2020b
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runBacktest
Run backtest on one or more strategies

Syntax
backtester = runBacktest(backtester,pricesTT)
backtester = runBacktest(backtester,pricesTT,signalTT)
backtester = runBacktest( ___ ,Name,Value)

Description
backtester = runBacktest(backtester,pricesTT) runs the backtest over the timetable of
adjusted asset price data.

runBacktest initializes each strategy previously defined using backtestStrategy to the
InitialPortfolioValue and then begins processing the timetable of price data (pricesTT) as
follows:

1 At each time step, the runBacktest function applies the asset returns to the strategy portfolio
positions.

2 The runBacktest function determines which strategies to rebalance based on the
RebalanceFrequency property of the backtestStrategy objects.

3 For strategies that need rebalancing, the runBacktest function calls their rebalance functions
with a rolling window of asset price data based on the LookbackWindow property of each
backtestStrategy.

4 Transaction costs are calculated and charged based on the changes in asset positions and the
TransactionCosts property of each backtestStrategy object.

5 After the backtest is complete, the results are stored in several properties of the
backtestEngine object.

backtester = runBacktest(backtester,pricesTT,signalTT) run the backtest using the
adjusted asset price data and signal data. When you specify the signal data timetable (signalTT),
then the runBacktest function runs the backtest and additionally passes a rolling window of signal
data to the rebalance function of each strategy during the rebalance step.

backtester = runBacktest( ___ ,Name,Value) specifies options using one or more optional
name-value pair arguments in addition to the input arguments in the previous syntax. For example,
backtester = runBacktest(backtester,assetPrices,'Start',50,'End',100).

Examples

Run Backtests

The MATLAB® backtesting engine runs backtests of portfolio investment strategies over timeseries
of asset price data. After creating a set of backtest strategies using backtestStrategy and the
backtest engine using backtestEngine, the runBacktest function executes the backtest. This
example illustrates how to use the runBacktest function to test investment strategies.
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Load Data

Load one year of stock price data. For readability, this example only uses a subset of the DJIA stocks.

% Read table of daily adjusted close prices for 2006 DJIA stocks
T = readtable('dowPortfolio.xlsx');

% Prune the table on only hold the dates and selected stocks
timeColumn = "Dates";
assetSymbols = ["BA", "CAT", "DIS", "GE", "IBM", "MCD", "MSFT"];
T = T(:,[timeColumn assetSymbols]);

% Convert to timetable
pricesTT = table2timetable(T,'RowTimes','Dates');

% View the final asset price timetable
head(pricesTT)

ans=8×7 timetable
       Dates        BA       CAT      DIS      GE       IBM      MCD     MSFT 
    ___________    _____    _____    _____    _____    _____    _____    _____

    03-Jan-2006    68.63    55.86    24.18     33.6    80.13    32.72    26.19
    04-Jan-2006    69.34    57.29    23.77    33.56    80.03    33.01    26.32
    05-Jan-2006    68.53    57.29    24.19    33.47    80.56    33.05    26.34
    06-Jan-2006    67.57    58.43    24.52     33.7    82.96    33.25    26.26
    09-Jan-2006    67.01    59.49    24.78    33.61    81.76    33.88    26.21
    10-Jan-2006    67.33    59.25    25.09    33.43     82.1    33.91    26.35
    11-Jan-2006     68.3    59.28    25.33    33.66    82.19     34.5    26.63
    12-Jan-2006     67.9    60.13    25.41    33.25    81.61    33.96    26.48

Create Strategy

In this introductory example, test an equal weighted investment strategy. This strategy invests an
equal portion of the available capital into each asset. This example does describe the details about
how create backtest strategies. For more information on creating backtest strategies, see
backtestStrategy.

Set the RebalanceFrequency to rebalance the portfolio every 60 days. This example does not use a
lookback window to rebalance.

% Create the strategy
numAssets = size(pricesTT,2);
equalWeightsVector = ones(1,numAssets) / numAssets;
equalWeightsRebalanceFcn = @(~,~) equalWeightsVector;

ewStrategy = backtestStrategy("EqualWeighted",equalWeightsRebalanceFcn,...
    'RebalanceFrequency',60,...
    'LookbackWindow',0,...
    'TransactionCosts',0.005,...
    'InitialWeights',equalWeightsVector)

ewStrategy = 
  backtestStrategy with properties:

                  Name: "EqualWeighted"
          RebalanceFcn: @(~,~)equalWeightsVector
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    RebalanceFrequency: 60
      TransactionCosts: 0.0050
        LookbackWindow: 0
        InitialWeights: [0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429]

Run Backtest

Create a backtesting engine and run a backtest over a year of stock data. For more information on
creating backtest engines, see backtestEngine.

% Create the backtest engine. The backtest engine properties that hold the
% results are initialized to empty.
backtester = backtestEngine(ewStrategy)

backtester = 
  backtestEngine with properties:

               Strategies: [1x1 backtestStrategy]
             RiskFreeRate: 0
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
                NumAssets: []
                  Returns: []
                Positions: []
                 Turnover: []
                  BuyCost: []
                 SellCost: []

% Run the backtest. The empty properties are now populated with
% timetables of detailed backtest results.
backtester = runBacktest(backtester,pricesTT)

backtester = 
  backtestEngine with properties:

               Strategies: [1x1 backtestStrategy]
             RiskFreeRate: 0
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
                NumAssets: 7
                  Returns: [250x1 timetable]
                Positions: [1x1 struct]
                 Turnover: [250x1 timetable]
                  BuyCost: [250x1 timetable]
                 SellCost: [250x1 timetable]

Backtest Summary

Use the summary function to generate a summary table of backtest results.

% Examing results. The summary table shows several performance metrics.
summary(backtester)
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ans=9×1 table
                       EqualWeighted
                       _____________

    TotalReturn            0.22943  
    SharpeRatio            0.11415  
    Volatility           0.0075013  
    AverageTurnover     0.00054232  
    MaxTurnover           0.038694  
    AverageReturn       0.00085456  
    MaxDrawdown           0.098905  
    AverageBuyCost        0.030193  
    AverageSellCost       0.030193  

Warm Starting Backtests

When running a backtest in MATLAB®, you need to understand what the initial conditions are when
the backtest begins. The initial weights for each strategy, the size of the strategy lookback window,
and any potential split of the dataset into training and testing partitions affects the results of the
backtest. This example shows how to use the runBacktest function with the 'Start' and 'End'
name-value pair arguments that interact with the 'LookbackWindow' and
'RebalanceFrequency' properties of the backtestStrategy object to "warm start" a backtest.

Load Data

Load one year of stock price data. For readability, this example uses only a subset of the DJIA stocks.

% Read table of daily adjusted close prices for 2006 DJIA stocks.
T = readtable('dowPortfolio.xlsx');

% Prune the table to include only the dates and selected stocks.
timeColumn = "Dates";
assetSymbols = ["BA", "CAT", "DIS", "GE", "IBM", "MCD", "MSFT"];
T = T(:,[timeColumn assetSymbols]);

% Convert to timetable.
pricesTT = table2timetable(T,'RowTimes','Dates');

% View the final asset price timetable.
head(pricesTT)

ans=8×7 timetable
       Dates        BA       CAT      DIS      GE       IBM      MCD     MSFT 
    ___________    _____    _____    _____    _____    _____    _____    _____

    03-Jan-2006    68.63    55.86    24.18     33.6    80.13    32.72    26.19
    04-Jan-2006    69.34    57.29    23.77    33.56    80.03    33.01    26.32
    05-Jan-2006    68.53    57.29    24.19    33.47    80.56    33.05    26.34
    06-Jan-2006    67.57    58.43    24.52     33.7    82.96    33.25    26.26
    09-Jan-2006    67.01    59.49    24.78    33.61    81.76    33.88    26.21
    10-Jan-2006    67.33    59.25    25.09    33.43     82.1    33.91    26.35
    11-Jan-2006     68.3    59.28    25.33    33.66    82.19     34.5    26.63
    12-Jan-2006     67.9    60.13    25.41    33.25    81.61    33.96    26.48
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Create Strategy

This example backtests an "inverse variance" strategy. The inverse variance rebalance function is
implemeted in the Local Functions on page 19-0  section. For more information on creating
backtest strategies, see backtestStrategy. The inverse variance strategy uses the covariance of
asset returns to make decisions about asset allocation. The LookbackWindow for this strategy must
contain at least 30 days of trailing data (about 6 weeks), and at most, 60 days (about 12 weeks).

Set RebalanceFrequency for backtestStrategy to rebalance the portfolio every 25 days.

% Create the strategy
minLookback = 30;
maxLookback = 60;
ivStrategy = backtestStrategy("InverseVariance",@inverseVarianceFcn,...
    'RebalanceFrequency',25,...
    'LookbackWindow',[minLookback maxLookback],...
    'TransactionCosts',[0.0025 0.005])

ivStrategy = 
  backtestStrategy with properties:

                  Name: "InverseVariance"
          RebalanceFcn: @inverseVarianceFcn
    RebalanceFrequency: 25
      TransactionCosts: [0.0025 0.0050]
        LookbackWindow: [30 60]
        InitialWeights: [1x0 double]

Run Backtest and Examine Results

Create a backtesting engine and run a backtest over a year of stock data. For more information on
creating backtest engines, see backtestEngine.

% Create the backtest engine.
backtester = backtestEngine(ivStrategy);

% Run the backtest.
backtester = runBacktest(backtester,pricesTT);

Use the assetAreaPlot helper function, defined in the Local Functions on page 19-0  section of
this example, to display the change in the asset allocation over the course of the backtest.

assetAreaPlot(backtester,"InverseVariance")
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Notice that the inverse variance strategy begins all in cash and remains in that state for about 2.5
months. This is because the backtestStrategy object does not have a specified set of initial
weights, which you specify using the InitialPortfolioValue name-value pair argument. The
inverse variance strategy requires 30 days of trailing asset price history before rebalancing. You can
use the printRebalanceTable helper function, defined in the Local Functions on page 19-0
section, to display the rebalance schedule.

printRebalanceTable(ivStrategy,pricesTT,minLookback);

    First Day of Data    Backtest Start Date    Minimum Days to Rebalance
    _________________    ___________________    _________________________

       03-Jan-2006           03-Jan-2006                   30            

    Rebalance Dates    Days of Available Price History    Enough Data to Rebalance
    _______________    _______________________________    ________________________

      08-Feb-2006                     26                           "No"           
      16-Mar-2006                     51                           "Yes"          
      21-Apr-2006                     76                           "Yes"          
      26-May-2006                    101                           "Yes"          
      03-Jul-2006                    126                           "Yes"          
      08-Aug-2006                    151                           "Yes"          
      13-Sep-2006                    176                           "Yes"          
      18-Oct-2006                    201                           "Yes"          
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      22-Nov-2006                    226                           "Yes"          
      29-Dec-2006                    251                           "Yes"          

The first rebalance date comes on February 8 but the strategy does not have enough price history to
fill out a valid lookback window (minimum is 30 days), so no rebalance occurs. The next rebalance
date is on March 16, a full 50 days into the backtest.

This situation is not ideal as these 50 days sitting in an all-cash position represent approximately 20%
of the total backtest. Consequently, when the backtesting engine reports on the performance of the
strategy (that is, the total return, Sharpe ratio, volatility, and so on), the results do not reflect the
"true" strategy performance because the strategy only began to make asset allocation decisions only
about 20% into the backtest.

Warm Start Backtest

It is possible to "warm start" the backtest. A warm start means that the backtest results reflect the
strategy performance in the market conditions reflected in the price timetable. To start, set the initial
weights of the strategy to avoid starting all in cash.

The inverse variance strategy requires 30 days of price history to fill out a valid lookback window, so
you can partition the price data set into two sections, a "warm-up" set and a "test" set.

warmupRange = 1:30;
% The 30th row is included in both ranges since the day 30 price is used
% to compute the day 31 returns.
testRange = 30:height(pricesTT);

Use the warm-up partition to set the initial weights of the inverse variance strategy. By doing so, you
can begin the backtest with the strategy already "running" and avoid the initial weeks spent in the
cash position.

% Use the rebalance function to set the initial weights. This might
% or might not be possible for other strategies depending on the details of
% the strategy logic.
initWeights = inverseVarianceFcn([],pricesTT(warmupRange,:));

Update the strategy and rerun the backtest. Since the warm-up range is used to initialize the inverse
variance strategy, you must omit this data from the backtest to avoid a look-ahead bias, or "seeing the
future," and to backtest only over the "test range."

% Set the initial weights on the strategy in the backtester. You can do this when you 
% create the strategy as well, using the 'InitialWeights' parameter.
backtester.Strategies(1).InitialWeights = initWeights;

% Rerun the backtest over the "test" range.
backtester = runBacktest(backtester,pricesTT(testRange,:));

When you generate the area plot, you can see that the issue where the strategy is in cash for the first
portion of the backtest is avoided.

assetAreaPlot(backtester,"InverseVariance")
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However, if you look at the rebalance table, you can see that the strategy still "missed" the first
rebalance date. When you run the backtest over the test range of the data set, the first rebalance
date is on March 22. This is because the warm-up range is omitted from the price history and the
strategy had only 26 days of history available on that date (less than the minimum 30 days required
for the lookback window). Therefore, the March 22 rebalance is skipped.

To avoid backtesting over the warm-up range, the range was removed it from the data set. This
means the new backtest start date and all subsequent rebalance dates are 30 days later. The price
history data contained in the warm-up range was completely removed, so when the backtest engine
hit the first rebalance date the price history was insufficient to rebalance.

printRebalanceTable(ivStrategy,pricesTT(testRange,:),minLookback);

    First Day of Data    Backtest Start Date    Minimum Days to Rebalance
    _________________    ___________________    _________________________

       14-Feb-2006           14-Feb-2006                   30            

    Rebalance Dates    Days of Available Price History    Enough Data to Rebalance
    _______________    _______________________________    ________________________

      22-Mar-2006                     26                           "No"           
      27-Apr-2006                     51                           "Yes"          
      02-Jun-2006                     76                           "Yes"          
      10-Jul-2006                    101                           "Yes"          
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      14-Aug-2006                    126                           "Yes"          
      19-Sep-2006                    151                           "Yes"          
      24-Oct-2006                    176                           "Yes"          
      29-Nov-2006                    201                           "Yes"          

This scenario is also not correct since the original price timetable (warm-up and test partitions
together) does have enough price history by March 22 to fill out a valid lookback window. However,
the earlier data is not available to the backtest engine because the backtest was run using only the
test partition.

Use Start and End Parameters for runBacktest

The ideal workflow in this situation is to both omit the warm-up data range from the backtest to avoid
the look-ahead bias but include the warm-up data in the price history to be able to fill out the
lookback window of the strategy with all available price history data. You can do so by using the
'Start' parameter for the runBacktest function.

The 'Start' and 'End' name-value pair arguments for runBacktest enable you to start and end
the backtest on specific dates. You can specify 'Start' and 'End' as rows of the prices timetable or
as datetime values (see the documentation for the runBacktest function for details). The 'Start'
argument lets the backtest begin on a particular date while giving the backtest engine access to the
full data set.

Rerun the backtest using the 'Start' name-value pair argument rather than only running on a
partition of the original data set.

% Rerun the backtest starting on the last day of the warmup range.
startRow = warmupRange(end);
backtester = runBacktest(backtester,pricesTT,'Start',startRow);

Plot the new asset area plot.

assetAreaPlot(backtester,"InverseVariance")
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View the new rebalance table with the new 'Start' parameter.

printRebalanceTable(ivStrategy,pricesTT,minLookback,startRow);

    First Day of Data    Backtest Start Date    Minimum Days to Rebalance
    _________________    ___________________    _________________________

       03-Jan-2006           14-Feb-2006                   30            

    Rebalance Dates    Days of Available Price History    Enough Data to Rebalance
    _______________    _______________________________    ________________________

      22-Mar-2006                     55                           "Yes"          
      27-Apr-2006                     80                           "Yes"          
      02-Jun-2006                    105                           "Yes"          
      10-Jul-2006                    130                           "Yes"          
      14-Aug-2006                    155                           "Yes"          
      19-Sep-2006                    180                           "Yes"          
      24-Oct-2006                    205                           "Yes"          
      29-Nov-2006                    230                           "Yes"          

The inverse variance strategy now has enough data to rebalance on the first rebalance date (March
22) and the backtest is "warm started." By using the original data set, the first day of data remains
January 3, and the 'Start' parameter allows you to move the backtest start date forward to avoid
the warm-up range.
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Even though the results are not dramatically different, this example illustrates the interaction
between the LookbackWindow and RebalanceFrequency name-value pair arguments for a
backtestStrategy object and the range of data used in the runBacktest when you evaluate the
performance of a strategy in a backtest.

Local Functions

The strategy rebalance function is implemented as follows. For more information on creating
strategies and writing rebalance functions, see backtestStrategy.

function new_weights = inverseVarianceFcn(current_weights, pricesTT) 
% Inverse-variance portfolio allocation.

assetReturns = tick2ret(pricesTT);
assetCov = cov(assetReturns{:,:});
new_weights = 1 ./ diag(assetCov);
new_weights = new_weights / sum(new_weights);

end

This helper function plots the asset allocation as an area plot.

function assetAreaPlot(backtester,strategyName)

t = backtester.Positions.(strategyName).Time;
positions = backtester.Positions.(strategyName).Variables;
h = area(t,positions);
title(sprintf('%s Positions',strategyName));
xlabel('Date');
ylabel('Asset Positions');
datetick('x','mm/dd','keepticks');
xlim([t(1) t(end)])
oldylim = ylim;
ylim([0 oldylim(2)]);
cm = parula(numel(h));
for i = 1:numel(h)
    set(h(i),'FaceColor',cm(i,:));
end
legend(backtester.Positions.(strategyName).Properties.VariableNames)

end

This helper function generates a table of rebalance dates along with the available price history at
each date.

function printRebalanceTable(strategy,pricesTT,minLookback,startRow)

if nargin < 4
    startRow = 1;
end

allDates = pricesTT.(pricesTT.Properties.DimensionNames{1});
rebalanceDates = allDates(startRow:strategy.RebalanceFrequency:end);
[~,rebalanceIndices] = ismember(rebalanceDates,pricesTT.Dates);

disp(table(allDates(1),rebalanceDates(1),minLookback,'VariableNames',{'First Day of Data','Backtest Start Date','Minimum Days to Rebalance'}));
fprintf('\n\n');
numHistory = rebalanceIndices(2:end);
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sufficient = repmat("No",size(numHistory));
sufficient(numHistory > minLookback) = "Yes";
disp(table(rebalanceDates(2:end),rebalanceIndices(2:end),sufficient,'VariableNames',{'Rebalance Dates','Days of Available Price History','Enough Data to Rebalance'}));

end

Input Arguments
backtester — Backtesting engine
backtestEngine object

Backtesting engine, specified as a backtestEngine object. Use backtestEngine to create the
backtester object.
Data Types: object

pricesTT — Asset prices
timetable

Asset prices, specified as a timetable of asset prices that the backtestEngine uses to backtest the
strategies. Each column of the prices timetable must contain a timeseries of prices for an asset.
Historical asset prices must be adjusted for splits and dividends.
Data Types: timetable

signalTT — Signal data
timetable

(Optional) Signal data, specified as a timetable of trading signals that the strategies use to make
trading decisions. signalTT is optional. If provided, the backtestEngine calls the strategy
rebalance functions with both asset price data and signal data. The signalTT timetable must have
the same time dimension as the pricesTT timetable.
Data Types: timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: backtester = runBacktest(backtester,assetPrices,'Start',50,'End',100)

Start — Time step to start backtest
1 (default) | integer | datetime

Time step to start the backtest, specified as the comma-separated pair consisting of 'Start' and a
scalar integer or datetime.

If an integer, the Start time refers to the row in the pricesTT timetable where the backtest begins.

If a datetime object, the backtest will begin at the first time in the prices timetable that occurs on or
after the 'Start' parameter. The backtest will end on the last time in the prices timetable that
occurs on or before the 'End' parameter. The 'Start' and 'End' parameters set the boundary of
the data that is included in the backtest.
Data Types: double | datetime
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End — Time step to end backtest
Last row in pricesTT timetable (default) | integer | datetime

Time step to end the backtest, specified as the comma-separated pair consisting of 'End' and a
scalar integer or datetime.

If an integer, the End time refers to the row in the pricesTT timetable where the backtest ends.

If a datetime object, TBD
Data Types: double | datetime

Output Arguments
backtester — Backtesting engine
backtestEngine object

Backtesting engine, returned as an updated backtestEngine object. After backtesting is complete,
runBacktest populates several properties in the backtestEngine object with the results of the
backtest. You can summarize the results by using the summary function.

See Also
backtestStrategy | backtestEngine | summary | equityCurve

Topics
“Backtest Investment Strategies” on page 4-220
“Backtest Investment Strategies with Trading Signals” on page 4-233

Introduced in R2020b

 runBacktest

19-167



summary
Generate summary table of backtest results

Syntax
summaryTable = summary(backtester)

Description
summaryTable = summary(backtester) generates a table of metrics to summarize the backtest.
Each row of the table is a calculated metric and each column represents a strategy. You must run the
summary function only after running the runBacktest function.

Examples

Examining Backtest Results

The MATLAB® backtesting engine runs backtests of portfolio investment strategies over time series
of asset price data. You can use summary to compare multiple strategies over the same market
scenario. This example shows how to examine the results of a backtest with two strategies.

Load Data

Load one year of stock price data. For readability, this example uses a subset of the DJIA stocks.

% Read table of daily adjusted close prices for 2006 DJIA stocks
T = readtable('dowPortfolio.xlsx');

% Prune the table to include only the dates and selected stocks
timeColumn = "Dates";
assetSymbols = ["BA", "CAT", "DIS", "GE", "IBM", "MCD", "MSFT"];
T = T(:,[timeColumn assetSymbols]);

% Convert to timetable
pricesTT = table2timetable(T,'RowTimes','Dates');

% View the final asset price timetable
head(pricesTT)

ans=8×7 timetable
       Dates        BA       CAT      DIS      GE       IBM      MCD     MSFT 
    ___________    _____    _____    _____    _____    _____    _____    _____

    03-Jan-2006    68.63    55.86    24.18     33.6    80.13    32.72    26.19
    04-Jan-2006    69.34    57.29    23.77    33.56    80.03    33.01    26.32
    05-Jan-2006    68.53    57.29    24.19    33.47    80.56    33.05    26.34
    06-Jan-2006    67.57    58.43    24.52     33.7    82.96    33.25    26.26
    09-Jan-2006    67.01    59.49    24.78    33.61    81.76    33.88    26.21
    10-Jan-2006    67.33    59.25    25.09    33.43     82.1    33.91    26.35
    11-Jan-2006     68.3    59.28    25.33    33.66    82.19     34.5    26.63
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    12-Jan-2006     67.9    60.13    25.41    33.25    81.61    33.96    26.48

The inverse variance strategy requires some price history to initialize, so you can allocate a portion of
the data to use for setting initial weights. By doing this, you can "warm start" the backtest.

warmupRange = 1:20;
testRange = 21:height(pricesTT);

Create Strategies

Define an investment strategy by using the backtestStrategy function. This example builds two
strategies:

• Equal weighted
• Inverse variance

This example does not provide details on how to build the strategies. For more information on
creating strategies, see backtestStrategy. The strategy rebalance functions are implemented in
the Rebalance Functions on page 19-0  section.

% Create the strategies
ewInitialWeights = equalWeightFcn([],pricesTT(warmupRange,:));
ewStrategy = backtestStrategy("EqualWeighted",@equalWeightFcn,...
    'RebalanceFrequency',20,...
    'TransactionCosts',[0.0025 0.005],...
    'LookbackWindow',0,...
    'InitialWeights',ewInitialWeights);

ivInitialWeights = inverseVarianceFcn([],pricesTT(warmupRange,:));
ivStrategy = backtestStrategy("InverseVariance",@inverseVarianceFcn,...
    'RebalanceFrequency',20,...
    'TransactionCosts',[0.0025 0.005],...
    'InitialWeights',ivInitialWeights);

% Aggregate the strategies into an array
strategies = [ewStrategy ivStrategy];

Run Backtest

Create a backtesting engine and run a backtest over a year of stock data. For more information on
creating backtesting engines, see backtestEngine. The software initializes several properties of the
backtestEngine object to empty. These read-only properties are populated by the engine after you
run the backtest.

% Create the backtesting engine using the default settings
backtester = backtestEngine(strategies)

backtester = 
  backtestEngine with properties:

               Strategies: [1x2 backtestStrategy]
             RiskFreeRate: 0
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
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                NumAssets: []
                  Returns: []
                Positions: []
                 Turnover: []
                  BuyCost: []
                 SellCost: []

Run the backtest using runBacktest.

% Run the backtest
backtester = runBacktest(backtester,pricesTT(testRange,:));

Examine Summary Results

The summary function uses the results of the backtest and returns a table of high-level results from
the backtest.

s1 = summary(backtester)

s1=9×2 table
                       EqualWeighted    InverseVariance
                       _____________    _______________

    TotalReturn            0.17567           0.17155   
    SharpeRatio           0.097946           0.10213   
    Volatility           0.0074876         0.0069961   
    AverageTurnover      0.0007014         0.0024246   
    MaxTurnover           0.021107          0.097472   
    AverageReturn       0.00073178        0.00071296   
    MaxDrawdown           0.097647          0.096299   
    AverageBuyCost        0.018532          0.061913   
    AverageSellCost       0.037064           0.12383   

Each row of the table output is a measurement of the performance of a strategy. Each strategy
occupies a column. The summary function reports on the following metrics:

• TotalReturn — The nonannulaized total return of the strategy, inclusive of fees, over the full
backtest period.

• SharpeRatio — The nonannualized Sharpe ratio of each strategy over the backtest. For more
information, see sharpe.

• Volatility — The nonannualized standard deviation of per-time-step strategy returns.
• AverageTurnover — The average per-time-step portfolio turnover, expressed as a decimal

percentage.
• MaxTurnover — The maximum portfolio turnover in a single rebalance, expressed as a decimal

percentage.
• AverageReturn —The arithmetic mean of the per-time step portfolio returns.
• MaxDrawdown — The maximum drawdown of the portfolio, expressed as a decimal percentage.

For more information, see maxdrawdown.
• AverageBuyCost — The average per-time-step transaction costs the portfolio incurred for asset

purchases.
• AverageSellCost — The average per-time-step transaction costs the portfolio incurred for

asset sales.
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Sometimes it is useful to transpose the summary table when plotting the metrics of different
strategies.

s2 = rows2vars(s1);
s2.Properties.VariableNames{1} = 'StrategyName'

s2=2×10 table
       StrategyName        TotalReturn    SharpeRatio    Volatility    AverageTurnover    MaxTurnover    AverageReturn    MaxDrawdown    AverageBuyCost    AverageSellCost
    ___________________    ___________    ___________    __________    _______________    ___________    _____________    ___________    ______________    _______________

    {'EqualWeighted'  }      0.17567       0.097946      0.0074876        0.0007014        0.021107       0.00073178       0.097647         0.018532          0.037064    
    {'InverseVariance'}      0.17155        0.10213      0.0069961        0.0024246        0.097472       0.00071296       0.096299         0.061913           0.12383    

bar(s2.AverageTurnover)
title('Average Turnover')
ylabel('Average Turnover (%)')
set(gca,'xticklabel',s2.StrategyName)

Examine Detailed Results

After you run the backtest, the backtestEngine object updates the read-only fields with the
detailed results of the backtest. The Returns, Positions, Turnover, BuyCost, and SellCost
properties each contain a timetable of results. Since this example uses daily price data in the
backtest, these timetables hold daily results.

backtester

 summary

19-171



backtester = 
  backtestEngine with properties:

               Strategies: [1x2 backtestStrategy]
             RiskFreeRate: 0
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
                NumAssets: 7
                  Returns: [230x2 timetable]
                Positions: [1x1 struct]
                 Turnover: [230x2 timetable]
                  BuyCost: [230x2 timetable]
                 SellCost: [230x2 timetable]

Returns

The Returns property holds a timetable of strategy (simple) returns for each time step. These
returns are inclusive of all transaction fees.

head(backtester.Returns)

ans=8×2 timetable
       Time        EqualWeighted    InverseVariance
    ___________    _____________    _______________

    02-Feb-2006      -0.007553        -0.0070957   
    03-Feb-2006     -0.0037771         -0.003327   
    06-Feb-2006     -0.0010094        -0.0014312   
    07-Feb-2006      0.0053284         0.0020578   
    08-Feb-2006      0.0099755         0.0095781   
    09-Feb-2006     -0.0026871        -0.0014999   
    10-Feb-2006      0.0048374         0.0059589   
    13-Feb-2006     -0.0056868        -0.0051232   

binedges = -0.025:0.0025:0.025;
h1 = histogram(backtester.Returns.EqualWeighted,'BinEdges',binedges);
hold on
histogram(backtester.Returns.InverseVariance,'BinEdges',binedges);
hold off
title('Distribution of Daily Returns')
legend([strategies.Name]);
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Positions

The Positions property holds a structure of timetables, one per strategy.

backtester.Positions

ans = struct with fields:
      EqualWeighted: [231x8 timetable]
    InverseVariance: [231x8 timetable]

The Positions timetable of each strategy holds the per-time-step positions for each asset as well as
the Cash asset (which earns the risk-free rate). The Positions timetables contain one more row
than the other results timetables because the Positions timetables include initial positions of the
strategy as their first row. You can consider the initial positions as the Time = 0 portfolio positions. In
this example, the Positions timetables start with February 1, while the others start on February 2.

head(backtester.Positions.InverseVariance)

ans=8×8 timetable
       Time           Cash          BA       CAT       DIS        GE       IBM       MCD       MSFT 
    ___________    ___________    ______    ______    ______    ______    ______    ______    ______

    01-Feb-2006              0    1401.2    682.17    795.14    2186.8    1900.1    1874.9    1159.8
    02-Feb-2006              0    1402.8    673.74    789.74    2170.8    1883.5    1863.6      1145
    03-Feb-2006     1.0987e-12    1386.5     671.2     787.2    2167.3    1854.3    1890.5      1139
    06-Feb-2006              0    1391.9    676.78    785.62    2161.1    1843.6    1899.1    1123.8
    07-Feb-2006              0      1400    661.66    840.23    2131.9    1851.6    1902.3    1114.5
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    08-Feb-2006    -2.2198e-12    1409.8     677.9    846.58    2160.4    1878.2      1911    1113.2
    09-Feb-2006    -2.2165e-12    1414.8    674.35    840.87    2172.2      1869    1908.3    1102.6
    10-Feb-2006    -2.2297e-12    1425.1    677.29     839.6    2195.8    1890.6    1909.3    1103.9

% Plot the change of asset allocation over time
t = backtester.Positions.InverseVariance.Time;
positions = backtester.Positions.InverseVariance.Variables;
h = area(t,positions);
title('Inverse Variance Positions');
xlabel('Date');
ylabel('Asset Positions');
datetick('x','mm/dd','keepticks');
ylim([0 12000])
xlim([t(1) t(end)])
cm = parula(numel(h));
for i = 1:numel(h)
    set(h(i),'FaceColor',cm(i,:));
end

Turnover

The Turnover timetable holds the per-time-step portfolio turnover.

head(backtester.Turnover)

ans=8×2 timetable
       Time        EqualWeighted    InverseVariance
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    ___________    _____________    _______________

    02-Feb-2006          0                 0       
    03-Feb-2006          0                 0       
    06-Feb-2006          0                 0       
    07-Feb-2006          0                 0       
    08-Feb-2006          0                 0       
    09-Feb-2006          0                 0       
    10-Feb-2006          0                 0       
    13-Feb-2006          0                 0       

Depending on your rebalance frequency, the Turnover table can contain mostly zeros. Removing
these zeros when you visualize the portfolio turnover is useful.

nonZeroIdx = sum(backtester.Turnover.Variables,2) > 0;
to = backtester.Turnover(nonZeroIdx,:);
plot(to.Time,to.EqualWeighted,'-o',to.Time,to.InverseVariance,'-x',...
    'LineWidth',2,'MarkerSize',5);
legend([strategies.Name]);
title('Portfolio Turnover');
ylabel('Turnover (%)');

BuyCost and SellCost

The BuyCost and SellCost timetables hold the per-time-step transaction fees for each type of
transaction, purchases, and sales.
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totalCost = sum(backtester.BuyCost{:,:}) + sum(backtester.SellCost{:,:});
bar(totalCost);
title('Total Transaction Costs');
ylabel('$')
set(gca,'xticklabel',[strategies.Name])

Generate Equity Curve

Use equityCurve to plot the equity curve for the equal weighted and inverse variance strategies.

equityCurve(backtester)
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Rebalance Functions

This section contains the implementation of the strategy rebalance functions. For more information
on creating strategies and writing rebalance functions, see backtestStrategy.

function new_weights = equalWeightFcn(current_weights, pricesTT) %#ok<INUSL> 
% Equal weighted portfolio allocation

nAssets = size(pricesTT, 2);
new_weights = ones(1,nAssets);
new_weights = new_weights / sum(new_weights);

end

function new_weights = inverseVarianceFcn(current_weights, pricesTT) %#ok<INUSL> 
% Inverse-variance portfolio allocation

assetReturns = tick2ret(pricesTT);
assetCov = cov(assetReturns{:,:});
new_weights = 1 ./ diag(assetCov);
new_weights = new_weights / sum(new_weights);
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end

Input Arguments
backtester — Backtesting engine
backtestEngine object

Backtesting engine, specified as a backtestEngine object. Use backtestEngine to create the
backtesting engine and then use runBacktest to run a backtest.
Data Types: object

Output Arguments
summaryTable — Metrics summarizing backtest
table

Metrics summarizing the backtest, returned as a table where each row of the table is a calculated
metric and each column represents a strategy. The reported metrics are as follows:

• TotalReturn — The total return of the strategy over the entire backtest
• SharpeRatio — The Sharpe ratio for each strategy
• Volatility — The volatility of each strategy over the backtest
• AverageTurnover — Average turnover per-time-step as a decimal percent
• MaxTurnover — Maximum turnover in a single time step
• AverageReturn — Average return per-time-step
• MaxDrawdown — Maximum portfolio drawdown as a decimal percent
• AverageBuyCost — Average per-time-step transaction costs for asset purchases
• AverageSellCost — Average per-time-step transaction costs for asset sales

See Also
backtestStrategy | backtestEngine | runBacktest | equityCurve

Topics
“Backtest Investment Strategies” on page 4-220
“Backtest Investment Strategies with Trading Signals” on page 4-233

Introduced in R2020b
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equityCurve
Plot equity curves of strategies

Syntax
equityCurve(backtester)
h = equityCurve(ax,backtester)

Description
equityCurve(backtester) plots the equity curves of each strategy that you create using
backtestStrategy. After creating the backtesting engine using backtestEngine and running the
backtest with runBacktest, use equityCurve to plot the strategies and compare their
performance.

h = equityCurve(ax,backtester) additionally returns the figure handle h.

Examples

Generate Equity Curve for Backtest

The MATLAB® backtesting engine runs backtests of portfolio investment strategies over time series
of asset price data. After creating a set of backtest strategies using backtestStrategy and the
backtesting engine using backtestEngine, the runBacktest function executes the backtest. After
using the runBacktest function to test investment strategies, you can run the equityCurve
function to plot the equity curves of strategies.

Load Data

Load one year of stock price data. For readability, this example uses only a subset of the DJIA stocks.

% Read a table of daily adjusted close prices for 2006 DJIA stocks
T = readtable('dowPortfolio.xlsx');

% Prune the table to hold only the dates and selected stocks
timeColumn = "Dates";
assetSymbols = ["BA", "CAT", "DIS", "GE", "IBM", "MCD", "MSFT"];
T = T(:,[timeColumn assetSymbols]);

% Convert to timetable
pricesTT = table2timetable(T,'RowTimes','Dates');

% View the final asset price timetable
head(pricesTT)

ans=8×7 timetable
       Dates        BA       CAT      DIS      GE       IBM      MCD     MSFT 
    ___________    _____    _____    _____    _____    _____    _____    _____

    03-Jan-2006    68.63    55.86    24.18     33.6    80.13    32.72    26.19
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    04-Jan-2006    69.34    57.29    23.77    33.56    80.03    33.01    26.32
    05-Jan-2006    68.53    57.29    24.19    33.47    80.56    33.05    26.34
    06-Jan-2006    67.57    58.43    24.52     33.7    82.96    33.25    26.26
    09-Jan-2006    67.01    59.49    24.78    33.61    81.76    33.88    26.21
    10-Jan-2006    67.33    59.25    25.09    33.43     82.1    33.91    26.35
    11-Jan-2006     68.3    59.28    25.33    33.66    82.19     34.5    26.63
    12-Jan-2006     67.9    60.13    25.41    33.25    81.61    33.96    26.48

Create Strategy

Test an equal-weighted investment strategy. This strategy invests an equal portion of the available
capital into each asset. This example does not describe how to create backtesting strategies. For
more information on creating backtesting strategies, see backtestStrategy.

Set 'RebalanceFrequency' to rebalance the portfolio every 60 days. This example does not use a
lookback window to rebalance.

% Create the strategy
numAssets = size(pricesTT,2);
equalWeightsVector = ones(1,numAssets) / numAssets;
equalWeightsRebalanceFcn = @(~,~) equalWeightsVector;

ewStrategy = backtestStrategy("EqualWeighted",equalWeightsRebalanceFcn,...
    'RebalanceFrequency',60,...
    'LookbackWindow',0,...
    'TransactionCosts',0.005,...
    'InitialWeights',equalWeightsVector)

ewStrategy = 
  backtestStrategy with properties:

                  Name: "EqualWeighted"
          RebalanceFcn: @(~,~)equalWeightsVector
    RebalanceFrequency: 60
      TransactionCosts: 0.0050
        LookbackWindow: 0
        InitialWeights: [0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429]

Run Backtest

Create a backtesting engine and run a backtest over a year of stock data. For more information on
creating backtest engines, see backtestEngine.

% Create the backtesting engine. The backtesting engine properties that hold the
% results are initialized to empty.
backtester = backtestEngine(ewStrategy)

backtester = 
  backtestEngine with properties:

               Strategies: [1x1 backtestStrategy]
             RiskFreeRate: 0
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
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                NumAssets: []
                  Returns: []
                Positions: []
                 Turnover: []
                  BuyCost: []
                 SellCost: []

% Run the backtest. The empty properties are now populated with
% timetables of detailed backtest results.
backtester = runBacktest(backtester,pricesTT)

backtester = 
  backtestEngine with properties:

               Strategies: [1x1 backtestStrategy]
             RiskFreeRate: 0
           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
                NumAssets: 7
                  Returns: [250x1 timetable]
                Positions: [1x1 struct]
                 Turnover: [250x1 timetable]
                  BuyCost: [250x1 timetable]
                 SellCost: [250x1 timetable]

Generate Equity Curve

Use the equityCurve to plot the equity curve for the equal-weight strategy.

equityCurve(backtester)
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Input Arguments
backtester — Backtesting engine
backtestEngine object

Backtesting engine, specified as a backtestEngine object. Use backtestEngine to create the
backtester object.

Note The backtester argument must use a backtestEngine object that has been run using
runBacktest.

Data Types: object

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that you create using axes. The plot is created
on the axes specified by the optional ax argument instead of on the current axes (gca). The optional
argument ax can precede any of the input argument combinations.
Data Types: object
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Output Arguments
h — Figure handle
handle object

Figure handle for the equity curve plot, returned as handle object.

See Also
backtestStrategy | backtestEngine | runBacktest | summary

Topics
“Backtest Investment Strategies” on page 4-220
“Backtest Investment Strategies with Trading Signals” on page 4-233

Introduced in R2021a
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simByEuler
Simulate Bates sample paths by Euler approximation

Syntax
[Paths,Times,Z,N] = simByEuler(MDL,NPeriods)
[Paths,Times,Z,N] = simByEuler( ___ ,Name,Value)

Description
[Paths,Times,Z,N] = simByEuler(MDL,NPeriods) simulates NTrials sample paths of Bates
bivariate models driven by NBrowns Brownian motion sources of risk and NJumps compound Poisson
processes representing the arrivals of important events over NPeriods consecutive observation
periods. The simulation approximates continuous-time stochastic processes by the Euler approach.

[Paths,Times,Z,N] = simByEuler( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Simulate Bates Sample Paths by Euler Approximation

Create a bates object.

AssetPrice = 80;
            Return = 0.03;
            JumpMean = 0.02;
            JumpVol = 0.08;
            JumpFreq = 0.1;
            
            V0 = 0.04;
            Level = 0.05;
            Speed = 1.0;
            Volatility = 0.2;
            Rho = -0.7;
            StartState = [AssetPrice;V0]; 
            Correlation = [1 Rho;Rho 1];

batesObj = bates(Return, Speed, Level, Volatility,...
                JumpFreq, JumpMean, JumpVol,'startstate',StartState,...
                'correlation',Correlation)

batesObj = 
   Class BATES: Bates Bivariate Stochastic Volatility
   --------------------------------------------------
     Dimensions: State = 2, Brownian = 2
   --------------------------------------------------
      StartTime: 0
     StartState: 2x1 double array 
    Correlation: 2x2 double array 
          Drift: drift rate function F(t,X(t)) 
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      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.03
          Speed: 1
          Level: 0.05
     Volatility: 0.2
       JumpFreq: 0.1
       JumpMean: 0.02
        JumpVol: 0.08

Use simByEuler to simulate NTrials sample paths of this Bates bivariate model driven by NBrowns
Brownian motion sources of risk and NJumps compound Poisson processes representing the arrivals
of important events over NPeriods consecutive observation periods. This function approximates
continuous-time stochastic processes by the Euler approach.

NPeriods = 2;
[Paths,Times,Z,N] = simByEuler(batesObj,NPeriods)

Paths = 3×2

   80.0000    0.0400
   90.8427    0.0873
   32.7458    0.1798

Times = 3×1

     0
     1
     2

Z = 2×2

    0.5377    0.9333
   -2.2588    2.1969

N = 2×1

     0
     0

The output Paths is 3 x 2 dimension. Row number 3 is from NPeriods + 1. The first row is defined
by the bates name-value pair argument StartState. The remaining rows are simulated data.
Paths always has two columns because the Bates model is a bivariate model. In this case, the first
column is the simulated asset price and the second column is the simulated volatilities.

Input Arguments
MDL — Stochastic differential equation model
object

Stochastic differential equation model, specified as a bates object. You can create a bates object
using bates.
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Data Types: object

NPeriods — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times,Z,N] = simByEuler(bates,NPeriods,'DeltaTimes',dt)

NTrials — Simulated trials (sample paths)
1 (single path of correlated state variables) (default) | positive scalar integer

Simulated trials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or an NPeriods-by-1 column vector.

DeltaTimes represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps within each time increment dt
1 (indicating no intermediate evaluation) (default) | positive scalar integer

Number of intermediate time steps within each time increment dt (specified as DeltaTimes),
specified as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simByEuler function partitions each time increment dt into NSteps subintervals of length dt/
NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
intermediate points. Although simByEuler does not report the output state vector at these
intermediate points, the refinement improves accuracy by allowing the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

Antithetic — Flag to use antithetic sampling to generate the Gaussian random variates
false (no antithetic sampling) (default) | logical with values true or false

Flag to use antithetic sampling to generate the Gaussian random variates that drive the Brownian
motion vector (Wiener processes), specified as the comma-separated pair consisting of
'Antithetic' and a scalar numeric or logical 1 (true) or 0 (false).
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When you specify true, simByEuler performs sampling such that all primary and antithetic paths
are simulated and stored in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary Gaussian paths.
• Even trials (2,4,6,...) are the matching antithetic paths of each pair derived by negating the

Gaussian draws of the corresponding primary (odd) trial.

Note If you specify an input noise process (see Z), simByEuler ignores the value of Antithetic.

Data Types: logical

Z — Direct specification of the dependent random noise process for generating Brownian
motion vector
generates correlated Gaussian variates based on the Correlation member of the SDE object
(default) | function | three-dimensional array of dependent random variates

Direct specification of the dependent random noise process for generating the Brownian motion
vector (Wiener process) that drives the simulation, specified as the comma-separated pair consisting
of 'Z' and a function or as an (NPeriods ⨉ NSteps)-by-NBrowns-by-NTrials three-dimensional
array of dependent random variates.

Note If you specify Z as a function, it must return an NBrowns-by-1 column vector, and you must call
it with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Data Types: double | function

N — Dependent random counting process for generating number of jumps
random numbers from Poisson distribution with parameter JumpFreq from a bates object (default) |
three-dimensional array | function

Dependent random counting process for generating the number of jumps, specified as the comma-
separated pair consisting of 'N' and a function or an (NPeriods ⨉ NSteps) -by-NJumps-by-NTrials
three-dimensional array of dependent random variates.

Note If you specify a function, N must return an NJumps-by-1 column vector, and you must call it
with two inputs: a real-valued scalar observation time t followed by an NVars-by-1 state vector Xt.

Data Types: double | function

StorePaths — Flag that indicates how Paths is stored and returned
true (default) | logical with values true or false

Flag that indicates how the output array Paths is stored and returned, specified as the comma-
separated pair consisting of 'StorePaths' and a scalar numeric or logical 1 (true) or 0 (false).
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If StorePaths is true (the default value) or is unspecified, simByEuler returns Paths as a three-
dimensional time-series array.

If StorePaths is false (logical 0), simByEuler returns Paths as an empty matrix.
Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments
simByEuler makes no adjustments and performs no processing (default) | function | cell array of
functions

Sequence of end-of-period processes or state vector adjustments, specified as the comma-separated
pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

The simByEuler function runs processing functions at each interpolation time. The functions must
accept the current interpolation time t, and the current state vector Xt and return a state vector that
can be an adjustment to the input state.

If you specify more than one processing function, simByEuler invokes the functions in the order in
which they appear in the cell array. You can use this argument to specify boundary conditions,
prevent negative prices, accumulate statistics, plot graphs, and more.

The end-of-period Processes argument allows you to terminate a given trial early. At the end of each
time step, simByEuler tests the state vector Xt for an all-NaN condition. Thus, to signal an early
termination of a given trial, all elements of the state vector Xt must be NaN. This test enables you to
define a Processes function to signal early termination of a trial, and offers significant performance
benefits in some situations (for example, pricing down-and-out barrier options).
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as a (NPeriods + 1)-by-NVars-by-NTrials
three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When
StorePaths is set to false, simByEuler returns Paths as an empty matrix.

Times — Observation times associated with simulated paths
column vector

Observation times associated with the simulated paths, returned as an (NPeriods + 1)-by-1
column vector. Each element of Times is associated with the corresponding row of Paths.

Z — Dependent random variates for generating Brownian motion vector
array

Dependent random variates for generating the Brownian motion vector (Wiener processes) that drive
the simulation, returned as an (NPeriods ⨉ NSteps)-by-NBrowns-by-NTrials three-dimensional
time-series array.
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N — Dependent random variates for generating jump counting process vector
array

Dependent random variates used to generate the jump counting process vector, returned as an
(NPeriods ⨉ NSteps)-by-NJumps-by-NTrials three-dimensional time series array.

More About
Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique called antithetic
sampling.

This technique attempts to replace one sequence of random observations with another that has the
same expected value but a smaller variance. In a typical Monte Carlo simulation, each sample path is
independent and represents an independent trial. However, antithetic sampling generates sample
paths in pairs. The first path of the pair is referred to as the primary path, and the second as the
antithetic path. Any given pair is independent other pairs, but the two paths within each pair are
highly correlated. Antithetic sampling literature often recommends averaging the discounted payoffs
of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between paired input
samples, ideally resulting in negative dependence between paired output samples. The greater the
extent of negative dependence, the more effective antithetic sampling is.

Algorithms
Bates models are bivariate composite models. Each Bates model consists of two coupled univariate
models.

• One model is a geometric Brownian motion (gbm) model with a stochastic volatility function and
jumps.

dX1t = B(t)X1tdt + X2tX1tdW1t + Y(t)X1tdNt

This model usually corresponds to a price process whose volatility (variance rate) is governed by
the second univariate model.

• The other model is a Cox-Ingersoll-Ross (cir) square root diffusion model.

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

This model describes the evolution of the variance rate of the coupled Bates price process.

This simulation engine provides a discrete-time approximation of the underlying generalized
continuous-time process. The simulation is derived directly from the stochastic differential equation
of motion. Thus, the discrete-time process approaches the true continuous-time process only as
DeltaTimes approaches zero.
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simByEuler
Simulate Merton jump diffusion sample paths by Euler approximation

Syntax
[Paths,Times,Z,N] = simByEuler(MDL,NPeriods)
[Paths,Times,Z,N] = simByEuler( ___ ,Name,Value)

Description
[Paths,Times,Z,N] = simByEuler(MDL,NPeriods) simulates NTrials sample paths of NVars
correlated state variables driven by NBrowns Brownian motion sources of risk and NJumps compound
Poisson processes representing the arrivals of important events over NPeriods consecutive
observation periods. The simulation approximates the continuous-time Merton jump diffusion process
by the Euler approach.

[Paths,Times,Z,N] = simByEuler( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Simulate Merton Jump Diffusion Sample Paths by Euler Approximation

Create a merton object.

AssetPrice = 80;
            Return = 0.03;
            Sigma = 0.16;
            JumpMean = 0.02;
            JumpVol = 0.08;
            JumpFreq = 2;
            
            mertonObj = merton(Return,Sigma,JumpFreq,JumpMean,JumpVol,...
                'startstat',AssetPrice)

mertonObj = 
   Class MERTON: Merton Jump Diffusion
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 80
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.16
         Return: 0.03
       JumpFreq: 2
       JumpMean: 0.02
        JumpVol: 0.08
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Use simByEuler to simulate NTrials sample paths of NVars correlated state variables driven by
NBrowns Brownian motion sources of risk and NJumps compound Poisson processes representing the
arrivals of important events over NPeriods consecutive observation periods. The function
simByEuler approximates a continuous-time Merton jump diffusion process by the Euler approach.

NPeriods = 2;
[Paths,Times,Z,N] = simByEuler(mertonObj,NPeriods)

Paths = 3×1

   80.0000
  266.5590
  306.2600

Times = 3×1

     0
     1
     2

Z = 2×1

    1.8339
   -2.2588

N = 2×1

     1
     2

Paths is a 3-by-1 matrix. The only column is the path of the simulated AssetPrice. The output Z is
a series of matrices used to generate the Brownian motion vector. The output N is a series of matrices
used to generate jump vectors.

Input Arguments
MDL — Stochastic differential equation model
object

Stochastic differential equation model, specified as a merton object. You can create a merton object
using merton.
Data Types: object

NPeriods — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double

19 Functions

19-192



Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times,Z,N] = simByEuler(merton,NPeriods,'DeltaTimes',dt)

NTrials — Simulated trials (sample paths)
1 (single path of correlated state variables) (default) | positive scalar integer

Simulated trials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or a NPeriods-by-1 column vector.

DeltaTimes represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps within each time increment
1 (indicating no intermediate evaluation) (default) | positive scalar integer

Number of intermediate time steps within each time increment dt (specified as DeltaTimes),
specified as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simByEuler function partitions each time increment dt into NSteps subintervals of length dt/
NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
intermediate points. Although simByEuler does not report the output state vector at these
intermediate points, the refinement improves accuracy by allowing the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

Antithetic — Flag to use antithetic sampling to generate the Gaussian random variates
false (no antithetic sampling) (default) | logical with values true or false

Flag to use antithetic sampling to generate the Gaussian random variates that drive the Brownian
motion vector (Wiener processes), specified as the comma-separated pair consisting of
'Antithetic' and a scalar numeric or logical 1 (true) or 0 (false).

When you specify true, simByEuler performs sampling such that all primary and antithetic paths
are simulated and stored in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary Gaussian paths.
• Even trials (2,4,6,...) are the matching antithetic paths of each pair derived by negating the

Gaussian draws of the corresponding primary (odd) trial.

Note If you specify an input noise process (see Z), simByEuler ignores the value of Antithetic.
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Data Types: logical

Z — Direct specification of the dependent random noise process for generating Brownian
motion vector
generates correlated Gaussian variates based on the Correlation member of the SDE object
(default) | function | three-dimensional array of dependent random variates

Direct specification of the dependent random noise process for generating the Brownian motion
vector (Wiener process) that drives the simulation, specified as the comma-separated pair consisting
of 'Z' and a function or as an (NPeriods ⨉ NSteps)-by-NBrowns-by-NTrials three-dimensional
array of dependent random variates.

Note If you specify Z as a function, it must return an NBrowns-by-1 column vector, and you must call
it with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Data Types: double | function

N — Dependent random counting process for generating number of jumps
random numbers from Poisson distribution with parameter JumpFreq from merton object (default) |
three-dimensional array | function

Dependent random counting process for generating the number of jumps, specified as the comma-
separated pair consisting of 'N' and a function or an (NPeriods ⨉ NSteps) -by-NJumps-by-NTrials
three-dimensional array of dependent random variates.

If you specify a function, N must return an NJumps-by-1 column vector, and you must call it with two
inputs: a real-valued scalar observation time t followed by an NVars-by-1 state vector Xt.
Data Types: double | function

StorePaths — Flag that indicates how Paths is stored and returned
true (default) | logical with values true or false

Flag that indicates how the output array Paths is stored and returned, specified as the comma-
separated pair consisting of 'StorePaths' and a scalar numeric or logical 1 (true) or 0 (false).

If StorePaths is true (the default value) or is unspecified, simByEuler returns Paths as a three-
dimensional time series array.

If StorePaths is false (logical 0), simByEuler returns Paths as an empty matrix.
Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments
simByEuler makes no adjustments and performs no processing (default) | function | cell array of
functions

Sequence of end-of-period processes or state vector adjustments, specified as the comma-separated
pair consisting of 'Processes' and a function or cell array of functions of the form
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Xt = P(t, Xt)

The simByEuler function runs processing functions at each interpolation time. The functions must
accept the current interpolation time t, and the current state vector Xt and return a state vector that
can be an adjustment to the input state.

If you specify more than one processing function, simByEuler invokes the functions in the order in
which they appear in the cell array. You can use this argument to specify boundary conditions,
prevent negative prices, accumulate statistics, plot graphs, and more.

The end-of-period Processes argument allows you to terminate a given trial early. At the end of each
time step, simByEuler tests the state vector Xt for an all-NaN condition. Thus, to signal an early
termination of a given trial, all elements of the state vector Xt must be NaN. This test enables you to
define a Processes function to signal early termination of a trial, and offers significant performance
benefits in some situations (for example, pricing down-and-out barrier options).
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as an (NPeriods + 1)-by-NVars-by-
NTrials three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When
StorePaths is set to false, simByEuler returns Paths as an empty matrix.

Times — Observation times associated with simulated paths
column vector

Observation times associated with the simulated paths, returned as an (NPeriods + 1)-by-1
column vector. Each element of Times is associated with the corresponding row of Paths.

Z — Dependent random variates for generating Brownian motion vector
array

Dependent random variates used to generate the Brownian motion vector (Wiener processes) that
drive the simulation, returned as an (NPeriods ⨉ NSteps)-by-NBrowns-by-NTrials three-
dimensional time-series array.

N — Dependent random variates used for generating jump counting process vector
array

Dependent random variates for generating the jump counting process vector, returned as an
(NPeriods ⨉ NSteps)-by-NJumps-by-NTrials three-dimensional time-series array.

More About
Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique called antithetic
sampling.

 simByEuler

19-195



This technique attempts to replace one sequence of random observations with another that has the
same expected value but a smaller variance. In a typical Monte Carlo simulation, each sample path is
independent and represents an independent trial. However, antithetic sampling generates sample
paths in pairs. The first path of the pair is referred to as the primary path, and the second as the
antithetic path. Any given pair is independent other pairs, but the two paths within each pair are
highly correlated. Antithetic sampling literature often recommends averaging the discounted payoffs
of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between paired input
samples, ideally resulting in negative dependence between paired output samples. The greater the
extent of negative dependence, the more effective antithetic sampling is.

Algorithms
This function simulates any vector-valued SDE of the following form:

dXt = B(t, Xt)Xtdt + D(t, Xt)V(t, xt)dWt + Y(t, Xt, Nt)XtdNt

Here:

• Xt is an NVars-by-1 state vector of process variables.
• B(t,Xt) is an NVars-by-NVars matrix of generalized expected instantaneous rates of return.
• D(t,Xt) is an NVars-by-NVars diagonal matrix in which each element along the main diagonal is

the corresponding element of the state vector.
• V(t,Xt) is an NVars-by-NVars matrix of instantaneous volatility rates.
• dWt is an NBrowns-by-1 Brownian motion vector.
• Y(t,Xt,Nt) is an NVars-by-NJumps matrix-valued jump size function.
• dNt is an NJumps-by-1 counting process vector.

simByEuler simulates NTrials sample paths of NVars correlated state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods, using the
Euler approach to approximate continuous-time stochastic processes.

This simulation engine provides a discrete-time approximation of the underlying generalized
continuous-time process. The simulation is derived directly from the stochastic differential equation
of motion. Thus, the discrete-time process approaches the true continuous-time process only as
DeltaTimes approaches zero.
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See Also
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Implementing Multidimensional Equity Market Models, Implementation 5: Using the simByEuler
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simBySolution
Simulate approximate solution of diagonal-drift Merton jump diffusion process

Syntax
[Paths,Times,Z,N] = simBySolution(MDL,NPeriods)
[Paths,Times,Z,N] = simBySolution( ___ ,Name,Value)

Description
[Paths,Times,Z,N] = simBySolution(MDL,NPeriods) simulates NNTrials sample paths of
NVars correlated state variables driven by NBrowns Brownian motion sources of risk and NJumps
compound Poisson processes representing the arrivals of important events over NPeriods
consecutive observation periods. The simulation approximates continuous-time Merton jump diffusion
process by an approximation of the closed-form solution.

[Paths,Times,Z,N] = simBySolution( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Use simBySolution with merton Object

Simulate the approximate solution of diagonal-drift Merton process.

Create a merton object.

AssetPrice = 80;
            Return = 0.03;
            Sigma = 0.16;
            JumpMean = 0.02;
            JumpVol = 0.08;
            JumpFreq = 2;
            
            mertonObj = merton(Return,Sigma,JumpFreq,JumpMean,JumpVol,...
                'startstat',AssetPrice)

mertonObj = 
   Class MERTON: Merton Jump Diffusion
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 80
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.16
         Return: 0.03
       JumpFreq: 2
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       JumpMean: 0.02
        JumpVol: 0.08

Use simBySolution to simulate NTrials sample paths of NVARS correlated state variables driven
by NBrowns Brownian motion sources of risk and NJumps compound Poisson processes representing
the arrivals of important events over NPeriods consecutive observation periods. The function
approximates continuous-time Merton jump diffusion process by an approximation of the closed-form
solution.

nPeriods = 100;
[Paths,Times,Z,N] = simBySolution(mertonObj, nPeriods,'nTrials', 3)

Paths = 
Paths(:,:,1) =

   1.0e+03 *

    0.0800
    0.0662
    0.1257
    0.1863
    0.2042
    0.2210
    0.2405
    0.3143
    0.4980
    0.4753
    0.4088
    0.5627
    0.6849
    0.6662
    0.7172
    0.7710
    0.6758
    0.5528
    0.4777
    0.6314
    0.7290
    0.7265
    0.6018
    0.6630
    0.5531
    0.5919
    0.5580
    0.7209
    0.8122
    0.6494
    0.8194
    0.7434
    0.6887
    0.6873
    0.7052
    0.8532
    0.5498
    0.4686
    0.5445
    0.4291
    0.5118
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    0.4138
    0.4986
    0.4331
    0.4687
    0.5235
    0.4944
    0.4616
    0.3621
    0.4860
    0.4461
    0.4268
    0.4179
    0.3913
    0.5225
    0.4346
    0.3433
    0.3635
    0.3604
    0.3736
    0.3771
    0.4883
    0.4785
    0.4859
    0.5719
    0.6593
    0.7232
    0.8269
    0.7894
    0.8895
    0.9131
    0.7396
    0.9902
    1.4258
    1.1410
    1.1657
    1.2759
    1.2797
    1.2587
    1.5073
    1.5914
    1.2676
    1.5111
    1.4698
    1.5310
    1.0471
    1.3415
    1.2142
    1.3649
    1.9905
    1.9329
    1.5042
    1.7000
    2.2315
    2.6107
    2.2992
    2.6765
    2.7024
    1.6837
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    1.0520
    1.1556

Paths(:,:,2) =

   80.0000
   67.0894
   98.3231
  108.1133
  102.2668
  116.5130
   92.6337
   94.7715
  110.7864
  125.7798
  120.6730
  116.9214
  106.8356
  118.3119
  190.3385
  228.3806
  271.8072
  272.0175
  306.3696
  249.6461
  427.2599
  310.1494
  471.7915
  370.6712
  426.4875
  393.6037
  423.9768
  436.6450
  423.3666
  415.2689
  578.7237
  448.8291
  358.5539
  314.4588
  284.7537
  345.2281
  379.3241
  432.3968
  284.6978
  428.3203
  314.5781
  326.2297
  236.1605
  178.9878
  175.8927
  177.5584
  140.5670
  124.3399
  111.5921
  114.6988
  101.7877
   72.8823
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   61.0876
   54.7438
   53.9104
   44.3239
   32.8282
   35.8978
   44.7213
   37.6385
   34.8707
   33.4812
   35.0828
   37.3844
   50.3077
   49.7005
   41.2006
   58.0578
   51.8254
   42.3636
   38.3241
   40.1687
   35.9465
   44.4746
   36.3203
   31.4723
   25.3097
   23.4042
   14.5024
   11.9513
   11.7996
   13.2874
   14.9033
   14.9986
   14.9639
   18.8188
   16.5700
   17.8684
   13.5567
   13.5978
   11.3215
   10.6453
    9.9437
   10.9639
   14.0077
   16.5691
   12.1943
   10.7238
   11.5439
    9.3313
   10.3501

Paths(:,:,3) =

   80.0000
   79.6896
   69.0705
   57.4353
   54.6468
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   61.1361
   78.0797
  104.5536
  107.1168
   87.1463
   54.5801
   59.8430
   67.0858
   74.7163
   65.0742
   90.0205
   70.0329
   94.1883
   88.2437
  100.7302
  127.2244
  111.4070
   81.0410
   93.1479
   72.5876
   74.3940
   71.8182
   78.4764
   90.1952
   89.6539
   70.3198
   50.4493
   58.2573
   52.1928
   67.7723
   81.1286
  112.6400
  108.8060
  103.0418
  104.3689
  120.8792
   89.2307
   66.3967
   76.2541
   57.1963
   56.8041
   40.4475
   34.5959
   45.2467
   44.6159
   52.2680
   63.3114
   69.8554
  102.0669
   76.8265
   84.8615
   62.4934
   70.3915
   54.4665
   60.1859
   68.3690
   73.3205
   87.8904
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   82.7777
   94.8760
   88.8936
  103.9546
  103.4198
   99.0468
  135.2132
  117.9348
  120.8927
  126.9568
  120.5084
  119.4830
  154.8170
  165.2276
  180.3558
  150.8172
  155.2828
  138.6475
  179.8007
  158.8069
  166.0540
  229.0607
  253.4962
  240.1957
  192.3787
  225.7069
  311.1060
  353.6839
  463.5303
  515.0606
  569.4017
  488.1785
  331.1247
  392.7017
  379.5234
  238.3932
  186.9090
  209.5703

Times = 101×1

     0
     1
     2
     3
     4
     5
     6
     7
     8
     9
      ⋮

Z = 
Z(:,:,1) =
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   -1.3077
    3.5784
    3.0349
    0.7147
    1.4897
    0.6715
    1.6302
    0.7269
   -0.7873
   -1.0689
    1.4384
    1.3703
   -0.2414
   -0.8649
    0.6277
   -0.8637
   -1.1135
   -0.7697
    1.1174
    0.5525
    0.0859
   -1.0616
    0.7481
   -0.7648
    0.4882
    1.4193
    1.5877
    0.8351
   -1.1658
    0.7223
    0.1873
   -0.4390
   -0.8880
    0.3035
    0.7394
   -2.1384
   -1.0722
    1.4367
   -1.2078
    1.3790
   -0.2725
    0.7015
   -0.8236
    0.2820
    1.1275
    0.0229
   -0.2857
   -1.1564
    0.9642
   -0.0348
   -0.1332
   -0.2248
   -0.8479
    1.6555
   -0.8655
   -1.3320
    0.3335
   -0.1303
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    0.8620
   -0.8487
    1.0391
    0.6601
   -0.2176
    0.0513
    0.4669
    0.1832
    0.3071
    0.2614
   -0.1461
   -0.8757
   -1.1742
    1.5301
    1.6035
   -1.5062
    0.2761
    0.3919
   -0.7411
    0.0125
    1.2424
    0.3503
   -1.5651
    0.0983
   -0.0308
   -0.3728
   -2.2584
    1.0001
   -0.2781
    0.4716
    0.6524
    1.0061
   -0.9444
    0.0000
    0.5946
    0.9298
   -0.6516
   -0.0245
    0.8617
   -2.4863
   -2.3193
    0.4115

Z(:,:,2) =

   -0.4336
    2.7694
    0.7254
   -0.2050
    1.4090
   -1.2075
    0.4889
   -0.3034
    0.8884
   -0.8095
    0.3252
   -1.7115
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    0.3192
   -0.0301
    1.0933
    0.0774
   -0.0068
    0.3714
   -1.0891
    1.1006
   -1.4916
    2.3505
   -0.1924
   -1.4023
   -0.1774
    0.2916
   -0.8045
   -0.2437
   -1.1480
    2.5855
   -0.0825
   -1.7947
    0.1001
   -0.6003
    1.7119
   -0.8396
    0.9610
   -1.9609
    2.9080
   -1.0582
    1.0984
   -2.0518
   -1.5771
    0.0335
    0.3502
   -0.2620
   -0.8314
   -0.5336
    0.5201
   -0.7982
   -0.7145
   -0.5890
   -1.1201
    0.3075
   -0.1765
   -2.3299
    0.3914
    0.1837
   -1.3617
   -0.3349
   -1.1176
   -0.0679
   -0.3031
    0.8261
   -0.2097
   -1.0298
    0.1352
   -0.9415
   -0.5320
   -0.4838
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   -0.1922
   -0.2490
    1.2347
   -0.4446
   -0.2612
   -1.2507
   -0.5078
   -3.0292
   -1.0667
   -0.0290
   -0.0845
    0.0414
    0.2323
   -0.2365
    2.2294
   -1.6642
    0.4227
   -1.2128
    0.3271
   -0.6509
   -1.3218
   -0.0549
    0.3502
    0.2398
    1.1921
   -1.9488
    0.0012
    0.5812
    0.0799
    0.6770

Z(:,:,3) =

    0.3426
   -1.3499
   -0.0631
   -0.1241
    1.4172
    0.7172
    1.0347
    0.2939
   -1.1471
   -2.9443
   -0.7549
   -0.1022
    0.3129
   -0.1649
    1.1093
   -1.2141
    1.5326
   -0.2256
    0.0326
    1.5442
   -0.7423
   -0.6156
    0.8886
   -1.4224
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   -0.1961
    0.1978
    0.6966
    0.2157
    0.1049
   -0.6669
   -1.9330
    0.8404
   -0.5445
    0.4900
   -0.1941
    1.3546
    0.1240
   -0.1977
    0.8252
   -0.4686
   -0.2779
   -0.3538
    0.5080
   -1.3337
   -0.2991
   -1.7502
   -0.9792
   -2.0026
   -0.0200
    1.0187
    1.3514
   -0.2938
    2.5260
   -1.2571
    0.7914
   -1.4491
    0.4517
   -0.4762
    0.4550
    0.5528
    1.2607
   -0.1952
    0.0230
    1.5270
    0.6252
    0.9492
    0.5152
   -0.1623
    1.6821
   -0.7120
   -0.2741
   -1.0642
   -0.2296
   -0.1559
    0.4434
   -0.9480
   -0.3206
   -0.4570
    0.9337
    0.1825
    1.6039
   -0.7342
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    0.4264
    2.0237
    0.3376
   -0.5900
   -1.6702
    0.0662
    1.0826
    0.2571
    0.9248
    0.9111
    1.2503
   -0.6904
   -1.6118
    1.0205
   -0.0708
   -2.1924
   -0.9485
    0.8577

N = 
N(:,:,1) =

     1
     2
     1
     0
     2
     0
     1
     3
     4
     2
     1
     0
     1
     1
     1
     1
     0
     0
     3
     2
     2
     1
     0
     1
     1
     3
     3
     4
     2
     4
     1
     1
     2
     0
     2
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     2
     3
     2
     1
     3
     2
     2
     1
     1
     1
     3
     0
     2
     2
     1
     0
     1
     1
     1
     1
     0
     2
     2
     1
     1
     6
     7
     3
     2
     2
     1
     3
     3
     4
     3
     0
     1
     7
     2
     0
     5
     2
     2
     1
     2
     1
     3
     0
     2
     5
     2
     2
     4
     2
     3
     1
     2
     6
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     1
     0
     3
     3
     1
     1
     3

N(:,:,2) =

     2
     2
     2
     0
     4
     1
     2
     3
     1
     2
     1
     4
     2
     4
     2
     2
     2
     2
     1
     5
     3
     1
     3
     3
     1
     3
     5
     1
     4
     2
     2
     1
     2
     1
     1
     6
     0
     2
     2
     3
     2
     2
     1
     0
     1
     5
     5
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     0
     1
     1
     2
     1
     2
     3
     2
     2
     1
     2
     2
     0
     3
     1
     5
     3
     3
     0
     2
     1
     2
     0
     4
     1
     3
     1
     2
     2
     2
     1
     0
     2
     2
     2
     2
     1
     1
     3
     1
     2
     2
     1
     4
     1
     3
     3
     0
     1
     1
     1
     2
     3

N(:,:,3) =

     3
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     2
     2
     1
     4
     2
     3
     0
     0
     4
     3
     2
     3
     1
     1
     1
     1
     3
     4
     1
     2
     3
     1
     1
     1
     1
     0
     3
     0
     1
     0
     5
     0
     2
     4
     3
     1
     0
     1
     4
     3
     3
     2
     1
     2
     3
     1
     4
     4
     1
     1
     2
     2
     1
     1
     1
     2
     1
     6
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     1
     2
     1
     3
     2
     2
     1
     3
     1
     7
     0
     1
     5
     1
     1
     3
     4
     3
     1
     2
     2
     1
     2
     1
     1
     1
     1
     1
     2
     3
     4
     2
     1
     3
     2
     1
     1
     0
     1
     3
     0

Input Arguments
MDL — Merton model
merton object

Merton model, specified as a merton object. You can create a merton object using merton.
Data Types: object

NPeriods — Number of simulation periods
positive integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
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Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times,Z,N] =
simBySolution(merton,NPeriods,'DeltaTimes',dt,'NNTrials',10)

NNTrials — Simulated NTrials (sample paths)
1 (single path of correlated state variables) (default) | positive integer

Simulated NTrials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NNTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or an NPeriods-by-1 column vector.

DeltaTimes represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps within each time increment
1 (indicating no intermediate evaluation) (default) | positive integer

Number of intermediate time steps within each time increment dt (specified as DeltaTimes),
specified as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simBySolution function partitions each time increment dt into NSteps subintervals of length
dt/NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
intermediate points. Although simBySolution does not report the output state vector at these
intermediate points, the refinement improves accuracy by allowing the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

Antithetic — Flag to use antithetic sampling to generate the Gaussian random variates
false (no antithetic sampling) (default) | logical with values true or false

Flag to use antithetic sampling to generate the Gaussian random variates that drive the Brownian
motion vector (Wiener processes), specified as the comma-separated pair consisting of
'Antithetic' and a scalar numeric or logical 1 (true) or 0 (false).

When you specify true, simBySolution performs sampling such that all primary and antithetic
paths are simulated and stored in successive matching pairs:

• Odd NTrials (1,3,5,...) correspond to the primary Gaussian paths.
• Even NTrials (2,4,6,...) are the matching antithetic paths of each pair derived by negating

the Gaussian draws of the corresponding primary (odd) trial.
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Note If you specify an input noise process (see Z), simBySolution ignores the value of
Antithetic.

Data Types: logical

Z — Direct specification of the dependent random noise process for generating Brownian
motion vector
generates correlated Gaussian variates based on the Correlation member of the SDE object
(default) | function | three-dimensional array of dependent random variates

Direct specification of the dependent random noise process for generating the Brownian motion
vector (Wiener process) that drives the simulation, specified as the comma-separated pair consisting
of 'Z' and a function or an (NPeriods * NSteps)-by-NBrowns-by-NNTrials three-dimensional
array of dependent random variates.

The input argument Z allows you to directly specify the noise generation process. This process takes
precedence over the Correlation parameter of the input merton object and the value of the
Antithetic input flag.

Specifically, when Z is specified, Correlation is not explicitly used to generate the Gaussian
variates that drive the Brownian motion. However, Correlation is still used in the expression that
appears in the exponential term of the log[Xt] Euler scheme. Thus, you must specify Z as a correlated
Gaussian noise process whose correlation structure is consistently captured by Correlation.

Note If you specify Z as a function, it must return an NBrowns-by-1 column vector, and you must call
it with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Data Types: double | function

N — Dependent random counting process for generating number of jumps
random numbers from Poisson distribution with merton object parameter JumpFreq (default) |
three-dimensional array | function

Dependent random counting process for generating the number of jumps, specified as the comma-
separated pair consisting of 'N' and a function or an (NPeriods ⨉ NSteps) -by-NJumps-by-
NNTrials three-dimensional array of dependent random variates. If you specify a function, N must
return an NJumps-by-1 column vector, and you must call it with two inputs: a real-valued scalar
observation time t followed by an NVars-by-1 state vector Xt.
Data Types: double | function

StorePaths — Flag that indicates how Paths is stored and returned
true (default) | logical with values true or false

Flag that indicates how the output array Paths is stored and returned, specified as the comma-
separated pair consisting of 'StorePaths' and a scalar numeric or logical 1 (true) or 0 (false).

If StorePaths is true (the default value) or is unspecified, simBySolution returns Paths as a
three-dimensional time series array.
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If StorePaths is false (logical 0), simBySolution returns Paths as an empty matrix.
Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments of the form
simBySolution makes no adjustments and performs no processing (default) | function | cell array of
functions

Sequence of end-of-period processes or state vector adjustments, specified as the comma-separated
pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

simBySolution applies processing functions at the end of each observation period. These functions
must accept the current observation time t and the current state vector Xt, and return a state vector
that can be an adjustment to the input state.

The end-of-period Processes argument allows you to terminate a given trial early. At the end of each
time step, simBySolution tests the state vector Xt for an all-NaN condition. Thus, to signal an early
termination of a given trial, all elements of the state vector Xt must be NaN. This test enables a user-
defined Processes function to signal early termination of a trial, and offers significant performance
benefits in some situations (for example, pricing down-and-out barrier options).

If you specify more than one processing function, simBySolution invokes the functions in the order
in which they appear in the cell array. You can use this argument to specify boundary conditions,
prevent negative prices, accumulate statistics, plot graphs, and more.
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as an (NPeriods + 1)-by-NVars-by-
NNTrials three-dimensional time-series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When
StorePaths is set to false, simBySolution returns Paths as an empty matrix.

Times — Observation times associated with simulated paths
column vector

Observation times associated with the simulated paths, returned as an (NPeriods + 1)-by-1
column vector. Each element of Times is associated with the corresponding row of Paths.

Z — Dependent random variates for generating the Brownian motion vector
array

Dependent random variates for generating the Brownian motion vector (Wiener processes) that drive
the simulation, returned as a (NPeriods * NSteps)-by-NBrowns-by-NNTrials three-dimensional
time-series array.

N — Dependent random variates for generating the jump counting process vector
array
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Dependent random variates for generating the jump counting process vector, returned as an
(NPeriods ⨉ NSteps)-by-NJumps-by-NNTrials three-dimensional time-series array.

More About
Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique called antithetic
sampling.

This technique attempts to replace one sequence of random observations with another that has the
same expected value but a smaller variance. In a typical Monte Carlo simulation, each sample path is
independent and represents an independent trial. However, antithetic sampling generates sample
paths in pairs. The first path of the pair is referred to as the primary path, and the second as the
antithetic path. Any given pair is independent other pairs, but the two paths within each pair are
highly correlated. Antithetic sampling literature often recommends averaging the discounted payoffs
of each pair, effectively halving the number of Monte Carlo NTrials.

This technique attempts to reduce variance by inducing negative dependence between paired input
samples, ideally resulting in negative dependence between paired output samples. The greater the
extent of negative dependence, the more effective antithetic sampling is.

Algorithms
The simBySolution function simulates the state vector Xt by an approximation of the closed-form
solution of diagonal drift Merton jump diffusion models. Specifically, it applies a Euler approach to
the transformed log[Xt] process (using Ito's formula). In general, this is not the exact solution to the
Merton jump diffusion model because the probability distributions of the simulated and true state
vectors are identical only for piecewise constant parameters.

This function simulates any vector-valued merton process of the form

dXt = B(t, Xt)Xtdt + D(t, Xt)V(t, xt)dWt + Y(t, Xt, Nt)XtdNt

Here:

• Xt is an NVars-by-1 state vector of process variables.
• B(t,Xt) is an NVars-by-NVars matrix of generalized expected instantaneous rates of return.
• D(t,Xt) is an NVars-by-NVars diagonal matrix in which each element along the main diagonal is

the corresponding element of the state vector.
• V(t,Xt) is an NVars-by-NVars matrix of instantaneous volatility rates.
• dWt is an NBrowns-by-1 Brownian motion vector.
• Y(t,Xt,Nt) is an NVars-by-NJumps matrix-valued jump size function.
• dNt is an NJumps-by-1 counting process vector.

References
[1] Aït-Sahalia, Yacine. “Testing Continuous-Time Models of the Spot Interest Rate.” Review of

Financial Studies 9, no. 2 ( Apr. 1996): 385–426.

 simBySolution

19-219



[2] Aït-Sahalia, Yacine. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.” The
Journal of Finance 54, no. 4 (Aug. 1999): 1361–95.

[3] Glasserman, Paul. Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag,
2004.

[4] Hull, John C. Options, Futures and Other Derivatives. 7th ed, Prentice Hall, 2009.

[5] Johnson, Norman Lloyd, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous Univariate
Distributions. 2nd ed. Wiley Series in Probability and Mathematical Statistics. New York:
Wiley, 1995.

[6] Shreve, Steven E. Stochastic Calculus for Finance. New York: Springer-Verlag, 2004.

See Also
simByEuler | merton

Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2020a
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simByQuadExp
Simulate Bates, Heston, and CIR sample paths by quadratic-exponential discretization scheme

Syntax
[Paths,Times,Z] = simByQuadExp(MDL,NPeriods)
[Paths,Times,Z] = simByQuadExp( ___ ,Name,Value)

[Paths,Times,Z,N] = simByQuadExp(MDL,NPeriods)
[Paths,Times,Z,N] = simByQuadExp( ___ ,Name,Value)

Description
[Paths,Times,Z] = simByQuadExp(MDL,NPeriods) simulates NTrials sample paths of a
Heston model driven by two Brownian motion sources of risk, or a CIR model driven by one Brownian
motion source of risk. Both Heston and Bates models approximate continuous-time stochastic
processes by a quadratic-exponential discretization scheme. The simByQuadExp simulation derives
directly from the stochastic differential equation of motion; the discrete-time process approaches the
true continuous-time process only in the limit as DeltaTimes approaches zero.

[Paths,Times,Z] = simByQuadExp( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

[Paths,Times,Z,N] = simByQuadExp(MDL,NPeriods) simulates NTrials sample paths of a
Bates model driven by two Brownian motion sources of risk, approximating continuous-time
stochastic processes by a quadratic-exponential discretization scheme. The simByQuadExp
simulation derives directly from the stochastic differential equation of motion; the discrete-time
process approaches the true continuous-time process only in the limit as DeltaTimes approaches
zero.

[Paths,Times,Z,N] = simByQuadExp( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Simulate Bates Sample Paths by Quadratic-Exponential Discretization Scheme

Create a bates object.

AssetPrice = 80;
            Return = 0.03;
            JumpMean = 0.02;
            JumpVol = 0.08;
            JumpFreq = 0.1;
            
            V0 = 0.04;
            Level = 0.05;
            Speed = 1.0;
            Volatility = 0.2;
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            Rho = -0.7;
            StartState = [AssetPrice;V0]; 
            Correlation = [1 Rho;Rho 1];

batesObj = bates(Return, Speed, Level, Volatility,...
                JumpFreq, JumpMean, JumpVol,'startstate',StartState,...
                'correlation',Correlation)

batesObj = 
   Class BATES: Bates Bivariate Stochastic Volatility
   --------------------------------------------------
     Dimensions: State = 2, Brownian = 2
   --------------------------------------------------
      StartTime: 0
     StartState: 2x1 double array 
    Correlation: 2x2 double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.03
          Speed: 1
          Level: 0.05
     Volatility: 0.2
       JumpFreq: 0.1
       JumpMean: 0.02
        JumpVol: 0.08

Use simByQuadExp to simulate NTrials sample paths directly from the stochastic differential
equation of motion; the discrete-time process approaches the true continuous-time process only in
the limit as DeltaTimes approaches zero.

NPeriods = 2;
[Paths,Times,Z,N] = simByQuadExp(batesObj,NPeriods)

Paths = 3×2

   80.0000    0.0400
   64.3377    0.1063
   31.5703    0.1009

Times = 3×1

     0
     1
     2

Z = 2×2

    0.5377    1.8339
   -2.2588    0.8622

N = 2×1

     0
     0
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The output Paths is returned as a (NPeriods + 1)-by-NVars-by-NTrials three-dimensional time-
series array.

Input Arguments
MDL — Stochastic differential equation model
bates object | heston object | cir object

Stochastic differential equation model, specified as a bates, heston, or cir object. You can create
these objects using bates, heston, or cir.
Data Types: object

NPeriods — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times,Z,N] = simByQuadExp(bates_obj,NPeriods,'DeltaTime',dt)

NTrials — Simulated trials (sample paths) of NPeriods observations each
1 (single path of correlated state variables) (default) | positive scalar integer

Simulated trials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or a NPeriods-by-1 column vector.

DeltaTimes represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps within each time increment dt (specified as
DeltaTimes)
1 (indicating no intermediate evaluation) (default) | positive scalar integer

Number of intermediate time steps within each time increment dt (specified as DeltaTimes),
specified as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simByQuadExp function partitions each time increment dt into NSteps subintervals of length dt/
NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
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intermediate points. Although simByQuadExp does not report the output state vector at these
intermediate points, the refinement improves accuracy by allowing the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

Antithetic — Flag to use antithetic sampling to generate the Gaussian random variates
false (no antithetic sampling) (default) | logical with values true or false

Flag to use antithetic sampling to generate the Gaussian random variates that drive the Brownian
motion vector (Wiener processes), specified as the comma-separated pair consisting of
'Antithetic' and a scalar numeric or logical 1 (true) or 0 (false).

When you specify true, simByQuadExp performs sampling such that all primary and antithetic paths
are simulated and stored in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary Gaussian paths.
• Even trials (2,4,6,...) are the matching antithetic paths of each pair derived by negating the

Gaussian draws of the corresponding primary (odd) trial.

Note If you specify an input noise process (see Z), simByEuler ignores the value of Antithetic.

Data Types: logical

Z — Direct specification of dependent random noise process for generating Brownian
motion vector
generates correlated Gaussian variates based on the Correlation member of the heston, bates,
or cir object (default) | function | three-dimensional array of dependent random variates

Direct specification of the dependent random noise process for generating the Brownian motion
vector (Wiener process) that drives the simulation, specified as the comma-separated pair consisting
of 'Z' and a function or an (NPeriods ⨉ NSteps)-by-NBrowns-by-NTrials three-dimensional
array of dependent random variates.

If you specify Z as a function, it must return an NBrowns-by-1 column vector, and you must call it
with two inputs:

• A real-valued scalar observation time t
• An NVars-by-1 state vector Xt

Data Types: double | function

N — Dependent random counting process for generating number of jumps
random numbers from Poisson distribution with parameter JumpFreq from a bates object (default) |
three-dimensional array | function

Dependent random counting process for generating the number of jumps, specified as the comma-
separated pair consisting of 'N' and a function or an (NPeriods ⨉ NSteps) -by-NJumps-by-NTrials
three-dimensional array of dependent random variates. If you specify a function, N must return an
NJumps-by-1 column vector, and you must call it with two inputs: a real-valued scalar observation
time t followed by an NVars-by-1 state vector Xt.
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Note The N name-value pair argument is supported only when you use a bates object for the MDL
input argument.

Data Types: double | function

StorePaths — Flag that indicates how Paths is stored and returned
true (default) | logical with values true or false

Flag that indicates how the output array Paths is stored and returned, specified as the comma-
separated pair consisting of 'StorePaths' and a scalar numeric or logical 1 (true) or 0 (false).

If StorePaths is true (the default value) or is unspecified, simByQuadExp returns Paths as a
three-dimensional time-series array.

If StorePaths is false (logical 0), simByQuadExp returns Paths as an empty matrix.
Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments
simByQuadExp makes no adjustments and performs no processing (default) | function | cell array of
functions

Sequence of end-of-period processes or state vector adjustments, specified as the comma-separated
pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

The simByQuadExp function runs processing functions at each interpolation time. The functions
must accept the current interpolation time t, and the current state vector Xt and return a state vector
that can be an adjustment to the input state.

If you specify more than one processing function, simByQuadExp invokes the functions in the order
in which they appear in the cell array. You can use this argument to specify boundary conditions,
prevent negative prices, accumulate statistics, plot graphs, and more.

The end-of-period Processes argument allows you to terminate a given trial early. At the end of each
time step, simByQuadExp tests the state vector Xt for an all-NaN condition. Thus, to signal an early
termination of a given trial, all elements of the state vector Xt must be NaN. This test enables you to
define a Processes function to signal early termination of a trial, and offers significant performance
benefits in some situations (for example, pricing down-and-out barrier options).
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables for a heston, bates, or cir model, returned as a
(NPeriods + 1)-by-NVars-by-NTrials three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When
StorePaths is set to false, simByQuadExp returns Paths as an empty matrix.
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Times — Observation times associated with simulated paths
column vector

Observation times for a heston, bates, or cir model associated with the simulated paths, returned as a
(NPeriods + 1)-by-1 column vector. Each element of Times is associated with the corresponding
row of Paths.

Z — Dependent random variates for generating Brownian motion vector
array

Dependent random variates for a heston, bates, or cir model for generating the Brownian motion
vector (Wiener processes) that drive the simulation, returned as an (NPeriods ⨉ NSteps)-by-
NBrowns-by-NTrials three-dimensional time-series array.

N — Dependent random variates for generating jump counting process vector
array

Dependent random variates for a bates model for generating the jump counting process vector,
returned as a (NPeriods ⨉ NSteps)-by-NJumps-by-NTrials three-dimensional time-series array.

More About
Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique called antithetic
sampling.

This technique attempts to replace one sequence of random observations with another of the same
expected value, but smaller variance. In a typical Monte Carlo simulation, each sample path is
independent and represents an independent trial. However, antithetic sampling generates sample
paths in pairs. The first path of the pair is referred to as the primary path, and the second as the
antithetic path. Any given pair is independent of any other pair, but the two paths within each pair
are highly correlated. Antithetic sampling literature often recommends averaging the discounted
payoffs of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between paired input
samples, ideally resulting in negative dependence between paired output samples. The greater the
extent of negative dependence, the more effective antithetic sampling is.

Algorithms
Heston

In the Heston stochastic volatility model, the asset value process and volatility process are defined as

dS(t) = γ(t)S(t)dt + V(t)S(t)dWS(t)
dV(t) = κ(θ− V(t))dt + σ V(t)dWV(t)

Here:

• γ is the continuous risk-free rate.
• θ is a long-term variance level.
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• κ is the mean reversion speed for the variance.
• σ is the volatility of volatility.

CIR

You can simulate any vector-valued CIR process of the form

dXt = S(t)[L(t)− Xt]dt + D(t, Xt

1
2)V(t)dWt

Here:

• Xt is an NVars-by-1 state vector of process variables.
• S is an NVars-by-NVars matrix of mean reversion speeds (the rate of mean reversion).
• L is an NVars-by-1 vector of mean reversion levels (long-run mean or level).
• D is an NVars-by-NVars diagonal matrix, where each element along the main diagonal is the

square root of the corresponding element of the state vector.
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWt is an NBrowns-by-1 Brownian motion vector.

Bates

Bates models are bivariate composite models. Each Bates model consists of two coupled univariate
models.

• A geometric Brownian motion (gbm) model with a stochastic volatility function and jumps that is
expressed as follows.

dX1t = B(t)X1tdt + X2tX1tdW1t + Y(t)X1tdNt

This model usually corresponds to a price process whose volatility (variance rate) is governed by
the second univariate model.

• A Cox-Ingersoll-Ross (cir) square root diffusion model that is expressed as follows.

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

This model describes the evolution of the variance rate of the coupled Bates price process.

References
[1] Andersen, Leif. “Simple and Efficient Simulation of the Heston Stochastic Volatility Model.” The

Journal of Computational Finance 11, no. 3 (March 2008): 1–42.

[2] Broadie, M., and O. Kaya. “Exact Simulation of Option Greeks under Stochastic Volatility and Jump
Diffusion Models.” In Proceedings of the 2004 Winter Simulation Conference, 2004., 2:535–
43. Washington, D.C.: IEEE, 2004.

[3] Broadie, Mark, and Özgür Kaya. “Exact Simulation of Stochastic Volatility and Other Affine Jump
Diffusion Processes.” Operations Research 54, no. 2 (April 2006): 217–31.
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See Also
bates | heston | cir | simByEuler | simByTransition

Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2020a
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simByEuler
Euler simulation of stochastic differential equations (SDEs)

Syntax
[Paths,Times,Z] = simByEuler(MDL,NPeriods)
[Paths,Times,Z] = simByEuler( ___ ,Name,Value)

Description
[Paths,Times,Z] = simByEuler(MDL,NPeriods) simulates NTrials sample paths of NVars
correlated state variables driven by NBrowns Brownian motion sources of risk over NPeriods
consecutive observation periods. simByEuler uses the Euler approach to approximate continuous-
time stochastic processes.

[Paths,Times,Z] = simByEuler( ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax.

Examples

Simulate Equity Markets Using simByEuler

Load the Data and Specify the SDE Model

load Data_GlobalIdx2
prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...
    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);
expReturn   = mean(returns);
sigma       = std(returns);
correlation = corrcoef(returns);
t           = 0;
X           = 100;
X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;
G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...
    correlation, 'StartState', X);

Simulate a Single Path Over a Year

nPeriods = 249;      % # of simulated observations
dt       =   1;      % time increment = 1 day
rng(142857,'twister')
[S,T] = simByEuler(SDE, nPeriods, 'DeltaTime', dt);
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Simulate 10 trials and examine the SDE model
rng(142857,'twister')
[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt, 'nTrials', 10);

whos S

  Name        Size               Bytes  Class     Attributes

  S         250x6x10            120000  double              

Plot the paths
plot(T, S(:,:,1)), xlabel('Trading Day'), ylabel('Price')
title('First Path of Multi-Dimensional Market Model')
legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'},...
    'Location', 'Best')

Euler Simulation for a CIR Object

The Cox-Ingersoll-Ross (CIR) short rate class derives directly from SDE with mean-reverting drift

(SDEMRD): dXt = S(t)[L(t)− Xt]dt + D(t, Xt

1
2)V(t)dW

where D is a diagonal matrix whose elements are the square root of the corresponding element of the
state vector.
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Create a cir object to represent the model: dXt = 0 . 2(0 . 1− Xt)dt + 0 . 05Xt

1
2dW.

CIR = cir(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

CIR = 
   Class CIR: Cox-Ingersoll-Ross
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 1
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.05
          Level: 0.1
          Speed: 0.2

Simulate a single path over a year using simByEuler.

nPeriods = 249;      % # of simulated observations
dt       =   1;      % time increment = 1 day
rng(142857,'twister')
[Paths,Times] = simByEuler(CIR,nPeriods,'Method','higham-mao','DeltaTime', dt)

Paths = 250×1

    1.0000
    0.8613
    0.7245
    0.6349
    0.4741
    0.3853
    0.3374
    0.2549
    0.1859
    0.1814
      ⋮

Times = 250×1

     0
     1
     2
     3
     4
     5
     6
     7
     8
     9
      ⋮
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Input Arguments
MDL — Stochastic differential equation model
object

Stochastic differential equation model, specified as an sde, bm, gbm, cev, cir, hwv, heston, sdeddo,
sdeld, or sdemrd object.
Data Types: object

NPeriods — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times,Z] = simByEuler(SDE,NPeriods,'DeltaTime',dt)

Method — Method to handle negative values
'basic' (default) | character vector with values'basic', 'absorption', 'reflection',
'partial-truncation', 'full-truncation', or 'higham-mao' | string with values "basic",
"absorption", "reflection", "partial-truncation", "full-truncation", or "higham-
mao"

Method to handle negative values, specified as the comma-separated pair consisting of 'Method'
and a character vector or string with a supported value.

Note The Method argument is only supported when using a CIR object. For more information on
creating a CIR object, see cir.

Data Types: char | string

NTrials — Simulated trials (sample paths) of NPeriods observations each
1 (single path of correlated state variables) (default) | positive scalar integer

Simulated trials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or a NPeriods-by-1 column vector.
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DeltaTime represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps within each time increment dt (specified as
DeltaTime)
1 (indicating no intermediate evaluation) (default) | positive scalar integer

Number of intermediate time steps within each time increment dt (specified as DeltaTime),
specified as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simByEuler function partitions each time increment dt into NSteps subintervals of length dt/
NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
intermediate points. Although simByEuler does not report the output state vector at these
intermediate points, the refinement improves accuracy by allowing the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

Antithetic — Flag to indicate whether simByEuler uses antithetic sampling to generate
the Gaussian random variates
False (no antithetic sampling) (default) | logical with values True or False

Flag indicates whether simByEuler uses antithetic sampling to generate the Gaussian random
variates that drive the Brownian motion vector (Wiener processes). This argument is specified as the
comma-separated pair consisting of 'Antithetic' and a scalar logical flag with a value of True or
False.

When you specify True, simByEuler performs sampling such that all primary and antithetic paths
are simulated and stored in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary Gaussian paths.
• Even trials (2,4,6,...) are the matching antithetic paths of each pair derived by negating the

Gaussian draws of the corresponding primary (odd) trial.

Note If you specify an input noise process (see Z), simByEuler ignores the value of Antithetic.

Data Types: logical

Z — Direct specification of the dependent random noise process used to generate the
Brownian motion vector
generates correlated Gaussian variates based on the Correlation member of the SDE object
(default) | function | three-dimensional array of dependent random variates

Direct specification of the dependent random noise process used to generate the Brownian motion
vector (Wiener process) that drives the simulation. This argument is specified as the comma-
separated pair consisting of 'Z' and a function or as an (NPeriods ⨉ NSteps)-by-NBrowns-by-
NTrials three-dimensional array of dependent random variates.

Note If you specify Z as a function, it must return an NBrowns-by-1 column vector, and you must call
it with two inputs:
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• A real-valued scalar observation time t.
• An NVars-by-1 state vector Xt.

Data Types: double | function

StorePaths — Flag that indicates how the output array Paths is stored and returned
True (default) | logical with values True or False

Flag that indicates how the output array Paths is stored and returned, specified as the comma-
separated pair consisting of 'StorePaths' and a scalar logical flag with a value of True or False.

If StorePaths is True (the default value) or is unspecified, simByEuler returns Paths as a three-
dimensional time series array.

If StorePaths is False (logical 0), simByEuler returns the Paths output array as an empty
matrix.
Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments
simByEuler makes no adjustments and performs no processing (default) | function | cell array of
functions

Sequence of end-of-period processes or state vector adjustments of the form, specified as the comma-
separated pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

The simByEuler function runs processing functions at each interpolation time. They must accept the
current interpolation time t, and the current state vector Xt, and return a state vector that may be an
adjustment to the input state.

If you specify more than one processing function, simByEuler invokes the functions in the order in
which they appear in the cell array. You can use this argument to specify boundary conditions,
prevent negative prices, accumulate statistics, plot graphs, and more.
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as a (NPeriods + 1)-by-NVars-by-NTrials
three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When the input
flag StorePaths = False, simByEuler returns Paths as an empty matrix.

Times — Observation times associated with the simulated paths
column vector

Observation times associated with the simulated paths, returned as a (NPeriods + 1)-by-1 column
vector. Each element of Times is associated with the corresponding row of Paths.
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Z — Dependent random variates used to generate the Brownian motion vector
array

Dependent random variates used to generate the Brownian motion vector (Wiener processes) that
drive the simulation, returned as a (NPeriods ⨉ NSteps)-by-NBrowns-by-NTrials three-
dimensional time series array.

More About
Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique called antithetic
sampling.

This technique attempts to replace one sequence of random observations with another of the same
expected value, but smaller variance. In a typical Monte Carlo simulation, each sample path is
independent and represents an independent trial. However, antithetic sampling generates sample
paths in pairs. The first path of the pair is referred to as the primary path, and the second as the
antithetic path. Any given pair is independent of any other pair, but the two paths within each pair
are highly correlated. Antithetic sampling literature often recommends averaging the discounted
payoffs of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between paired input
samples, ideally resulting in negative dependence between paired output samples. The greater the
extent of negative dependence, the more effective antithetic sampling is.

Algorithms
This function simulates any vector-valued SDE of the form

dXt = F(t, Xt)dt + G(t, Xt)dWt

where:

• X is an NVars-by-1 state vector of process variables (for example, short rates or equity prices) to
simulate.

• W is an NBrowns-by-1 Brownian motion vector.
• F is an NVars-by-1 vector-valued drift-rate function.
• G is an NVars-by-NBrowns matrix-valued diffusion-rate function.

simByEuler simulates NTrials sample paths of NVars correlated state variables driven by
NBrowns Brownian motion sources of risk over NPeriods consecutive observation periods, using the
Euler approach to approximate continuous-time stochastic processes.

• This simulation engine provides a discrete-time approximation of the underlying generalized
continuous-time process. The simulation is derived directly from the stochastic differential
equation of motion. Thus, the discrete-time process approaches the true continuous-time process
only as DeltaTime approaches zero.

• The input argument Z allows you to directly specify the noise-generation process. This process
takes precedence over the Correlation parameter of the sde object and the value of the
Antithetic input flag. If you do not specify a value for Z, simByEuler generates correlated
Gaussian variates, with or without antithetic sampling as requested.
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• The end-of-period Processes argument allows you to terminate a given trial early. At the end of
each time step, simByEuler tests the state vector Xt for an all-NaN condition. Thus, to signal an
early termination of a given trial, all elements of the state vector Xt must be NaN. This test enables
a user-defined Processes function to signal early termination of a trial, and offers significant
performance benefits in some situations (for example, pricing down-and-out barrier options).

References
[1] Deelstra, G. and F. Delbaen. “Convergence of Discretized Stochastic (Interest Rate) Processes

with Stochastic Drift Term.” Applied Stochastic Models and Data Analysis., 1998, vol. 14, no.
1, pp. 77–84.

[2] Higham, Desmond, and Xuerong Mao. “Convergence of Monte Carlo Simulations Involving the
Mean-Reverting Square Root Process.” The Journal of Computational Finance, vol. 8, no. 3,
2005, pp. 35–61.

[3] Lord, Roger, et al. “A Comparison of Biased Simulation Schemes for Stochastic Volatility Models.”
Quantitative Finance, vol. 10, no. 2, Feb. 2010, pp. 177–94

See Also
simByTransition | simBySolution | | simulate | sde | bm | gbm | sdeddo | sdeld | cev | cir |
heston | hwv | sdemrd

Topics
Implementing Multidimensional Equity Market Models, Implementation 5: Using the simByEuler
Method on page 18-33
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2008a
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simByTransition
Simulate Cox-Ingersoll-Ross sample paths with transition density

Syntax
[Paths,Times] = simByTransition(MDL,NPeriods)
[Paths,Times] = simByTransition( ___ ,Name,Value)

Description
[Paths,Times] = simByTransition(MDL,NPeriods) simulates NTrials sample paths of
NVars independent state variables driven by the Cox-Ingersoll-Ross (CIR) process sources of risk
over NPeriods consecutive observation periods. simByTransition approximates a continuous-time
CIR model using an approximation of the transition density function.

[Paths,Times] = simByTransition( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Simulate Future Term Structures Using a CIR Model

Using the short rate, simulate the rate dynamics and term structures in the future using a CIR model.
The CIR model is expressed as

dr(t) = α(b− r(t))dt + σ r(t)dW(t)

The exponential affine form of the bond price is

B(t, T) = e−A(t, T)r(t) + C(t, T)

where

A(t, T) = 2(eγ(T − t)− 1)
(γ + α)(eγ(T − t)− 1) + 2γ

B(t, T) = 2αb
σ2 log 2γe(α + γ)(T − t)/2

(γ + α)(eγ(T − t)− 1) + 2γ

and

γ = α2 + 2σ2

Define the parameters for the cir object.

alpha = .1;
b = .05;
sigma = .05;
r0 = .04;
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Define the function for bond prices.

gamma = sqrt(alpha^2 + 2*sigma^2);
A_func = @(t, T) ...
    2*(exp(gamma*(T-t))-1)/((alpha+gamma)*(exp(gamma*(T-t))-1)+2*gamma);
C_func = @(t, T) ...
    (2*alpha*b/sigma^2)*log(2*gamma*exp((alpha+gamma)*(T-t)/2)/((alpha+gamma)*(exp(gamma*(T-t))-1)+2*gamma));
P_func = @(t,T,r_t) exp(-A_func(t,T)*r_t+C_func(t,T));

Create a cir object.

obj = cir(alpha,b,sigma,'StartState',r0)

obj = 
   Class CIR: Cox-Ingersoll-Ross
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 0.04
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.05
          Level: 0.05
          Speed: 0.1

Define the simulation parameters.

nTrials = 100;
nPeriods = 5;   % Simulate future short over the next five years
nSteps = 12;    % Set intermediate steps to improve the accuracy

Simulate the short rates. The returning path is a (NPeriods + 1)-by-NVars-by-NTrials three-
dimensional time-series array. For this example, the size of the output is 6-by-1-by-100.

rng('default');    % Reproduce the same result
rPaths = simByTransition(obj,nPeriods,'nTrials',nTrials,'nSteps',nSteps);
size(rPaths)

ans = 1×3

     6     1   100

rPathsExp = mean(rPaths,3);

Determine the term structure over the next 30 years.

maturity = 30;
T = 1:maturity;
futuresTimes = 1:nPeriods+1;

% Preallocate simTermStruc
simTermStructure = zeros(nPeriods+1,30);
for i = futuresTimes
    for t = T
        bondPrice = P_func(i,i+t,rPathsExp(i));
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        simTermStructure(i,t) = -log(bondPrice)/t;
    end
end
plot(simTermStructure')
legend('Current','1-year','2-year','3-year','4-year','5-year')
title('Projected Term Structure for Next 5 Years')
ylabel('Long Rate Maturity R(t,T)')
xlabel('Time')

Input Arguments
MDL — Stochastic differential equation model
object

Stochastic differential equation model, specified as a cir object. For more information on creating a
CIR object, see cir.
Data Types: object

NPeriods — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times] = simByTransition(CIR,NPeriods,'DeltaTimes',dt)

NTrials — Simulated trials (sample paths)
1 (single path of correlated state variables) (default) | positive integer

Simulated trials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or a NPeriods-by-1 column vector.

DeltaTime represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps
1 (indicating no intermediate evaluation) (default) | positive integer

Number of intermediate time steps within each time increment dt (defined as DeltaTimes), specified
as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simByTransition function partitions each time increment dt into NSteps subintervals of
length dt/NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
intermediate points. Although simByTransition does not report the output state vector at these
intermediate points, the refinement improves accuracy by enabling the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

StorePaths — Flag for storage and return method
True (default) | logical with values True or False

Flag for storage and return method that indicates how the output array Paths is stored and
returned, specified as the comma-separated pair consisting of 'StorePaths' and a scalar logical
flag with a value of True or False.

• If StorePaths is True (the default value) or is unspecified, then simByTransition returns
Paths as a three-dimensional time series array.

• If StorePaths is False (logical 0), then simByTransition returns the Paths output array as
an empty matrix.

Data Types: logical
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Processes — Sequence of end-of-period processes or state vector adjustments
simByEuler makes no adjustments and performs no processing (default) | function | cell array of
functions

Sequence of end-of-period processes or state vector adjustments, specified as the comma-separated
pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

.

simByTransition applies processing functions at the end of each observation period. The
processing functions accept the current observation time t and the current state vector Xt, and return
a state vector that may adjust the input state.

If you specify more than one processing function, simByTransition invokes the functions in the
order in which they appear in the cell array.
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as an (NPeriods + 1)-by-NVars-by-
NTrials three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When the input
flag StorePaths = False, simByTransition returns Paths as an empty matrix.

Times — Observation times associated with the simulated paths
column vector

Observation times associated with the simulated paths, returned as an (NPeriods + 1)-by-1
column vector. Each element of Times is associated with the corresponding row of Paths.

More About
Transition Density Simulation

The SDE has no solution such that r(t) = f(r(0),⋯).

In other words, the equation is not explicitly solvable. However, the transition density for the process
is known.

The exact simulation for the distribution of r(t_1 ),⋯,r(t_n) is that of the process at times t_1,⋯,t_n for
the same value of r(0). The transition density for this process is known and is expressed as

r(t) = σ2(1− e−α(t − u)

4α xd
2 4αe−α(t − u)

σ2(1− e−α(t − u))
r(u) , t > u

where

d ≡ 4bα
σ2
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Algorithms
Use the simByTransition function to simulate any vector-valued CIR process of the form

dXt = S(t)[L(t)− Xt]dt + D(t, Xt

1
2)V(t)dWt

where

• Xt is an NVars-by-1 state vector of process variables.
• S is an NVars-by-NVars matrix of mean reversion speeds (the rate of mean reversion).
• L is an NVars-by-1 vector of mean reversion levels (long-run mean or level).
• D is an NVars-by-NVars diagonal matrix, where each element along the main diagonal is the

square root of the corresponding element of the state vector.
• V is an NVars-by-NBrowns instantaneous volatility rate matrix.
• dWt is an NBrowns-by-1 Brownian motion vector.

References
[1] Glasserman, P. Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.

See Also
cir | simByEuler

Topics
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5

Introduced in R2018b
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simulate
Simulate multivariate stochastic differential equations (SDEs)

Syntax
[Paths,Times,Z] = simulate(MDL)
[Paths,Times,Z] = simulate( ___ ,Optional)

Description
[Paths,Times,Z] = simulate(MDL) simulates NTrials sample paths of NVars correlated state
variables, driven by NBrowns Brownian motion sources of risk over NPeriods consecutive
observation periods, approximating continuous-time stochastic processes.

simulate accepts any variable-length list of input arguments that the simulation method or function
referenced by the SDE.Simulation parameter requires or accepts. It passes this input list directly
to the appropriate SDE simulation method or user-defined simulation function.

[Paths,Times,Z] = simulate( ___ ,Optional) adds optional input arguments.

Examples

Antithetic Sampling to a Path-Dependent Barrier Option

Consider a European up-and-in call option on a single underlying stock. The evolution of this stock's
price is governed by a Geometric Brownian Motion (GBM) model with constant parameters:

Assume the following characteristics:

• The stock currently trades at 105.
• The stock pays no dividends.
• The stock volatility is 30% per annum.
• The option strike price is 100.
• The option expires in three months.
• The option barrier is 120.
• The risk-free rate is constant at 5% per annum.

The goal is to simulate various paths of daily stock prices, and calculate the price of the barrier
option as the risk-neutral sample average of the discounted terminal option payoff. Since this is a
barrier option, you must also determine if and when the barrier is crossed.

This example performs antithetic sampling by explicitly setting the Antithetic flag to true, and
then specifies an end-of-period processing function to record the maximum and terminal stock prices
on a path-by-path basis.
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Create a GBM model using gbm.

barrier      = 120;           % barrier
strike       = 100;           % exercise price
rate         = 0.05;          % annualized risk-free rate
sigma        = 0.3;           % annualized volatility
nPeriods     = 63;            % 63 trading days
dt           = 1 / 252;       % time increment = 252 days
T            = nPeriods * dt; % expiration time = 0.25 years
obj        = gbm(rate, sigma, 'StartState', 105);

Perform a small-scale simulation that explicitly returns two simulated paths.

rng('default')                % make output reproducible
[X, T] = obj.simBySolution(nPeriods, 'DeltaTime', dt, ...
                'nTrials', 2, 'Antithetic', true);

Perform antithetic sampling such that all primary and antithetic paths are simulated and stored in
successive matching pairs. Odd paths (1,3,5,...) correspond to the primary Gaussian paths. Even
paths (2,4,6,...) are the matching antithetic paths of each pair, derived by negating the Gaussian
draws of the corresponding primary (odd) path. Verify this by examining the matching paths of the
primary/antithetic pair.

plot(T, X(:,:,1), 'blue', T, X(:,:,2), 'red')
xlabel('Time (Years)'), ylabel('Stock Price'), ... 
            title('Antithetic Sampling')
legend({'Primary Path' 'Antithetic Path'}, ...
            'Location', 'Best')
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To price the European barrier option, specify an end-of-period processing function to record the
maximum and terminal stock prices. This processing function is accessible by time and state, and is
implemented as a nested function with access to shared information that allows the option price and
corresponding standard error to be calculated. For more information on using an end-of-period
processing function, see “Pricing Equity Options” on page 18-45.

Simulate 200 paths using the processing function method.

rng('default')             % make output reproducible
barrier  = 120;            % barrier
strike   = 100;            % exercise price
rate     = 0.05;           % annualized risk-free rate
sigma    = 0.3;            % annualized volatility
nPeriods = 63;             % 63 trading days
dt       = 1 / 252;        % time increment = 252 days
T        = nPeriods * dt;  % expiration time = 0.25 years
obj    = gbm(rate, sigma, 'StartState', 105);
nPaths = 200;         % # of paths = 100 sets of pairs
f      = Example_BarrierOption(nPeriods, nPaths);
simulate(obj, nPeriods, 'DeltaTime' , dt, ... 
            'nTrials', nPaths, 'Antithetic', true, ...
            'Processes', f.SaveMaxLast);

Approximate the option price with a 95% confidence interval.

optionPrice   = f.OptionPrice(strike, rate, barrier);
standardError = f.StandardError(strike, rate, barrier,...
                         true);
lowerBound    = optionPrice - 1.96 * standardError;
upperBound    = optionPrice + 1.96 * standardError;

displaySummary(optionPrice, standardError, lowerBound, upperBound);

  Up-and-In Barrier Option Price:   6.6572
         Standard Error of Price:   0.7292
 Confidence Interval Lower Bound:   5.2280
 Confidence Interval Upper Bound:   8.0864

Utility Function
function displaySummary(optionPrice, standardError, lowerBound, upperBound)
fprintf('  Up-and-In Barrier Option Price: %8.4f\n', ...
            optionPrice);
fprintf('         Standard Error of Price: %8.4f\n', ...
            standardError);
fprintf(' Confidence Interval Lower Bound: %8.4f\n', ...
            lowerBound);
fprintf(' Confidence Interval Upper Bound: %8.4f\n', ...
            upperBound);
end

Input Arguments
MDL — Stochastic differential equation model
object

Stochastic differential equation model, specified as an sde, batesbm, gbm, cev, cir, hwv,
heston,merton sdeddo, sdeld, or sdemrd object.
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Data Types: object

Optional — (Optional) Any variable-length list of input arguments that the simulation
method or function referenced by the SDE.Simulation parameter requires or accepts
input arguments

Any variable-length list of input arguments that the simulation method or function referenced by the
SDE.Simulation parameter requires or accepts, specified as a variable-length list of input
arguments. This input list is passed directly to the appropriate SDE simulation method or user-
defined simulation function.
Data Types: double

Output Arguments
Paths — Three-dimensional time series array, consisting of simulated paths of correlated
state variables
array

Three-dimensional time series array, consisting of simulated paths of correlated state variables,
returned as an (NPeriods + 1)-by-NVars-by-NTrials array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t.

Times — Observation times associated with the simulated paths
column vector

Observation times associated with the simulated paths, returned as a (NPeriods + 1)-by-1 column
vector.

Z — Three-dimensional time series array of dependent random variates used to generate
the Brownian motion vector (Wiener processes)
array | matrix | table | timetable

Three-dimensional time series array of dependent random variates used to generate the Brownian
motion vector (Wiener processes) that drove the simulated results found in Paths, returned as a
NTimes-by-NBrowns-by-NTrials array.

NTimes is the number of time steps at which the simulate function samples the state vector.
NTimes includes intermediate times designed to improve accuracy, which simulate does not
necessarily report in the Paths output time series.

More About
Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique called antithetic
sampling.

This technique attempts to replace one sequence of random observations with another of the same
expected value, but smaller variance. In a typical Monte Carlo simulation, each sample path is
independent and represents an independent trial. However, antithetic sampling generates sample
paths in pairs. The first path of the pair is referred to as the primary path, and the second as the
antithetic path. Any given pair is independent of any other pair, but the two paths within each pair
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are highly correlated. Antithetic sampling literature often recommends averaging the discounted
payoffs of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between paired input
samples, ideally resulting in negative dependence between paired output samples. The greater the
extent of negative dependence, the more effective antithetic sampling is.

Algorithms
This function simulates any vector-valued SDE of the form:

dXt = F(t, Xt)dt + G(t, Xt)dWt  (19-4)

where:

• X is an NVars-by-1 state vector of process variables (for example, short rates or equity prices) to
simulate.

• W is an NBrowns-by-1 Brownian motion vector.
• F is an NVars-by-1 vector-valued drift-rate function.
• G is an NVars-by-NBrowns matrix-valued diffusion-rate function.

References
[1] Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review of

Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

[2] Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.” The Journal
of Finance, Vol. 54, No. 4, August 1999.

[3] Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-Verlag, 2004.

[4] Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall,
2002.

[5] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 2, 2nd ed.
New York, John Wiley & Sons, 1995.

[6] Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York: Springer-
Verlag, 2004.

See Also
simByEuler | simBySolution | simBySolution | sde | merton | bates | bm | gbm | sdeddo |
sdeld | cev | cir | heston | hwv | sdemrd

Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16

 simulate

19-247



“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2008a
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ts2func
Convert time series arrays to functions of time and state

Syntax
F = ts2func(Array)
F = ts2func( ___ ,Name,Value)

Description
F = ts2func(Array) encapsulates a time series array associated with a vector of real-valued
observation times within a MATLAB function suitable for Monte Carlo simulation of an NVars-by-1
state vector Xt.

n periods.

F = ts2func( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Illustrate the Dynamic Behavior of Market Parameters

Load the data.

load Data_GlobalIdx2

Simulate risk-neutral sample paths.

dt      = 1/250;
returns = tick2ret(Dataset.CAC);
sigma   = std(returns)*sqrt(250);
yields  = Dataset.EB3M;
yields  = 360*log(1 + yields);

Simulate paths using a constant, risk-free return

nPeriods = length(yields);  % Simulated observations
rng(5713,'twister')
obj    = gbm(mean(yields),diag(sigma),'StartState',100)

obj = 
   Class GBM: Generalized Geometric Brownian Motion
   ------------------------------------------------
     Dimensions: State = 1, Brownian = 1
   ------------------------------------------------
      StartTime: 0
     StartState: 100
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
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         Return: 0.0278117
          Sigma: 0.231906

[X1,T] = simulate(obj,nPeriods,'DeltaTime',dt);

Simulate paths using a dynamic, deterministic rate of return (get r)

r = ts2func(yields,'Times',(0:nPeriods - 1)');

Simulate paths using a dynamic, deterministic rate of return (r output 1)

r(0,100)

ans = 0.0470

Simulate paths using a dynamic, deterministic rate of return (r output 2)

r(7.5,200)

ans = 0.0472

Simulate paths using a dynamic, deterministic rate of return (r output 3)

r(7.5)

ans = 0.0472

Simulate paths using a dynamic, deterministic rate of return

rng(5713,'twister')
obj = gbm(r, diag(sigma),'StartState',100)

obj = 
   Class GBM: Generalized Geometric Brownian Motion
   ------------------------------------------------
     Dimensions: State = 1, Brownian = 1
   ------------------------------------------------
      StartTime: 0
     StartState: 100
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: function ts2func/vector2Function
          Sigma: 0.231906

X2  = simulate(obj,nPeriods,'DeltaTime',dt);

Compare the two simulation trials.

subplot(2,1,1)
plot(dates,100*yields)
datetick('x')
xlabel('Date')
ylabel('Annualized Yield (%)')
title('Risk Free Rate(3-Mo Euribor Continuously-Compounded)')
subplot(2,1,2)
plot(T,X1,'red',T,X2,'blue')
xlabel('Time (Years)')
ylabel('Index Level')
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title('Constant vs. Dynamic Rate of Return: CAC 40')
legend({'Constant Interest Rates' 'Dynamic Interest Rates'},...
    'Location', 'Best')

Input Arguments
Array — Time series array to encapsulate within a callable function of time and state
vector | 2-dimensional matrix | three-dimensional array

Time series array to encapsulate within a callable function of time and state, specified as a vector,
two-dimensional matrix, or three-dimensional array
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: F = ts2func(yields,'Times',(0:nPeriods - 1)')

Times — Monotonically increasing observation times associated with the time series input
array Array
zero-based, unit-increment vector of the same length as that of the dimension of Array (default) |
vector
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Monotonically increasing observation times associated with the time series input array (Array),
specified as the comma-separated pair consisting of 'Times' and a vector.
Data Types: double

TimeDimension — Specifies which dimension of the input time series array Array is
associated with time
1 (indicates that time is associated with the rows of Array) (default) | scalar integer

Specifies which dimension of the input time series array (Array) is associated with time, specified as
the comma-separated pair consisting of 'TimeDimension' and a scalar integer.
Data Types: double

StateDimension — Specifies which dimension of the input time series array Array is
associated with the NVars state variables
first dimension of Array not already associated with time is associated with first available dimension
of Array not already assigned to TimeDimension (default) | positive scalar integer

Specifies which dimension of the input time series array (Array) is associated with the NVars state
variables, specified as the comma-separated pair consisting of 'StateDimension' and a positive
scalar integer.
Data Types: double

Deterministic — Flag to indicate whether the output function is a deterministic function
of time alone
false (meaning F is a callable function of time and state, F(t,X)) (default) | scalar logical

Flag to indicate whether the output function is a deterministic function of time alone, specified as the
comma-separated pair consisting of 'Determininistic' and a scalar integer flag.

If Deterministic is true, the output function F is a deterministic function of time, F(t), and the only
input it accepts is a scalar, real-valued time t. If Deterministic is false, the output function F
accepts two inputs, a scalar, real-valued time t followed by an NVars-by-1 state vectorX(t).
Data Types: logical

Output Arguments
F — Callable function F(t) of a real-valued scalar observation time t
vector | matrix | table | timetable

Callable function F(t) of a real-valued scalar observation time t, returned as a function.

If the optional input argument Deterministic is true, F is a deterministic function of time, F(t), and
the only input it accepts is a scalar, real-valued time t. Otherwise, if Deterministic is false (the
default), F accepts a scalar, real-valued time t followed by an NVars-by-1 state vector X(t).

Note You can invoke F with a second input (such as an NVars-by-1 state vector X), which is a
placeholder that ts2func ignores. For example, while F(t) and F(t,X) produce identical results, the
latter directly supports SDE simulation methods.
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Algorithms
• When you specify Array as a scalar or a vector (row or column), ts2func assumes that it

represents a univariate time series.
• F returns an array with one less dimension than the input time series array Array with which F is

associated. Thus, when Array is a vector, a 2-dimensional matrix, or a three-dimensional array, F
returns a scalar, vector, or 2-dimensional matrix, respectively.

• When the scalar time t at which ts2func evaluates the function F does not coincide with an
observation time in Times, F performs a zero-order-hold interpolation. The only exception is if t
precedes the first element of Times, in which case F(t) = F(Times(1)).

• To support Monte Carlo simulation methods, the output function F returns an NVars-by-1 column
vector or a two-dimensional matrix with NVars rows.

• The output function F is always a deterministic function of time, F(t), and may always be called
with a single input regardless of the Deterministic flag. The distinction is that when
Deterministic is false, the function F may also be called with a second input, an NVars-by-1
state vector X(t), which is a placeholder and ignored. While F(t) and F(t,X) produce identical
results, the former specifically indicates that the function is a deterministic function of time, and
may offer significant performance benefits in some situations.

References
[1] Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review of

Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

[2] Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.” The Journal
of Finance, Vol. 54, No. 4, August 1999.

[3] Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-Verlag, 2004.

[4] Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall,
2002.

[5] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 2, 2nd ed.
New York, John Wiley & Sons, 1995.

[6] Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York: Springer-
Verlag, 2004.

See Also
simByEuler | simulate

Topics
“Simulating Equity Prices” on page 18-28
“Simulating Interest Rates” on page 18-48
“Stratified Sampling” on page 18-57
“Pricing American Basket Options by Monte Carlo Simulation” on page 18-68
“Base SDE Models” on page 18-14
“Drift and Diffusion Models” on page 18-16
“Linear Drift Models” on page 18-19
“Parametric Models” on page 18-21
“SDEs” on page 18-2
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“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5
“Performance Considerations” on page 18-62

Introduced in R2008a
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abs2active
Convert constraints from absolute to active format

Syntax
ActiveConSet = abs2active(AbsConSet,Index)

Description
ActiveConSet = abs2active(AbsConSet,Index) transforms a constraint matrix to an
equivalent matrix expressed in active weight format (relative to the index).

Examples

Convert Constraints in Terms of Absolute Weights Into Constraints in Terms of Active
Portfolio Weights

Set up constraints for a portfolio optimization for portfolio w0 with constraints in the form A*w <= b,
where w is absolute portfolio weights. (Absolute weights do not depend on the tracking portfolio.) Use
abs2active to convert constraints in terms of absolute weights into constraints in terms of active
portfolio weights, defined relative to the tracking portfolio w0. Assume three assets with the following
mean and covariance of asset returns:

m = [ 0.14; 0.10; 0.05 ];
C = [ 0.29^2 0.4*0.29*0.17 0.1*0.29*0.08; 0.4*0.29*0.17 0.17^2 0.3*0.17*0.08;...
0.1*0.29*0.08 0.3*0.17*0.08 0.08^2 ];

Absolute portfolio constraints are the typical ones (weights sum to 1 and fall from 0 through 1),
create the A and b matrices using portcons.

AbsCons = portcons('PortValue',1,3,'AssetLims', [0; 0; 0], [1; 1; 1;]);

Use the Portfolio object to determine the efficient frontier.

p = Portfolio('AssetMean', m, 'AssetCovar', C);
p = p.setInequality(AbsCons(:,1:end-1), AbsCons(:,end));
p.plotFrontier;
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The tracking portfolio w0 is:

w0 = [ 0.1; 0.55; 0.35 ];

Use abs2active to compute the constraints for active portfolio weights.

ActCons = abs2active(AbsCons, w0)

ActCons = 8×4

    1.0000    1.0000    1.0000         0
   -1.0000   -1.0000   -1.0000         0
    1.0000         0         0    0.9000
         0    1.0000         0    0.4500
         0         0    1.0000    0.6500
   -1.0000         0         0    0.1000
         0   -1.0000         0    0.5500
         0         0   -1.0000    0.3500

Use the Portfolio object p and its efficient frontier to demonstrate expected returns and risk
relative to the tracking portfolio w0.

p = p.setInequality(ActCons(:,1:end-1), ActCons(:,end));
p.plotFrontier;
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Note, when using abs2active to compute “active constraints” for use with a Portfolio object,
don't use the Portfolio object’s default constraints because the relative weights can be positive or
negative (the setDefaultConstraints function for a Portfolio object specifies weights to be
nonnegative).

Input Arguments
AbsConSet — Portfolio linear inequality constraint matrix expressed in absolute weight
format
matrix

Portfolio linear inequality constraint matrix expressed in absolute weight format, specified as [A b]
such that A*w <= b, where A is a number of constraints (NCONSTRAINTS) by number of assets
(NASSETS) weight coefficient matrix, and b and w are column vectors of length NASSETS. The value w
represents a vector of absolute asset weights whose elements sum to the total portfolio value. See the
output ConSet from portcons for additional details about constraint matrices.
Data Types: double

Index — Index portfolio weights
vector

Index portfolio weights, specified as a NASSETS-by-1 vector. The sum of the index weights must equal
the total portfolio value (for example, a standard portfolio optimization imposes a sum-to-1 budget
constraint).
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Data Types: double

Output Arguments
ActiveConSet — Transformed portfolio linear inequality constraint matrix expressed in
active weight format
matrix

Transformed portfolio linear inequality constraint matrix expressed in active weight format, returned
in the form [A b] such that A*w <= b. The value w represents a vector of active asset weights
(relative to the index portfolio) whose elements sum to zero.

Algorithms
abs2active transforms a constraint matrix to an equivalent matrix expressed in active weight
format (relative to the index). The transformation equation is

Awabsolute = A wactive + windex ≤ babsolute .

Therefore

Awactive ≤ babsolute− Awindex = bactive .

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality constraints
expressed in absolute weight format. The index portfolio vector contains NASSETS assets.

See Also
active2abs | pcalims | pcglims | pcpval | portcons | Portfolio | setInequality

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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accrfrac
Fraction of coupon period before settlement

Syntax
Fraction = accrfrac(Settle,Maturity)
Fraction = accrfrac( ___ ,Period,Basis,EndMonthRule,IssueDate,FirstCouponDate,
LastCouponDate)

Description
Fraction = accrfrac(Settle,Maturity) returns the fraction of the coupon period before
settlement.

Use accrfrac for computing accrued interest. accrfrac calculates accrued interest for bonds with
regular or odd first or last coupon periods.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

Fraction = accrfrac( ___ ,Period,Basis,EndMonthRule,IssueDate,FirstCouponDate,
LastCouponDate) returns the fraction of the coupon period before settlement with optional inputs.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

Examples

Find Accrued Interest for a Bond

This example shows how to find the accrued interest for given bond data.

Settle = '14-Mar-1997';
Maturity = ['30-Nov-2000'
            '31-Dec-2000'
            '31-Jan-2001'];
Period = 2;
Basis = 0;
EndMonthRule = 1;

Fraction = accrfrac(Settle, Maturity, Period, Basis,... 
EndMonthRule)

Fraction = 3×1

    0.5714
    0.4033
    0.2320
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Find Accrued Interest for a Bond Using a datetime Array

This example shows how to find the accrued interest for a given bond's data using a datetime array.

Fraction = accrfrac(datetime('14-Mar-1997', 'Locale', 'en_US'), ['30-Nov-2000'; '31-Dec-2000'; '31-Jan-2001'], 2, 0,1)

Fraction = 3×1

    0.5714
    0.4033
    0.2320

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or a N-by-1
vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative integer [0, 1]
using a N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.
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LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
Fraction — Fraction of coupon period before settlement
vector

Fraction of the coupon period before settlement, returned as an NUMBONDS-by-1 vector.

See Also
cfdates | cfamounts | cpncount | cpndaten | cpndatenq | cpndatep | cpndaysn | cpndaysp |
cpnpersz | datetime | cpndatepq

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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acrubond
Accrued interest of security with periodic interest payments

Syntax
AccruInterest = acrubond(IssueDate,Settle,FirstCouponDate,Face,CouponRate)
AccruInterest = acrubond( ___ ,Period,Basis)

Description
AccruInterest = acrubond(IssueDate,Settle,FirstCouponDate,Face,CouponRate)
returns the accrued interest for a security with periodic interest payments. acrubond computes the
accrued interest for securities with standard, short, and long first coupon periods.

Note cfamounts or accrfrac is recommended when calculating accrued interest beyond the first
period.

AccruInterest = acrubond( ___ ,Period,Basis) adds optional arguments for Period and
Basis.

Examples

Find Accrued Interest of a Bond with Periodic Interest Payments

This example shows how to find the accrued interest for a bond with semiannual interest payments.

AccruInterest = acrubond('31-jan-1983',  '1-mar-1993', ...
                '31-jul-1983',  100,  0.1,  2,  0)

AccruInterest = 0.8011

Find Accrued Interest of a Bond with Periodic Interest Payments Using datetime Inputs

This example shows how to use datetime inputs to find the accrued interest for a bond with
semiannual interest payments.

AccruInterest = acrubond(datetime('31-jan-1983','Locale','en_US'),datetime('1-mar-1993','Locale','en_US'),datetime('31-jul-1983','Locale','en_US'),...
100,  0.1,  2,  0)

AccruInterest = 0.8011

Input Arguments
IssueDate — Issue date of security
serial date number | date character vector | datetime
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Issue date of the security, specified as a scalar or a NINST-by-1 vector of serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

Settle — Settlement date of security
serial date number | date character vector | datetime

Settlement date of the security, specified as a scalar or a NINST-by-1 vector of serial date numbers,
date character vectors, or datetime arrays. The Settle date must be before the Maturity date.
Data Types: double | char | datetime

FirstCouponDate — First coupon date of security
serial date number | date character vector | datetime

First coupon date of the security, specified as a scalar or a NINST-by-1 vector of serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

Face — Redemption value of security
numeric

Redemption value (par value) of the security, specified as a scalar or a NINST-by-1 vector.
Data Types: double

CouponRate — Coupon rate of security
decimal fraction

Coupon rate of the security, specified as a scalar or a NINST-by-1 vector of decimal fraction values.
Data Types: double

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

(Optional) Number of coupon payments per year for the security, specified as scalar or a NINST-by-1
vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

(Optional) Day-count basis for the security, specified as a scalar or a NINST-by-1 vector. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
AccruInterest — Accrued interest
numeric

Accrued interest for the security, returned as a scalar or a NINST-by-1 vector.

See Also
accrfrac | acrudisc | bndprice | bndyield | cfamounts | datenum | datetime

Topics
“Coupon Date Calculations” on page 2-23
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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acrudisc
Accrued interest of discount security paying at maturity

Syntax
AccruInterest = acrudisc(Settle,Maturity,Face,Discount)
AccruInterest = acrudisc( ___ ,Period,Basis)

Description
AccruInterest = acrudisc(Settle,Maturity,Face,Discount) returns the accrued interest
of a discount security paid at maturity.

AccruInterest = acrudisc( ___ ,Period,Basis) adds optional arguments for Period and
Basis.

Examples

Find Accrued Interest of a Discount Security Paid at Maturity

This example shows how to find the accrued interest of a discount security paid at maturity.

AccruInterest = acrudisc('05/01/1992',  '07/15/1992', ...
                100,  0.1,  2,  0)

AccruInterest = 2.0604

Find Accrued Interest of a Discount Security Paid at Maturity Using datetime Inputs

This example shows how to use datetime inputs to find the accrued interest of a discount security
paid at maturity.

AccruInterest = acrudisc(datetime('1-May-1992','Locale','en_US'),datetime('15-Jul-1992','Locale','en_US'),...
100,  0.1,  2,  0)

AccruInterest = 2.0604

Input Arguments
Settle — Settlement date of security
serial date number | date character vector | datetime

Settlement date of the security, specified as a scalar or a NINST-by-1 vector of serial date numbers,
date character vectors, or datetime arrays. The Settle date must be before the Maturity date.
Data Types: double | char | datetime
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Maturity — Maturity date of security
serial date number | date character vector | datetime

Maturity date of the security, specified as a scalar or a NINST-by-1 vector of serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

Face — Redemption value of security
numeric

Redemption value (par value) of the security, specified as a scalar or a NINST-by-1 vector.
Data Types: double

Discount — Discount rate of security
decimal fraction

Discount rate of the security, specified as a scalar or a NINST-by-1 vector of decimal fraction values.
Data Types: double

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

(Optional) Number of coupon payments per year for security, specified as scalar or a NINST-by-1
vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

(Optional) Day-count basis for security, specified as a scalar or a NINST-by-1 vector. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double
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Output Arguments
AccruInterest — Accrued interest
numeric

Accrued interest, returned as a scalar or a NINST-by-1 vector.

References
[1] Mayle, J. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula D.

See Also
acrubond | prdisc | prmat | ylddisc | yldmat | datetime

Topics
“Coupon Date Calculations” on page 2-23
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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active2abs
Convert constraints from active to absolute format

Syntax
AbsConSet = active2abs(ActiveConSet,Index)

Arguments

ActiveConSet Portfolio linear inequality constraint matrix expressed in active weight
format. ActiveConSet is formatted as [A b] such that A*w <= b,
where A is a number of constraints (NCONSTRAINTS) by number of
assets (NASSETS) weight coefficient matrix, and b and w are column
vectors of length NASSETS. The value w represents a vector of active
asset weights (relative to the index portfolio) whose elements sum to
0.

See the output ConSet from portcons for additional details about
constraint matrices.

Index NASSETS-by-1 vector of index portfolio weights. The sum of the index
weights must equal the total portfolio value (for example, a standard
portfolio optimization imposes a sum-to-one budget constraint).

Description
AbsConSet = active2abs(ActiveConSet,Index) transforms a constraint matrix to an
equivalent matrix expressed in absolute weight format. The transformation equation is

Awactive = A wabsolute−windex ≤ bactive .

Therefore

Awabsolute ≤ bactive + Awindex = babsolute .

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality constraints
expressed in active weight format (relative to the index portfolio). The index portfolio vector contains
NASSETS assets.

AbsConSet is the transformed portfolio linear inequality constraint matrix expressed in absolute
weight format, also of the form [A b] such that A*w <= b. The value w represents a vector of active
asset weights (relative to the index portfolio) whose elements sum to the total portfolio value.

See Also
abs2active | pcalims | pcgcomp | pcglims | pcpval | portcons

Topics
“Data Transformation and Frequency Conversion” on page 13-11
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Introduced before R2006a

19 Functions

19-270



addEquality
Add linear equality constraints for portfolio weights to existing constraints

Syntax
obj = addEquality(obj,AEquality,bEquality)

Description
obj = addEquality(obj,AEquality,bEquality) adds linear equality constraints for portfolio
weights to existing constraints for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For
details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

Given a linear equality constraint matrix AEquality and vector bEquality, every weight in a
portfolio Port must satisfy the following:

AEquality * Port = bEquality

This function "stacks" additional linear equality constraints onto any existing linear equality
constraints that exist in the input portfolio object. If no constraints exist, this method is the same as
setEquality.

Examples

Add a Linear Equality Constraint for a Portfolio Object

Use the addEquality method to create linear equality constraints. Add another linear equality
constraint to ensure that the last three assets constitute 50% of a portfolio.

p = Portfolio;
A = [ 1 1 1 0 0 ];    % First equality constraint
b = 0.5;
p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % Second equality constraint
b = 0.5;
p = addEquality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AEquality);

     1     1     1     0     0
     0     0     1     1     1

disp(p.bEquality);
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    0.5000
    0.5000

Add a Linear Equality Constraint for a PortfolioCVaR Object

Use the addEquality method to create linear equality constraints. Add another linear equality
constraint to ensure that the last three assets constitute 50% of a portfolio.

p = PortfolioCVaR;
A = [ 1 1 1 0 0 ];    % First equality constraint
b = 0.5;
p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % Second equality constraint
b = 0.5;
p = addEquality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AEquality);

     1     1     1     0     0
     0     0     1     1     1

disp(p.bEquality);

    0.5000
    0.5000

Add a Linear Equality Constraint for a PortfolioMAD Object

Use the addEquality method to create linear equality constraints. Add another linear equality
constraint to ensure that the last three assets constitute 50% of a portfolio.

p = PortfolioMAD;
A = [ 1 1 1 0 0 ];    % First equality constraint
b = 0.5;
p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % Second equality constraint
b = 0.5;
p = addEquality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AEquality);

     1     1     1     0     0
     0     0     1     1     1
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disp(p.bEquality);

    0.5000
    0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

AEquality — Linear equality constraints formed from matrix
matrix

Linear equality constraints, specified as a matrix.

Note An error results if AEquality is empty and bEquality is nonempty.

Data Types: double

bEquality — Linear equality constraints formed from vector
vector

Linear equality constraints, specified as a vector.

Note An error results if bEquality is empty and AEquality is nonempty.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

 addEquality

19-273



Tips
• You can also use dot notation to add the linear equality constraints for portfolio weights.

obj = obj.addEquality(AEquality, bEquality)
• You can also remove linear equality constraints from a portfolio object using dot notation.

obj = obj.setEquality([ ], [ ])

See Also
setEquality

Topics
“Working with Linear Equality Constraints Using Portfolio Object” on page 4-72
“Working with Linear Equality Constraints Using PortfolioCVaR Object” on page 5-64
“Setting Linear Inequality Constraints Using the setInequality and addInequality Functions” on page
6-65
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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addGroupRatio
Add group ratio constraints for portfolio weights to existing group ratio constraints

Syntax
obj = addGroupRatio(obj,GroupA,GroupB,LowerRatio)
obj = addGroupRatio(obj,GroupA,GroupB,LowerRatio,UpperRatio)

Description
obj = addGroupRatio(obj,GroupA,GroupB,LowerRatio) adds group ratio constraints for
portfolio weights to existing group ratio constraints for Portfolio, PortfolioCVaR, or
PortfolioMAD objects. For details on the respective workflows when using these different objects,
see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and
“PortfolioMAD Object Workflow” on page 6-15.

Given base and comparison group matrices GroupA and GroupB and, either LowerRatio, or
UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the following:
(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

Note This collection of constraints usually requires that portfolio weights be nonnegative and that
the products GroupA * Port and GroupB * Port are always nonnegative. Although negative
portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

obj = addGroupRatio(obj,GroupA,GroupB,LowerRatio,UpperRatio) adds group ratio
constraints for portfolio weights to existing group ratio constraints with an additional option for
UpperRatio.

Given base and comparison group matrices GroupA and GroupB and, either LowerRatio, or
UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the following:
(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

Note This collection of constraints usually requires that portfolio weights be nonnegative and that
the products GroupA * Port and GroupB * Port are always nonnegative. Although negative
portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

Examples

Add Group Ratio Constraints to a Portfolio Object

Set a group ratio constraint to ensure that the weight in financial assets does not exceed 50% of the
weight in nonfinancial assets. Then add another group ratio constraint to ensure that the weight in
financial assets constitute at least 20% of the weight in nonfinancial assets of the portfolio.

p = Portfolio;
GA = [ true true true false false false ];    % financial companies
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GB = [ false false false true true true ];    % nonfinancial companies
p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];    % odd-numbered companies
GB = [ false false false true true true ];    % nonfinancial companies
p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

     6

disp(p.GroupA);

     1     1     1     0     0     0
     1     0     1     0     1     0

disp(p.GroupB);

     0     0     0     1     1     1
     0     0     0     1     1     1

disp(p.LowerRatio);

      -Inf
    0.2000

disp(p.UpperRatio);

    0.5000
       Inf

Add Group Ratio Constraints to a PortfolioCVaR Object

Set a group ratio constraint to ensure that the weight in financial assets does not exceed 50% of the
weight in nonfinancial assets. Then add another group ratio constraint to ensure that the weight in
financial assets constitute at least 20% of the weight in nonfinancial assets of the portfolio.

p = PortfolioCVaR;
GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];    % odd-numbered companies
GB = [ false false false true true true ];    % nonfinancial companies
p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

     6

disp(p.GroupA);

     1     1     1     0     0     0
     1     0     1     0     1     0

disp(p.GroupB);
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     0     0     0     1     1     1
     0     0     0     1     1     1

disp(p.LowerRatio);

      -Inf
    0.2000

disp(p.UpperRatio);

    0.5000
       Inf

Add Group Ratio Constraints to a PortfolioMAD Object

Set a group ratio constraint to ensure that the weight in financial assets does not exceed 50% of the
weight in nonfinancial assets. Then add another group ratio constraint to ensure that the weight in
financial assets constitute at least 20% of the weight in nonfinancial assets of the portfolio.

p = PortfolioMAD;
GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];    % odd-numbered companies
GB = [ false false false true true true ];    % nonfinancial companies
p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

     6

disp(p.GroupA);

     1     1     1     0     0     0
     1     0     1     0     1     0

disp(p.GroupB);

     0     0     0     1     1     1
     0     0     0     1     1     1

disp(p.LowerRatio);

      -Inf
    0.2000

disp(p.UpperRatio);

    0.5000
       Inf

Input Arguments
obj — Object for portfolio
object
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Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

GroupA — Base groups for comparison
matrix of logical or numerical arrays

Base groups for comparison, specified as a matrix of logical or numerical arrays.

Note The group matrices GroupA and GroupB are usually indicators of membership in groups,
which means that their elements are usually either 0 or 1. Because of this interpretation, the GroupA
and GroupB matrices can be logical or numerical arrays.

Data Types: double

GroupB — Comparison group
matrix of logical or numerical arrays

Comparison group, specified as a matrix of logical or numerical arrays.

Note The group matrices GroupA and GroupB are usually indicators of membership in groups,
which means that their elements are usually either 0 or 1. Because of this interpretation, the GroupA
and GroupB matrices can be logical or numerical arrays.

Data Types: double

LowerRatio — Lower-bound for ratio of GroupB groups to GroupA groups
vector

Lower-bound for ratio of GroupB groups to GroupA groups, specified as a vector.

Note If input is scalar, LowerRatio undergoes scalar expansion to be conformable with the group
matrices.

Data Types: double

UpperRatio — Upper-bound for ratio of GroupB groups to GroupA groups
vector

Upper-bound for ratio of GroupB groups to GroupA groups, specified as a vector.

Note If input is scalar, UpperRatio undergoes scalar expansion to be conformable with the group
matrices.
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Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to add group ratio constraints for the portfolio weights to existing

group ratio constraints.

obj = obj.addGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio)
• To remove group ratio constraints from any of the portfolio objects using dot notation, enter empty

arrays for the corresponding arrays.

See Also
setGroupRatio

Topics
“Working with Group Ratio Constraints Using Portfolio Object” on page 4-69
“Working with Group Ratio Constraints Using PortfolioCVaR Object” on page 5-61
“Working with Group Ratio Constraints Using PortfolioMAD Object” on page 6-60
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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addGroups
Add group constraints for portfolio weights to existing group constraints

Syntax
obj = addGroups(obj,GroupMatrix,LowerGroup)
obj = addGroups(obj,GroupMatrix,LowerGroup,UpperGroup)

Description
obj = addGroups(obj,GroupMatrix,LowerGroup) adds group constraints for portfolio weights
to existing group constraints for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For
details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must satisfy the
following:

LowerGroup <= GroupMatrix * Port <= UpperGroup

obj = addGroups(obj,GroupMatrix,LowerGroup,UpperGroup) adds group constraints for
portfolio weights to existing group constraints with an additional option for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must satisfy the
following:

LowerGroup <= GroupMatrix * Port <= UpperGroup

Examples

Add Group Constraints to a Portfolio Object

Set a group constraint to ensure that the first three assets constitute at most 30% of a portfolio. Then
add another group constraint to ensure that the odd-numbered assets constitute at least 20% of a
portfolio.

p = Portfolio;
G = [ true true true false false ];    % group matrix for first group constraint
p = setGroups(p, G, [], 0.3);
G = [ true false true false true ];    % group matrix for second group constraint
p = addGroups(p, G, 0.2);
disp(p.NumAssets);

     5

disp(p.GroupMatrix);

     1     1     1     0     0
     1     0     1     0     1
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disp(p.LowerGroup);

      -Inf
    0.2000

disp(p.UpperGroup);

    0.3000
       Inf

Add Group Constraints to a PortfolioCVaR Object

Set a group constraint to ensure that the first three assets constitute at most 30% of a portfolio. Then
add another group constraint to ensure that the odd-numbered assets constitute at least 20% of a
portfolio.

p = PortfolioCVaR;
G = [ true true true false false ];    % group matrix for first group constraint
p = setGroups(p, G, [], 0.3);
G = [ true false true false true ];    % group matrix for second group constraint
p = addGroups(p, G, 0.2);
disp(p.NumAssets);

     5

disp(p.GroupMatrix);

     1     1     1     0     0
     1     0     1     0     1

disp(p.LowerGroup);

      -Inf
    0.2000

disp(p.UpperGroup);

    0.3000
       Inf

Add Group Constraints to a PortfolioMAD Object

Set a group constraint to ensure that the first three assets constitute at most 30% of a portfolio. Then
add another group constraint to ensure that the odd-numbered assets constitute at least 20% of a
portfolio.

p = PortfolioMAD;
G = [ true true true false false ];    % group matrix for first group constraint
p = setGroups(p, G, [], 0.3);
G = [ true false true false true ];    % group matrix for second group constraint
p = addGroups(p, G, 0.2);
disp(p.NumAssets);

     5
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disp(p.GroupMatrix);

     1     1     1     0     0
     1     0     1     0     1

disp(p.LowerGroup);

      -Inf
    0.2000

disp(p.UpperGroup);

    0.3000
       Inf

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

GroupMatrix — Group constraint matrix
matrix

Group constraint matrix, specified as a matrix.

Note The group matrix GroupMatrix often indicates membership in groups, which means that its
elements are usually either 0 or 1. Because of this interpretation,GroupMatrix can be a logical or
numerical matrix.

Data Types: double

LowerGroup — Lower bound for group constraints
vector

Lower bound for group constraints, specified as a vector.

Note  If input is scalar, LowerGroup undergoes scalar expansion to be conformable with
GroupMatrix.

Data Types: double

UpperGroup — Upper bound for group constraints
vector
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Upper bound for group constraints, specified as a vector.

Note  If input is scalar, UpperGroup undergoes scalar expansion to be conformable with
GroupMatrix.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to add group constraints for portfolio weights.

obj = obj.addGroups(GroupMatrix, LowerGroup, UpperGroup)
• To remove group constraints from any of the portfolio objects using dot notation, enter empty

arrays for the corresponding arrays.

See Also
setGroups

Topics
“Working with Group Constraints Using Portfolio Object” on page 4-66
“Working with Group Constraints Using PortfolioCVaR Object” on page 5-58
“Working with Group Constraints Using PortfolioMAD Object” on page 6-57
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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addInequality
Add linear inequality constraints for portfolio weights to existing constraints

Syntax
obj = addInequality(obj,AInequality,bInequality)

Description
obj = addInequality(obj,AInequality,bInequality) adds linear inequality constraints for
portfolio weights to existing constraints for Portfolio, PortfolioCVaR, or PortfolioMAD objects.
For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

Given a linear inequality constraint matrix AInequality and vector bInequality, every weight in
a portfolio Port must satisfy the following:

AInequality * Port <= bInequality

This function "stacks" additional linear inequality constraints onto any existing linear inequality
constraints that exist in the input portfolio object. If no constraints exist, this function is the same as
setInequality.

Examples

Add Linear Inequality Constraint to a Portfolio Object

Set a linear inequality constraint to ensure that the first three assets constitute at most 50% of a
portfolio. Then add another linear inequality constraint to ensure that the last three assets constitute
at least 50% of a portfolio.

p = Portfolio;
A = [ 1 1 1 0 0 ];    % first inequality constraint
b = 0.5;
p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint
b = -0.5;
p = addInequality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AInequality);

     1     1     1     0     0
     0     0    -1    -1    -1

disp(p.bInequality);
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    0.5000
   -0.5000

Add Linear Inequality Constraint to a PortfolioCVaR Object

Set a linear inequality constraint to ensure that the first three assets constitute at most 50% of a
portfolio. Then add another linear inequality constraint to ensure that the last three assets constitute
at least 50% of a portfolio.

p = PortfolioCVaR;
A = [ 1 1 1 0 0 ];    % first inequality constraint
b = 0.5;
p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint
b = -0.5;
p = addInequality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AInequality);

     1     1     1     0     0
     0     0    -1    -1    -1

disp(p.bInequality);

    0.5000
   -0.5000

Add Linear Inequality Constraint to a PortfolioMAD Object

Set a linear inequality constraint to ensure that the first three assets constitute at most 50% of a
portfolio. Then add another linear inequality constraint to ensure that the last three assets constitute
at least 50% of a portfolio.

p = PortfolioMAD;
A = [ 1 1 1 0 0 ];    % first inequality constraint
b = 0.5;
p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint
b = -0.5;
p = addInequality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AInequality);
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     1     1     1     0     0
     0     0    -1    -1    -1

disp(p.bInequality);

    0.5000
   -0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

AInequality — Linear inequality constraints formed from matrix
matrix

Linear inequality constraints, specified as a matrix.

Note An error results if AInequality is empty and bInequality is nonempty.

Data Types: double

bInequality — Linear inequality constraints formed from vector
vector

Linear inequality constraints, specified as a vector.

Note An error results if bInequality is empty and AInequality is nonempty.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
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• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to add the linear inequality constraints for portfolio weights.

obj = obj.addInequality(AInequality, bInequality)
• You can also remove linear inequality constraints from any of the portfolio objects using dot

notation.

obj = obj.setInequality([ ], [ ])

See Also
setInequality

Topics
“Working with Linear Inequality Constraints Using Portfolio Object” on page 4-75
“Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page 5-66
“Working with Linear Inequality Constraints Using PortfolioMAD Object” on page 6-65
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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adline
Accumulation/Distribution line

Note Using a fints object for the Data argument of adline is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
ADline = adline(Data)

Description
ADline = adline(Data) calculates the Accumulation/Distribution Line from a set of high, low,
closing prices, and volume traded of a security.

Examples

Calculate the Accumulation/Distribution Line for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
line = adline(TMW);
plot(line.Time,line.ADLine)
title('Accumulation/Distribution Line for TMW')
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Input Arguments
Data — Data with high, low, closing prices, and volume traded
matrix | table | timetable

Data with high, low, closing prices and volume traded, specified as a matrix, table, or timetable. For
matrix input, Data is M-by-4 with high, low, closing prices, and volume traded. Timetables and tables
with M rows must contain a variable named 'High', 'Low', 'Close', and 'Volume' (case
insensitive).
Data Types: double | table | timetable

Output Arguments
ADline — Accumulation/Distribution line
matrix | table | timetable

Accumulation/Distribution line, returned with the same number of rows (M) and the same type
(matrix, table, or timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 52–53.
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See Also
timetable | table | adosc | willad | willpctr

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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adosc
Accumulation/Distribution oscillator

Note Using a fints object for the Data argument of adosc is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
ado = adosc(Data)

Description
ado = adosc(Data) calculates the Accumulation/Distribution (A/D) oscillator.

Examples

Calculate the Accumulation/Distribution Oscillator for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
ADOsc = adosc(TMW);
plot(ADOsc.dates, ADOsc.ADOscillator)
title('A/D Oscillator for TMW')
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Input Arguments
Data — Data with open, high, low, close information
matrix | table | timetable

Data with open, high, low, close information, specified as a matrix, table, or timetable. For matrix
input, Data is an M-by-4 matrix of open, high, low, and closing prices. Timetables and tables with M
rows must contain variables named 'Open', 'High', 'Low', and 'Close' (case insensitive).
Data Types: double | table | timetable

Output Arguments
ado — Accumulation/Distribution oscillator
matrix | table | timetable

Accumulation/Distribution oscillator, returned with the same number of rows (M) and type (matrix,
table, or timetable) as the input Data.

References
[1] Kaufman, P. J. The New Commodity Trading Systems and Methods. John Wiley and Sons, New

York, 1987.
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See Also
adline | willad | timetable | table

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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amortize
Amortization schedule

Syntax
[Principal,Interest,Balance,Payment] = amortize(Rate,NumPeriods,PresentValue)
[Principal,Interest,Balance,Payment] = amortize( ___ ,FutureValue,Due)

Description
[Principal,Interest,Balance,Payment] = amortize(Rate,NumPeriods,PresentValue)
returns the principal and interest payments of a loan, the remaining balance of the original loan
amount, and the periodic payment.

[Principal,Interest,Balance,Payment] = amortize( ___ ,FutureValue,Due) specifies
options using one or more optional arguments in addition to the input arguments in the previous
syntax.

Examples

Compute an Amortization Schedule for a Conventional 30-Year, Fixed-Rate Mortgage With
Fixed Monthly Payments

Compute an amortization schedule for a conventional 30-year, fixed-rate mortgage with fixed monthly
payments and assume a fixed rate of 12% APR and an initial loan amount of $100,000.

Rate         = 0.12/12;   % 12 percent APR = 1 percent per month
NumPeriods   = 30*12;     % 30 years = 360 months
PresentValue = 100000;

[Principal, Interest, Balance, Payment] = amortize(Rate, ...
NumPeriods, PresentValue);

The output argument Payment contains the fixed monthly payment.

format bank

Payment

Payment = 
       1028.61

Summarize the amortization schedule graphically by plotting the current outstanding loan balance,
the cumulative principal, and the interest payments over the life of the mortgage. In particular, note
that total interest paid over the life of the mortgage exceeds $270,000, far in excess of the original
loan amount.

plot(Balance,'b'), hold('on')
plot(cumsum(Principal),'--k')
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plot(cumsum(Interest),':r')

xlabel('Payment Month')
ylabel('Dollars')
grid('on')
title('Outstanding Balance, Cumulative Principal & Interest')
legend('Outstanding Balance', 'Cumulative Principal', ... 
'Cumulative Interest')

The solid blue line represents the declining principal over the 30-year period. The dotted red line
indicates the increasing cumulative interest payments. Finally, the dashed black line represents the
cumulative principal payments, reaching $100,000 after 30 years.

Input Arguments
Rate — Interest-rate per period
scalar numeric decimal

Interest-rate per period, specified as a scalar numeric decimal.
Data Types: double

NumPeriods — Number of payment periods
scalar numeric

Number of payment periods, specified as a scalar numeric.
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Data Types: double

PresentValue — Present value of the loan
scalar numeric

Present value of the loan, specified as a scalar numeric.
Data Types: double

FutureValue — Future value of the loan
0 (default) | scalar numeric

(Optional) Future value of the loan, specified as a scalar numeric.
Data Types: double

Due — When payments are due
0 (end of period) (default) | scalar integer with value of 0 or 1

(Optional) When payments are due, specified as a scalar integer with value of 0 (end of period) or 1
(beginning of period).
Data Types: double

Output Arguments
Principal — Principal paid in each period
vector

Principal paid in each period, returned as a 1-by-NumPeriods vector.

Interest — Interest paid in each period
vector

Interest paid in each period, returned as a 1-by-NumPeriods vector.

Balance — Remaining balance of the loan in each payment period
vector

Remaining balance of the loan in each payment period, returned as a 1-by-NumPeriods vector.

Payment — Payment per period
scalar numeric

Payment per period, returned as a scalar numeric.

See Also
annurate | annuterm | payadv | payodd | payper

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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annurate
Periodic interest rate of annuity

Syntax
Rate = annurate(NumPeriods,Payment,PresentValue)
Rate = annurate( ___ ,FutureValue,Due)

Description
Rate = annurate(NumPeriods,Payment,PresentValue) returns the periodic interest rate paid
on a loan or annuity.

Rate = annurate( ___ ,FutureValue,Due) specifies options using one or more optional
arguments in addition to the input arguments in the previous syntax.

Examples

Calculate the Periodic Interest Rate Paid on a Loan or Annuity

This example shows how to find the periodic interest rate of a four-year, $5000 loan with a $130
monthly payment made at the end of each month.

Rate = annurate(4*12, 130, 5000, 0, 0)

Rate = 0.0094

Rate multiplied by 12 gives an annual interest rate of 11.32% on the loan.

Input Arguments
NumPeriods — Number of payment periods
scalar numeric

Number of payment periods, specified as a scalar numeric.
Data Types: double

Payment — Payment per period
scalar numeric

Payment per period, specified as a scalar numeric.
Data Types: double

PresentValue — Present value of the loan
scalar numeric

Present value of the loan, specified as a scalar numeric.

 annurate

19-297



Data Types: double

FutureValue — Future value of the loan
0 (default) | scalar numeric

(Optional) Future value of the loan, specified as a scalar numeric.
Data Types: double

Due — When payments are due
0 (end of period) (default) | scalar integer with value of 0 or 1

(Optional) When payments are due, specified as a scalar integer with value of 0 (end of period) or 1
(beginning of period).
Data Types: double

Output Arguments
Rate — Periodic interest-rate paid of a loan or annuity
scalar numeric decimal

Periodic interest-rate paid of a loan or annuity, returned as a scalar numeric decimal.

See Also
amortize | annuterm | bndyield | irr

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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annuterm
Number of periods to obtain value

Syntax
NumPeriods = annuterm(Rate,Payment,PresentValue)
NumPeriods = annuterm( ___ ,FutureValue,Due)

Description
NumPeriods = annuterm(Rate,Payment,PresentValue) calculates the number of periods
needed to obtain a future value. To calculate the number of periods needed to pay off a loan, enter
the payment or the present value as a negative value.

NumPeriods = annuterm( ___ ,FutureValue,Due) specifies options using one or more optional
arguments in addition to the input arguments in the previous syntax.

Examples

Calculate the Number of Periods Needed to Obtain a Future Value

This example shows a savings account with a starting balance of $1500. $200 is added at the end of
each month and the account pays 9% interest, compounded monthly. How many months will it take to
save $5,000?

NumPeriods = annuterm(0.09/12, 200, 1500, 5000, 0)

NumPeriods = 15.6752

Input Arguments
Rate — Interest-rate per period
scalar numeric decimal

Interest-rate per period, specified as a scalar numeric decimal.
Data Types: double

Payment — Payment per period
scalar numeric

Payment per period, specified as a scalar numeric.
Data Types: double

PresentValue — Present value of the loan
scalar numeric

Present value of the loan, specified as a scalar numeric.
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Data Types: double

FutureValue — Future value of the loan
0 (default) | scalar numeric

(Optional) Future value of the loan, specified as a scalar numeric.
Data Types: double

Due — When payments are due
0 (end of period) (default) | scalar integer with value of 0 or 1

(Optional) When payments are due, specified as a scalar integer with value of 0 (end of period) or 1
(beginning of period).
Data Types: double

Output Arguments
NumPeriods — Number of payment periods
scalar numeric

Number of payment periods, returned as a scalar numeric.

See Also
annurate | amortize | fvfix | pvfix

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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arith2geom
Arithmetic to geometric moments of asset returns

Syntax
[mg,Cg = arith2geom(ma,Ca)
[mg,Cg = arith2geom( ___ ,t)

Description
[mg,Cg = arith2geom(ma,Ca) transforms moments associated with a simple Brownian motion
into equivalent continuously compounded moments associated with a geometric Brownian motion
with a possible change in periodicity.

[mg,Cg = arith2geom( ___ ,t) adds an optional argument t.

Examples

Obtain Arithmetic to Geometric Moments of Asset Returns

This example shows several variations of using arith2geom.

Given arithmetic mean m and covariance C of monthly total returns, obtain annual geometric mean mg
and covariance Cg. In this case, the output period (1 year) is 12 times the input period (1 month) so
that the optional input t = 12.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
[mg, Cg] = arith2geom(m, C, 12)

mg = 4×1

    0.8934
    2.9488
    4.9632
   17.0835

Cg = 4×4
103 ×

    0.0003    0.0004    0.0003         0
    0.0004    0.0065    0.0065    0.0110
    0.0003    0.0065    0.0354    0.0536
         0    0.0110    0.0536    1.0952
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Given annual arithmetic mean m and covariance C of asset returns, obtain monthly geometric mean
mg and covariance Cg. In this case, the output period (1 month) is 1/12 times the input period (1 year)
so that the optional input t = 1/12.

[mg, Cg] = arith2geom(m, C, 1/12)

mg = 4×1

    0.0044
    0.0096
    0.0125
    0.0203

Cg = 4×4

    0.0005    0.0003    0.0002         0
    0.0003    0.0025    0.0017    0.0010
    0.0002    0.0017    0.0049    0.0029
         0    0.0010    0.0029    0.0107

Given arithmetic mean m and covariance C of monthly total returns, obtain quarterly continuously
compounded return moments. In this case, the output is 3 of the input periods so that the optional
input t = 3.

[mg, Cg] = arith2geom(m, C, 3)

mg = 4×1

    0.1730
    0.4097
    0.5627
    1.0622

Cg = 4×4

    0.0267    0.0204    0.0106         0
    0.0204    0.1800    0.1390    0.1057
    0.0106    0.1390    0.4606    0.3418
         0    0.1057    0.3418    1.8886

Input Arguments
ma — Arithmetic mean of asset-return data
vector

Arithmetic mean of asset-return data, specified as an n-vector.
Data Types: double

Ca — Arithmetic covariance of asset-return data
matrix
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Arithmetic covariance of asset-return data, specified as an n-by-n symmetric, positive semidefinite
matrix. If Ca is not a symmetric positive semidefinite matrix, use nearcorr to create a positive
semidefinite matrix for a correlation matrix.
Data Types: double

t — Target period of geometric moments in terms of periodicity of arithmetic moments
1 (default) | scalar positive numeric

(Optional) Target period of geometric moments in terms of periodicity of arithmetic moments,
specified as a scalar positive numeric.
Data Types: double

Output Arguments
mg — Continuously compounded or "geometric" mean of asset returns over the target
period
vector

Continuously compounded or "geometric" mean of asset returns over the target period (t), returned
as an n-vector.

Cg — Continuously compounded or "geometric" covariance of asset returns over the target
period
matrix

Continuously compounded or "geometric" covariance of asset returns over the target period (t),
returned as an n-by-n matrix.

Algorithms
Arithmetic returns over period tA are modeled as multivariate normal random variables with moments

E[X] = mA

and

cov(X) = CA

Geometric returns over period tG are modeled as multivariate lognormal random variables with
moments

E[Y] = 1 + mG

cov(Y) = CG

Given t = tG / tA, the transformation from geometric to arithmetic moments is

1 + mGi = exp(tmAi + 1
2 tCAii)

CGi j = (1 + mGi)(1 + mGj)(exp(tCAi j)− 1)

For i,j = 1,..., n.
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Note If t = 1, then Y = exp(X).

The arith2geom function has no restriction on the input mean ma but requires the input covariance
Ca to be a symmetric positive-semidefinite matrix.

The functions arith2geom and geom2arith are complementary so that, given m, C, and t, the
sequence

[mg,Cg] = arith2geom(m,C,t);       
[ma,Ca] = geom2arith(mg,Cg,1/t); 

yields ma = m and Ca = C.

See Also
geom2arith | nearcorr

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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ascii2fts
Create financial time series object from ASCII file

Note ascii2fts is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tsobj = ascii2fts(filename,descrow,colheadrow,skiprows)

tsobj = ascii2fts(filename,timedata,descrow,colheadrow,skiprows)

Arguments

filename ASCII data file
descrow (Optional) Row number in the data file that contains the description to be

used for the description field of the financial time series object
colheadrow (Optional) Row number that has the column headers/names
skiprows (Optional) Scalar or vector of row numbers to be skipped in the data file
timedata Set to 'T' if time-of-day data is present in the ASCII data file or to 'NT' if no

time-of-day data is present.

Description
tsobj = ascii2fts(filename,descrow,colheadrow,skiprows) creates a financial time
series object tsobj from the ASCII file named filename. This form of the function can only read a
data file without time-of-day information and create a financial time series object without time
information. If time information is present in the ASCII file, an error message appears.

The general format of the text data file is

• Can contain header text lines.
• Can contain column header information. The column header information must immediately

precede the data series columns unless skiprows is specified.
• Leftmost column must be the date column.
• Dates must be in a valid character vector date format:

• 'ddmmmyy' or 'ddmmmyyyy'
• 'mm/dd/yy' or 'mm/dd/yyyy'
• 'dd-mmm-yy' or 'dd-mmm-yyyy'
• 'mmm.dd,yy' or 'mmm.dd,yyyy'

• Time information must be in 'hh:mm' format.
• Each column must be separated either by spaces or a tab.
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tsobj = ascii2fts(filename, timedata, descrow, colheadrow, skiprows) creates a
financial time series object containing time-of-day data. Set timedata to 'T' to create a financial
time series object containing time-of-day data. The ascii time information must be in 'hh:mm' format
for ascii2fts.

Examples
Example 1. If your data file contains no description or column header rows,

1/3/95   36.75   36.9063   36.6563   36.875    1167900
1/4/95   37      37.2813   36.625    37.1563   1994700  ...

you can create a financial time series object from it with the simplest form of the ascii2fts
function:

myinc = ascii2fts('my_inc.dat')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

myinc = 
 
desc:  my_inc.dat
freq:  Unknown (0)

'dates:  (2)'  'series1: (2)'  'series2: (2)'   'series3: (2)'...
'03-Jan-1995'  [   36.7500]    [    36.9063]    [   36.6563]
'04-Jan-1995'  [        37]    [    37.2813]    [   36.6250]

Example 2: If your data file contains description and column header information with the data series
immediately following the column header row,

International Business Machines Corporation (IBM)
Daily prices (1/3/95 to 4/5/99)
DATE     OPEN    HIGH      LOW       CLOSE     VOLUME
1/3/95   36.75   36.9063   36.6563   36.875    1167900
1/4/95   37      37.2813   36.625    37.1563   1994700  ...

you must specify the row numbers containing the description and column headers:

ibm = ascii2fts('ibm9599.dat', 1, 3)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

ibm = 
 
desc:  International Business Machines Corporation (IBM)
freq:  Unknown (0)
'dates:  (2)'  'OPEN:  (2)'    'HIGH:  (2)'    'LOW:  (2)' ...
'03-Jan-1995'  [  36.7500]    [   36.9063]    [  36.6563]
'04-Jan-1995'  [       37]    [   37.2813]    [  36.6250]
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Example 3: If your data file contains rows between the column headers and the data series, for
example,

Staples, Inc. (SPLS)
Daily prices
DATE     OPEN    HIGH     LOW      CLOSE    VOLUME
Starting date: 04/08/1996
Ending date:   04/07/1999
4/8/96   19.50   19.75    19.25    19.375   548500
4/9/96   19.75   20.125   19.375   20       1135900  ...

you need to indicate to ascii2fts the rows in the file that must be skipped. Assume that you have
called the data file containing the Staples data (staples.dat).

spls = ascii2fts('staples.dat', 1, 3, [4 5])

The command above indicates that the fourth and fifth rows in the file should be skipped in creating
the financial time series object:

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

spls = 
 
desc:  Staples, Inc. (SPLS)
freq:  Unknown (0)

'dates:  (2)'  'OPEN:  (2)'    'HIGH:  (2)'    'LOW:  (2)'
'08-Apr-1996'  [   19.5000]    [  19.7500]     [19.2500]
'09-Apr-1996'  [   19.7500]    [  20.1250]     [19.3750]

Example 4: Create a financial time series object containing time-of-day information.

First create a data file with time information:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ... 
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
serial_dates_times = [datenum(dates), datenum(times)];
data = round(10*rand(6,2));
stat = fts2ascii('myfts_file2.txt',serial_dates_times,data, ... 
{'dates';'times';'Data1';'Data2'},'My FTS with Time')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fts2ascii (line 60) 

stat =

     1

Now read the data file back and create a financial time series object:
MyFts = ascii2fts('myfts_file2.txt','t',1,2,1)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
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MyFts = 
 
    desc:  My FTS with Time
    freq:  Unknown (0)

    'dates:  (6)'    'times:  (6)'   'Data1:  (6)'  'Data2:  (6)'
    '01-Jan-2001'    '11:00'         [          9]   [          4]
    '     "     '    '12:00'         [          7]   [          9]
    '02-Jan-2001'    '11:00'         [          2]   [          1]
    '     "     '    '12:00'         [          4]   [          4]
    '03-Jan-2001'    '11:00'         [          9]   [          8]
    '     "     '    '12:00'         [          9]   [          0]

See Also
fints | fts2ascii

Topics
“Creating a Financial Time Series Object” on page 14-9
“Working with Financial Time Series Objects” on page 13-2

Introduced before R2006a
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bar, barh
Bar chart

Note bar, barh is not recommended. Use bar or barh instead.

Syntax
bar(tsobj)

bar(tsobj,width)

bar(..., 'style')

hbar = bar(...)

barh(...)

hbarh = barh(...)

Arguments

tsobj Financial time series object.
width Width of the bars and separation of bars within a group. (Default = 0.8.) If

width is 1, the bars within a group touch one another. Values > 1 produce
overlapping bars.

style 'grouped' (default) or 'stacked'.

Description
bar, barh draw vertical and horizontal bar charts.

bar(tsobj) draws the columns of data series of the object tsobj. The number of data series
dictates the number of vertical bars per group. Each group is the data for one particular date.

bar(tsobj,width) specifies the width of the bars.

bar(..., 'style') changes the style of the bar chart.

hbar = bar(...) returns a vector of bar handles.

Use the MATLAB command shading faceted to put edges on the bars. Use shading flat to turn
edges off.

Examples
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Create a Bar Chart for a Stock

This example shows how to create a bar chart for Disney stock showing high, low, opening, and
closing prices.

load disney
bar(q_dis)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Bar Chart of Disney Prices')

Create a Horizontal Bar Chart for a Stock

This example shows how to create a horizontal bar chart for Disney stock showing high, low, opening,
and closing prices.

load disney
barh(q_dis)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Horizontal Bar Chart of Disney Prices')
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See Also
bar3, bar3h | candle | highlow

Introduced before R2006a
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bar3, bar3h
3-D bar chart

Note bar3, bar3h is not recommended. Use bar3 or bar3h instead.

Syntax
bar3(tsobj)

bar3(tsobj,width)

bar3(..., 'style')

hbar3 = bar3(...)

bar3h(...)

hbar3h = bar3h(...)

Arguments

tsobj Financial time series object.
width Width of the bars and separation of bars within a group. (Default = 0.8.) If

width is 1, the bars within a group touch one another. Values > 1 produce
overlapping bars.

style 'detached' (default), 'grouped', or 'stacked'.

Description
bar3, bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(tsobj) draws the columns of data series of the object tsobj. The number of data series
dictates the number of vertical bars per group. Each group is the data for one particular date.

bar3(tsobj,width) specifies the width of the bars.

bar3(..., 'style') changes the style of the bar chart.

hbar3 = bar3(...) returns a vector of bar handles.

Use the MATLAB command shading faceted to put edges on the bars. Use shading flat to turn
edges off.

Examples
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Create a Three-Dimensional Bar Chart

This example shows how to create a three-dimensional bar chart for Disney stock showing high, low,
opening, and closing prices.

load disney
bar3(q_dis, 'stacked')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Three-Dimensional Bar Chart of Disney Prices')

Create a Three-Dimensional (Stacked) Bar Chart

This example shows how to create a three-dimensional, stacked bar chart for Disney stock showing
high, low, opening, and closing prices.

load disney
bar3(q_dis, 'stacked')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Three-Dimensional Bar Chart of Disney Prices (Stacked)')
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See Also
bar, barh | candle | highlow

Introduced before R2006a
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beytbill
Bond equivalent yield for Treasury bill

Syntax
Yield = beytbill(Settle,Maturity,Discount)

Description
Yield = beytbill(Settle,Maturity,Discount) returns the bond equivalent yield for a
Treasury bill.

Examples

Find the Bond Equivalent Yield for a Treasury Bill

This example shows how to find the bond equivalent yield for a Treasury bill that has a settlement
date of February 11, 2000, a maturity date of August 7, 2000, and a discount rate is 5.77.

Yield = beytbill('2/11/2000', '8/7/2000', 0.0577)

Yield = 0.0602

Find the Bond Equivalent Yield for a Treasury Bill Using datetime Inputs

This example shows how to use datetime inputs to find the bond equivalent yield for a Treasury bill
that has a settlement date of February 11, 2000, a maturity date of August 7, 2000, and the discount
rate is 5.77.

Yield = beytbill(datetime('11-Feb-2000','Locale','en_US'), datetime('7-Aug-2000','Locale','en_US'),...
0.0577)

Yield = 0.0602

Input Arguments
Settle — Settlement date of Treasury bill
serial date number | date character vector | datetime

Settlement date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays. Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date of Treasury bill
serial date number | date character vector | datetime

 beytbill

19-315



Maturity date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Discount — Discount rate of Treasury bill
decimal

Discount rate of the Treasury bill, specified as a scalar of a NTBILLS-by-1 vector of decimal fraction
values.
Data Types: double

Output Arguments
Yield — Treasury bill yield
decimal

Treasury bill yield, returned as a scalar or NTBILLS-by-1 vector.

Note The number of days to maturity is typically quoted as: md - sd - 1. A NaN is returned for all
cases in which negative prices are implied by the discount rate, Discount, and the number of days
between Settle and Maturity.

See Also
datenum | prtbill | yldtbill | datetime

Topics
“Computing Treasury Bill Price and Yield” on page 2-29
“Treasury Bills Defined” on page 2-28

Introduced before R2006a
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binprice
Binomial put and call American option pricing using Cox-Ross-Rubinstein model

Syntax
[AssetPrice,OptionValue] = binprice(Price,Strike,Rate,Time,Increment,
Volatility,Flag)
[AssetPrice,OptionValue] = binprice( ___ ,DividendRate,Dividend,ExDiv)

Description
[AssetPrice,OptionValue] = binprice(Price,Strike,Rate,Time,Increment,
Volatility,Flag) prices an American option using the Cox-Ross-Rubinstein binomial pricing
model. An American option can be exercised any time until its expiration date.

[AssetPrice,OptionValue] = binprice( ___ ,DividendRate,Dividend,ExDiv) adds
optional arguments for DividendRate,Dividend, and ExDiv.

Examples

Price an American Option Using the Cox-Ross-Rubinstein Binomial Pricing Model

This example shows how to price an American put option with an exercise price of $50 that matures
in 5 months. The current asset price is $52, the risk-free interest rate is 10%, and the volatility is
40%. There is one dividend payment of $2.06 in 3-1/2 months. When specifying the input argument
ExDiv in terms of number of periods, divide the ex-dividend date, specified in years, by the time
Increment.

ExDiv = ( 3.5/12) / (1/12) = 3.5

[Price, Option] = binprice(52, 50, 0.1, 5/12, 1/12, 0.4, 0, 0, 2.06, 3.5)

Price = 6×6

   52.0000   58.1367   65.0226   72.7494   79.3515   89.0642
         0   46.5642   52.0336   58.1706   62.9882   70.6980
         0         0   41.7231   46.5981   49.9992   56.1192
         0         0         0   37.4120   39.6887   44.5467
         0         0         0         0   31.5044   35.3606
         0         0         0         0         0   28.0688

Option = 6×6

    4.4404    2.1627    0.6361         0         0         0
         0    6.8611    3.7715    1.3018         0         0
         0         0   10.1591    6.3785    2.6645         0
         0         0         0   14.2245   10.3113    5.4533
         0         0         0         0   18.4956   14.6394
         0         0         0         0         0   21.9312
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The output returned is the asset price and American option value at each node of the binary tree.

Input Arguments
Price — Current price of underlying asset
numeric

Current price of underlying asset, specified as a scalar numeric value.
Data Types: double

Strike — Exercise price of the option
numeric

Exercise price of the option, specified as a scalar numeric value.
Data Types: double

Rate — Risk-free interest rate
decimal

Risk-free interest rate, specified as scalar decimal fraction.
Data Types: double

Time — Option time until maturity
numeric

Option time until maturity, specified as a scalar for the number of years.
Data Types: double

Increment — Time increment
numeric

Time increment, specified as a scalar numeric. Increment is adjusted so that the length of each
interval is consistent with the maturity time of the option. (Increment is adjusted so that Time
divided by Increment equals an integer number of increments.)
Data Types: double

Volatility — Asset volatility
numeric

Asset volatility, specified as a scalar numeric.
Data Types: double

Flag — Flag indicating whether option is a call or put
integer with values 0 or 1

Flag indicating whether option is a call or put, specified as a scalar Flag = 1 for a call option, or
Flag = 0 for a put option.
Data Types: logical
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DividendRate — Dividend rate
0 (default) | decimal

(Optional) Dividend rate, specified as a scalar decimal. If you enter a value for DividendRate, set
Dividend and ExDiv = 0 or do not enter them. If you enter values for Dividend and ExDiv, set
DividendRate = 0
Data Types: double

Dividend — Dividend payment
0 (default) | numeric

(Optional) Dividend payment at an ex-dividend date (ExDiv), specified as a 1-by-N row vector. For
each dividend payment, there must be a corresponding ex-dividend date. If you enter values for
Dividend and ExDiv, set DividendRate = 0.
Data Types: double

ExDiv — Ex-dividend date
0 (default) | numeric

(Optional) Ex-dividend date, specified as a 1-by-N vector row vector for the number of periods.
Data Types: double

Output Arguments
AssetPrice — Asset price
vector

Asset price, returned as a vector that represents each node of the Cox-Ross-Rubinstein (CRR) binary
tree.

OptionValue — Option value
vector

Option value, returned as a vector that represents each node of the Cox-Ross-Rubinstein (CRR) binary
tree.

References
[1] Cox, J., S. Ross, and M. Rubenstein. “Option Pricing: A Simplified Approach.” Journal of Financial

Economics. Vol. 7, Sept. 1979, pp. 229–263.

[2] Hull, John C. Options, Futures, and Other Derivative Securities. 2nd edition, Chapter 14.

See Also
blkprice | blsprice

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27
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blkimpv
Implied volatility for futures options from Black model

Syntax
Volatility = blkimpv(Price,Strike,Rate,Time,Value)
Volatility = blkimpv( ___ ,Name,Value)

Description
Volatility = blkimpv(Price,Strike,Rate,Time,Value) computes the implied volatility of a
futures price from the market value of European futures options using Black's model. If the Class
name-value argument is empty or unspecified, the default is a call option

Note Any input argument can be a scalar, vector, or matrix. When a value is a scalar, that value is
used to compute the implied volatility of all the options. If more than one input is a vector or matrix,
the dimensions of all nonscalar inputs must be identical.

Ensure that Rate and Time are expressed in consistent units of time.

Volatility = blkimpv( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Find Implied Volatility for Futures Options from Black's Model

This example shows how to find the implied volatility for a European call futures option that expires
in four months, trades at $1.1166, and has an exercise price of $20. Assume that the current
underlying futures price is also $20 and that the risk-free rate is 9% per annum. Furthermore,
assume that you are interested in implied volatilities no greater than 0.5 (50% per annum). Under
these conditions, the following commands all return an implied volatility of 0.25, or 25% per annum.

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 'Limit',0.5);
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 'Limit',0.5,'Class',{'Call'});
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 'Limit',0.5,'Class',true);
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 'Limit',0.5,'Class',true,'Method','jackel2016')

Volatility = 0.2500

Input Arguments
Price — Current price of underlying asset
scalar numeric

Current price of the underlying asset (that is, a futures contract), specified as a scalar numeric.
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Data Types: double

Strike — Exercise price of the futures option
scalar numeric

Exercise price of the futures option, specified as a scalar numeric.
Data Types: double

Rate — Annualized continuously compounded risk-free rate of return over life of the option
scalar positive decimal

Annualized continuously compounded risk-free rate of return over the life of the option, specified as a
scalar positive decimal.
Data Types: double

Time — Time to expiration of the futures option
scalar numeric

Time to expiration of the futures option, specified as the number of years using a scalar numeric.
Data Types: double

Value — Price of a European option from which implied volatility of underlying asset is
derived
scalar numeric

Price of a European futures option from which the implied volatility of the underlying asset is derived,
specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Volatility =
blkimpv(Yield,CouponRate,Settle,Maturity,'Method','jackel2016')

Limit — Upper bound of implied volatility search interval
10 (1000% per annum) (default) | positive scalar numeric

Upper bound of the implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a positive scalar numeric. If Limit is empty or unspecified, the default is
10, or 1000% per annum.

Note If you are using Method with a value of 'jackel2016', the Limit argument is ignored.

Data Types: double

Tolerance — Implied volatility termination tolerance
1e-6 (default) | positive scalar numeric
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Implied volatility termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar numeric. If empty or missing, the default is 1e-6.

Note If you are using Method with a value of 'jackel2016', the Tolerance argument is ignored.

Data Types: double

Class — Option class from which implied volatility is derived
true (call option) (default) | logical | cell array of character vectors | string array

Option class indicating option type (call or put) from which implied volatility is derived, specified as
the comma-separated pair consisting of 'Class' and a logical indicator, cell array of character
vectors, or string array.

To specify call options, set Class = true or Class = {'call'}. To specify put options, set Class =
false or Class = {'put'} or Class = ["put"]. If Class is empty or unspecified, the default is a
call option.
Data Types: logical | cell | string

Method — Method for computing implied volatility
'jackel2016' (default) | character vector with values 'search' or 'jackel2016' | string with
values "search" or "jackel2016"

Method for computing implied volatility, specified as the comma-separated pair consisting of
'Method' and a character vector with a value of 'search' or 'jackel2016' or a string with a
value of "search" or "jackel2016".
Data Types: char | string

Output Arguments
Volatility — Implied volatility of underlying asset derived from European futures option
prices
decimal

Implied volatility of the underlying asset derived from European futures option prices, returned as a
decimal. If no solution is found, blkimpv returns NaN.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003, pp. 287–

288.

[2] Jäckel, Peter. "Let's Be Rational." Wilmott Magazine., January, 2015 (https://
onlinelibrary.wiley.com/doi/pdf/10.1002/wilm.10395).

[3] Black, Fischer. “The Pricing of Commodity Contracts.” Journal of Financial Economics. March 3,
1976, pp. 167–79.

See Also
blkprice | blsprice | blsimpv
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Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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blkprice
Black model for pricing futures options

Syntax
[Call,Put] = blkprice(Price,Strike,Rate,Time,Volatility)

Description
[Call,Put] = blkprice(Price,Strike,Rate,Time,Volatility) computes European put
and call futures option prices using Black's model.

Note Any input argument can be a scalar, vector, or matrix. If a scalar, then that value is used to
price all options. If more than one input is a vector or matrix, then the dimensions of those non-scalar
inputs must be the same.

Ensure that Rate, Time, and Volatility are expressed in consistent units of time.

Examples

Compute European Put and Call Futures Option Prices Using Black's Model

This example shows how to price European futures options with exercise prices of $20 that expire in
four months. Assume that the current underlying futures price is also $20 with a volatility of 25% per
annum. The risk-free rate is 9% per annum.

 [Call, Put] = blkprice(20, 20, 0.09, 4/12, 0.25)

Call = 1.1166

Put = 1.1166

Input Arguments
Price — Current price of underlying asset
numeric

Current price of the underlying asset (that is, a futures contract), specified as a numeric value.
Data Types: double

Strike — Exercise price of the futures option
numeric

Exercise price of the futures option, specified as a numeric value.
Data Types: double
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Rate — Annualized continuously compounded risk-free rate of return over life of the option
positive decimal

Annualized continuously compounded risk-free rate of return over the life of the option, specified as a
positive decimal number.
Data Types: double

Time — Time to expiration of option
numeric

Time to expiration of the option, specified as the number of years. Time must be greater than 0.
Data Types: double

Volatility — Annualized asset price volatility
positive decimal

Annualized futures price volatility, specified as a positive decimal number.
Data Types: double

Output Arguments
Call — Price of a European call futures option
matrix

Price of a European call futures option, returned as a matrix.

Put — Price of a European put futures option
matrix

Price of a European put futures option, returned as a matrix.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, , 2003, pp. 287–

288.

[2] Black, Fischer. “The Pricing of Commodity Contracts.” Journal of Financial Economics. March 3,
1976, pp. 167–79.

See Also
binprice | blsprice

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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blsdelta
Black-Scholes sensitivity to underlying price change

Syntax
[CallDelta,PutDelta] = blsdelta(Price,Strike,Rate,Time,Volatility)
[CallDelta,PutDelta] = blsdelta( ___ ,Yield)

Description
[CallDelta,PutDelta] = blsdelta(Price,Strike,Rate,Time,Volatility) returns delta,
the sensitivity in option value to change in the underlying asset price. Delta is also known as the
hedge ratio. blsdelta uses normcdf, the normal cumulative distribution function in the Statistics
and Machine Learning Toolbox.

Note blsdelta can handle other types of underlies like Futures and Currencies. When pricing
Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk-free interest rate in the
foreign country.

[CallDelta,PutDelta] = blsdelta( ___ ,Yield) adds an optional argument for Yield.

Examples

Find the Sensitivity in Option Value to Change in the Underlying Asset Price

This example shows how to find the Black-Scholes delta sensitivity for an underlying asset price
change.

[CallDelta, PutDelta] = blsdelta(50, 50, 0.1, 0.25, 0.3, 0)

CallDelta = 0.5955

PutDelta = -0.4045

Input Arguments
Price — Current price of underlying asset
numeric

Current price of the underlying asset, specified as a numeric value.
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Data Types: double

Strike — Exercise price of option
numeric

Exercise price of the option, specified as a numeric value.
Data Types: double

Rate — Annualized, continuously compounded risk-free rate of return over life of option
positive decimal

Annualized, continuously compounded risk-free rate of return over the life of the option, specified as
a positive decimal value.
Data Types: double

Time — Time (in years) to expiration of the option
numeric

Time (in years) to expiration of the option, specified as a numeric value.
Data Types: double

Volatility — Annualized asset price volatility
positive decimal

Annualized asset price volatility (annualized standard deviation of the continuously compounded
asset return), specified as a positive decimal value.
Data Types: double

Yield — Annualized, continuously compounded yield of the underlying asset over life of
option
0 (default) | decimal

(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the
option, specified as a decimal value. For example, for options written on stock indices, Yield could
represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Data Types: double

Output Arguments
CallDelta — Delta of call option
numeric

Delta of the call option, returned as a numeric value.

PutDelta — Delta of put option
numeric

Delta of the put option, returned as a numeric.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003.
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See Also
blsgamma | blslambda | blsprice | blsrho | blstheta | blsvega

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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blsgamma
Black-Scholes sensitivity to underlying delta change

Syntax
Gamma = blsgamma(Price,Strike,Rate,Time,Volatility)
Gamma = blsgamma( ___ ,Yield)

Description
Gamma = blsgamma(Price,Strike,Rate,Time,Volatility) returns gamma, the sensitivity of
delta to change in the underlying asset price. blsgamma uses normpdf, the probability density
function in the Statistics and Machine Learning Toolbox.

Note blsgamma can handle other types of underlies like Futures and Currencies. When pricing
Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk-free interest rate in the
foreign country.

Gamma = blsgamma( ___ ,Yield) adds an optional argument for Yield.

Examples

Find Gamma for a Change in the Underlying Asset Price

This example shows how to find the gamma, the sensitivity of delta to a change in the underlying
asset price.

Gamma = blsgamma(50, 50, 0.12, 0.25, 0.3, 0)

Gamma = 0.0512

Input Arguments
Price — Current price of underlying asset
numeric

Current price of the underlying asset, specified as a numeric value.
Data Types: double
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Strike — Exercise price of option
numeric

Exercise price of the option, specified as a numeric value.
Data Types: double

Rate — Annualized, continuously compounded risk-free rate of return over life of option
positive decimal

Annualized, continuously compounded risk-free rate of return over the life of the option, specified as
a positive decimal value.
Data Types: double

Time — Time (in years) to expiration of the option
numeric

Time (in years) to expiration of the option, specified as a numeric value.
Data Types: double

Volatility — Annualized asset price volatility
positive decimal

Annualized asset price volatility (annualized standard deviation of the continuously compounded
asset return), specified as a positive decimal value.
Data Types: double

Yield — Annualized, continuously compounded yield of the underlying asset over life of
option
0 (default) | decimal

(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the
option, specified as a decimal value. For example, for options written on stock indices, Yield could
represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Data Types: double

Output Arguments
Gamma — Delta to change in underlying security price
numeric

Delta to change in underlying security price, returned as a numeric value.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003.

See Also
blsdelta | blslambda | blsprice | blsrho | blstheta | blsvega

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
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“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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blsimpv
Black-Scholes implied volatility

Syntax
Volatility = blsimpv(Price,Strike,Rate,Time,Value)
Volatility = blsimpv( ___ ,Name,Value)

Description
Volatility = blsimpv(Price,Strike,Rate,Time,Value) using a Black-Scholes model
computes the implied volatility of an underlying asset from the market value of European options. If
the Class name-value argument is empty or unspecified, the default is a call option

Note The input arguments Price, Strike, Rate, Time, Value, Yield, and Class can be scalars,
vectors, or matrices. If scalars, then that value is used to compute the implied volatility from all
options. If more than one of these inputs is a vector or matrix, then the dimensions of all non-scalar
inputs must be the same.

Also, ensure that Rate, Time, and Yield are expressed in consistent units of time.

Volatility = blsimpv( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Implied Volatility of an Underlying Asset Using a Black-Scholes Model

This example shows how to compute the implied volatility for a European call option trading at $10
with an exercise price of $95 and three months until expiration. Assume that the underlying stock
pays no dividend and trades at $100. The risk-free rate is 7.5% per annum. Furthermore, assume that
you are interested in implied volatilities no greater than 0.5 (50% per annum). Under these
conditions, the following statements all compute an implied volatility of 0.3130, or 31.30% per
annum.

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 'Limit', 0.5);
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 'Limit',0.5,'Yield',0,'Class', {'Call'});
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 'Limit',0.5,'Yield',0, 'Class', true);
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 'Limit',0.5,'Yield',0, 'Class', true,'Method','jackel2016')

Volatility = 0.3130

Input Arguments
Price — Current price of underlying asset
scalar numeric
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Current price of the underlying asset, specified as a scalar numeric.
Data Types: double

Strike — Exercise price of the option
scalar numeric

Exercise price of the option, specified as a scalar numeric.
Data Types: double

Rate — Annualized continuously compounded risk-free rate of return over life of the option
scalar positive decimal

Annualized continuously compounded risk-free rate of return over the life of the option, specified as a
scalar positive decimal.
Data Types: double

Time — Time to expiration of option
scalar numeric

Time to expiration of the option, specified as the number of years using a scalar numeric.
Data Types: double

Value — Price of a European option from which implied volatility of underlying asset is
derived
scalar numeric

Price of a European option from which the implied volatility of the underlying asset is derived,
specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Volatility =
blsimpv(Yield,CouponRate,Settle,Maturity,'Method','jackel2016')

Limit — Upper bound of implied volatility search interval
10 (1000% per annum) (default) | positive scalar numeric

Upper bound of the implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a positive scalar numeric. If Limit is empty or unspecified, the default is
10, or 1000% per annum.

Note If you are using Method with a value of 'jackel2016', the Limit argument is ignored.

Data Types: double
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Yield — Annualized continuously compounded yield of underlying asset over life of the
option
0 (default) | decimal

Annualized continuously compounded yield of the underlying asset over the life of the
option,specified as the comma-separated pair consisting of 'Yield' and a decimal number. If Yield
is empty or missing, the default value is 0.

For example, for options written on stock indices, Yield could represent the dividend yield. For
currency options, Yield could be the foreign risk-free interest rate.

Note blsimpv can handle other types of underlies like Futures and Currencies. When pricing
Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk-free interest rate in the
foreign country.

Data Types: double

Tolerance — Implied volatility termination tolerance
1e-6 (default) | positive scalar numeric

Implied volatility termination tolerance, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar numeric. If empty or missing, the default is 1e-6.

Note If you are using Method with a value of 'jackel2016', the Tolerance argument is ignored.

Data Types: double

Class — Option class from which implied volatility is derived
true (call option) (default) | logical | cell array of character vectors | string array

Option class indicating option type (call or put) from which implied volatility is derived, specified as
the comma-separated pair consisting of 'Class' and a logical indicator, cell array of character
vectors, or string array.

To specify call options, set Class = true or Class = {'call'}. To specify put options, set Class =
false or Class = {'put'} or Class = ["put"]. If Class is empty or unspecified, the default is a
call option.
Data Types: logical | cell | string

Method — Method for computing implied volatility
'jackel2016' (default) | character vector with values 'search' or 'jackel2016' | string with
values "search" or "jackel2016"
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Method for computing implied volatility, specified as the comma-separated pair consisting of
'Method' and a character vector with a value of 'search' or 'jackel2016' or a string with a
value of "search" or "jackel2016".
Data Types: char | string

Output Arguments
Volatility — Implied volatility of underlying asset derived from European option prices
decimal

Implied volatility of the underlying asset derived from European option prices, returned as a decimal.
If no solution is found, blsimpv returns NaN.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003.

[2] Jäckel, Peter. "Let's Be Rational." Wilmott Magazine., January, 2015 (https://
onlinelibrary.wiley.com/doi/pdf/10.1002/wilm.10395).

[3] Luenberger, David G. Investment Science. Oxford University Press, 1998.

See Also
blsgamma | blsdelta | blslambda | blsprice | blsrho | blstheta | blsvega

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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blslambda
Black-Scholes elasticity

Syntax
[CallEl,PutEl] = blslambda(Price,Strike,Rate,Time,Volatility)
[CallEl,PutEl] = blslambda( ___ ,Yield)

Description
[CallEl,PutEl] = blslambda(Price,Strike,Rate,Time,Volatility) returns the elasticity
of an option. CallEl is the call option elasticity or leverage factor, and PutEl is the put option
elasticity or leverage factor. Elasticity (the leverage of an option position) measures the percent
change in an option price per 1 percent change in the underlying asset price. blslambda uses
normcdf, the normal cumulative distribution function in the Statistics and Machine Learning
Toolbox.

Note blslambda can handle other types of underlies like Futures and Currencies. When pricing
Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk-free interest rate in the
foreign country.

[CallEl,PutEl] = blslambda( ___ ,Yield) adds an optional argument for Yield.

Examples

Find the Black-Scholes Elasticity (Lambda) for an Option

This example shows how to find the Black-Scholes elasticity, or leverage, of an option position.

[CallEl, PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)

CallEl = 8.1274

PutEl = -8.6466

Input Arguments
Price — Current price of underlying asset
numeric
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Current price of the underlying asset, specified as a numeric value.
Data Types: double

Strike — Exercise price of option
numeric

Exercise price of the option, specified as a numeric value.
Data Types: double

Rate — Annualized, continuously compounded risk-free rate of return over life of option
positive decimal

Annualized, continuously compounded risk-free rate of return over the life of the option, specified as
a positive decimal value.
Data Types: double

Time — Time (in years) to expiration of the option
numeric

Time (in years) to expiration of the option, specified as a numeric value.
Data Types: double

Volatility — Annualized asset price volatility
positive decimal

Annualized asset price volatility (annualized standard deviation of the continuously compounded
asset return), specified as a positive decimal value.
Data Types: double

Yield — Annualized, continuously compounded yield of the underlying asset over life of
option
0 (default) | decimal

(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the
option, specified as a decimal value. For example, for options written on stock indices, Yield could
represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Data Types: double

Output Arguments
CallEl — Call option elasticity
numeric

Call option elasticity or leverage factor, returned as a numeric value.

PutEl — Put option elasticity
numeric

Put option elasticity or leverage factor, returned as a numeric value.
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References
[1] Daigler, R. Advanced Options Trading. McGraw-Hill, 1993.

See Also
blsgamma | blsdelta | blsprice | blsrho | blstheta | blsvega

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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blsprice
Black-Scholes put and call option pricing

Syntax
[Call,Put] = blsprice(Price,Strike,Rate,Time,Volatility)
[Call,Put] = blsprice( ___ ,Yield)

Description
[Call,Put] = blsprice(Price,Strike,Rate,Time,Volatility) computes European put
and call option prices using a Black-Scholes model.

Note Any input argument can be a scalar, vector, or matrix. If a scalar, then that value is used to
price all options. If more than one input is a vector or matrix, then the dimensions of those non-scalar
inputs must be the same.

Ensure that Rate, Time, Volatility, and Yield are expressed in consistent units of time.

[Call,Put] = blsprice( ___ ,Yield) adds an optional an argument for Yield.

Examples

Compute European Put and Call Option Prices Using a Black-Scholes Model

This example shows how to price European stock options that expire in three months with an exercise
price of $95. Assume that the underlying stock pays no dividend, trades at $100, and has a volatility
of 50% per annum. The risk-free rate is 10% per annum.

[Call, Put] = blsprice(100, 95, 0.1, 0.25, 0.5)

Call = 13.6953

Put = 6.3497

Compute European Put and Call Option Prices on a Stock Index Using a Black-Scholes Model

The S&P 100 index is at 910 and has a volatility of 25% per annum. The risk-free rate of interest is
2% per annum and the index provides a dividend yield of 2.5% per annum. Calculate the value of a
three-month European call and put with a strike price of 980.

 [Call,Put] = blsprice(910,980,.02,.25,.25,.025)

Call = 19.6863

Put = 90.4683
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Price a European Call Option with the Garman-Kohlhagen Model

Price an FX option on buying GBP with USD.

S = 1.6;  % spot exchange rate 
X = 1.6;  % strike 
T = .3333; 
r_d = .08;  % USD interest rate 
r_f = .11;  % GBP interest rate 
sigma = .2; 

Price = blsprice(S,X,r_d,T,sigma,r_f)

Price = 0.0639

Input Arguments
Price — Current price of underlying asset
numeric

Current price of the underlying asset, specified as a numeric value.
Data Types: double

Strike — Exercise price of the option
numeric

Exercise price of the option, specified as a numeric value.
Data Types: double

Rate — Annualized continuously compounded risk-free rate of return over life of the option
positive decimal

Annualized continuously compounded risk-free rate of return over the life of the option, specified as a
positive decimal number.
Data Types: double

Time — Time to expiration of option
numeric

Time to expiration of the option, specified as the number of years.
Data Types: double

Volatility — Annualized asset price volatility
positive decimal

Annualized asset price volatility (that is, annualized standard deviation of the continuously
compounded asset return), specified as a positive decimal number.
Data Types: double

 blsprice

19-341



Yield — Annualized continuously compounded yield of underlying asset over life of the
option
0 (default) | decimal

(Optional) Annualized continuously compounded yield of the underlying asset over the life of the
option, specified as a decimal number. If Yield is empty or missing, the default value is 0.

For example, Yield could represent the dividend yield (annual dividend rate expressed as a
percentage of the price of the security) or foreign risk-free interest rate for options written on stock
indices and currencies.

Note blsprice can handle other types of underlies like Futures and Currencies. When pricing
Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk-free interest rate in the
foreign country.

Data Types: double

Output Arguments
Call — Price of a European call option
matrix

Price of a European call option, returned as a matrix.

Put — Price of a European put option
matrix

Price of a European put option, returned as a matrix.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003.

[2] Luenberger, David G. Investment Science. Oxford University Press, 1998.

See Also
blsimpv | blkprice | blsgamma | blsdelta | blslambda | blsrho | blstheta | blsvega

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27
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blsrho
Black-Scholes sensitivity to interest-rate change

Syntax
[CallRho,PutRho] = blsrho(Price,Strike,Rate,Time,Volatility)
[CallRho,PutRho] = blsrho( ___ ,Yield)

Description
[CallRho,PutRho] = blsrho(Price,Strike,Rate,Time,Volatility) returns the call option
rho CallRho, and the put option rho PutRho. Rho is the rate of change in value of derivative
securities with respect to interest rates. blsrho uses normcdf, the normal cumulative distribution
function in the Statistics and Machine Learning Toolbox.

Note blsrho can also handle an underlying asset such as currencies. When pricing currencies
(Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk-free interest rate in the
foreign country.

[CallRho,PutRho] = blsrho( ___ ,Yield) adds an optional argument for Yield.

Examples

Find the Black-Scholes Sensitivity (Rho) to Interest-Rate Change

This example shows how to find the Black-Scholes sensitivity, rho, to interest-rate change.

[CallRho, PutRho] = blsrho(50, 50, 0.12, 0.25, 0.3, 0)

CallRho = 6.6686

PutRho = -5.4619

Input Arguments
Price — Current price of underlying asset
numeric

Current price of the underlying asset, specified as a numeric value.
Data Types: double

Strike — Exercise price of option
numeric
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Exercise price of the option, specified as a numeric value.
Data Types: double

Rate — Annualized, continuously compounded risk-free rate of return over life of option
positive decimal

Annualized, continuously compounded risk-free rate of return over the life of the option, specified as
a positive decimal value.
Data Types: double

Time — Time (in years) to expiration of the option
numeric

Time (in years) to expiration of the option, specified as a numeric value.
Data Types: double

Volatility — Annualized asset price volatility
positive decimal

Annualized asset price volatility (annualized standard deviation of the continuously compounded
asset return), specified as a positive decimal value.
Data Types: double

Yield — Annualized, continuously compounded yield of the underlying asset over life of
option
0 (default) | decimal

(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the
option, specified as a decimal value. For example, for options written on stock indices, Yield could
represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Data Types: double

Output Arguments
CallRho — Call option rho
numeric

Call option rho, returned as a numeric value.

PutRho — Put option rho
numeric

Put option rho, returned as a numeric value.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003.

See Also
blsgamma | blsdelta | blslambda | blsprice | blstheta | blsvega
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Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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blstheta
Black-Scholes sensitivity to time-until-maturity change

Syntax
[CallTheta,PutTheta] = blstheta(Price,Strike,Rate,Time,Volatility)
[CallTheta,PutTheta] = blstheta( ___ ,Yield)

Description
[CallTheta,PutTheta] = blstheta(Price,Strike,Rate,Time,Volatility) returns the
call option theta CallTheta, and the put option theta PutTheta.

Theta is the sensitivity in option value with respect to time and is measured in years. CallTheta or
PutTheta can be divided by 365 to get Theta per calendar day or by 252 to get Theta by trading day.

blstheta uses normcdf, the normal cumulative distribution function, and normpdf, the normal
probability density function, in the Statistics and Machine Learning Toolbox.

Note blstheta can handle other types of underlies like Futures and Currencies. When pricing
Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk-free interest rate in the
foreign country.

[CallTheta,PutTheta] = blstheta( ___ ,Yield) adds an optional argument for Yield.

Examples

Compute the Black-Scholes Sensitivity to Time-Until-Maturity Change (Theta)

This example shows how to compute theta, the sensitivity in option value with respect to time.

[CallTheta, PutTheta] = blstheta(50, 50, 0.12, 0.25, 0.3, 0)

CallTheta = -8.9630

PutTheta = -3.1404
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Input Arguments
Price — Current price of underlying asset
numeric

Current price of the underlying asset, specified as a numeric value.
Data Types: double

Strike — Exercise price of option
numeric

Exercise price of the option, specified as a numeric value.
Data Types: double

Rate — Annualized, continuously compounded risk-free rate of return over life of option
positive decimal

Annualized, continuously compounded risk-free rate of return over the life of the option, specified as
a positive decimal value.
Data Types: double

Time — Time (in years) to expiration of the option
numeric

Time (in years) to expiration of the option, specified as a numeric value.
Data Types: double

Volatility — Annualized asset price volatility
positive decimal

Annualized asset price volatility (annualized standard deviation of the continuously compounded
asset return), specified as a positive decimal value.
Data Types: double

Yield — Annualized, continuously compounded yield of the underlying asset over life of
option
0 (default) | decimal

(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the
option, specified as a decimal value. For example, for options written on stock indices, Yield could
represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Data Types: double

Output Arguments
CallTheta — Call option theta
numeric

Call option theta, returned as a numeric value.
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PutTheta — Put option theta
numeric

Put option theta, returned as a numeric value.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003.

See Also
blslambda | blsgamma | blsdelta | blsprice | blsrho | blsvega

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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blsvega
Black-Scholes sensitivity to underlying price volatility

Syntax
Vega = blsvega(Price,Strike,Rate,Time,Volatility)
Vega = blsvega( ___ ,Yield)

Description
Vega = blsvega(Price,Strike,Rate,Time,Volatility) rate of change of the option value
with respect to the volatility of the underlying asset. blsvega uses normpdf, the normal probability
density function in the Statistics and Machine Learning Toolbox.

Note blsvega can handle other types of underlies like Futures and Currencies. When pricing
Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk-free interest rate in the
foreign country.

Vega = blsvega( ___ ,Yield) adds an optional argument for Yield.

Examples

Compute Black-Scholes Sensitivity to Underlying Price Volatility (Vega)

This example shows how to compute vega, the rate of change of the option value with respect to the
volatility of the underlying asset.

Vega = blsvega(50, 50, 0.12, 0.25, 0.3, 0)

Vega = 9.6035

Input Arguments
Price — Current price of underlying asset
numeric

Current price of the underlying asset, specified as a numeric value.
Data Types: double
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Strike — Exercise price of option
numeric

Exercise price of the option, specified as a numeric value.
Data Types: double

Rate — Annualized, continuously compounded risk-free rate of return over life of option
positive decimal

Annualized, continuously compounded risk-free rate of return over the life of the option, specified as
a positive decimal value.
Data Types: double

Time — Time (in years) to expiration of the option
numeric

Time (in years) to expiration of the option, specified as a numeric value.
Data Types: double

Volatility — Annualized asset price volatility
positive decimal

Annualized asset price volatility (annualized standard deviation of the continuously compounded
asset return), specified as a positive decimal value.
Data Types: double

Yield — Annualized, continuously compounded yield of the underlying asset over life of
option
0 (default) | decimal

(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the
option, specified as a decimal value. For example, for options written on stock indices, Yield could
represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Data Types: double

Output Arguments
Vega — Rate of change of option value with respect to volatility of underlying asset
numeric

Rate of change of the option value with respect to the volatility of the underlying asset, returned as a
numeric value.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003.

See Also
blslambda | blsgamma | blsdelta | blsprice | blsrho | blstheta
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Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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bondDefaultBootstrap
Bootstrap default probability curve from bond prices

Syntax
[ProbabilityData,HazardData] = bondDefaultBootstrap(ZeroData,MarketData,
Settle)
[ProbabilityData,HazardData] = bondDefaultBootstrap( ___ ,Name,Value)

Description
[ProbabilityData,HazardData] = bondDefaultBootstrap(ZeroData,MarketData,
Settle) bootstraps the default probability curve from bond prices.

Using bondDefaultBootstrap, you can:

• Extract discrete default probabilities for a certain period from market bond data.
• Interpolate these default probabilities to get the default probability curve for pricing and risk

management purposes.

[ProbabilityData,HazardData] = bondDefaultBootstrap( ___ ,Name,Value) adds
optional name-value pair arguments.

Examples

Determine the Default Probability and Hazard Rate Values for Treasury Bonds

Use the following bond data.

 Settle = datenum('08-Jul-2016');
 MarketDate = datenum({'06/15/2018', '01/08/2019', '02/01/2021', '03/18/2021', '08/04/2025'}','mm/dd/yyyy');
 CouponRate = [2.240 2.943 5.750 3.336 4.134]'/100;
 MarketPrice = [101.300 103.020 115.423 104.683 108.642]';
 MarketData = [MarketDate,MarketPrice,CouponRate];

Calculate the ProbabilityData and HazardData.

TreasuryParYield = [0.26 0.28 0.36 0.48 0.61 0.71 0.95 1.19 1.37 1.69 2.11]'/100;
TreasuryDates = datemnth(Settle, [[1 3 6], 12 * [1 2 3 5 7 10 20 30]]');
[ZeroRates, CurveDates] = pyld2zero(TreasuryParYield, TreasuryDates, Settle);
ZeroData = [CurveDates, ZeroRates];
format longg
[ProbabilityData,HazardData]=bondDefaultBootstrap(ZeroData,MarketData,Settle)

ProbabilityData = 5×2

    7.3723    0.0000
    7.3743    0.0000
    7.3819    0.0000
    7.3823    0.0000
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    7.3983    0.0000

HazardData = 5×2

    7.3723    0.0000
    7.3743    0.0000
    7.3819    0.0000
    7.3823    0.0000
    7.3983    0.0000

In bondDefaultBootstrap, the first column of the ProbabilityData output and the first column
of the HazardData output contain the respective ending dates for the corresponding default
probabilities and hazard rates. However, the starting dates used for the computation of the time
ranges for default probabilities can be different from those of hazard rates. For default probabilities,
the time ranges are all computed from the Settle date to the respective end dates shown in the first
column of ProbabilityData. In contrast, the time ranges for the hazard rates are computed using
the Settle date and the first column of HazardData, so that the first hazard rate applies from the
Settle date to the first market date, the second hazard rate from the first to the second market date,
and so on, and the last hazard rate applies from the second-to-last market date onwards.

datestr(Settle)

ans = 
'08-Jul-2016'

datestr(ProbabilityData(:,1))

ans = 5x11 char array
    '15-Jun-2018'
    '08-Jan-2019'
    '01-Feb-2021'
    '18-Mar-2021'
    '04-Aug-2025'

datestr(HazardData(:,1))

ans = 5x11 char array
    '15-Jun-2018'
    '08-Jan-2019'
    '01-Feb-2021'
    '18-Mar-2021'
    '04-Aug-2025'

The time ranges for the default probabilities all start on '08-Jul-2016' and they end on '15-
Jun-2018', '08-Jan-2019', '01-Feb-2021', '18-Mar-2021', and '04-Aug-2025',
respectively. As for the hazard rates, the first hazard rate starts on '08-Jul-2016' and ends on
'15-Jun-2018', the second hazard rate starts on '15-Jun-2018' and ends on '08-Jan-2019',
the third hazard rate starts on '08-Jan-2019' and ends on '01-Feb-2021', and so forth.
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Reprice a Bond Listed on the Default Probability Curve

Reprice one of the bonds from bonds list based on the default probability curve. The expected result
of this repricing is a perfect match with the market quote.

Use the following Treasury data from US Department of the Treasury.

Settle = datetime('08-Jul-2016','Locale','en_US');
TreasuryParYield = [0.26 0.28 0.36 0.48 0.61 0.71 0.95 1.19 1.37 1.69 2.11]'/100;
TreasuryDates = datemnth(Settle, [[1 3 6], 12 * [1 2 3 5 7 10 20 30]]');

Preview the bond date using semiannual coupon bonds with market quotes, coupon rates, and a settle
date of July-08-2016.

MarketDate = datenum({'06/01/2017','06/01/2019','06/01/2020','06/01/2022'}','mm/dd/yyyy');
CouponRate = [7 8 9 10]'/100;
MarketPrice = [101.300 109.020 114.42 118.62]';
MarketData = [MarketDate, MarketPrice, CouponRate];

BondList = array2table(MarketData, 'VariableNames', {'Maturity', 'Price','Coupon'});
BondList.Maturity = datetime(BondList.Maturity,'Locale','en_US','ConvertFrom','datenum');
BondList.Maturity.Format = 'MMM-dd-yyyy'

BondList=4×3 table
     Maturity      Price     Coupon
    ___________    ______    ______

    Jun-01-2017     101.3     0.07 
    Jun-01-2019    109.02     0.08 
    Jun-01-2020    114.42     0.09 
    Jun-01-2022    118.62      0.1 

Choose the second coupon bond as the one to be priced.

number = 2;
TestCase = BondList(number, :);

Preview the risk-free rate data provided here that is based on a continuous compound rate.

[ZeroRates, CurveDates] = pyld2zero(TreasuryParYield, TreasuryDates, Settle);
ZeroData = [datenum(CurveDates), ZeroRates];
RiskFreeRate = array2table(ZeroData, 'VariableNames', {'Date', 'Rate'});
RiskFreeRate.Date = datetime(RiskFreeRate.Date,'Locale','en_US','ConvertFrom','datenum');
RiskFreeRate.Date.Format = 'MMM-dd-yyyy'

RiskFreeRate=11×2 table
       Date          Rate   
    ___________    _________

    Aug-08-2016    0.0026057
    Oct-08-2016    0.0027914
    Jan-08-2017    0.0035706
    Jul-08-2017    0.0048014
    Jul-08-2018    0.0061053
    Jul-08-2019    0.0071115
    Jul-08-2021    0.0095416
    Jul-08-2023     0.012014
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    Jul-08-2026     0.013883
    Jul-08-2036     0.017359
    Jul-08-2046     0.022704

Bootstrap the probability of default (PD) curve from the bonds.

format longg
[defaultProb1, hazard1] = bondDefaultBootstrap(ZeroData, MarketData, Settle)

defaultProb1 = 4×2

    7.3685    0.0000
    7.3758    0.0000
    7.3794    0.0000
    7.3867    0.0000

hazard1 = 4×2

    7.3685    0.0000
    7.3758    0.0000
    7.3794    0.0000
    7.3867    0.0000

format

Reformat the default probability and hazard rate for a better representation.

DefProbHazard = [defaultProb1, hazard1(:,2)];
DefProbHazardTable = array2table(DefProbHazard, 'VariableNames', {'Date', 'DefaultProbability', 'HazardRate'});
DefProbHazardTable.Date = datetime(DefProbHazardTable.Date,'Locale','en_US','ConvertFrom','datenum');
DefProbHazardTable.Date.Format = 'MMM-dd-yyyy'

DefProbHazardTable=4×3 table
       Date        DefaultProbability    HazardRate
    ___________    __________________    __________

    Jun-01-2017         0.070486          0.081339 
    Jun-01-2019          0.16257          0.052162 
    Jun-01-2020          0.21731          0.067415 
    Jun-01-2022          0.38957           0.12429 

Preview the selected bond to reprice based on the PD curve.

TestCase

TestCase=1×3 table
     Maturity      Price     Coupon
    ___________    ______    ______

    Jun-01-2019    109.02     0.08 

To reprice the bond, first generate cash flows and payment dates.

[Payments, PaymentDates] = cfamounts(TestCase.Coupon, Settle, TestCase.Maturity);
AccInt=-Payments(1);
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    % Truncate the payments as well as payment dates for calculation
    % PaymentDates(1) is the settle date, no need for following calculations
PaymentDates = PaymentDates(2:end)

PaymentDates = 1x6 datetime
Columns 1 through 5

   01-Dec-2016   01-Jun-2017   01-Dec-2017   01-Jun-2018   01-Dec-2018

Column 6

   01-Jun-2019

Payments = Payments(2:end)

Payments = 1×6

     4     4     4     4     4   104

Calculate the discount factors on the payment dates.

DF = zero2disc(interp1(RiskFreeRate.Date, RiskFreeRate.Rate, PaymentDates, 'linear', 'extrap'), PaymentDates, Settle, -1)

DF = 1×6

    0.9987    0.9959    0.9926    0.9887    0.9845    0.9799

Assume that the recovery amount is a fixed proportion of bond's face value. The bond’s face value is
100, and the recovery ratio is set to 40% as assumed in bondDefaultBootstrap.

Num = length(Payments);
RecoveryAmount = repmat(100*0.4, 1, Num)

RecoveryAmount = 1×6

    40    40    40    40    40    40

Calculate the probability of default based on the default curve.

DefaultProb1 = bondDefaultBootstrap(ZeroData, MarketData, Settle, 'ZeroCompounding', -1, 'ProbabilityDates', PaymentDates');
SurvivalProb = 1 - DefaultProb1(:,2)

SurvivalProb = 6×1

    0.9680
    0.9295
    0.9055
    0.8823
    0.8595
    0.8375

Calculate the model-based clean bond price.

DirtyPrice = DF * (SurvivalProb.*Payments') + (RecoveryAmount.*DF) * (-diff([1;SurvivalProb]));
ModelPrice = DirtyPrice - AccInt
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ModelPrice = 109.0200

Compare the repriced bond to the market quote.

ResultTable = TestCase;
ResultTable.ModelPrice = ModelPrice;
ResultTable.Difference = ModelPrice - TestCase.Price

ResultTable=1×5 table
     Maturity      Price     Coupon    ModelPrice    Difference
    ___________    ______    ______    __________    __________

    Jun-01-2019    109.02     0.08       109.02      1.4211e-14

Input Arguments
ZeroData — Zero rate data
matrix | IRDataCurve object

Zero rate data, specified as an M-by-2 matrix of dates and zero rates or an IRDataCurve object of
zero rates. For array input, the dates must be entered as serial date numbers, and discount rate must
be in decimal form.

When ZeroData is an IRDataCurve object, ZeroCompounding and ZeroBasis are implicit in
ZeroData and are redundant inside this function. In this case, specify these optional parameters
when constructing the IRDataCurve object before using this bondDefaultBootstrap function.

For more information on an IRDataCurve object, see “Creating an IRDataCurve Object” (Financial
Instruments Toolbox).
Data Types: double

MarketData — Bond market data
matrix

Bond market data, specified as an N-by-3 matrix of maturity dates, market prices, and coupon rates
for bonds. The dates must be entered as serial date numbers, market prices must be numeric values,
and coupon rate must be in decimal form.

Note A warning is displayed when MarketData is not sorted in ascending order by time.

Data Types: double

Settle — Settlement date
serial date number | date character vector | datetime object | date string object

Settlement date, specified as a serial date number, a date character vector, a datetime object, or a
date string object. Settle must be earlier than or equal to the maturity dates in MarketData.
Data Types: double | char | datetime | string
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or as a single
value applicable to all contracts.

Example: [ProbabilityData,HazardData] =
bondDefaultBootstrap(ZeroData,MarketData,Settle,'RecoveryRate',Recovery,'Zero
Compounding',-1)

RecoveryRate — Recovery rate
0.4 (default) | decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and a N-by-1
vector of recovery rates, expressed as a decimal from 0 through 1.
Data Types: double

ProbabilityDates — Dates for output of default probability data
column of dates in MarketData (default) | serial date number | date character vector | datetime
object | date string object

Dates for the output of default probability data, specified as the comma-separated pair consisting of
'ProbabilityDates' and a P-by-1 vector, given as serial date numbers, datetime objects, date
character vectors, or date string objects.
Data Types: double | char | datetime | string

ZeroCompounding — Compounding frequency of the zero curve
2 (semiannual) (default) | integer with value of 1,2,3,4,6,12, or –1

Compounding frequency of the zero curve, specified as the comma-separated pair consisting of
'ZeroCompounding' and a N-by-1 vector. Values are:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• −1 — Continuous compounding

Data Types: double

ZeroBasis — Basis of the zero curve
0 (actual/actual) (default) | integer with value of 0 to 13

Basis of the zero curve, specified as the comma-separated pair consisting of 'ZeroBasis' and the
same values listed for Basis.
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Data Types: double

RecoveryMethod — Recovery method
'facevalue' (default) | character vector with value of 'presentvalue' or 'facevalue' | string
object with value of 'presentvalue' or 'facevalue'

Recovery method, specified as the comma-separated pair consisting of 'RecoveryMethod' and a
character vector or a string with a value of 'presentvalue' or 'facevalue'.

• 'presentvalue' assumes that upon default, a bond is valued at a given fraction to the
hypothetical present value of its remaining cash flows, discounted at risk-free rate.

• 'facevalue' assumes that a bond recovers a given fraction of its face value upon recovery.

Data Types: char | string

Face — Face or par value
100 (default) | numeric

Face or par value, specified as the comma-separated pair consisting of 'Face' and a NINST-by-1
vector of bonds.
Data Types: double

Period — Payment frequency
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Payment frequency, specified as the comma-separated pair consisting of 'Period' and a N-by-1
vector with values of 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of 'Basis' and
a positive integer using a NINST-by-1 vector. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
nonnegative integer, 0 or 1, using a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: double

IssueDate — Bond issue date
if IssueDate not specified, cash flow payment dates determined from other inputs (default) | serial
date number | date character vector | datetime object | date string object

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a N-by-1
vector, given as serial date numbers, datetime objects, date character vectors, or date string objects.
Data Types: double | char | datetime | string

FirstCouponDate — First actual coupon date
if you do not specify a FirstCouponDate, cash flow payment dates are determined from other
inputs (default) | serial date number

First actual coupon date, specified as the comma-separated pair consisting of 'FirstCouponDate'
and a serial date number. FirstCouponDate is used when a bond has an irregular first coupon
period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure.
Data Types: double

LastCouponDate — Last actual coupon date
if you do not specify a LastCouponDate, cash flow payment dates are determined from other inputs
(default) | scalar for serial date number

Last actual coupon date, specified as the comma-separated pair consisting of 'LastCouponDate'
and a serial date number. LastCouponDate is used when a bond has an irregular last coupon period.
In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the
coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the bond's maturity cash flow date.
Data Types: double

StartDate — Forward starting date of payments
if you do not specify StartDate, effective start date is Settle date (default) | serial date number

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a serial date number. StartDate is when a bond actually starts (the date from
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which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a
future date.
Data Types: double

BusinessDayConvention — Business day conventions
'actual' (default) | character vector or string object with values'actual', 'follow',
'modifiedfollow', 'previous'or 'modifiedprevious'

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a string object. The selection for business
day convention determines how nonbusiness days are treated. Nonbusiness days are defined as
weekends plus any other date that businesses are not open (for example, statutory holidays). Values
are:

• 'actual' — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• 'follow' — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• 'modifiedfollow' — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• 'previous' — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• 'modifiedprevious' — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell | string

Output Arguments
ProbabilityData — Default probability values
matrix

Default probability values, returned as a P-by-2 matrix with dates and corresponding cumulative
default probability values. The dates match those in MarketData, unless the optional input
parameter ProbabilityDates is provided.

HazardData — Hazard rate values
matrix

Hazard rate values, returned as an N-by-2 matrix with dates and corresponding hazard rate values for
the survival probability model. The dates match those in MarketData.

Note A warning is displayed when nonmonotone default probabilities (that is, negative hazard rates)
are found.
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More About
Bootstrap Default Probability

A default probability curve can be bootstrapped from a collection of bond market quotes.

Extracting discrete default probabilities for a certain period from market bond data is represented by
the formula

Price = Disc(tN) × FV × Q(tN) + C
f × ∑

i = 1

N
Disc(ti) × Q(ti) + ∑

(i = 1)

N
Disc(ti) × R(ti) × (Q(ti− 1)− Q(ti))

where:

FV — Face value

Q — Survival probability

C — Coupon

R — Recovery amount

f — Payment frequency (for example, 2 for semiannual coupon bonds)

The default probability is:

DefaultProbability = 1 – SurvivalProbability

References
[1] Jarrow, Robert A., and Stuart Turnbull. "Pricing Derivatives on Financial Securities Subject to

Credit Risk." Journal of Finance. 50.1, 1995, pp. 53–85.

[2] Berd, A., Mashal, R. and Peili Wang. “Defining, Estimating and Using Credit Term Structures.”
Research report, Lehman Brothers, 2004.

See Also
IRDataCurve | cdsbootstrap

Topics
“Creating an IRDataCurve Object” (Financial Instruments Toolbox)

Introduced in R2017a
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bndconvp
Bond convexity given price

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate,Face, CompoundingFrequency, DiscountBasis, and
LastCouponInterest.

Syntax
[YearConvexity,PerConvexity] = bndconvp(Price,CouponRate,Settle,Maturity)
[YearConvexity,PerConvexity] = bndconvp( ___ ,Name,Value)

Description
[YearConvexity,PerConvexity] = bndconvp(Price,CouponRate,Settle,Maturity)
computes the convexity of NUMBONDS fixed income securities given a clean price for each bond. The
clean price of a bond excludes any interest that has accrued since issue or the most recent coupon
payment.

bndconvp determines the convexity for a bond whether the first or last coupon periods in the coupon
structure are short or long (that is, whether the coupon structure is synchronized to maturity).
bndconvp also determines the convexity of a zero coupon bond. Convexity is a measure of the rate of
change in duration; measured in time. The greater the rate of change, the more the duration changes
as yield changes.

[YearConvexity,PerConvexity] = bndconvp( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Find Bond Convexity Given Price

This example shows how to compute the convexity of three bonds given their prices.

Price = [106; 100; 98]; 
CouponRate = 0.055; 
Settle = '02-Aug-1999'; 
Maturity = '15-Jun-2004'; 
Period = 2; 
Basis = 0; 

[YearConvexity, PerConvexity] = bndconvp(Price,... 
CouponRate,Settle, Maturity, Period, Basis)

YearConvexity = 3×1
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   21.4447
   21.0363
   20.8951

PerConvexity = 3×1

   85.7788
   84.1454
   83.5803

Find Bond Convexity Given Price Using datetime Inputs

This example shows how to compute the convexity of three bonds given their prices using datetime
inputs.

Price = [106; 100; 98];
CouponRate = 0.055;
Period = 2;
Basis = 0;
Settle = datetime('02-Aug-1999','Locale','en_US');
Maturity = datetime('15-Jun-2004','Locale','en_US');
[YearConvexity, PerConvexity] = bndconvp(Price,...
CouponRate, Settle, Maturity, Period, Basis)

YearConvexity = 3×1

   21.4447
   21.0363
   20.8951

PerConvexity = 3×1

   85.7788
   84.1454
   83.5803

Input Arguments
Price — Clean price (excludes accrued interest)
numeric

Clean price (excludes accrued interest), specified as numeric value using a scalar or a NUMBONDS-by-1
or 1-by-NUMBONDS vector.
Data Types: double

CouponRate — Annual percentage rate used to determine coupons payable on a bond
decimal

 bndconvp

19-365



Annual percentage rate used to determine the coupons payable on a bond, specified as decimal value
using a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

Settle — Settlement date for certificate of deposit
serial date number | date character vector | datetime

Settlement date for the certificate of deposit, specified as a scalar or a NUMBONDS-by-1 or 1-by-
NUMBONDS vector using serial date numbers, date character vectors, or datetime arrays. The Settle
date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date for certificate of deposit
serial date number | date character vector | datetime

Maturity date for the certificate of deposit, specified as a scalar or a NUMBONDS-by-1 or 1-by-
NUMBONDS vector using serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [YearConvexity,PerConvexity] = bndconvp(Price,CouponRate,Settle,
Maturity,'Period',4,'Basis',7)

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers, date character vectors, or
datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.
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If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers,
date character vectors, or datetime arrays. The StartDate is when a bond actually starts (the date
from which a bond cash flow is considered). To make an instrument forward-starting, specify this date
as a future date.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

CompoundingFrequency — Compounding frequency for yield calculation
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Values are:

• 0 = actual/actual
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• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double

LastCouponInterest — Compounding convention for computing yield of a bond in last
coupon period
compound (default) | values are simple or compound

Compounding convention for computing the yield of a bond in the last coupon period, specified as the
comma-separated pair consisting of 'LastCouponInterest' and a scalar or a NUMBONDS-by-1 or 1-
by-NUMBONDS vector. LastCouponInterest is based on only the last coupon and the face value to
be repaid. Acceptable values are:

• simple
• compound

Data Types: char | cell

Output Arguments
YearConvexity — Yearly (annualized) convexity
numeric

Yearly (annualized) convexity, returned as a NUMBONDS-by-1 vector.

PerConvexity — Periodic convexity reported on semiannual bond basis
numeric
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Periodic convexity reported on a semiannual bond basis (in accordance with SIA convention),
returned as a NUMBONDS-by-1 vector.

References
[1] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[2] Mayle, J. "Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures." SIA, Vol 2, Jan 1994.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
cfconv | bndconvy | bnddurp | bnddury | cfdur | datetime

Topics
“Bond Portfolio for Hedging Duration and Convexity” on page 10-6
“Yield Conventions” on page 2-24

Introduced before R2006a
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bndconvy
Bond convexity given yield

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate,Face, CompoundingFrequency, DiscountBasis, and
LastCouponInterest.

Syntax
[YearConvexity,PerConvexity] = bndconvy(Yield,CouponRate,Settle,Maturity)
[YearConvexity,PerConvexity] = bndconvy( ___ ,Name,Value)

Description
[YearConvexity,PerConvexity] = bndconvy(Yield,CouponRate,Settle,Maturity)
computes the convexity of NUMBONDS fixed income securities given a clean price for each bond.

bndconvy determines the convexity for a bond whether the first or last coupon periods in the coupon
structure are short or long (that is, whether the coupon structure is synchronized to maturity).
bndconvy also determines the convexity of a zero coupon bond.

[YearConvexity,PerConvexity] = bndconvy( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Find Bond Convexity Given Yield

This example shows how to compute the convexity of a bond at three different yield values.

Yield = [0.04; 0.055; 0.06];  
CouponRate = 0.055; 
Settle = '02-Aug-1999'; 
Maturity = '15-Jun-2004'; 
Period = 2; 
Basis = 0; 

[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,... 
Settle, Maturity, Period, Basis)

YearConvexity = 3×1

   21.4825
   21.0358
   20.8885
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PerConvexity = 3×1

   85.9298
   84.1434
   83.5541

Find Bond Convexity Given Yield Using datetime Inputs

This example shows how to use datetime inputs to compute the convexity of a bond at three
different yield values.

Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = datetime('02-Aug-1999','Locale','en_US');
Maturity = datetime('15-Jun-2004','Locale','en_US');
Period = 2;
Basis = 0;
[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,...
Settle, Maturity, Period, Basis)

YearConvexity = 3×1

   21.4825
   21.0358
   20.8885

PerConvexity = 3×1

   85.9298
   84.1434
   83.5541

Input Arguments
Yield — Yield to maturity on semiannual basis
numeric

Yield to maturity on a semiannual basis, specified as numeric value using a scalar or a NUMBONDS-
by-1 or 1-by-NUMBONDS vector.
Data Types: double

CouponRate — Annual percentage rate used to determine coupons payable on a bond
decimal

Annual percentage rate used to determine the coupons payable on a bond, specified as decimal value
using a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double
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Settle — Settlement date for certificate of deposit
serial date number | date character vector | datetime

Settlement date for the certificate of deposit, specified as a scalar or a NUMBONDS-by-1 or 1-by-
NUMBONDS vector using serial date numbers, date character vectors, or datetime arrays. The Settle
date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date for certificate of deposit
serial date number | date character vector | datetime

Maturity date for the certificate of deposit, specified as a scalar or a NUMBONDS-by-1 or 1-by-
NUMBONDS vector using serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [YearConvexity,PerConvexity] = bndconvy(Yield,CouponRate,Settle,
Maturity,'Period',4,'Basis',7)

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers, date character vectors, or
datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

19 Functions

19-374



StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers,
date character vectors, or datetime arrays. The StartDate is when a bond actually starts (the date
from which a bond cash flow is considered). To make an instrument forward-starting, specify this date
as a future date.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

CompoundingFrequency — Compounding frequency for yield calculation
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double

LastCouponInterest — Compounding convention for computing yield of a bond in last
coupon period
compound (default) | values are simple or compound

Compounding convention for computing the yield of a bond in the last coupon period, specified as the
comma-separated pair consisting of 'LastCouponInterest' and a scalar or a NUMBONDS-by-1 or 1-
by-NUMBONDS vector. LastCouponInterest is based on only the last coupon and the face value to
be repaid. Acceptable values are:

• simple
• compound

Data Types: char | cell

Output Arguments
YearConvexity — Yearly (annualized) convexity
numeric

Yearly (annualized) convexity, returned as a NUMBONDS-by-1 vector.

PerConvexity — Periodic convexity reported on semiannual bond basis
numeric

Periodic convexity reported on a semiannual bond basis (in accordance with SIA convention),
returned as a NUMBONDS-by-1 vector.

19 Functions

19-376



References
[1] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[2] Mayle, J. "Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures." SIA, Vol 2, Jan 1994.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
cfconv | bndconvp | bnddurp | bnddury | cfdur | datetime

Topics
` on page 10-6
“Yield Conventions” on page 2-24

Introduced before R2006a
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bnddurp
Bond duration given price

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate,Face, CompoundingFrequency, DiscountBasis, and
LastCouponInterest.

Syntax
[ModDuration,YearDuration,PerDuration] = bnddurp(Price,CouponRate,Settle,
Maturity)
[ModDuration,YearDuration,PerDuration] = bnddurp( ___ ,Name,Value)

Description
[ModDuration,YearDuration,PerDuration] = bnddurp(Price,CouponRate,Settle,
Maturity) computes the Macaulay and modified duration of NUMBONDS fixed-income securities
given a clean price for each bond.

bnddurp determines the Macaulay and modified duration for a bond whether the first or last coupon
periods in the coupon structure are short or long (that is, whether the coupon structure is
synchronized to maturity). bnddurp also determines the Macaulay and modified duration for a zero
coupon bond.

[ModDuration,YearDuration,PerDuration] = bnddurp( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Find Bond Duration Given Price

This example shows how to compute the duration of three bonds given their prices.

Price = [106; 100; 98]; 
CouponRate = 0.055; 
Settle = '02-Aug-1999'; 
Maturity = '15-Jun-2004'; 
Period = 2; 
Basis = 0; 

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,...
CouponRate, Settle, Maturity, Period, Basis)

ModDuration = 3×1

    4.2400
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    4.1925
    4.1759

YearDuration = 3×1

    4.3275
    4.3077
    4.3007

PerDuration = 3×1

    8.6549
    8.6154
    8.6014

Find Bond Duration Given Price Using datetime Inputs

This example shows how to use datetime inputs to compute the duration of three bonds given their
prices.

Price = [106; 100; 98];
CouponRate = 0.055;
Settle = datetime('02-Aug-1999','Locale','en_US');
Maturity = datetime('15-Jun-2004','Locale','en_US');
Period = 2;
Basis = 0;
[ModDuration, YearDuration, PerDuration] = bnddurp(Price,...
CouponRate, Settle, Maturity, Period, Basis)

ModDuration = 3×1

    4.2400
    4.1925
    4.1759

YearDuration = 3×1

    4.3275
    4.3077
    4.3007

PerDuration = 3×1

    8.6549
    8.6154
    8.6014
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Input Arguments
Price — Clean price (excludes accrued interest)
numeric

Clean price (excludes accrued interest), specified as numeric value using a scalar or a NUMBONDS-by-1
or 1-by-NUMBONDS vector.
Data Types: double

CouponRate — Annual percentage rate used to determine coupons payable on a bond
decimal

Annual percentage rate used to determine the coupons payable on a bond, specified as decimal value
using a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

Settle — Settlement date for certificate of deposit
serial date number | date character vector | datetime

Settlement date for the certificate of deposit, specified as a scalar or a NUMBONDS-by-1 or 1-by-
NUMBONDS vector using serial date numbers, date character vectors, or datetime arrays. The Settle
date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date for certificate of deposit
serial date number | date character vector | datetime

Maturity date for the certificate of deposit, specified as a scalar or a NUMBONDS-by-1 or 1-by-
NUMBONDS vector using serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [ModDuration,YearDuration,PerDuration] =
bnddurp(Price,CouponRate,Settle,Maturity,'Period',4,'Basis',7)

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using a supported value:
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers, date character vectors, or
datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

 bnddurp

19-381



If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers,
date character vectors, or datetime arrays. The StartDate is when a bond actually starts (the date
from which a bond cash flow is considered). To make an instrument forward-starting, specify this date
as a future date.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

CompoundingFrequency — Compounding frequency for yield calculation
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.
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Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double

LastCouponInterest — Compounding convention for computing yield of a bond in last
coupon period
compound (default) | values are simple or compound

Compounding convention for computing the yield of a bond in the last coupon period, specified as the
comma-separated pair consisting of 'LastCouponInterest' and a scalar or a NUMBONDS-by-1 or 1-
by-NUMBONDS vector. LastCouponInterest is based on only the last coupon and the face value to
be repaid. Acceptable values are:

• simple
• compound

Data Types: char | cell

 bnddurp

19-383



Output Arguments
ModDuration — Modified duration in years
numeric

Modified duration in years reported on a semiannual bond basis (in accordance with SIA convention),
returned as a NUMBONDS-by-1 vector.

YearDuration — Macaulay duration in years
numeric

Macaulay duration in years, returned as a NUMBONDS-by-1 vector.

PerDuration — Periodic Macaulay duration
numeric

Periodic Macaulay duration reported on a semiannual bond basis (in accordance with SIA
convention), returned as a NUMBONDS-by-1 vector.

References
[1] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[2] Mayle, J. "Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures." SIA, Vol 2, Jan 1994.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
bndconvy | bndconvp | bndkrdur | bnddury | datetime

Topics
“Bond Portfolio for Hedging Duration and Convexity” on page 10-6
“Yield Conventions” on page 2-24

Introduced before R2006a
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bnddury
Bond duration given yield

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate,Face, CompoundingFrequency, DiscountBasis, and
LastCouponInterest.

Syntax
[ModDuration,YearDuration,PerDuration] = bnddury(Yield,CouponRate,Settle,
Maturity)
[ModDuration,YearDuration,PerDuration] = bnddury( ___ ,Name,Value)

Description
[ModDuration,YearDuration,PerDuration] = bnddury(Yield,CouponRate,Settle,
Maturity) computes the Macaulay and modified duration of NUMBONDS fixed income securities
given yield to maturity for each bond.

bnddury determines the Macaulay and modified duration for a bond whether the first or last coupon
periods in the coupon structure are short or long (that is, whether the coupon structure is
synchronized to maturity). bnddury also determines the Macaulay and modified duration for a zero
coupon bond.

[ModDuration,YearDuration,PerDuration] = bnddury( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Find Bond Duration Given Yield

This example shows how to compute the duration of a bond at three different yield values.

Yield = [0.04; 0.055; 0.06];  
CouponRate = 0.055; 
Settle = '02-Aug-1999'; 
Maturity = '15-Jun-2004'; 
Period = 2; 
Basis = 0; 

[ModDuration,YearDuration,PerDuration]=bnddury(Yield,... 
CouponRate, Settle, Maturity, Period, Basis)

ModDuration = 3×1

    4.2444
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    4.1924
    4.1751

YearDuration = 3×1

    4.3292
    4.3077
    4.3004

PerDuration = 3×1

    8.6585
    8.6154
    8.6007

Find Bond Duration Given Yield Using datetime Inputs

This example shows how to use datetime inputs to compute the duration of a bond at three different
yield values.

Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = datetime('02-Aug-1999','Locale','en_US');
Maturity = datetime('15-Jun-2004','Locale','en_US');
Period = 2;
Basis = 0;
[ModDuration,YearDuration,PerDuration]=bnddury(Yield,...
CouponRate, Settle, Maturity, Period, Basis)

ModDuration = 3×1

    4.2444
    4.1924
    4.1751

YearDuration = 3×1

    4.3292
    4.3077
    4.3004

PerDuration = 3×1

    8.6585
    8.6154
    8.6007

19 Functions

19-386



Input Arguments
Yield — Yield to maturity on a semiannual basis
decimal

Yield to maturity on a semiannual basis, specified as a decimal value using a scalar or a NUMBONDS-
by-1 or 1-by-NUMBONDS vector.
Data Types: double

CouponRate — Annual percentage rate used to determine coupons payable on a bond
decimal

Annual percentage rate used to determine the coupons payable on a bond, specified as decimal value
using a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

Settle — Settlement date for certificate of deposit
serial date number | date character vector | datetime

Settlement date for the certificate of deposit, specified as a scalar or a NUMBONDS-by-1 or 1-by-
NUMBONDS vector using serial date numbers, date character vectors, or datetime arrays. The Settle
date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date for certificate of deposit
serial date number | date character vector | datetime

Maturity date for the certificate of deposit, specified as a scalar or a NUMBONDS-by-1 or 1-by-
NUMBONDS vector using serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [ModDuration,YearDuration,PerDuration] =
bnddury(Yield,CouponRate,Settle,Maturity,'Period',4,'Basis',7)

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using a supported value:
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers, date character vectors, or
datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.
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If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers,
date character vectors, or datetime arrays. The StartDate is when a bond actually starts (the date
from which a bond cash flow is considered). To make an instrument forward-starting, specify this date
as a future date.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

CompoundingFrequency — Compounding frequency for yield calculation
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.
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Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double

LastCouponInterest — Compounding convention for computing yield of a bond in last
coupon period
compound (default) | values are simple or compound

Compounding convention for computing the yield of a bond in the last coupon period, specified as the
comma-separated pair consisting of 'LastCouponInterest' and a scalar or a NUMBONDS-by-1 or 1-
by-NUMBONDS vector. LastCouponInterest is based on only the last coupon and the face value to
be repaid. Acceptable values are:

• simple
• compound

Data Types: char | cell

19 Functions

19-390



Output Arguments
ModDuration — Modified duration in years
numeric

Modified duration in years reported on a semiannual bond basis (in accordance with SIA convention),
returned as a NUMBONDS-by-1 vector.

YearDuration — Macaulay duration in years
numeric

Macaulay duration in years, returned as a NUMBONDS-by-1 vector.

PerDuration — Periodic Macaulay duration
numeric

Periodic Macaulay duration reported on a semiannual bond basis (in accordance with SIA
convention), returned as a NUMBONDS-by-1 vector.

References
[1] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[2] Mayle, J. "Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures." SIA, Vol 2, Jan 1994.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
bndconvy | bndconvp | bndkrdur | bnddurp | datetime

Topics
“Bond Portfolio for Hedging Duration and Convexity” on page 10-6
“Yield Conventions” on page 2-24

Introduced before R2006a
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bndkrdur
Bond key rate duration given zero curve

Syntax
KeyRateDuration = bndkrdur(ZeroData,CouponRate,Settle,Maturity)
KeyRateDuration = bndkrdur( ___ ,Name,Value)

Description
KeyRateDuration = bndkrdur(ZeroData,CouponRate,Settle,Maturity) computes the key
rate durations for one or more bonds given a zero curve and a set of key rates.

KeyRateDuration = bndkrdur( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Find the Bond Key Rate Duration Given the Zero Curve

This example shows how to compute the key rate duration of a bond for key rate times of 2, 5, 10, and
30 years.

ZeroRates = [0.0476 .0466 .0465 .0468 .0473 .0478 ...
.0493 .0539 .0572 .0553 .0530]';

ZeroDates = daysadd('31-Dec-1998',[30 360 360*2 360*3 360*5 ...
360*7 360*10 360*15 360*20 360*25 360*30],1);

ZeroData = [ZeroDates ZeroRates];

krdur = bndkrdur(ZeroData,.0525,'12/31/1998',...
'11/15/2028','KeyRates',[2 5 10 30])

krdur = 1×4

    0.2986    0.8791    4.1353    9.5814

Find the Bond Key Rate Duration Given the Zero Curve Using datetime Inputs

This example shows how to use datetime inputs for Settle and Maturity and also use a table for
ZeroData to compute the key rate duration of a bond for key rate times of 2, 5, 10, and 30 years.

ZeroRates = [0.0476 .0466 .0465 .0468 .0473 .0478 ...
.0493 .0539 .0572 .0553 .0530]';

ZeroDates = daysadd('31-Dec-1998',[30 360 360*2 360*3 360*5 ...
360*7 360*10 360*15 360*20 360*25 360*30],1);
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ZeroData = table(datetime(ZeroDates,'ConvertFrom','datenum','Locale','en_US'), ZeroRates);

krdur = bndkrdur(ZeroData,.0525,datetime('12/31/1998','Locale','en_US'),...
datetime('11/15/2028','Locale','en_US'),'KeyRates',[2 5 10 30])

krdur = 1×4

    0.2986    0.8791    4.1353    9.5814

Input Arguments
ZeroData — Zero curve
matrix | table

Zero Curve, specified as a numRates-by-2 matrix or a numRates-by-2 table.

If ZeroData is represented as a numRates-by-2 matrix, the first column is a MATLAB serial date
number and the second column is the accompanying zero rates.

If ZeroData is a table, the first column can be serial date numbers, date character vectors, or
datetime arrays. The second column must be numeric data corresponding to the zero rates.
Data Types: double | table

CouponRate — Annual percentage rate used to determine coupons payable on a bond
decimal

Annual percentage rate used to determine the coupons payable on a bond, specified as decimal value
using a scalar or a NUMBONDS-by-1 vector.
Data Types: double

Settle — Settlement date for all bonds and zero curve
serial date number | date character vector | datetime

Settlement date for all bonds and zero curve, specified as a scalar using a serial date number, date
character vector, or datetime array. Settle must be the same settlement date for all the bonds and
the zero curve.
Data Types: double | char | datetime

Maturity — Maturity date for bonds
serial date number | date character vector | datetime

Maturity date for bonds, specified as a scalar or a NUMBONDS-by-1 vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: KeyRateDuration =
bndkrdur(ZeroData,.0525,'12/31/1998','11/15/2028','KeyRates',[2 5 10 30])

InterpMethod — Interpolation method used to obtain points from zero curve
'linear' (default) | 'cubic', 'pchip'

Interpolation method used to obtain points from the zero curve, specified as the comma-separated
pair consisting of 'InterpMethod' and a character vector using one of the following values:

• 'linear' (default)
• 'cubic'
• 'pchip'

Data Types: char

ShiftValue — Value that zero curve is shifted up and down to compute duration
.01 (100 basis points) (default) | numeric

Value that zero curve is shifted up and down to compute duration, specified as the comma-separated
pair consisting of 'ShiftValue' and a scalar numeric value.
Data Types: double

KeyRates — Rates to perform the duration calculation
set to each of the zero dates (default) | numeric

Rates to perform the duration calculation, specified as the comma-separated pair consisting of
'KeyRates' and a time to maturity using a scalar or a NUMBONDS-by-1 vector.
Data Types: double

CurveCompounding — Compounding frequency of curve
2 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency of the curve, specified as the comma-separated pair consisting of
'CurveCompounding' and a scalar using one of the following values:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

.
Data Types: double

CurveBasis — Basis of the curve
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Basis of the curve, specified as the comma-separated pair consisting of 'CurveBasis' and a scalar
using one of the following values:
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NUMBONDS-by-1 vector using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 vector. This rule applies only when Maturity is an end-of-month date for
a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 vector using serial date numbers, date character vectors, or datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 vector using serial date numbers, date
character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 vector using serial date numbers, date
character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime
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Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 vector using serial date numbers, date character
vectors, or datetime arrays. The StartDate is when a bond actually starts (the date from which a
bond cash flow is considered). To make an instrument forward-starting, specify this date as a future
date.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NUMBONDS-by-1 vector.
Data Types: double

Output Arguments
KeyRateDuration — Key rate durations
matrix

Key rate durations, returned as a numBonds-by-numRates matrix.

Algorithms
bndkrdur computes the key rate durations for one or more bonds given a zero curve and a set of key
rates. By default, the key rates are each of the zero curve rates. For each key rate, the duration is
computed by shifting the zero curve up and down by a specified amount (ShiftValue) at that
particular key rate, computing the present value of the bond in each case with the new zero curves,
and then evaluating the following:

krduri  =  
(PVdown −  PVup)

(PV  ×  Shif tValue  ×  2)

Note The shift to the curve is computed by shifting the particular key rate by the ShiftValue and
then interpolating the values of the curve in the interval between the previous and next key rates. For
the first key rate, any curve values before the date are equal to the ShiftValue; likewise, for the
last key rate, any curve values after the date are equal to the ShiftValue.

References
[1] Golub, B., Tilman, L. Risk Management: Approaches for Fixed Income Markets. Wiley, 2000.

[2] Tuckman, B. Fixed Income Securities: Tools for Today's Markets. Wiley, 2002.

See Also
bndconvy | bndconvp | bnddury | bnddurp | datetime

Topics
“Bond Portfolio for Hedging Duration and Convexity” on page 10-6
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“Yield Conventions” on page 2-24

Introduced before R2006a
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bndprice
Price fixed-income security from yield to maturity

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate,Face, CompoundingFrequency, DiscountBasis, and
LastCouponInterest.

Syntax
[Price,AccruedInt] = bndprice(Yield,CouponRate,Settle,Maturity)
[Price,AccruedInt] = bndprice( ___ ,Name,Value)

Description
[Price,AccruedInt] = bndprice(Yield,CouponRate,Settle,Maturity) given bonds with
SIA date parameters and yields to maturity, returns the clean prices and accrued interest due.

[Price,AccruedInt] = bndprice( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Treasury Bond from Yield to Maturity

This example shows how to price a treasury bond at three different yield values.

Yield = [0.04; 0.05; 0.06]; 
CouponRate = 0.05; 
Settle = '20-Jan-1997'; 
Maturity = '15-Jun-2002'; 
Period = 2; 
Basis = 0; 

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,...
Maturity, Period, Basis)

Price = 3×1

  104.8106
   99.9951
   95.4384

AccruedInt = 3×1

    0.4945
    0.4945
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    0.4945

Price a Treasury Bond from Yield to Maturity Using datetime Inputs

This example shows how to use datetime inputs to price a treasury bond at three different yield
values.

Yield = [0.04; 0.05; 0.06];
CouponRate = 0.05;
Settle = datetime('20-Jan-1997','Locale','en_US');
Maturity = datetime('15-Jun-2002','Locale','en_US');
Period = 2;
Basis = 0;
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,...
Maturity, Period, Basis)

Price = 3×1

  104.8106
   99.9951
   95.4384

AccruedInt = 3×1

    0.4945
    0.4945
    0.4945

Price a Treasury Bond with Different Yield Values

This example shows how to price a Treasury bond at two different yield values that include
parameter/value pairs for CompoundingFrequency, DiscountBasis, and
LastCouponPeriodInterest.

bndprice(.04,0.08,'5/25/2004','4/21/2005','Period',1,'Basis',8, ...
'LastCouponInterest','simple')

ans = 103.4743

Input Arguments
Yield — Bond yield to maturity
numeric

Bond yield to maturity is specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. Yield is
on a semiannual basis for Basis values 0 through 7 and 13 and an annual basis for Basis values 8
through 12.
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Data Types: double

CouponRate — Annual percentage rate used to determine coupons payable on a bond
decimal

Annual percentage rate used to determine the coupons payable on a bond, specified as decimal using
a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

Settle — Settlement date of bond
serial date number | date character vector | datetime

Settlement date of the bond, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using
serial date numbers, date character vectors, or datetime arrays. The Settle date must be before the
Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date of bond
serial date number | date character vector | datetime

Maturity date of the bond, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Price,AccruedInt] = bndprice(Yield,CouponRate,Settle,Maturity,
'Period',4,'Basis',9)

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers, date character vectors, or
datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime
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Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers,
date character vectors, or datetime arrays.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

CompoundingFrequency — Compounding frequency for yield calculation
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA bases uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Values are:
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double

LastCouponInterest — Compounding convention for computing yield of a bond in last
coupon period
compound (default) | values are simple or compound

Compounding convention for computing the yield of a bond in the last coupon period, specified as the
comma-separated pair consisting of 'LastCouponInterest' and a scalar or a NUMBONDS-by-1 or 1-
by-NUMBONDS vector. LastCouponInterest is based on only the last coupon and the face value to
be repaid. Acceptable values are:

• simple
• compound

Data Types: char | cell

Output Arguments
Price — Clean price of bond
numeric

Clean price of bond, returned as a NUMBONDS-by-1 vector. The dirty price of the bond is the clean
price plus the accrued interest. It equals the present value of the bond cash flows of the yield to
maturity with semiannual compounding.
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AccruedInt — Accrued interest payable at settlement
numeric

accrued interest payable at settlement, returned as a NUMBONDS-by-1 vector.

More About
Price and Yield Conventions

The Price and Yield are related to different formulae for SIA and ICMA conventions.

For SIA conventions, Price and Yield are related by the formula:

 Price + Accrued Interest = sum(Cash_Flow*(1+Yield/2)^(-Time)) 

where the sum is over the bond's cash flows and corresponding times in units of semiannual coupon
periods.

For ICMA conventions, the Price and Yield are related by the formula:

 Price + Accrued Interest = sum(Cash_Flow*(1+Yield)^(-Time))

Algorithms
For SIA conventions, the following formula defines bond price and yield:

PV = ∑
i = 1

n CF
(1 + z

f )TF ,

where:

PV = Present value of a cash flow.
CF = Cash flow amount.
z = Risk-adjusted annualized rate or yield corresponding to a given cash flow. The

yield is quoted on a semiannual basis.
f = Frequency of quotes for the yield. Default is 2 for Basis values 0 to 7 and 13

and 1 for Basis values 8 to 12. The default can be overridden by specifying the
CompoundingFrequency name-value pair.

TF = Time factor for a given cash flow. The time factor is computed using the
compounding frequency and the discount basis. If these values are not specified,
then the defaults are as follows: CompoundingFrequency default is 2 for Basis
values 0 to 7 and 13 and 1 for Basis values 8 to 12. DiscountBasis is 0 for
Basis values 0 to 7 and 13 and the input Basis for Basis values 8 to 12.

Note The Basis is always used to compute accrued interest.

For ICMA conventions, the frequency of annual coupon payments determines bond price and yield.

 bndprice

19-405



References
[1] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[2] Mayle, J. "Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures." SIA, Vol 2, Jan 1994.
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See Also
bndyield | cfamounts | datetime

Topics
“Bond Portfolio for Hedging Duration and Convexity” on page 10-6
“Pricing Functions” on page 2-24
“Sensitivity of Bond Prices to Interest Rates” on page 10-2
“Yield Conventions” on page 2-24

Introduced before R2006a
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bndspread
Static spread over spot curve

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate,Face, CompoundingFrequency, DiscountBasis, and
LastCouponInterest.

Syntax
Spread = bndspread(SpotInfo,Price,Coupon,Settle,Maturity)
Spread = bndspread( ___ ,Name,Value)

Description
Spread = bndspread(SpotInfo,Price,Coupon,Settle,Maturity) computes the static
spread (Z-spread) to benchmark in basis points.

Spread = bndspread( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Static Spread Over a Spot Curve

This example shows how to compute a Federal National Mortgage Association (FNMA) 4 3/8 spread
over a Treasury spot curve and plot the results.

RefMaturity = [datenum('02/27/2003');    
               datenum('05/29/2003');
               datenum('10/31/2004');
               datenum('11/15/2007');
               datenum('11/15/2012');
               datenum('02/15/2031')];

RefCpn = [0;
          0;
          2.125;
          3;
          4;
          5.375] / 100;

RefPrices =  [99.6964;
              99.3572;
             100.3662;
              99.4511;
              99.4299;
             106.5756];
         

 bndspread

19-407



RefBonds = [RefPrices, RefMaturity, RefCpn];
Settle   = datenum('26-Nov-2002');
[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ... 
RefPrices, Settle)

ZeroRates = 6×1

    0.0121
    0.0127
    0.0194
    0.0317
    0.0423
    0.0550

CurveDates = 6×1

      731639
      731730
      732251
      733361
      735188
      741854

% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday
Price    = 105.484;
Coupon   = 0.04375;
Maturity = datenum('15-Oct-2006');

% All optional inputs are supposed to be accounted by default,
% except the accrued interest under 30/360 (SIA), so:
Period = 2;
Basis  = 1;
SpotInfo = [CurveDates, ZeroRates];

% Compute static spread over treasury curve, taking into account
% the shape of curve as derived by bootstrapping method embedded 
% within bndspread.

SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...  
Maturity, Period, Basis)

SpreadInBP = 18.5669

plot(CurveDates, ZeroRates*100, 'b', CurveDates, ... 
ZeroRates*100+SpreadInBP/100, 'r--')
legend({'Treasury'; 'FNMA 4 3/8'})
xlabel('Curve Dates')
ylabel('Spot Rate [%]')
grid;
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Compute the Static Spread Over a Spot Curve Using datetime Inputs

This example shows how to compute a Federal National Mortgage Association (FNMA) 4 3/8 spread
over a Treasury spot curve using datetime inputs for Settle and Maturity and a table for
SpotInfo and plot the results.

RefMaturity = [datenum('02/27/2003');
               datenum('05/29/2003');
               datenum('10/31/2004');
               datenum('11/15/2007');
               datenum('11/15/2012');
               datenum('02/15/2031')];

RefCpn = [0;
          0;
          2.125;
          3;
          4;
          5.375] / 100;

RefPrices =  [99.6964;
              99.3572;
             100.3662;
              99.4511;
              99.4299;
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             106.5756];

RefBonds = [RefPrices, RefMaturity, RefCpn];
Settle   = datetime('26-Nov-2002','Locale','en_US');
[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ...
RefPrices, Settle)

ZeroRates = 6×1

    0.0121
    0.0127
    0.0194
    0.0317
    0.0423
    0.0550

CurveDates = 6x1 datetime
   27-Feb-2003
   29-May-2003
   31-Oct-2004
   15-Nov-2007
   15-Nov-2012
   15-Feb-2031

% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday
Price    = 105.484;
Coupon   = 0.04375;
Maturity = datetime('15-Oct-2006','Locale','en_US');

% All optional inputs are accounted by default,
% except the accrued interest under 30/360 (SIA), so:
Period = 2;
Basis  = 1;

SpotInfo = table(CurveDates, ZeroRates);

% Compute static spread over treasury curve, taking into account
% the shape of curve as derived by bootstrapping method embedded
% within bndspread.

SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...
Maturity, Period, Basis)

SpreadInBP = 18.5669

plot(CurveDates, ZeroRates*100, 'b', CurveDates, ...
ZeroRates*100+SpreadInBP/100, 'r--')
legend({'Treasury'; 'FNMA 4 3/8'})
xlabel('Curve Dates')
ylabel('Spot Rate [%]')
grid;
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Input Arguments
SpotInfo — Spot-rates information
matrix | table | term structure

Spot-rates information, specified as matrix of two columns, an annualized term structure created by
intenvset, or a table.

• Matrix of two columns— The first column is the SpotDate, and the second column, ZeroRates, is
the zero-rate corresponding to maturities on the SpotDate. It is recommended that the spot-rates
are spaced as evenly apart as possible, perhaps one that is built from 3-months deposit rates. For
example, using the 3-month deposit rates:

SpotInfo = ...
[datenum('2-Jan-2004') ,  0.03840;
datenum('2-Jan-2005') ,  0.04512;
datenum('2-Jan-2006') ,  0.05086];

• Annualized term structure — Refer to intenvset to create an annualized term structure. For
example:

Settle = datenum('1-Jan-2004');
Rates = [0.03840; 0.04512; 0.05086];
EndDates = [datenum('2-Jan-2004'); datenum('2-Jan-2005');...
             datenum('2-Jan-2006')];
SpotInfo = intenvset('StartDates' , Settle  ,...
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                      'Rates'      , Rates   ,...
                      'EndDates'   , EndDates,...
                      'Compounding', 2       ,...
                      'Basis'      , 0);

• Table — If SpotInfo is a table, the first column can be either a serial date number, date character
vector, or datetime array. The second column is numerical data representing zero rates. For
example:
ZeroRates = … [0.012067955808764;0.012730933424479;0.019360902068703;0.031704525214251;0.042306085224510;0.054987415342936];
CurveDates = [731639;731730;732251;733361;735188;741854];
Settle   = datenum('26-Nov-2002');
Price    = 105.484;
Coupon   = 0.04375;
Maturity = datenum('15-Oct-2006');
Period = 2;
Basis  = 1;
SpotInfo = table(datestr(CurveDates), ZeroRates);

Data Types: double | table | struct

Price — Price for every $100 notional amount of bonds whose spreads are computed
numeric

Price for every $100 notional amount of bonds whose spreads are computed, specified as numeric
value using a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

Coupon — Annual coupon rate of bonds whose spreads are computed
decimal

Annual coupon rate of bonds whose spreads are computed, specified as decimal value using a scalar
or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

Settle — Settlement date of bond
serial date number | date character vector | datetime

Settlement date of the bond, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using
serial date numbers, date character vectors, or datetime arrays. The Settle date must be before the
Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date of bond
serial date number | date character vector | datetime

Maturity date of the bond, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Spread =
bndspread(SpotInfo,Price,Coupon,Settle,Maturity,'Period',4,'Basis',7)
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Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime
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Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers, date character vectors, or
datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers,
date character vectors, or datetime arrays. The StartDate is when a bond actually starts (the date
from which a bond cash flow is considered). To make an instrument forward-starting, specify this date
as a future date.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

CompoundingFrequency — Compounding frequency for yield calculation
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
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• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double
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LastCouponInterest — Compounding convention for computing yield of a bond in last
coupon period
compound (default) | values are simple or compound

Compounding convention for computing the yield of a bond in the last coupon period, specified as the
comma-separated pair consisting of 'LastCouponInterest' and a scalar or a NUMBONDS-by-1 or 1-
by-NUMBONDS vector. LastCouponInterest is based on only the last coupon and the face value to
be repaid. Acceptable values are:

• simple
• compound

Data Types: char | cell

Output Arguments
Spread — Static spread to benchmark in basis points
numeric

Static spread to benchmark, returned in basis points as a scalar or a NUMBONDS-by-1 vector.

References
[1] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[2] Mayle, J. "Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures." SIA, Vol 2, Jan 1994.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
bndyield | bndprice | datetime

Topics
“Bond Portfolio for Hedging Duration and Convexity” on page 10-6
“Pricing Functions” on page 2-24
“Sensitivity of Bond Prices to Interest Rates” on page 10-2
“Yield Conventions” on page 2-24

Introduced before R2006a
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bndtotalreturn
Total return of fixed-coupon bond

Syntax
[BondEquiv,EffectiveRate] = bndtotalreturn(Price,CouponRate,Settle,Maturity,
ReinvestRate)
[BondEquiv,EffectiveRate] = bndtotalreturn( ___ ,Name,Value)

Description
[BondEquiv,EffectiveRate] = bndtotalreturn(Price,CouponRate,Settle,Maturity,
ReinvestRate)calculates the total return for fixed-coupon bonds to maturity or to a specific
investment horizon.

[BondEquiv,EffectiveRate] = bndtotalreturn( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Total Return of a Fixed-Coupon Bond

Use bndtotalreturn to compute the total return for a fixed-coupon bond, given an investment
horizon date.

Define fixed-coupon bond.

Price = 101;
CouponRate = 0.05;
Settle = '15-Nov-2011';
Maturity = '15-Nov-2031';
ReinvestRate = 0.04;

Calculate the total return to maturity.

[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...
Settle, Maturity, ReinvestRate)

BondEquiv = 0.0460

EffectiveRate = 0.0466

Specify an investment horizon.

HorizonDate = '15-Nov-2021';
[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...
Settle, Maturity, ReinvestRate, 'HorizonDate', HorizonDate)

BondEquiv = 0.0521

EffectiveRate = 0.0528
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Perform scenario analysis on the reinvestment rate.

ReinvestRate = [0.03; 0.035; 0.04; 0.045; 0.05];
[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...
Settle, Maturity, ReinvestRate, 'HorizonDate', HorizonDate)

BondEquiv = 5×1

    0.0557
    0.0538
    0.0521
    0.0505
    0.0490

EffectiveRate = 5×1

    0.0565
    0.0546
    0.0528
    0.0511
    0.0496

Compute the Total Return of a Fixed-Coupon Bond Using datetime Inputs

Use bndtotalreturn with datetime inputs to compute the total return for a fixed-coupon bond,
given an investment horizon date.

Price = 101;
CouponRate = 0.05;
Settle = datetime('15-Nov-2011','Locale','en_US');
Maturity = datetime('15-Nov-2031','Locale','en_US');
HorizonDate = datetime('15-Nov-2021','Locale','en_US');
ReinvestRate = 0.04;
[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...
Settle, Maturity, ReinvestRate, 'HorizonDate', HorizonDate)

BondEquiv = 0.0521

EffectiveRate = 0.0528

Input Arguments
Price — Clean price at settlement date
matrix

Clean price at the settlement date, specified as a scalar or a NINST-by-1 vector.
Data Types: double

CouponRate — Coupon rate
decimal

Coupon rate, specified as a scalar or a NINST-by-1 vector of decimal values.

19 Functions

19-418



Data Types: double

Settle — Settlement date of fixed-coupon bond
serial date number | date character vector | datetime

Settlement date of the fixed-coupon bond, specified as scalar or a NINST-by-1 vector of serial date
numbers, date character vectors, or datetime arrays. If supplied as a NINST-by-1 vector of dates,
settlement dates can be different, as long as they are before the Maturity date and HorizonDate.
Data Types: double | char | datetime

Maturity — Maturity date of fixed-coupon bond
serial date number | date character vector | datetime

Maturity date of the fixed-coupon bond, specified as scalar or a NINST-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

ReinvestRate — Reinvestment rate
decimal

Reinvestment rate (the rate earned by reinvesting the coupons), specified as scalar or a NINST-by-2
vector of decimal values.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [BondEquiv,EffectiveRate] =
bndtotalreturn(Price,CouponRate,Settle,Maturity,ReinvestRate,'HorizonDate','1
5-Nov-2021')

HorizonDate — Investment horizon date
Maturity date (default) | serial date number | date character vector | datetime

Investment horizon date, specified as the comma-separated pair consisting of 'HorizonDate' and a
scalar or a NINST-by-1 vector using serial date numbers, date character vectors, or datetime arrays.

If HorizonDate is unspecified, the total return is calculated to Maturity.
Data Types: double | char | datetime

HorizonPrice — Price at investment horizon date
calculated based on ReinvestRate (default) | numeric

Price at investment horizon date, specified as the comma-separated pair consisting of
'HorizonPrice' and a scalar or a NINST-by-1 vector.

If HorizonPrice is unspecified, the price at the HorizonDate is calculated based on the
ReinvestRate. If the HorizonDate equals the Maturity date, the HorizonPrice is ignored and
the total return to maturity is calculated based on the Face value.
Data Types: double
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Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NINST-by-1 vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a scalar or a
NINST-by-1 vector. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime
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Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NINST-by-1 vector using serial date numbers, date character vectors, or datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NINST-by-1 vector using serial date numbers, date character
vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NINST-by-1 vector using serial date numbers, date character
vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NINST-by-1 vector using serial date numbers, date character vectors,
or datetime arrays.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NINST-by-1 vector.
Data Types: double

CompoundingFrequency — Compounding frequency for yield calculation
integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a scalar or a NINST-by-1 vector.

• 1 — Annual compounding
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• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NINST-by-1 vector. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note The default behavior is for SIA bases (0-7) to use the actual/actual day count to compute
discount factors, and for ICMA day counts (8 – 12) and BUS/252 to use the specified
DiscountBasis.

Data Types: double

Output Arguments
BondEquiv — Total return in bond equivalent basis
numeric
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Total return in bond equivalent basis, returned as a NUMBONDS-by-1 vector.

EffectiveRate — Total return in effective rate basis
numeric

Total return in effective rate basis, returned as a NUMBONDS-by-1 vector.

References
[1] Fabozzi, Frank J., Mann, Steven V. Introduction to Fixed Income Analytics: Relative Value Analysis,

Risk Measures and Valuation. John Wiley and Sons, New York, 2010.

See Also
bndyield | bndprice | cfamounts | datetime

Topics
“Bond Portfolio for Hedging Duration and Convexity” on page 10-6
“Pricing Functions” on page 2-24
“Sensitivity of Bond Prices to Interest Rates” on page 10-2
“Yield Conventions” on page 2-24

Introduced in R2012b

 bndtotalreturn

19-423



bndyield
Yield to maturity for fixed-income security

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate,Face, CompoundingFrequency, DiscountBasis, and
LastCouponInterest.

Syntax
Yield = bndyield(Price,CouponRate,Settle,Maturity)
Yield = bndyield( ___ ,Name,Value)

Description
Yield = bndyield(Price,CouponRate,Settle,Maturity) given NUMBONDS bonds with SIA
date parameters and clean prices (excludes accrued interest), returns the bond equivalent yields to
maturity.

Yield = bndyield( ___ ,Name,Value) adds optional name-value arguments.

Examples

Compute Yield to Maturity for a Treasury Bond

This example shows how to compute the yield of a Treasury bond at three different price values.

Price = [95; 100; 105]; 
CouponRate = 0.05; 
Settle = '20-Jan-1997'; 
Maturity = '15-Jun-2002'; 
Period = 2; 
Basis = 0; 

Yield = bndyield(Price, CouponRate, Settle,... 
Maturity, Period, Basis)

Yield = 3×1

    0.0610
    0.0500
    0.0396
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Compute Yield to Maturity for a Treasury Bond Using datetime Inputs

This example shows how to use datetime inputs to compute the yield of a Treasury bond at three
different price values.

Price = [95; 100; 105];
CouponRate = 0.05;
Settle = datetime('20-Jan-1997','Locale','en_US');
Maturity = datetime('15-Jun-2002','Locale','en_US');
Period = 2;
Basis = 0;
Yield = bndyield(Price, CouponRate, Settle,...
Maturity, Period, Basis)

Yield = 3×1

    0.0610
    0.0500
    0.0396

Compute the Yield of a Treasury Bond Using the Same Basis for Discounting and Generating
the Cash Flows

Compute the yield of a Treasury bond.

Price = [95; 100; 105];
CouponRate = 0.0345;
Settle = '15-May-2016';
Maturity = '02-Feb-2026';
Period = 2;
Basis = 1;
format long

Yield = bndyield(Price,CouponRate,Settle,Maturity,Period,Basis)

Yield = 3×1

    0.0408
    0.0345
    0.0286

Using the same data, compute the yield of a Treasury bond using the same basis for discounting and
generating the cash flows.

DiscountBasis = 1;

Yield = bndyield(Price,CouponRate,Settle,Maturity,'Period',Period,'Basis',Basis, ...
'DiscountBasis',DiscountBasis)

Yield = 3×1

    0.0408
    0.0345
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    0.0286

Input Arguments
Price — Clean price of the bond
numeric

Clean price of the bond (current price without accrued interest), specified as a scalar or a NUMBONDS-
by-1 or 1-by-NUMBONDS vector.
Data Types: double

CouponRate — Annual percentage rate used to determine coupons payable on a bond
decimal

Annual percentage rate used to determine the coupons payable on a bond, specified as decimal using
a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

Settle — Settlement date of bond
serial date number | date character vector | datetime

Settlement date of the bond, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using
serial date numbers, date character vectors, or datetime arrays. The Settle date must be before the
Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date of bond
serial date number | date character vector | datetime

Maturity date of the bond, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Yield =
bndyield(Price,CouponRate,Settle,Maturity,'Period',4,'Basis',9)

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13
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Day-count of the instrument, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers, date character vectors, or
datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime
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Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers,
date character vectors, or datetime arrays.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Data Types: double

CompoundingFrequency — Compounding frequency for yield calculation
SIA uses 2, ICMA uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. Values are:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
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Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double

LastCouponInterest — Compounding convention for computing yield of a bond in last
coupon period
compound (default) | values are simple or compound

Compounding convention for computing the yield of a bond in the last coupon period, specified as the
comma-separated pair consisting of 'LastCouponInterest' and a scalar or a NUMBONDS-by-1 or 1-
by-NUMBONDS vector. This is based on only the last coupon and the face value to be repaid. Acceptable
values are:
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• simple
• compound

Data Types: char | cell

Output Arguments
Yield — Yield to maturity with semiannual compounding
numeric

Yield to maturity with semiannual compounding, returned as a NUMBONDS-by-1 vector.

More About
Price and Yield Conventions

The Price and Yield are related to different formulae for SIA and ICMA conventions.

For SIA conventions, Price and Yield are related by the formula:

 Price + Accrued Interest = sum(Cash_Flow*(1+Yield/2)^(-Time)) 

where the sum is over the bond's cash flows and corresponding times in units of semiannual coupon
periods.

For ICMA conventions, the Price and Yield are related by the formula:

 Price + Accrued Interest = sum(Cash_Flow*(1+Yield)^(-Time))

Algorithms
For SIA conventions, the following formula defines bond price and yield:

PV = CF
(1 + z

f )TF ,

where:

PV = Present value of a cash flow.
CF = The cash flow amount.
z = The risk-adjusted annualized rate or yield corresponding to a given cash flow. The

yield is quoted on a semiannual basis.
f = The frequency of quotes for the yield.
TF = Time factor for a given cash flow. Time is measured in semiannual periods from

the settlement date to the cash flow date. In computing time factors, use SIA
actual/actual day count conventions for all time factor calculations.

For ICMA conventions, the frequency of annual coupon payments determines bond price and yield.
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References
[1] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[2] Mayle, J. "Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures." SIA, Vol 2, Jan 1994.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
bndprice | cfamounts | datetime

Topics
“Bond Portfolio for Hedging Duration and Convexity” on page 10-6
“Pricing Functions” on page 2-24
“Sensitivity of Bond Prices to Interest Rates” on page 10-2
“Yield Conventions” on page 2-24

Introduced before R2006a
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bolling
Bollinger band chart

Note bolling is not recommended. Use bollinger instead.

Syntax
bolling(Asset,Samples,Alpha,Width)

[Movavgv,UpperBand,LowerBand] = bolling(Asset,Samples,Alpha,Width)

Arguments

Asset Vector of asset data.
Samples Number of samples to use in computing the moving average.
Alpha (Optional) Exponent used to compute the element weights of the moving

average. Default = 0 (simple moving average).
Width (Optional) Number of standard deviations to include in the envelope. A

multiplicative factor specifying how tight the bands should be around the
simple moving average. Default = 2.

Description
bolling(Asset,Samples,Alpha,Width) plots Bollinger bands for given Asset data. This form of
the function does not return any data.

[Movavgv,UpperBand,LowerBand] = bolling(Asset,Samples,Alpha,Width) returns
Movavgv with the moving average of the Asset data, UpperBand with the upper band data, and
LowerBand with the lower band data. This form of the function does not plot any data.

Note The standard deviations are normalized by N-1, where N = the sequence length.

Examples
If Asset is a column vector of closing stock prices

bolling(Asset, 20, 1)

plots linear 20-day moving average Bollinger bands based on the stock prices.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, 20, 1)

returns Movavgv, UpperBand, and LowerBand as vectors containing the moving average, upper
band, and lower band data, without plotting the data.
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See Also
candle | dateaxis | highlow | movavg | movavg

Topics
“Bollinger Chart” on page 2-12

Introduced before R2006a
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bollinger
Time series Bollinger band

Note Using a fints object for the Data argument of bollinger is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
[middle,upper,lower] = bollinger(Data)
[middle,upper,lower] = bollinger( ___ ,Name,Value)

Description
[middle,upper,lower] = bollinger(Data) calculates the middle, upper, and lower bands that
make up the Bollinger bands from a series of data. A Bollinger band chart plots actual asset data
along with three other bands of data: the upper band that is two standard deviations above a user-
specified moving average; the lower band that is two standard deviations below that moving average;
and the middle band that is the moving average itself.

[middle,upper,lower] = bollinger( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Calculate the Bollinger Bands for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
[middle,upper,lower]= bollinger(TMW);
CloseBolling = [middle.Close, upper.Close,... 
lower.Close];
plot(middle.Time,CloseBolling)
title('Bollinger Bands for TMW Closing Prices')
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Input Arguments
Data — Data for market prices
matrix | table | timetable

Data for market prices, specified as a matrix, table, or timetable. For matrix input, Data must be
column-oriented.
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [middle,upper,lower] = bollinger(TMW_CLOSE,'WindowSize',10,'Type',1)

WindowSize — Number of observations of input series to include in moving average in
periods
10 (default) | positive integer

Number of observations of the input series to include in the moving average in periods, specified as
the comma-separated pair consisting of 'WindowSize' and a scalar positive integer.
Data Types: double
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Type — Type of moving average to compute
0 (simple) (default) | integer with value 0 or 1

Type of moving average to compute, specified as the comma-separated pair consisting of 'Type' and
a scalar integer with a value of 0 (simple) or 1 (linear).
Data Types: double

NumStd — Number of standard deviations for the upper and lower bounds
2 (default) | positive integer

Number of standard deviations for the upper and lower bounds, specified as the comma-separated
pair consisting of 'NumStd' and a scalar positive integer.
Data Types: double

Output Arguments
middle — Moving average series representing the middle band
matrix | table | timetable

Moving average series representing the middle band, returned with the same number of rows (M) and
the same type (matrix, table, or timetable) as the input Data.

upper — Moving average series representing the upper band
matrix | table | timetable

Moving average series representing the upper band, returned with the same number of rows (M) and
the same type (matrix, table, or timetable) as the input Data.

lower — Moving average series representing the lower band
matrix | table | timetable

Moving average series representing the lower band, returned with the same number of rows (M) and
the same type (matrix, table, or timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 72–74.

See Also
timetable | table | movavg

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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boxcox
Box-Cox transformation

Note Using a fints object for the tsobj argument of boxcox is not recommended. Use
fts2timetable to convert a fints object to a timetable object and then use timetable2table
and table2array.

Syntax
[transdat,lambda] = boxcox(data)

[transfts,lambda] = boxcox(tsobj)

transdat = boxcox(lambda,data)

transfts = boxcox(lambda,tsobj)

Arguments

data Data vector. Must be positive and specified as a column data vector.
tsobj Financial time series object.

Description
boxcox transforms nonnormally distributed data to a set of data that has approximately normal
distribution. The Box-Cox transformation is a family of power transformations.

If λ is not = 0, then

data(λ) = dataλ− 1
λ

If λ is = 0, then

data(λ) = log(data)

The logarithm is the natural logarithm (log base e). The algorithm calls for finding the λ value that
maximizes the Log-Likelihood Function (LLF). The search is conducted using fminsearch.

[transdat,lambda] = boxcox(data) transforms the data vector data using the Box-Cox
transformation method into transdat. It also estimates the transformation parameter λ.

[transfts,lambda] = boxcox(tsojb) transforms the financial time series object tsobj using
the Box-Cox transformation method into transfts. It also estimates the transformation parameter λ.

If the input data is a vector, lambda is a scalar. If the input is a financial time series object, lambda is
a structure with fields similar to the components of the object; for example, if the object contains
series names Open and Close, lambda has fields lambda.Open and lambda.Close.
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transdat = boxcox(lambda, data) and transfts = boxcox(lambda, tsobj) transform the
data using a certain specified λ for the Box-Cox transformation. This syntax does not find the
optimum λ that maximizes the LLF.

Examples

Transform a Data Series Contained in a Financial Times Series Object

Use boxcox to transform the data series contained in a financial time series object into another set of
data series with relatively normal distributions.

Create a financial time series object from the supplied whirlpool.dat data file.

whrl = ascii2fts('whirlpool.dat', 1, 2, []);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Fill any missing values denoted with NaN's in whrl with values calculated using the linear method.

f_whrl = fillts(whrl);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Transform the nonnormally distributed filled data series f_whrl into a normally distributed one
using Box-Cox transformation.

bc_whrl = boxcox(f_whrl);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Compare the result of the Close data series with a normal (Gaussian) probability distribution
function and the nonnormally distributed f_whrl.

subplot(2, 1, 1);
hist(f_whrl.Close);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

grid; title('Nonnormally Distributed Data');
subplot(2, 1, 2);
hist(bc_whrl.Close);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

grid; title('Box-Cox Transformed Data');
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The bar chart on the top represents the probability distribution function of the filled data series,
f_whrl, which is the original data series whrl with the missing values interpolated using the linear
method. The distribution is skewed toward the left (not normally distributed). The bar chart on the
bottom is less skewed to the left. If you plot a Gaussian probability distribution function (PDF) with
similar mean and standard deviation, the distribution of the transformed data is very close to normal
(Gaussian). When you examine the contents of the resulting object bc_whrl, you find an identical
object to the original object whrl but the contents are the transformed data series.

See Also
fminsearch

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a

 boxcox

19-439



busdate
Next or previous business day

Syntax
Busday = busdate(Date)
Busday = busdate( ___ ,DirFlag,Holiday,Weekend)

Description
Busday = busdate(Date) returns the scalar, vector, or matrix of the next or previous business
days, depending on the definition for Holiday.

Busday = busdate( ___ ,DirFlag,Holiday,Weekend) returns the scalar, vector, or matrix of
the next or previous business days, depending on the optional input arguments, including Holiday.

If both Date and Holiday are either serial date numbers or date character vectors, Busday is
returned as a serial date number.

However, if either Date or Holiday are datetime arrays, Busday is returned as a datetime array.

Use the function datestr to convert serial date numbers to formatted date character vectors.

Examples

Determine Business Days

Determine the next business day when Date is a character vector.

 Busday = busdate('3-Jul-2001', 1)

Busday = 731037

datestr(Busday)

ans = 
'05-Jul-2001'

Indicate that Saturday is a business day by appropriately setting the Weekend argument. July 4, 2003
falls on a Friday. Use busdate to verify that Saturday, July 5, is actually a business day.

Weekend = [1 0 0 0 0 0 0];
Date = datestr(busdate('3-Jul-2003', 1, [], Weekend))

Date = 
'05-Jul-2003'

If either Date or Holiday are datetime arrays, Busday is returned as a datetime array.

Busday = busdate(datetime('3-Jul-2001','Locale','en_US'), 1)
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Busday = datetime
   05-Jul-2001

Input Arguments
Date — Reference business date
serial date number | date character vector | datetime object

Reference business date, specified as a scalar, vector, or matrix using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

DirFlag — Business day convention
follow (default) | date character vector with values of follow, modifiedfollow, previous, or
modifiedprevious | cell array of date character vectors with values of follow, modifiedfollow,
previous, or modifiedprevious

Business day convention, specified date character vector or cell array of date character vectors with
values of follow, modifiedfollow, previous, or modifiedprevious.

Also, DirFlag can be a scalar, vector, or matrix of search directions, where Next is DIREC = 1
(default) or Previous is DIREC = -1.
Data Types: double | char | datetime

Holiday — Holidays and nontrading-day dates
non-trading day vector is determined by the routine holidays (default) | serial date number | date
character vector | datetime object

Holidays and nontrading-day dates, specified as vector.

All dates in Holiday must be the same format: either serial date numbers, or date character vectors,
or datetime arrays. (Using serial date numbers improves performance.)
Data Types: double | char | datetime

Weekend — Weekend days
[1 0 0 0 0 0 1] (Saturday and Sunday form the weekend) (default) | vector of length 7,
containing 0 and 1, where 1 indicates weekend days

Weekend days, specified as a vector of length 7, containing 0 and 1, where 1 indicates weekend days
and the first element of this vector corresponds to Sunday.
Data Types: double

Output Arguments
Busday — Next or previous business day
scalar | vector | matrix

Next or previous business day, returned as a scalar, vector, or matrix depending on the definition for
Holiday. If Date is a datetime array, Busday returns a datetime array. Otherwise, Busday returns a
serial date numbers.
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See Also
holidays | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2

Introduced before R2006a
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busdays
Business days for given period

Syntax
bdates = busdays(sdate,edate)
bdates = busdays( ___ ,bdmode,Holiday)

Description
bdates = busdays(sdate,edate) generates a vector of business days between the last business
date of the period that contains the start date (sdate), and the last business date of period that
contains the end date (edate).

bdates = busdays( ___ ,bdmode,Holiday) generates a vector of business days between the last
business date of the period that contains the start date (sdate), and the last business date of period
that contains the end date (edate) using optional input arguments. If Holiday is not supplied, the
dates are generated based on United States holidays. If you do not supply bdmode, bdates generates
a daily vector.

Examples

Determine Business Days for a Given Period

Determine the business days for a weekly period.

 bdates = datestr(busdays('1/2/01','1/9/01','weekly'))

bdates = 2x11 char array
    '05-Jan-2001'
    '12-Jan-2001'

The end of the week is considered to be a Friday. Between 1/2/01 (Monday) and 1/9/01 (Tuesday),
there is only one end-of-week day, 1/5/01 (Friday). Because 1/9/01 is part of the following week, the
following Friday (1/12/01) is also reported.

Determine the business days for a weekly period using a datetime input for sdate.

bdates = busdays(datetime('2-Jan-2001','Locale','en_US'),'9-Jan-2001','weekly')

bdates = 2x1 datetime
   05-Jan-2001
   12-Jan-2001

Determine the business days for a monthly period.

vec = datestr(busdays('1/8/16','3/1/16','monthly'))

vec = 3x11 char array
    '29-Jan-2016'
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    '29-Feb-2016'
    '31-Mar-2016'

The start date (1/8/16) is in the month of January, 2016. The last business day for the month of
January is 1/29/16 (Friday). The end date (3/1/16) is in the month of March, 2016. The last business
day for the month of March is 3/31/16 (Thursday). The month of February, 2016 lies between the start
date and the end date. The last business day for the month of February is 2/29/16 (Monday).

Input Arguments
sdate — Start date
serial date number | date character vector | datetime object

Start date, specified as a serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

edate — End date
serial date number | date character vector | datetime object

End date, specified as serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

bdmode — Frequency of business days
DAILY (1) (default) | nonnegative numeric with values 1 through 5 | date character vector with values
DAILY, WEEKLY, MONTHLY, QUARTERLY, SEMIANNUAL or ANNUAL

Frequency of business days, specified as a nonnegative numeric with values 1 through 5 or date
character vector with values of DAILY, WEEKLY, MONTHLY, QUARTERLY, SEMIANNUAL, or ANNUAL

Valid periodicities include:

• DAILY, Daily, daily, D, d, 1 (default)
• WEEKLY, Weekly, weekly, W, w, 2
• MONTHLY, Monthly, monthly, M, m, 3
• QUARTERLY, Quarterly, quarterly, Q, q, 4
• SEMIANNUAL, Semiannual, semiannual, S, s, 5
• ANNUAL, Annual, annual, A, a, 6

Character vectors must be enclosed in single quotation marks.

For example, if bdmode is set to monthly, busdays returns end-of-month business dates for all full
or partial months between the start date and end date inclusive.
Data Types: double | char

Holiday — Holiday and nontrading-day dates
if Holiday is [ ] holiday dates are based on United States holidays specified by holidays (default)
| serial date number | date character vector | datetime object
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Holiday and nontrading-day dates, specified as a vector in date character vector, serial date, or
datetime array format. If you specify Holiday, you must also supply the frequency bdmode. Using a
Holiday value of NaN uses a holiday list that has no dates.
Data Types: double | char | datetime

Output Arguments
bdates — Business days
column vector

Business days, returned as a column vector of business dates, in serial date format (default) or
datetime format (if sdate, edate, or Holiday are in datetime format). Business dates can exist
before and/or after the specified sdate and edate.

See Also
isbusday | holidays | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2

Introduced before R2006a
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candle
Candlestick chart

Note candle is updated to accept data input as a matrix, timetable, or table.

Syntax
candle(Data)
candle(Data,Color)
h = candle(ax ___ )

Description
candle(Data) plots a candlestick chart from a series of opening, high, low, and closing prices of a
security. If the closing price is greater than the opening price, the body (the region between the open
and close price) is unfilled; otherwise the body is filled.

candle(Data,Color) adds an optional argument for Color.

h = candle(ax ___ ) adds an optional argument for ax.

Examples

Generate a Candlestick Chart for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. This is a candlestick chart with blue candles, for the most recent 21 days in
SimulatedStock.mat.

load SimulatedStock.mat;
candle(TMW(end-20:end,:),'b');
title('Candlestick chart for TMW')
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Input Arguments
Data — Data for opening, high, low, and closing prices
matrix | table | timetable

Data for opening, high, low, and closing prices, specified as a matrix, table, or timetable. For matrix
input, Data is an M-by-4 matrix of opening, high, low, and closing prices stored in the corresponding
columns. Timetables and tables with M rows must contain variables named 'Open', 'High', 'Low',
and 'Close' (case insensitive).
Data Types: double | table | timetable

Color — (Optional) Three element color vector
background color of figure window (default) | color vector [R G B] | string

Three element color vector, specified as a [R G B] color vector or a string specifying the color name.
The default color differs depending on the background color of the figure window.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].
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• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | string

ax — Valid axis object
current axes (ax = gca) (default) | axes object

(Optional) Valid axis object, specified as an axes object. The candle plot is created in the axes
specified by ax instead of in the current axes (ax = gca). The option ax can precede any of the input
argument combinations.
Data Types: object

Output Arguments
h — Graphic handle of the figure
handle object

Graphic handle of the figure, returned as a handle object.
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See Also
timetable | table | highlow | movavg | pointfig | kagi | linebreak | priceandvol | renko |
volarea

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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candle (fts)
Time series candle plot

Note candle (fts) is not recommended. Use candle instead.

Use fts2timetable to convert a fints object to a timetable object.

Syntax
candle(tsobj)

candle(tsobj,color)

candle(tsobj,color,dateform)

candle(tsobj,color,dateform,'ParameterName',ParameterValue, ...)

hcdl = candle(tsobj,color,dateform,'ParameterName',ParameterValue, ...) 

Arguments

tsobj Financial time series object
color (Optional) A three-element row vector representing RGB or a color identifier.

(See plot.)
dateform (Optional) Date character vector format used as the x-axis tick labels. (See

datetick.) You can specify a dateform only when tsobj does not contain
time-of-day data. If tsobj contains time-of-day data, dateform is restricted
to 'dd-mmm-yyyy HH:MM'.

Description
candle(tsobj) generates a candle plot of the data in the financial time series object tsobj. tsobj
must contain at least four data series representing the high, low, open, and closing prices. These
series must have the names High, Low, Open, and Close (case-insensitive).

candle(tsobj,color) additionally specifies the color of the candle box.

candle(tsobj,color,dateform) additionally specifies the date character vector format used as
the x-axis tick labels. See datestr for a list of date character vector formats.

candle(tsobj,color,dateform,'ParameterName',ParameterValue, ...) indicates the
actual names of the required data series if the data series do not have the default names.
'ParameterName' can be

• HighName: high prices series name
• LowName: low prices series name
• OpenName: open prices series name
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• CloseName: closing prices series name

hcdl = candle(tsobj, color, dateform, 'ParameterName', ParameterValue, ...)
returns the handle to the patch objects and the line object that make up the candle plot. hdcl is a
three-element column vector representing the handles to the two patches and one line that forms the
candle plot.

Examples

Create a Candle Plot for a Financial Time Series Object

This example shows how to create a candle plot for Disney stock for the dates March 31, 1998
through April 30, 1998.

load disney.mat
candle(dis('3/31/98::4/30/98'))

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Warning: Low prices must be less than or equal to the corresponding opening prices.

title('Disney 3/31/98 to 4/30/98')
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See Also
candle | chartfts | highlow | plot

Introduced before R2006a
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cdai
Accrued interest on certificate of deposit

Syntax
AccrInt = cdai(CouponRate,Settle,Maturity,IssueDate)
AccrInt = cdai( ___ ,Basis)

Description
AccrInt = cdai(CouponRate,Settle,Maturity,IssueDate) computes the accrued interest
on a certificate of deposit.

cdai assumes that the certificates of deposit pay interest at maturity. Because of the simple interest
treatment of these securities, this function is best used for short-term maturities (less than 1 year).
The default simple interest calculation uses the Basis for the actual/360 convention (2).

AccrInt = cdai( ___ ,Basis) adds an optional argument for Basis.

Examples

Find the Accrued Interest on a Certificate of Deposit

This example shows how to compute the accrued interest due, given a certificate of deposit with the
following characteristics.

CouponRate      =  0.05;
Settle          =  '02-Jan-02';
Maturity        =  '31-Mar-02';
IssueDate       =  '1-Oct-01';

AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate)

AccrInt = 1.2917

Find the Accrued Interest on a Certificate of Deposit Using datetime Inputs

This example shows how to use datetime inputs to compute the accrued interest due, given a
certificate of deposit with the following characteristics.

CouponRate =  0.05;
Settle =  datetime('02-Jan-02','Locale','en_US');
Maturity =  datetime('31-Mar-02','Locale','en_US');
IssueDate =  datetime('1-Oct-01','Locale','en_US');
AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate)

AccrInt = 1.2917
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Input Arguments
CouponRate — Annual interest rate
decimal

Annual interest rate, specified as decimal using a scalar or a NCDS-by-1 or 1-by-NCDS vector.
Data Types: double

Settle — Settlement date for certificate of deposit
serial date number | date character vector | datetime

Settlement date for the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector
using serial date numbers, date character vectors, or datetime arrays. The Settle date must be
before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date for certificate of deposit
serial date number | date character vector | datetime

Maturity date for the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector
using serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

IssueDate — Issue date for certificate of deposit
serial date number | date character vector | datetime

Issue date for the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Basis — Day-count basis for certificate of deposit
2 (actual/360) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

(Optional) Day-count basis for the certificate of deposit, specified as a scalar or a NINST-by-1 vector.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
AccrInt — Accrued interest per $100 of face value
numeric

Accrued interest per $100 of face value, returned as a NCDS-by-1 or 1-by-NCDS vector.

See Also
accrfrac | bndyield | stepcpnyield | tbillyield | cdprice | cdyield | zeroyield |
datetime

Topics
“Coupon Date Calculations” on page 2-23
“Yield Conventions” on page 2-24

Introduced before R2006a
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cdprice
Price of certificate of deposit

Syntax
[Price,AccrInt] = cdprice(Yield,CouponRate,Settle,Maturity,IssueDate)
[PriceAccrInt] = cdprice( ___ ,Basis)

Description
[Price,AccrInt] = cdprice(Yield,CouponRate,Settle,Maturity,IssueDate) computes
the price of a certificate of deposit given its yield.

cdprice assumes that the certificates of deposit pay interest at maturity. Because of the simple
interest treatment of these securities, this function is best used for short-term maturities (less than 1
year). The default simple interest calculation uses the Basis for the actual/360 convention (2).

[PriceAccrInt] = cdprice( ___ ,Basis) adds an optional argument for Basis.

Examples

Compute the Price and Accrued Interest for a Certificate of Deposit

This example shows how to compute the price and the accrued interest due on the settlement date,
given a certificate of deposit with the following characteristics.

Yield           =  0.0525;
CouponRate      =  0.05;
Settle          =  '02-Jan-02';
Maturity        =  '31-Mar-02';
IssueDate       =  '1-Oct-01';

[Price, AccruedInt] = cdprice(Yield, CouponRate, Settle, ... 
Maturity, IssueDate)

Price = 99.9233

AccruedInt = 1.2917

Compute the Price and Accrued Interest for a Certificate of Deposit Using datetime Inputs

This example shows how to use datetime inputs to compute the price and the accrued interest due
on the settlement date, given a certificate of deposit with the following characteristics.

Yield =  0.0525;
CouponRate =  0.05;
Settle =  datetime('02-Jan-02','Locale','en_US');
Maturity =  datetime('31-Mar-02','Locale','en_US');
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IssueDate =  datetime('1-Oct-01','Locale','en_US');

[Price, AccruedInt] = cdprice(Yield, CouponRate, Settle, ...
Maturity, IssueDate)

Price = 99.9233

AccruedInt = 1.2917

Input Arguments
Yield — Simple yield to maturity over basis denominator
numeric

Simple yield to maturity over the basis denominator, specified as a numeric value using a scalar or a
NCDS-by-1 or 1-by-NCDS vector.
Data Types: double

CouponRate — Coupon annual interest rate
decimal

Coupon annual interest rate, specified as decimal using a scalar or a NCDS-by-1 or 1-by-NCDS vector.
Data Types: double

Settle — Settlement date for certificate of deposit
serial date number | date character vector | datetime

Settlement date for the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector
using serial date numbers, date character vectors, or datetime arrays. The Settle date must be
before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date for certificate of deposit
serial date number | date character vector | datetime

Maturity date for the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector
using serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

IssueDate — Issue date for certificate of deposit
serial date number | date character vector | datetime

Issue date for the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Basis — Day-count basis for certificate of deposit
2 (actual/360) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

(Optional) Day-count basis for the certificate of deposit, specified as a scalar or a NINST-by-1 vector.
Values are:
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
Price — Clean price of certificate of deposit per $100
numeric

Clean price of the certificate of deposit per $100, returned as a NCDS-by-1 or 1-by-NCDS vector.

AccrInt — Accrued interest payable at settlement per unit of face value
numeric

Accrued interest payable at settlement per unit of face value, returned as a NCDS-by-1 or 1-by-NCDS
vector.

See Also
bndprice | cdai | cdyield | stepcpnprice | tbillprice | datetime

Topics
“Coupon Date Calculations” on page 2-23
“Yield Conventions” on page 2-24

Introduced before R2006a

19 Functions

19-458



cdsbootstrap
Bootstrap default probability curve from credit default swap market quotes

Syntax
[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle)
[ProbData,HazData] = cdsbootstrap( ___ ,Name,Value)

Description
[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle) bootstraps the
default probability curve using credit default swap (CDS) market quotes. The market quotes can be
expressed as a list of maturity dates and corresponding CDS market spreads, or as a list of maturities
and corresponding upfronts and standard spreads for standard CDS contracts. The estimation uses
the standard model of the survival probability.

[ProbData,HazData] = cdsbootstrap( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Bootstrap Default Probability Curve from Credit Default Swap Market Quotes

This example shows how to use cdsbootstrap with market quotes for CDS contracts to generate
ProbData and HazData values.

Settle = '17-Jul-2009'; % valuation date for the CDS
Spread_Time = [1 2 3 5 7]';
Spread = [140 175 210 265 310]';
Market_Dates = daysadd(datenum(Settle),360*Spread_Time,1);
MarketData = [Market_Dates Spread];
Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
Zero_Dates = daysadd(datenum(Settle),360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate];

format long
[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle)

ProbData = 5×2
105 ×

    7.3434    0.0000
    7.3470    0.0000
    7.3507    0.0000
    7.3580    0.0000
    7.3653    0.0000

HazData = 5×2
105 ×
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    7.3434    0.0000
    7.3470    0.0000
    7.3507    0.0000
    7.3580    0.0000
    7.3653    0.0000

Input Arguments
ZeroData — Zero rate data
vector | IRDataCurve object

Zero rate data, specified as a M-by-2 vector of dates and zero rates or an IRDataCurve object of zero
rates.

When ZeroData is an IRDataCurve object, ZeroCompounding and ZeroBasis are implicit in
ZeroData and are redundant inside this function. In this case, specify these optional parameters
when constructing the IRDataCurve object before using the cdsbootstrap function.

For more information on an IRDataCurve object, see “Creating an IRDataCurve Object” (Financial
Instruments Toolbox).
Data Types: double

MarketData — Bond market data
matrix

Bond market data, specified as a N-by-2 matrix of dates and corresponding market spreads or N-by-3
matrix of dates, upfronts, and standard spreads of CDS contracts. The dates must be entered as serial
date numbers, upfronts must be numeric values between 0 and 1, and spreads must be in basis
points.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a serial date number or a date character vector. The Settle date must
be earlier than or equal to the dates in MarketData
Data Types: double | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or as a single
value applicable to all contracts. Single values are internally expanded to an array of size N-by-1.
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Example: [ProbData,HazData] =
cdsbootstrap(ZeroData,MarketData,Settle,'RecoveryRate',Recovery,'ZeroCompound
ing',-1)

RecoveryRate — Recovery rate
0.4 (default) | decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryDate' and a N-by-1
vector of recovery rates, specified as a decimal from 0 to 1.
Data Types: double

Period — Premium payment frequency
4 (default) | numeric with values 1, 2, 3, 4, 6 or 12

Premium payment frequency, specified as the comma-separated pair consisting of 'Period' and a N-
by-1 vector with values of 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of contract
2 (actual/360) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Day-count basis of the contract, specified as the comma-separated pair consisting of 'Basis' and a
positive integer using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

BusinessDayConvention — Business day conventions
'actual' (default) | character vector

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as weekends plus any
other date that businesses are not open (for example, statutory holidays). Values are:
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• 'actual' — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• 'follow' — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• 'modifiedfollow' — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• 'previous' — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• 'modifiedprevious' — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a different
month, the following business day is adopted instead.

Data Types: char

PayAccruedPremium — Flag for accrued premiums paid upon default
true (default) | integer with value 1 or 0

Flag for accrued premiums paid upon default, specified as the comma-separated pair consisting of
'PayAccruedPremium' and a N-by-1 vector of Boolean flags that is true (default) if accrued
premiums are paid upon default, false otherwise.
Data Types: logical

TimeStep — Number of days as time step for numerical integration
10 (days) (default) | nonnegative integer

Number of days to take as time step for the numerical integration, specified as the comma-separated
pair consisting of 'TimeStep' and a nonnegative integer.
Data Types: double

ZeroCompounding — Compounding frequency of the zero curve
2 (semiannual) (default) | integer with value of 1,2,3,4,6,12, or –1

Compounding frequency of the zero curve, specified as the comma-separated pair consisting of
'ZeroCompounding' and an integer with values:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• −1 — Continuous compounding

Data Types: double

ZeroBasis — Basis of the zero curve
0 (actual/actual) (default) | integer with value of 0 to 13
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Basis of the zero curve, specified as the comma-separated pair consisting of 'ZeroBasis' and an
integer with values that are identical to Basis.
Data Types: double

ProbDates — Dates for probability data
column of dates in MarketData (default) | serial date number | date character vector

Dates for probability data, specified as the comma-separated pair consisting of 'ProbDates' and a
P-by-1 vector of dates, given as serial date numbers or date character vectors.
Data Types: double | char

Output Arguments
ProbData — Default probability values
matrix

Default probability values, returned as a P-by-2 matrix with dates and corresponding cumulative
default probability values. The dates match those in MarketData, unless the optional input
parameter ProbDates is provided.

HazData — Hazard rate values
matrix

Hazard rate values, returned as a N-by-2 matrix with dates and corresponding hazard rate values for
the survival probability model. The dates match those in MarketData.

Note A warning is displayed when non-monotone default probabilities (that is, negative hazard rates)
are found.

Algorithms
If the time to default is denoted by τ, the default probability curve, or function, PD(t), and its
complement, the survival function Q(t), are given by:

PD(t) = P[τ ≤ t] = 1− P[τ > t] = 1− Q(t)

In the standard model, the survival probability is defined in terms of a piecewise constant hazard rate
h(t). For example, if h(t) =

λ1, for 0 ≤t ≤ t1

λ2, for t1 < t ≤ t2

λ3, for t2 <t

then the survival function is given by Q(t) =

e−λ1t, for 0 ≤ t ≤ t1

e−λ1t − λ2(t − t1), for t1 < t ≤ t2

e−λ1t1− λ2(t2− t1)− λ3(t − t2), for t2 < t
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Given n market dates t1,...,tn and corresponding market CDS spreads S1,...,Sn, cdsbootstrap
calibrates the parameters λ1,...,λn and evaluates PD(t) on the market dates, or an optional user-
defined set of dates.

References
[1] Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course Through the CDS Big Bang.”

Fitch Solutions, Quantitative Research, Global Special Report. April 7, 2009.

[2] Hull, J., and A. White. “Valuing Credit Default Swaps I: No Counterparty Default Risk.” Journal of
Derivatives. Vol. 8, pp. 29–40.

[3] O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.” Lehman Brothers, Fixed Income
Quantitative Credit Research, April 2003.

See Also
cdsspread | cdsprice | cdsrpv01 | IRDataCurve

Topics
“Bootstrapping a Default Probability Curve” on page 8-98
“Bootstrapping from Inverted Market Curves” on page 8-108
“Credit Default Swap (CDS)” on page 8-97

Introduced in R2010b
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cdsprice
Determine price for credit default swap

Syntax
[Price,AccPrem,PaymentDates,PaymentTimes,PaymentCF] = cdsprice(ZeroData,
ProbData,Settle,Maturity,ContractSpread)
[Price,AccPrem,PaymentDates,PaymentTimes,PaymentCF] = cdsprice( ___ ,
Name,Value)

Description
[Price,AccPrem,PaymentDates,PaymentTimes,PaymentCF] = cdsprice(ZeroData,
ProbData,Settle,Maturity,ContractSpread) computes the price, or the mark-to-market value
for CDS instruments.

[Price,AccPrem,PaymentDates,PaymentTimes,PaymentCF] = cdsprice( ___ ,
Name,Value) adds optional name-value pair arguments.

Examples

Determine the Price for a Credit Default Swap

This example shows how to use cdsprice to compute the clean price for a CDS contract using the
following data.

Settle = '17-Jul-2009'; % valuation date for the CDS
Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate];

ProbData = [daysadd(datenum(Settle),360,1), 0.0247];
Maturity = '20-Sep-2010';
ContractSpread = 135;

[Price,AccPrem] = cdsprice(ZeroData,ProbData,Settle,Maturity,ContractSpread)

Price = 1.5461e+04

AccPrem = 10500

Input Arguments
ZeroData — Zero rate data
vector | IRDataCurve object

Zero rate data, specified as a M-by-2 vector of dates and zero rates or an IRDataCurve object of zero
rates.
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When ZeroData is an IRDataCurve object, ZeroCompounding and ZeroBasis are implicit in
ZeroData and are redundant inside this function. In this case, specify these optional parameters
when constructing the IRDataCurve object before using the cdsprice function.

For more information on an IRDataCurve object, see “Creating an IRDataCurve Object” (Financial
Instruments Toolbox).
Data Types: double | struct

ProbData — Default probability values
matrix

Default probability values, specified as a P-by-2 matrix with dates and corresponding cumulative
default probability values.
Data Types: double | char

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a scalar serial date number or date character vector. The Settle date
must be earlier than or equal to the dates in Maturity.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as a N-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

ContractSpread — Contract spreads
numeric

Contract spreads, specified as a N-by-1 vector of spreads, expressed in basis points.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or as a single
value applicable to all contracts. Single values are internally expanded to an array of size N-by-1.

Example: [Price,AccPrem] =
cdsprice(ZeroData,ProbData,Settle,Maturity,ContractSpread,'Basis',7,'Business
DayConvention','previous')

RecoveryRate — Recovery rate
0.4 (default) | decimal
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Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and a N-by-1
vector of recovery rates, specified as a decimal from 0 to 1.
Data Types: double

Period — Premium payment frequency
4 (default) | numeric with values 1, 2, 3, 4, 6 or 12

Premium payment frequency, specified as the comma-separated pair consisting of 'Period' and a N-
by-1 vector with values of 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of contract
2 (actual/360) (default) | positive integers of the set [1...13] | vector of positive integers of the set
[1...13]

Day-count basis of the contract, specified as the comma-separated pair consisting of 'Basis' and a
positive integer using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as weekends plus any
other date that businesses are not open (for example, statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.
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• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char

PayAccruedPremium — Flag for accrued premiums paid upon default
true (default) | integer with value 1 or 0

Flag for accrued premiums paid upon default, specified as the comma-separated pair consisting of
'PayAccruedPremium' and a N-by-1 vector of Boolean flags that is true (default) if accrued
premiums are paid upon default, false otherwise.
Data Types: logical

Notional — Contract notional values
10MM (default) | positive or negative integer

Contract notional values, specified as the comma-separated pair consisting of 'Notional' and a N-
by-1vector of integers. Use positive integer values for long positions and negative integer values for
short positions.
Data Types: double

TimeStep — Number of days as time step for numerical integration
10 (days) (default) | nonnegative integer

Number of days to take as time step for the numerical integration, specified as the comma-separated
pair consisting of 'TimeStep' and a nonnegative integer.
Data Types: double

ZeroCompounding — Compounding frequency of the zero curve
2 (semiannual) (default) | integer with value of 1,2,3,4,6,12, or –1

Compounding frequency of the zero curve, specified as the comma-separated pair consisting of
'ZeroCmpounding' and an integer with values:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• −1 — Continuous compounding

Data Types: double
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ZeroBasis — Basis of the zero curve
0 (actual/actual) (default) | integer with value of 0 to 13

Basis of the zero curve, specified as the comma-separated pair consisting of 'ZeroBasis' and an
integer with values that are identical to Basis.
Data Types: double

Output Arguments
Price — CDS clean prices
vector

CDS clean prices, returned as a N-by-1 vector.

AccPrem — Accrued premiums
vector

Accrued premiums, returned as a N-by-1 vector.

PaymentDates — Payment dates
matrix

Payment dates, returned as a N-by-numCF matrix.

PaymentTimes — Payment times
matrix

Payment times, returned as a N-by-numCF matrix of accrual fractions.

PaymentCF — Payments
matrix

Payments, returned as a N-by-numCF matrix.

More About
CDS Price

The price or mark-to-market (MtM) value of an existing CDS contract.

The CDS price is computed using the following formula:

CDS price = Notional * (Current Spread - Contract Spread) * RPV01

Current Spread is the current breakeven spread for a similar contract, according to current
market conditions. RPV01 is the 'risky present value of a basis point,' the present value of the
premium payments, considering the default probability. This formula assumes a long position, and the
right side is multiplied by -1 for short positions.

Algorithms
The premium leg is computed as the product of a spread S and the risky present value of a basis point
(RPV01). The RPV01 is given by:
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RPV01 = ∑
j = 1

N
Z(t j)Δ(t j− 1, t j, B)Q(t j)

when no accrued premiums are paid upon default, and it can be approximated by

RPV01 ≈ 1
2 ∑j = 1

N
Z(t j)Δ(t j− 1, t j, B)(Q(t j− 1) + Q(t j))

when accrued premiums are paid upon default. Here, t0 = 0 is the valuation date, and t1,...,tn = T are
the premium payment dates over the life of the contract,T is the maturity of the contract, Z(t) is the
discount factor for a payment received at time t, and Δ(tj-1, tj, B) is a day count between dates tj-1 and
tj corresponding to a basis B.

The protection leg of a CDS contract is given by the following formula:

ProtectionLeg =∫0 T
Z(τ)(1− R)dPD(τ)

≈ (1− R) ∑
i = 1

M
Z(τi)(PD(τi)− PD(τi− 1))

= (1− R) ∑
i = 1

M
Z(τi)(Q(τi− 1)− Q(τi))

where the integral is approximated with a finite sum over the discretization τ0 = 0,τ1,...,τM = T.

If the spread of an existing CDS contract is SC, and the current breakeven spread for a comparable
contract is S0, the current price, or mark-to-market value of the contract is given by:

MtM = Notional (S0 –SC)RPV01

This assumes a long position from the protection standpoint (protection was bought). For short
positions, the sign is reversed.

References
[1] Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course Through the CDS Big Bang.”

Fitch Solutions, Quantitative Research, Global Special Report. April 7, 2009.

[2] Hull, J., and A. White. “Valuing Credit Default Swaps I: No Counterparty Default Risk.” Journal of
Derivatives. Vol. 8, pp. 29–40.

[3] O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.” Lehman Brothers, Fixed Income
Quantitative Credit Research, April 2003.

See Also
cdsbootstrap | cdsspread | cdsoptprice | IRDataCurve

Topics
“Finding Breakeven Spread for New CDS Contract” on page 8-101
“Valuing an Existing CDS Contract” on page 8-104
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“Converting from Running to Upfront” on page 8-106
“Credit Default Swap (CDS)” on page 8-97

Introduced in R2010b
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cdsspread
Determine spread of credit default swap

Syntax
[Spread,PaymentDates,PaymentTimes,] = cdsspread(ZeroData,ProbData,Settle,
Maturity,)
[Spread,PaymentDates,PaymentTimes,] = cdsspread( ___ ,Name,Value)

Description
[Spread,PaymentDates,PaymentTimes,] = cdsspread(ZeroData,ProbData,Settle,
Maturity,) computes the spread of the CDS.

[Spread,PaymentDates,PaymentTimes,] = cdsspread( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Determine the Spread of a Credit Default Swap

This example shows how to use cdsspread to compute the spread (in basis points) for a CDS
contract with the following data.

Settle = '17-Jul-2009'; % valuation date for the CDS
Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate];
ProbData = [daysadd(datenum(Settle),360,1), 0.0247];
Maturity = '20-Sep-2010';

Spread = cdsspread(ZeroData,ProbData,Settle,Maturity)

Spread = 148.2705

Input Arguments
ZeroData — Zero rate data
vector | IRDataCurve object

Zero rate data, specified as a M-by-2 vector of dates and zero rates or an IRDataCurve object of zero
rates.

When ZeroData is an IRDataCurve object, ZeroCompounding and ZeroBasis are implicit in
ZeroData and are redundant inside this function. In this case, specify these optional parameters
when constructing the IRDataCurve object before using the cdsspread function.
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For more information on an IRDataCurve object, see “Creating an IRDataCurve Object” (Financial
Instruments Toolbox).
Data Types: double | struct

ProbData — Default probability values
matrix

Default probability values, specified as a P-by-2 matrix with dates and corresponding cumulative
default probability values.
Data Types: double | char

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a scalar serial date number or date character vector. The Settle date
must be earlier than or equal to the dates in Maturity.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as a N-by-1 vector of serial date numbers or date character vectors.
Data Types: double | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or as a single
value applicable to all contracts. Single values are internally expanded to an array of size N-by-1.

Example: Spread =
cdsspread(ZeroData,ProbData,Settle,Maturity,'Basis',7,'BusinessDayConvention'
,'previous')

RecoveryRate — Recovery rate
0.4 (default) | decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and a N-by-1
vector of recovery rates, specified as a decimal from 0 to 1.
Data Types: double

Period — Premium payment frequency
4 (default) | numeric with values 1, 2, 3, 4, 6 or 12

Premium payment frequency, specified as the comma-separated pair consisting of 'Period' and a N-
by-1 vector with values of 1, 2, 3, 4, 6, or 12.
Data Types: double
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Basis — Day-count basis of contract
2 (actual/360) (default) | positive integers of the set [1...13] | vector of positive integers of the set
[1...13]

Day-count basis of the contract, specified as the comma-separated pair consisting of 'Basis' and a
positive integer using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as weekends plus any
other date that businesses are not open (for example, statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char
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PayAccruedPremium — Flag for accrued premiums paid upon default
true (default) | integer with value 1 or 0

Flag for accrued premiums paid upon default, specified as the comma-separated pair consisting of
'PayAccruedPremium' and a N-by-1 vector of Boolean flags that is true (default) if accrued
premiums are paid upon default, false otherwise.
Data Types: logical

TimeStep — Number of days as time step for numerical integration
10 (days) (default) | nonnegative integer

Number of days to take as time step for the numerical integration, specified as the comma-separated
pair consisting of 'TimeStep' and a nonnegative integer.
Data Types: double

ZeroCompounding — Compounding frequency of the zero curve
2 (semiannual) (default) | integer with value of 1,2,3,4,6,12, or –1

Compounding frequency of the zero curve, specified as the comma-separated pair consisting of
'ZeroCompounding' and an integer with values:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• −1 — Continuous compounding

Data Types: double

ZeroBasis — Basis of the zero curve
0 (actual/actual) (default) | integer with value of 0 to 13

Basis of the zero curve, specified as the comma-separated pair consisting of 'ZeroBasis' and a
positive integer with values that are identical to Basis.
Data Types: double

Output Arguments
Spread — Spreads (in basis points)
vector

Spreads (in basis points), returned as a N-by-1 vector.

PaymentDates — Payment dates
matrix

Payment dates, returned as a N-by-numCF matrix.
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PaymentTimes — Payment times
matrix

Payment times, returned as a N-by-numCF matrix of accrual fractions.

More About
CDS Spread

The market, or breakeven, spread value of a CDS.

The CDS spread can be computed by equating the value of the protection leg with the value of the
premium leg:

Market Spread * RPV01 = Value of Protection Leg

The left side corresponds to the value of the premium leg, and this has been decomposed as the
product of the market or breakeven spread times the RPV01 or 'risky present value of a basis point' of
the contract. The latter is the present value of the premium payments, considering the default
probability. The Market Spread can be computed as the ratio of the value of the protection leg, to
the RPV01 of the contract. cdsspread returns the resulting spread in basis points.

Algorithms
The premium leg is computed as the product of a spread S and the risky present value of a basis point
(RPV01). The RPV01 is given by:

RPV01 = ∑
j = 1

N
Z(t j)Δ(t j− 1, t j, B)Q(t j)

when no accrued premiums are paid upon default, and it can be approximated by

RPV01 ≈ 1
2 ∑j = 1

N
Z(t j)Δ(t j− 1, t j, B)(Q(t j− 1) + Q(t j))

when accrued premiums are paid upon default. Here, t0 = 0 is the valuation date, and t1,...,tn = T are
the premium payment dates over the life of the contract,T is the maturity of the contract, Z(t) is the
discount factor for a payment received at time t, and Δ(tj-1, tj, B) is a day count between dates tj-1 and
tj corresponding to a basis B.

The protection leg of a CDS contract is given by the following formula:

ProtectionLeg =∫0 T
Z(τ)(1− R)dPD(τ)

≈ (1− R) ∑
i = 1

M
Z(τi)(PD(τi)− PD(τi− 1))

= (1− R) ∑
i = 1

M
Z(τi)(Q(τi− 1)− Q(τi))

where the integral is approximated with a finite sum over the discretization τ0 = 0,τ1,...,τM = T.
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A breakeven spread S0 makes the value of the premium and protection legs equal. It follows that:

S0 = ProtectionLeg
RPV01

References
[1] Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course Through the CDS Big Bang.”

Fitch Solutions, Quantitative Research, Global Special Report. April 7, 2009.

[2] Hull, J., and A. White. “Valuing Credit Default Swaps I: No Counterparty Default Risk.” Journal of
Derivatives. Vol. 8, pp. 29–40.

[3] O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.” Lehman Brothers, Fixed Income
Quantitative Credit Research, April 2003.

See Also
cdsbootstrap | cdsprice | IRDataCurve

Topics
“Finding Breakeven Spread for New CDS Contract” on page 8-101
“Valuing an Existing CDS Contract” on page 8-104
“Converting from Running to Upfront” on page 8-106
“First-to-Default Swaps” (Financial Instruments Toolbox)
“Pricing a CDS Index Option” (Financial Instruments Toolbox)
“Credit Default Swap (CDS)” on page 8-97

Introduced in R2010b
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cdsrpv01
Compute risky present value of a basis point for credit default swap

Syntax
RPV01 = cdsrpv01(ZeroData,ProbData,Settle,Maturity)
RPV01 = cdsrpv01( ___ ,Name,Value)

[RPV01,PaymentDates,PaymentTimes] = cdsrpv01(ZeroData,ProbData,Settle,
Maturity)
[RPV01,PaymentDates,PaymentTimes] = cdsrpv01( ___ ,Name,Value)

Description
RPV01 = cdsrpv01(ZeroData,ProbData,Settle,Maturity) computes the risky present value
of a basis point (RPV01) for a credit default swap (CDS).

RPV01 = cdsrpv01( ___ ,Name,Value) adds optional name-value arguments.

[RPV01,PaymentDates,PaymentTimes] = cdsrpv01(ZeroData,ProbData,Settle,
Maturity) computes the risky present value of a basis point (RPV01), PaymentDates, and
PaymentTimes for a credit default swap (CDS).

[RPV01,PaymentDates,PaymentTimes] = cdsrpv01( ___ ,Name,Value) computes the risky
present value of a basis point (RPV01), PaymentDates, and PaymentTimes for a credit default swap
(CDS) using optional name-value pair arguments.

Examples

Calculate the RPV01 Value for a CDS

Calculate the RPV01 value, given the following specification for a CDS.

Settle = '17-Jul-2009'; % valuation date for the CDS
Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate];
ProbData = [daysadd(datenum(Settle),360,1), 0.0247];
Maturity = '20-Sep-2010';

RPV01 = cdsrpv01(ZeroData,ProbData,Settle,Maturity)

RPV01 = 1.1651

Input Arguments
ZeroData — Dates and zero rates
object from IRDataCurve or vector of dates and zero rates
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Dates and zero rates, specified by an M-by-2 vector of dates and zero rates or the object
IRDataCurve for zero rates. For more information on an IRDataCurve object, see “Creating an
IRDataCurve Object” (Financial Instruments Toolbox).
Data Types: struct | double

ProbData — Dates and default probabilities
vector of dates and default probabilities

Dates and default probabilities, specified by a P-by-2 array.
Data Types: double

Settle — Settlement date
serial date number | character vector | cell array of character vectors

Settlement date, specified by a serial date number or date character vector. This must be earlier than
or equal to the dates in Maturity.
Data Types: char | cell | double

Maturity — CDS maturity date
serial date number | character vector | cell array of character vectors

CDS maturity date, specified by an N-by-1 vector of serial date numbers or date character vectors
containing the maturity dates. The CDS premium payment dates occur at regular intervals, and the
last payment occurs on these maturity dates.
Data Types: char | cell | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: RPV01 =
cdsrpv01(ZeroData,ProbData,Settle,Maturity,'Period',1,'StartDate','20-
Sep-2010','Basis',1,
'BusinessDayConvention',actual,'CleanRPV01',true,'PayAccruedPremium',true,'Ze
roCompounding',1,'ZeroBasis',1)

Period — Number of premium payments per year
4 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers from the set
[1,2,3,4,6,12]

Number of premium payments per year, specified as the comma-separated pair consisting of
'Period' and an N-by-1 vector. Values are 1, 2, 3, 4, 6, and 12.
Data Types: double

StartDate — Dates the CDS premium leg starts
Settle date (default) | serial date number | character vector | cell array of character vectors

Dates when the CDS premium leg actually starts, specified as the comma-separated pair consisting of
'StartDate' and an N-by-1 vector of serial date numbers or date character vectors. Must be on or
between the Settle and Maturity dates. For a forward-starting CDS, specify this date as a future
date after Settle.
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Data Types: double | char | cell

Basis — Day-count basis of contract
2 (actual/360) (default) | positive integers of the set [1...13] | vector of positive integers of the set
[1...13]

Day-count basis of the contract, specified as the comma-separated pair consisting of 'Basis' and a
positive integer using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-business
days are treated. Non-business days are defined as weekends plus any other date that businesses are
not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on the
following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed on the
previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

19 Functions

19-480



Data Types: char | cell

CleanRPV01 — Flag for premium accrual
true (default) | boolean flag with value true or false

Flag for premium accrual, specified as the comma-separated pair consisting of 'CleanRPV01' and a
N-by-1 vector of Boolean flags, which is true if the premium accrued at StartDate is excluded in
the RPV01, and false otherwise.
Data Types: logical

PayAccruedPremium — Flag for accrued premium payment
true (default) | boolean flag with value true or false

Flag for accrued premium payment, specified as the comma-separated pair consisting of
'PayAccruedPremium' and a N-by-1 vector of Boolean flags, true if accrued premiums are paid
upon default, false otherwise.
Data Types: logical

ZeroCompounding — Compounding frequency of zero curve
2 semiannual compounding (default) | integer with acceptable value [1,2,3,4,6,12, –1]

Compounding frequency of the zero curve, specified as the comma-separated pair consisting of
'ZeroCompounding' and an integer with values:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• −1 — Continuous compounding

Note  When ZeroData is an IRDataCurve object, the arguments ZeroCompounding and
ZeroBasis are implicit in ZeroData and are redundant inside this function. In that case, specify
these optional arguments when constructing the IRDataCurve object before calling this function.

Data Types: double

ZeroBasis — Basis of zero curve
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Basis of the zero curve, specified as the comma-separated pair consisting of 'ZeroBasis' and a
positive integer using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
RPV01 — RPV01 value
scalar | vector

RPV01 value, returned as an N-by-1 vector.

PaymentDates — Payment dates
scalar | vector

Payment dates, returned as an N-by-numCF matrix of dates.

PaymentTimes — Payment times
scalar | vector

Payment times, returned as an N-by-numCF matrix of accrual fractions.

More About
RPV01

RPV01, associated with a CDS, is the value of a stream of 1-basis-point premiums according to the
payment structure of the CDS contract, and considering the default probability over time.

For more information, see [3] and [4] for details.

References
[1] Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course Through the CDS Big Bang.”

Fitch Solutions, Quantitative Research. Global Special Report. April 7, 2009.

[2] Hull, J., and A. White. “Valuing Credit Default Swaps I: No Counterparty Default Risk.” Journal of
Derivatives. Vol. 8, pp. 29–40.
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[3] O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.” Lehman Brothers, Fixed Income
Quantitative Credit Research. April, 2003.

[4] O'Kane, D. Modelling Single-name and Multi-name Credit Derivatives. Wiley Finance, 2008.

See Also
cdsbootstrap | cdsspread | cdsprice | cdsoptprice | IRDataCurve

Topics
“Pricing a CDS Index Option” (Financial Instruments Toolbox)
“Credit Default Swap Option” (Financial Instruments Toolbox)

Introduced in R2013b
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creditexposures
Compute credit exposures from contract values

Syntax
[exposures,exposurecpty] = creditexposures(values,counterparties)
[exposures,exposurecpty] = creditexposures( ___ ,Name,Value)

[exposures,exposurecpty,collateral] = creditexposures( ___ ,Name,Value)

Description
[exposures,exposurecpty] = creditexposures(values,counterparties) computes the
counterparty credit exposures from an array of mark-to-market OTC contract values. These exposures
are used when calculating the CVA (credit value adjustment) for a portfolio.

[exposures,exposurecpty] = creditexposures( ___ ,Name,Value) adds optional name-
value arguments.

[exposures,exposurecpty,collateral] = creditexposures( ___ ,Name,Value) computes
the counterparty credit exposures from an array of mark-to-market OTC contract values using
optional name-value pair arguments for CollateralTable and Dates, the collateral output is
returned for the simulated collateral amounts available to counterparties at each simulation date and
over each scenario.

Examples

View Contract Values and Exposures Over Time for a Particular Counterparty

After computing the mark-to-market contract values for a portfolio of swaps over many scenarios,
compute the credit exposure for a particular counterparty. View the contract values and credit
exposure over time.

First, load data (ccr.mat) containing the mark-to-market contract values for a portfolio of swaps
over many scenarios.

load ccr.mat
% Look at one counterparty.
cpID = 4;
cpValues = squeeze(sum(values(:,swaps.Counterparty == cpID,:),2));
subplot(2,1,1)
plot(simulationDates,cpValues);
title(sprintf('Mark-to-Market Contract Values for Counterparty: %d',cpID));
datetick('x','mmmyy')
ylabel('Portfolio Value ($)')
% Compute the exposure by counterparty.
[exposures, expcpty] = creditexposures(values,swaps.Counterparty,...
'NettingID',swaps.NettingID);
% View the credit exposure over time for the counterparty.
subplot(2,1,2)
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cpIdx = find(expcpty == cpID);
plot(simulationDates,squeeze(exposures(:,cpIdx,:)));
title(sprintf('Exposure for counterparty: %d',cpIdx));
datetick('x','mmmyy')
ylabel('Exposure ($)')
xlabel('Simulation Dates')

Compute the Credit Exposure and Determine the Incremental Exposure for a New Trade

Load the data (ccr.mat) containing the mark-to-market contract values for a portfolio of swaps over
many scenarios.

load ccr.mat

Look at one counterparty.

cpID = 4;
cpIdx = swaps.Counterparty == cpID;
cpValues = values(:,cpIdx,:);
plot(simulationDates,squeeze(sum(cpValues,2)));
grid on;
title(sprintf('Potential Mark-to-Market Portfolio Values for Counterparty: %d',cpID));
datetick('x','mmmyy')
ylabel('Portfolio Value ($)')
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Compute the exposures.

netting = swaps.NettingID(cpIdx);
exposures = creditexposures(cpValues,cpID,'NettingID',netting);

View the credit exposure over time for the counterparty.

figure;
plot(simulationDates,squeeze(exposures));
grid on
title(sprintf('Exposure for counterparty: %d',cpID));
datetick('x','mmmyy')
ylabel('Exposure ($)')
xlabel('Simulation Dates')
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Compute the credit exposure profiles.

profilesBefore = exposureprofiles(simulationDates,exposures)

profilesBefore = struct with fields:
     Dates: [37x1 double]
        EE: [37x1 double]
       PFE: [37x1 double]
      MPFE: 2.1580e+05
     EffEE: [37x1 double]
       EPE: 2.8602e+04
    EffEPE: 4.9579e+04

Consider a new trade with a counterparty. For this example, take another trade from the original
swap portfolio and "copy" it for a new counterparty. This example is only for illustrative purposes.

newTradeIdx = 3;
newTradeValues = values(:,newTradeIdx,:);

% Append a new trade to your existing portfolio.
cpValues = [cpValues newTradeValues];
netting = [netting; cpID];
exposures = creditexposures(cpValues,cpID,'NettingID',netting);

Compute the new credit exposure profiles.

profilesAfter = exposureprofiles(simulationDates,exposures)
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profilesAfter = struct with fields:
     Dates: [37x1 double]
        EE: [37x1 double]
       PFE: [37x1 double]
      MPFE: 2.4689e+05
     EffEE: [37x1 double]
       EPE: 3.1609e+04
    EffEPE: 5.6178e+04

Visualize the expected exposures and the new trade's incremental exposure. Use the incremental
exposure to compute the incremental credit value adjustment (CVA) charge.

figure;
subplot(2,1,1)
plot(simulationDates,profilesBefore.EE,...
    simulationDates,profilesAfter.EE);
grid on;
legend({'EE before','EE with trade'})
datetick('x','mmmyy','keeplimits')
title('Expected Exposure before and after new trade');
ylabel('Exposure ($)')

subplot(2,1,2)
incrementalEE = profilesAfter.EE - profilesBefore.EE;
plot(simulationDates,incrementalEE);
grid on;
legend('incremental EE')
datetick('x','mmmyy','keeplimits')
ylabel('Exposure ($)')
xlabel('Simulation Dates')
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Compute Exposures for Counterparties Under Collateral Agreement

Load the data (ccr.mat) containing the mark-to-market contract values for a portfolio of swaps over
many scenarios.

load ccr.mat

Only look at a single counterparty for this example.

cpID = 4;
cpIdx = swaps.Counterparty == cpID;
cpValues = values(:,cpIdx,:);

Compute the uncollateralized exposures.

exposures = creditexposures(cpValues,swaps.Counterparty(cpIdx),...
'NettingID',swaps.NettingID(cpIdx));

View the credit exposure over time for the counterparty.

plot(simulationDates,squeeze(exposures));
expYLim = get(gca,'YLim');
title(sprintf('Exposures for Counterparty: %d',cpID));
datetick('x','mmmyy')
ylabel('Exposure ($)')
xlabel('Simulation Dates')
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Add a collateral agreement for the counterparty. The 'CollateralTable' parameter is a
MATLAB® table. You can create tables from spreadsheets or other data sources, in addition to
building them inline as seen here. For more information, see table.

collateralVariables = {'Counterparty';'PeriodOfRisk';'Threshold';'MinimumTransfer'};
periodOfRisk = 14;
threshold = 100000;
minTransfer = 10000;
collateralTable = table(cpID,periodOfRisk,threshold,minTransfer,...
'VariableNames',collateralVariables)

collateralTable=1×4 table
    Counterparty    PeriodOfRisk    Threshold    MinimumTransfer
    ____________    ____________    _________    _______________

         4               14           1e+05           10000     

Compute the collateralized exposures.

[collatExp, collatcpty, collateral] = creditexposures(cpValues,...
    swaps.Counterparty(cpIdx),'NettingID',swaps.NettingID(cpIdx),...
    'CollateralTable',collateralTable,'Dates',simulationDates);

Plot the collateral levels and collateralized exposures.

figure;
subplot(2,1,1)
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plot(simulationDates,squeeze(collateral));
set(gca,'YLim',expYLim);
title(sprintf('Collateral for counterparty: %d',cpID));
datetick('x','mmmyy')
ylabel('Collateral ($)')
xlabel('Simulation Dates')

subplot(2,1,2)
plot(simulationDates,squeeze(collatExp));
set(gca,'YLim',expYLim);
title(sprintf('Collateralized Exposure for Counterparty: %d',cpID));
datetick('x','mmmyy')
ylabel('Exposure ($)')
xlabel('Simulation Dates');

Input Arguments
values — 3-D array of simulated mark-to-market values of portfolio of contracts
array

3-D array of simulated mark-to-market values of a portfolio of contracts simulated over a series of
simulation dates and across many scenarios, specified as a NumDates-by-NumContracts-by-
NumScenarios “cube” of contract values. Each row represents a different simulation date, each
column a different contract, and each “page” is a different scenario from a Monte-Carlo simulation.
Data Types: double
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counterparties — Counterparties corresponding to each contract
vector | cell array

Counterparties corresponding to each contract in values, specified as a NumContracts-element
vector of counterparties. Counterparties can be a vector of numeric IDs or a cell array of
counterparty names. By default, each counterparty is assumed to have one netting set that covers all
of its contracts. If counterparties are covered by multiple netting sets, then use the NettingID
parameter. A value of NaN (or '' in a cell array) indicates that a contract is not included in any
netting set unless otherwise specified by NettingID. counterparties is case insensitive and
leading or trailing white spaces are removed.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [exposures,exposurecpty] =
creditexposures(values,counterparties,'NettingID','10','ExposureType','Additi
ve')

NettingID — Netting set IDs indicate which netting set each contract belongs
vector | cell array

Netting set IDs to indicate to which netting set each contract in values belongs, specified by a
NumContracts-element vector of netting set IDs. NettingID can be a vector of numeric IDs or else
a cell array of character vector identifiers. The creditexposures function uses counterparties
and NettingID to define each unique netting set (all contracts in a netting set must be with the
same counterparty). By default, each counterparty has a single netting set which covers all of their
contracts. A value of NaN (or '' in a cell array) indicates that a contract is not included in any netting
set. NettingID is case insensitive and leading or trailing white spaces are removed.
Data Types: double | cell

ExposureType — Calculation method for exposures
'Counterparty' (default) | character vector with value of 'Counterparty' or 'Additive'

Calculation method for exposures, specified with values:

• 'Counterparty' — Compute exposures per counterparty.
• 'Additive' — Compute additive exposures at the contract level. Exposures are computed per

contract and sum to the total counterparty exposure.

Data Types: char

CollateralTable — Table containing information on collateral agreements of
counterparties
MATLAB table

Table containing information on collateral agreements of counterparties, specified as a MATLAB
table. The table consists of one entry (row) per collateralized counterparty and must have the
following variables (columns):
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• 'Counterparty' — Counterparty name or ID. The Counterparty name or ID should match the
parameter 'Counterparty' for the ExposureType argument.

• 'PeriodOfRisk' — Margin period of risk in days. The number of days from a margin call until
the posted collateral is available from the counterparty.

• 'Threshold' — Collateral threshold. When counterparty exposures exceed this amount, the
counterparty must post collateral.

• 'MinimumTransfer' — Minimum transfer amount. The minimum amount over/under the
threshold required to trigger transfer of collateral.

Note When computing collateralized exposures, both the CollateralTable parameter and the
Dates parameter must be specified.

Data Types: table

Dates — Simulation dates corresponding to each row of the values array
vector of date numbers | cell array of character vectors

Simulation dates corresponding to each row of the values array, specified as a NUMDATES-by-1
vector of simulation dates. Dates is either a vector of MATLAB date numbers or else a cell array of
character vectors in a known date format. See datenum for known date formats.

Note When computing collateralized exposures, both the CollateralTable parameter and the
Dates parameter must be specified.

Data Types: double | cell

Output Arguments
exposures — 3-D array of credit exposures
array

3-D array of credit exposures representing the potential losses from each counterparty or contract at
each date and over all scenarios. The size of exposures depends on the ExposureType input
argument:

• When ExposureType is 'Counterparty', exposures returns a NumDates-by-
NumCounterparties-by-NumScenarios “cube” of credit exposures representing potential losses
that could be incurred over all dates, counterparties, and scenarios, if a counterparty defaulted
(ignoring any post-default recovery).

• When ExposureType is 'Additive', exposures returns a NumDates-by-NumContracts-by-
NumScenarios “cube,” where each element is the additive exposure of each contract (over all
dates and scenarios). Additive exposures sum to the counterparty-level exposure.

exposurecpty — Counterparties that correspond to columns of exposures array
vector

Counterparties that correspond to columns of the exposures array, returned as
NumCounterparties or NumContracts elements depending on the ExposureType.

 creditexposures

19-493



collateral — Simulated collateral amounts available to counterparties at each simulation
date and over each scenario
3D array

Simulated collateral amounts available to counterparties at each simulation date and over each
scenario, returned as a NumDates-by-NumCounterparties-by-NumScenarios 3D array. Collateral
amounts are calculated using a Brownian bridge to estimate contract values between simulation
dates. For more information, see “Brownian Bridge” on page 19-494. If the CollateralTable was
not specified, this output is empty.

More About
Brownian Bridge

A Brownian bridge is used to simulate portfolio values at intermediate dates to compute collateral
available at the subsequent simulation dates.

For example, to estimate collateral available at a particular simulation date, ti, you need to know the
state of the portfolio at time ti – dt, where dt is the margin period of risk. Portfolio values are
simulated at these intermediate dates by drawing from a distribution defined by the Brownian bridge
between ti and the previous simulation date, ti–1.

If the contract values at time ti –1 and ti are known and you want to estimate the contract value at time
tc (where tc is ti – dt), then a sample from a normal distribution is used with variance:

(ti −  tc)(tc −  ti− 1)
(ti −  ti− 1)

and with mean that is simply the linear interpolation of the contract values between the two
simulation dates at time tc. For more details, see References.

References
[1] Lomibao, D., and S. Zhu. “A Conditional Valuation Approach for Path-Dependent Instruments.”

August 2005.

[2] Pykhtin M. “Modeling credit exposure for collateralized counterparties.” December 2009.

[3] Pykhtin M., and S. Zhu. “A Guide to Modeling Counterparty Credit Risk.” GARP, July/August 2007,
issue 37.

[4] Pykhtin, Michael., and Dan Rosen. “Pricing Counterparty Risk at the Trade Level and CVA
Allocations.” FEDS Working Paper No. 10., February 1, 2010.

See Also
exposureprofiles | datenum | table

Topics
“Counterparty Credit Risk and CVA” (Financial Instruments Toolbox)
“Wrong Way Risk with Copulas” (Financial Instruments Toolbox)
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Introduced in R2014a
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exposureprofiles
Compute exposure profiles from credit exposures

Syntax
profilestructs = exposureprofiles(dates,exposures)
profilestructs = exposureprofiles( ___ ,Name,Value)

Description
profilestructs = exposureprofiles(dates,exposures) computes common counterparty
credit exposures profiles from an array of exposures.

profilestructs = exposureprofiles( ___ ,Name,Value) adds optional name-value
arguments.

Examples

View Exposure Profiles of a Particular Counterparty

After computing the mark-to-market contract values for a portfolio of swaps over many scenarios,
view the exposure profiles of a particular counterparty.

Load the data (ccr.mat) that contains the mark-to-market contract values for a portfolio of swaps
over many scenarios.

load ccr.mat

Compute the exposure by counterparty.

[exposures, expcpty] = creditexposures(values,swaps.Counterparty,...
'NettingID',swaps.NettingID);

Compute the credit exposure profiles for all counterparties.

 cpProfiles = exposureprofiles(simulationDates,exposures)

cpProfiles=5×1 struct array with fields:
    Dates
    EE
    PFE
    MPFE
    EffEE
    EPE
    EffEPE

Visualize the exposure profiles for a particular counterparty.

cpIdx = find(expcpty == 4);
numDates = numel(simulationDates);

19 Functions

19-496



plot(simulationDates,cpProfiles(cpIdx).PFE,...
        simulationDates,cpProfiles(cpIdx).MPFE * ones(numDates,1),...
        simulationDates,cpProfiles(cpIdx).EE,...
        simulationDates,cpProfiles(cpIdx).EPE * ones(numDates,1),...
        simulationDates,cpProfiles(cpIdx).EffEE,...
        simulationDates,cpProfiles(cpIdx).EffEPE * ones(numDates,1));
legend({'PFE (95%)','Max PFE','Exp Exposure (EE)',...
        'Time-Avg EE (EPE)','Max past EE (EffEE)',...
        'Time-Avg EffEE (EffEPE)'})
datetick('x','mmmyy','keeplimits')
title(sprintf('Counterparty %d Exposure Profiles',cpIdx));
ylabel('Exposure ($)')
xlabel('Simulation Dates')

Input Arguments
dates — Simulation dates
vector of date numbers | cell array of character vectors

Simulation dates, specified as vector of date numbers or a cell array of character vectors in a known
date format. For more information for known date formats, see the function datenum.
Data Types: double | char | cell

exposures — 3-D array of potential losses due to counterparty default
array
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3-D array of potential losses due to counterparty default on a set of instruments simulated over a
series of simulation dates and across many scenarios, specified as a NumDates-by-
NumCounterParties-by-NumScenarios “cube” of credit exposures. Each row represents a different
simulation date, each column a different counterparty, and each “page” is a different scenario from a
Monte-Carlo simulation.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: profilestructs =
exposureprofiles(dates,exposures,'ProfileSpec','PFE','PFEProbabilityLevel',.9
)

ProfileSpec — Exposure profiles
All (generate all profiles) (default) | character vector with possible values EE, PFE, MPE, EffEE, EPE,
EffEPE, All | cell array of character vectors with possible values EE, PFE, MPE, EffEE, EPE, EffEPE

Exposure profiles, specified as a character vector or cell array of character vectors with the following
possible values:

• EE — Expected Exposure. The mean of the distribution of exposures at each date. A [NumDates-
by-1] vector.

• PFE — Potential Future Exposure. A high percentile (default 95%) of the distribution of possible
exposures at each date. This is sometimes referred to as “Peak Exposure.” A [NumDates-by-1]
vector.

• MPFE — Maximum Potential Future Exposure. The maximum potential future exposure (PFE) over
all dates

• EffEE — Effective Expected Exposure. The maximum expected exposure (at a specific date) that
occurs at that date or any prior date. This is the expected exposure, but constrained to be
nondecreasing over time. A [NumDates-by-1] vector.

• EPE — Expected Positive Exposure. The weighted average over time of expected exposures. A
scalar.

• EffEPE — Effective Expected Positive Exposure. The weighted average over time of the effective
expected exposure (EffEE). A scalar.

• All — Generate all the previous profiles.

Note Exposure profiles are computed on a per-counterparty basis.

Data Types: char | cell

PFEProbabilityLevel — Level for potential future exposure (PFE) and maximum potential
future exposure (MPFE)
.95 (the 95th percentile) (default) | scalar with value [0..1]

Level for potential future exposure (PFE) and maximum potential future exposure (MPFE), specified
as a scalar with value [0..1].
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Data Types: double

Output Arguments
profilestructs — Structure of credit exposure profiles
array of structs holding credit exposure profiles for each counterparty

Structure of credit exposure profiles, returned as an array of structs holding credit exposure profiles
for each counterparty, returned as a struct, with the fields of the struct as the (abbreviated) names of
every exposure profile. Profiles listed in the ProfileSpec (and their related profiles) are populated,
while those not requested contain empty ([]). profilestructs contains the dates information as a
vector of MATLAB date numbers requested in the ProfileSpec argument.

References
[1] Basel II: International Convergence of Capital Measurement and Capital Standards: A Revised

Framework - Comprehensive Version. at https://www.bis.org/publ/bcbs128.htm,
2006.

See Also
creditexposures | datenum

Topics
“Counterparty Credit Risk and CVA” (Financial Instruments Toolbox)
“Wrong Way Risk with Copulas” (Financial Instruments Toolbox)

Introduced in R2014a
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cdyield
Yield on certificate of deposit (CD)

Syntax
Yield = cdyield(Price,CouponRate,Settle,Maturity,IssueDate)
Yield = cdyield( ___ ,Basis)

Description
Yield = cdyield(Price,CouponRate,Settle,Maturity,IssueDate) computes the yield to
maturity of a certificate of deposit given its clean price.

cdyield assumes that the certificates of deposit pay interest at maturity. Because of the simple
interest treatment of these securities, this function is best used for short-term maturities (less than 1
year). The default simple interest calculation uses the Basis for the actual/360 convention (2).

Yield = cdyield( ___ ,Basis) adds an optional argument for Basis.

Examples

Compute the Yield to Maturity of a Certificate of Deposit

This example shows how to compute the yield on the certificate of deposit (CD), given a CD with the
following characteristics.

Price      = 101.125;
CouponRate = 0.05;
Settle     = '02-Jan-02';
Maturity   = '31-Mar-02';
IssueDate = '1-Oct-01';

Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate)

Yield = 0.0039

Compute the Yield to Maturity of a Certificate of Deposit Using datetime Inputs

This example shows how to use datetime inputs to compute the yield on the certificate of deposit
(CD), given a CD with the following characteristics.

Price      = 101.125;
CouponRate = 0.05;
Settle     = datetime('02-Jan-02','Locale','en_US');
Maturity   = datetime('31-Mar-02','Locale','en_US');
IssueDate = datetime('1-Oct-01','Locale','en_US');

Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate)
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Yield = 0.0039

Input Arguments
Price — Clean price of certificate of deposit per $100 face
numeric

Clean price of the certificate of deposit per $100 face, specified as a numeric value using a scalar or a
NCDS-by-1 or 1-by-NCDS vector.
Data Types: double

CouponRate — Coupon annual interest rate
decimal

Coupon annual interest rate, specified as decimal using a scalar or a NCDS-by-1 or 1-by-NCDS vector.
Data Types: double

Settle — Settlement date of certificate of deposit
serial date number | date character vector | datetime

Settlement date of the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector
using serial date numbers, date character vectors, or datetime arrays. The Settle date must be
before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date of certificate of deposit
serial date number | date character vector | datetime

Maturity date of the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector
using serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

IssueDate — Issue date for certificate of deposit
serial date number | date character vector | datetime

Issue date for the certificate of deposit, specified as a scalar or a NCDS-by-1 or 1-by-NCDS vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Basis — Day-count basis for certificate of deposit
2 (actual/360) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

(Optional) Day-count basis for the certificate of deposit, specified as a scalar or a NINST-by-1 vector.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
Yield — Simple yield to maturity of certificate of deposit
numeric

Simple yield to maturity of the certificate of deposit, returned as a NCDS-by-1 or 1-by-NCDS vector.

See Also
bndprice | cdai | cdprice | stepcpnprice | tbillprice | datetime

Topics
“Coupon Date Calculations” on page 2-23
“Yield Conventions” on page 2-24

Introduced before R2006a
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cfamounts
Cash flow and time mapping for bond portfolio

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate,Face, AdjustCashFlowsBasis, BusinessDayConvention,
CompoundingFrequency, DiscountBasis, Holidays, and PrincipalType.

Syntax
[CFlowAmounts,CFlowDates,TFactors,CFlowFlags,CFPrincipal] = cfamounts(
CouponRate,Settle,Maturity)
[CFlowAmounts,CFlowDates,TFactors,CFlowFlags,CFPrincipal] = cfamounts( ___ ,
Name,Value)

Description
[CFlowAmounts,CFlowDates,TFactors,CFlowFlags,CFPrincipal] = cfamounts(
CouponRate,Settle,Maturity) returns matrices of cash flow amounts, cash flow dates, time
factors, and cash flow flags for a portfolio of NUMBONDS fixed-income securities.

The elements contained in the cfamounts outputs for the cash flow matrix, time factor matrix, and
cash flow flag matrix correspond to the cash flow dates for each security. The first element of each
row in the cash flow matrix is the accrued interest payable on each bond. This accrued interest is
zero in the case of all zero coupon bonds. cfamounts determines all cash flows and time mappings
for a bond whether or not the coupon structure contains odd first or last periods. All output matrices
are padded with NaNs as necessary to ensure that all rows have the same number of elements.

[CFlowAmounts,CFlowDates,TFactors,CFlowFlags,CFPrincipal] = cfamounts( ___ ,
Name,Value) adds optional name-value arguments.

Examples

Compute the Cash Flow Structure and Time Factors for a Bond Portfolio

This example shows how to compute the cash flow structure and time factors for a bond portfolio that
contains a corporate bond paying interest quarterly and a Treasury bond paying interest
semiannually.

Settle = '01-Nov-1993';
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, Period, Basis)
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CFlowAmounts = 2×6

   -0.7667    1.5000    1.5000    1.5000    1.5000  101.5000
   -1.8989    2.5000    2.5000    2.5000  102.5000       NaN

CFlowDates = 2×6

      728234      728278      728368      728460      728552      728643
      728234      728278      728460      728643      728825         NaN

TFactors = 2×6

         0    0.2404    0.7403    1.2404    1.7403    2.2404
         0    0.2404    1.2404    2.2404    3.2404       NaN

CFlowFlags = 2×6

     0     3     3     3     3     4
     0     3     3     3     4   NaN

Compute the Cash Flow Structure and Time Factors for a Bond Portfolio and Return a
datetime array for CFlowDates

This example shows how to compute the cash flow structure and time factors for a bond portfolio that
contains a corporate bond paying interest quarterly and a Treasury bond paying interest
semiannually and CFlowDates is returned as a datetime array.

Settle = datetime('01-Nov-1993','Locale','en_US');
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = cfamounts(CouponRate,...
Settle, Maturity, Period, Basis)

CFlowAmounts = 2×6

   -0.7667    1.5000    1.5000    1.5000    1.5000  101.5000
   -1.8989    2.5000    2.5000    2.5000  102.5000       NaN

CFlowDates = 2x6 datetime
Columns 1 through 5

   01-Nov-1993   15-Dec-1993   15-Mar-1994   15-Jun-1994   15-Sep-1994
   01-Nov-1993   15-Dec-1993   15-Jun-1994   15-Dec-1994   15-Jun-1995

Column 6

   15-Dec-1994
   NaT        
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TFactors = 2×6

         0    0.2404    0.7403    1.2404    1.7403    2.2404
         0    0.2404    1.2404    2.2404    3.2404       NaN

CFlowFlags = 2×6

     0     3     3     3     3     4
     0     3     3     3     4   NaN

Compute the Cash Flow Structure and Time Factors for a Bond Portfolio Using Optional
Name-Value Pairs

This example shows how to compute the cash flow structure and time factors for a bond portfolio that
contains a corporate bond paying interest quarterly and a Treasury bond paying interest
semiannually. This example uses the following Name-Value pairs for Period, Basis,
BusinessDayConvention, and AdjustCashFlowsBasis.

Settle = '01-Jun-2010';
Maturity = ['15-Dec-2011';'15-Jun-2012'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];
 
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, 'Period',Period, ... 
'Basis', Basis, 'AdjustCashFlowsBasis', true,...
'BusinessDayConvention','modifiedfollow')

CFlowAmounts = 2×8

   -1.2667    1.5000    1.5000    1.5000    1.5000    1.5000    1.5000  101.5000
   -2.3077    2.4932    2.5068    2.4932    2.5000  102.5000       NaN       NaN

CFlowDates = 2×8

      734290      734304      734396      734487      734577      734669      734761      734852
      734290      734304      734487      734669      734852      735035         NaN         NaN

TFactors = 2×8

         0    0.0778    0.5778    1.0778    1.5778    2.0778    2.5778    3.0778
         0    0.0769    1.0769    2.0769    3.0769    4.0769       NaN       NaN

CFlowFlags = 2×8

     0     3     3     3     3     3     3     4
     0     3     3     3     3     4   NaN   NaN
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Use cfamounts With a CouponRate Schedule

This example shows how to use cfamounts with a CouponRate schedule. For CouponRate and
Face that change over the life of the bond, schedules for CouponRate and Face can be specified
with an NINST-by-1 cell array, where each element is a NumDates-by-2 matrix where the first column
is dates and the second column is associated rates.

CouponSchedule = {[datenum('15-Mar-2012') .04;datenum('15- Mar -2013') .05;...
datenum('15- Mar -2015') .06]}

CouponSchedule = 1x1 cell array
    {3x2 double}

cfamounts(CouponSchedule,'01-Mar-2011','15-Mar-2015' )

ans = 1×10

   -1.8453    2.0000    2.0000    2.0000    2.5000    2.5000    3.0000    3.0000    3.0000  103.0000

Use cfamounts With a Face Schedule

This example shows how to use cfamounts with a Face schedule. For CouponRate and Face that
change over the life of the bond, schedules for CouponRate and Face can be specified with an
NINST-by-1 cell array, where each element is a NumDates-by-2 matrix where the first column is dates
and the second column is associated rates.

FaceSchedule = {[datenum('15-Mar-2012') 100;datenum('15- Mar -2013') 90;...
datenum('15- Mar -2015') 80]}

FaceSchedule = 1x1 cell array
    {3x2 double}

cfamounts(.05,'01-Mar-2011','15-Mar-2015', 'Face', FaceSchedule)

ans = 1×10

   -2.3066    2.5000    2.5000   12.5000    2.2500   12.2500    2.0000    2.0000    2.0000   82.0000

Use cfamounts to Generate the Cash Flows for a Sinking Bond

This example shows how to use cfamounts to generate the cash flows for a sinking bond.

[CFlowAmounts,CFDates,TFactors,CFFlags,CFPrincipal] = cfamounts(.05,'04-Nov-2010',...
{'15-Jul-2014';'15-Jul-2015'},'Face',{[datenum('15-Jul-2013') 100;datenum('15-Jul-2014')...
90;datenum('15-Jul-2015') 80]})

CFlowAmounts = 2×11
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   -1.5217    2.5000    2.5000    2.5000    2.5000    2.5000   12.5000    2.2500   92.2500       NaN       NaN
   -1.5217    2.5000    2.5000    2.5000    2.5000    2.5000   12.5000    2.2500   12.2500    2.0000   82.0000

CFDates = 2×11

      734446      734518      734699      734883      735065      735249      735430      735614      735795         NaN         NaN
      734446      734518      734699      734883      735065      735249      735430      735614      735795      735979      736160

TFactors = 2×11

         0    0.3913    1.3913    2.3913    3.3913    4.3913    5.3913    6.3913    7.3913       NaN       NaN
         0    0.3913    1.3913    2.3913    3.3913    4.3913    5.3913    6.3913    7.3913    8.3913    9.3913

CFFlags = 2×11

     0     3     3     3     3     3    13     3     4   NaN   NaN
     0     3     3     3     3     3    13     3    13     3     4

CFPrincipal = 2×11

     0     0     0     0     0     0    10     0    90   NaN   NaN
     0     0     0     0     0     0    10     0    10     0    80

Input Arguments
CouponRate — Annual percentage rate used to determine coupons payable on a bond
decimal

Annual percentage rate used to determine the coupons payable on a bond, specified as decimal using
a scalar or a NBONDS-by-1 vector.

CouponRate is 0 for zero coupon bonds.

Note CouponRate and Face can change over the life of the bond. Schedules for CouponRate and
Face can be specified with an NBONDS-by-1 cell array, where each element is a NumDates-by-2 matrix
or cell array, where the first column is dates (serial date numbers or character vectors) and the
second column is associated rates. The date indicates the last day that the coupon rate or face value
is valid. This means that the corresponding CouponRate and Face value applies "on or before" the
specified ending date.

Data Types: double | cell | char

Settle — Settlement date of bond
serial date number | date character vector | datetime

Settlement date of the bond, specified as a scalar or a NBONDS-by-1 vector using serial date numbers,
date character vectors, or datetime arrays. The Settle date must be before the Maturity date.
Data Types: double | char | datetime
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Maturity — Maturity date of bond
serial date number | date character vector | datetime

Maturity date of the bond, specified as a scalar or a NBONDS-by-1 vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle,
Maturity,'Period',4,'Basis',3,'AdjustCashFlowsBasis',true,'BusinessDayConvent
ion','modifiedfollow')

Period — Number of coupon payments per year for bond
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year for the bond, specified as the comma-separated pair consisting
of 'Period' and a scalar or a NBONDS-by-1 vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis of bond
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the bond, specified as the comma-separated pair consisting of 'Basis' and a
scalar or a NBONDS-by-1 vector using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double
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EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NBONDS-by-1 vector. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond issue date (the date the bond begins to accrue interest), specified as the comma-separated pair
consisting of 'IssueDate' and a scalar or a NBONDS-by-1 vector using serial date numbers, date
character vectors, or datetime arrays. The IssueDate cannot be after the Settle date.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NBONDS-by-1 vector using serial date numbers, date
character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.

Note When FirstCouponDate and LastCouponDate

are both specified, the FirstCouponDate takes precedence in determining the coupon payment
structure. If FirstCouponDate is not specified, then LastCouponDate determines the coupon
structure of the bond.

Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NBONDS-by-1 vector using serial date numbers, date character
vectors, or datetime arrays.

Note When FirstCouponDate and LastCouponDate are both specified, the FirstCouponDate
takes precedence in determining the coupon payment structure. If FirstCouponDate is not
specified, then LastCouponDate determines the coupon structure of the bond.
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Data Types: double | char | datetime

StartDate — Forward starting date of coupon payments
serial date number | date character vector | datetime

Forward starting date of coupon payments after the Settle date, specified as the comma-separated
pair consisting of 'StartDate' and a scalar or a NBONDS-by-1 vector using serial date numbers,
date character vectors, or datetime arrays.

Note To make an instrument forward starting, specify StartDate as a future date.

If you do not specify a StartDate, the effective start date is the Settle date.
Data Types: double | char | datetime

Face — Face value of bond
100 (default) | numeric

Face value of the bond, specified as the comma-separated pair consisting of 'Face' and a scalar or a
NBONDS-by-1 vector.

Note CouponRate and Face can change over the life of the bond. Schedules for CouponRate and
Face can be specified with an NBONDS-by-1 cell array where each element is a NumDates-by-2 matrix
or cell array, where the first column is dates (serial date numbers or character vectors) and the
second column is associated rates. The date indicates the last day that the coupon rate or face value
is valid. This means that the corresponding CouponRate and Face value applies "on or before" the
specified ending date.

When the corresponding Face value is used to compute the coupon cashflow on the specified ending
date. Three things happen on the specified ending date:

1 The last coupon corresponding to the current Face value is paid.
2 The principal differential (between the current and the next Face value) is paid.
3 The date marks the beginning of the period with the next Face value, for which the cashflow

does not occur until later.

Data Types: double | cell | char

AdjustCashFlowsBasis — Adjusts cash flows according to accrual amount based on actual
period day count
false (default) | logical with a value of true or false

Adjusts cash flows according to the accrual amount based on the actual period day count, specified as
the comma-separated pair consisting of 'AdjustCashFlowsBasis' and a scalar or a NBONDS-by-1
vector.
Data Types: logical

BusinessDayConvention — Business day conventions
'actual' (default) | character vector with values'actual', 'follow', 'modifiedfollow',
'previous'or 'modifiedprevious'
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Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a scalar or NBONDS-by-1 cell array of character vectors of business
day conventions to be used in computing payment dates. The selection for business day convention
determines how nonbusiness days are treated. Nonbusiness days are defined as weekends plus any
other date that businesses are not open (for example, statutory holidays). Values are:

• 'actual' — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• 'follow' — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• 'modifiedfollow' — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• 'previous' — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• 'modifiedprevious' — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

CompoundingFrequency — Compounding frequency for yield calculation
SIA uses2, ICMA uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a scalar or a NBONDS-by-1 vector. Values are:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NBONDS-by-1 vector. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double

Holidays — Dates for holidays
holidays.m used (default)

Dates for holidays, specified as the comma-separated pair consisting of 'Holidays' and a
NHOLIDAYS-by-1 vector of MATLAB dates using serial date numbers, date character vectors, or
datetime arrays. Holidays are used in computing business days.
Data Types: double | char | datetime

PrincipalType — Type of principal when a Face schedule is specified
sinking (default) | character vector with values 'sinking' or 'bullet'

Type of principal when a Face schedule, specified as the comma-separated pair consisting of
'PrincipalType' and a value of 'sinking' or 'bullet' using a scalar or a NBONDS-by-1 vector.

If 'sinking', principal cash flows are returned throughout the life of the bond.

If 'bullet', principal cash flow is only returned at maturity.
Data Types: char | cell

Output Arguments
CFlowAmounts — Cash flow amounts
matrix
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Cash flow amounts, returned as a NBONDS-by-NCFS (number of cash flows) matrix. The first entry in
each row vector is the accrued interest due at settlement. This amount could be zero, positive or
negative. If no accrued interest is due, the first column is zero. If the bond is trading ex-coupon then
the accrued interest is negative.

CFlowDates — Cash flow dates for a portfolio of bonds
matrix

Cash flow dates for a portfolio of bonds, returned as a NBONDS-by-NCFS matrix. Each row represents
a single bond in the portfolio. Each element in a column represents a cash flow date of that bond.

If all the above inputs (Settle, Maturity, IssueDate, FirstCouponDate, LastCouponDate, and
StartDate) are either serial date numbers or date character vectors, then CFlowDates is returned
as a serial date number. If any of these inputs are datetime arrays, then CFlowDates is returned as a
datetime array.

TFactors — Matrix of time factors for a portfolio of bonds
matrix

Matrix of time factors for a portfolio of bonds, returned as a NBONDS-by-NCFS matrix. Each row
corresponds to the vector of time factors for each bond. Each element in a column corresponds to the
specific time factor associated with each cash flow of a bond.

Time factors are for price/yield conversion and time factors are in units of whole semiannual coupon
periods plus any fractional period using an actual day count. For more information on time factors,
see “Time Factors” on page 19-514.

CFlowFlags — Cash flow flags for a portfolio of bonds
matrix

Cash flow flags for a portfolio of bonds, returned as a NBONDS-by-NCFS matrix. Each row corresponds
to the vector of cash flow flags for each bond. Each element in a column corresponds to the specific
flag associated with each cash flow of a bond. Flags identify the type of each cash flow (for example,
nominal coupon cash flow, front, or end partial, or "stub" coupon, maturity cash flow).

Flag Cash Flow Type
0 Accrued interest due on a bond at settlement.
1 Initial cash flow amount smaller than normal due to a “stub” coupon period. A

stub period is created when the time from issue date to first coupon date is
shorter than normal.

2 Larger than normal initial cash flow amount because the first coupon period is
longer than normal.

3 Nominal coupon cash flow amount.
4 Normal maturity cash flow amount (face value plus the nominal coupon amount).
5 End “stub” coupon amount (last coupon period is abnormally short and actual

maturity cash flow is smaller than normal).
6 Larger than normal maturity cash flow because the last coupon period longer

than normal.
7 Maturity cash flow on a coupon bond when the bond has less than one coupon

period to maturity.
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Flag Cash Flow Type
8 Smaller than normal maturity cash flow when the bond has less than one coupon

period to maturity.
9 Larger than normal maturity cash flow when the bond has less than one coupon

period to maturity.
10 Maturity cash flow on a zero coupon bond.
11 Sinking principal and initial cash flow amount smaller than normal due to a

"stub" coupon period. A stub period is created when the time from issue date to
first coupon date is shorter than normal.

12 Sinking principal and larger than normal initial cash flow amount because the
first coupon period is longer than normal.

13 Sinking principal and nominal coupon cash flow amount.

CFPrincipal — Principal cash flows
matrix

Principal cash flows, returned as a NBONDS-by-NCFS matrix.

If PrincipalType is 'sinking', CFPrincipal output indicates when the principal is returned.

If PrincipalType is 'bullet', CFPrincipal is all zeros and, at Maturity, the appropriate Face
value.

More About
Time Factors

Time factors help determine the present value of a stream of cash flows.

The term time factors refer to the exponent TF in the discounting equation

PV = ∑
i = 1

n CF
(1 + z

f )TF ,

where:

PV = Present value of a cash flow.
CF = Cash flow amount.
z = Risk-adjusted annualized rate or yield corresponding to a given cash flow. The

yield is quoted on a semiannual basis.
f = Frequency of quotes for the yield. Default is 2 for Basis values 0 to 7 and 13

and 1 for Basis values 8 to 12. The default can be overridden by specifying the
CompoundingFrequency name-value pair.
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TF = Time factor for a given cash flow. The time factor is computed using the
compounding frequency and the discount basis. If these values are not specified,
then the defaults are as follows: CompoundingFrequency default is 2 for Basis
values 0 to 7 and 13 and 1 for Basis values 8 to 12.

DiscountBasis is 0 for Basis values 0 to 7 and 13 and the value of the input
Basis for Basis values 8 to 12.

Note The Basis is always used to compute accrued interest.

References
[1] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[2] Mayle, J. "Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures." SIA, Vol 2, Jan 1994.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
accrfrac | cfdates | cpncount | cftimes | cpndaten | cpndatenq | cpndatep | cpndaysn |
cpndaysp | datetime | cpndatepq

Topics
“Analyzing and Computing Cash Flows” on page 2-14

External Websites
Asset Liability Management Using MATLAB (3 min 58 sec)

Introduced before R2006a
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cfconv
Cash flow convexity

Syntax
CFlowConvexity = cfconv(CashFlow,Yield)

Description
CFlowConvexity = cfconv(CashFlow,Yield) returns the convexity of a cash flow in periods.

Examples

Compute the Convexity of a Cash Flow

This example shows how to return the convexity of a cash flow, given a cash flow of nine payments of
$2.50 and a final payment $102.50, with a periodic yield of 2.5%.

CashFlow = [2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

Convex = cfconv(CashFlow, 0.025)

Convex = 90.4493

Input Arguments
CashFlow — Cash flow
vector of real numbers

Cash flow, specified as a vector of real numbers.
Data Types: double

Yield — Periodic yield
scalar decimal

Periodic yield, specified as a scalar decimal.
Data Types: double

Output Arguments
CFlowConvexity — Convexity
scalar

Convexity returned as a scalar.
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See Also
bndconvp | bndconvy | bnddurp | bnddury | cfdur

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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cfdates
Cash flow dates for fixed-income security

Syntax
CFlowDates = cfdates(Settle,Maturity)
CFlowDates = cfdates( ___ ,Period,Basis,EndMonthRule,IssueDate,FirstCouponDate,
LastCouponDate)

Description
CFlowDates = cfdates(Settle,Maturity) generates a matrix of actual cash flow payment
dates for NUMBONDS fixed income securities. All cash flow dates are determined regardless of whether
the first and last coupon periods are normal, long or short.

CFlowDates = cfdates( ___ ,Period,Basis,EndMonthRule,IssueDate,FirstCouponDate,
LastCouponDate) specifies options using one or more optional arguments in addition to the input
arguments in the previous syntax.

Examples

Obtain Cash Flow Dates for Fixed-Income Security

Compute the cash flow dates given the Settle and Maturity dates.

CFlowDates = cfdates('14 Mar 1997', '30 Nov 1998', 2, 0, 1)

CFlowDates = 1×4

      729541      729724      729906      730089

datestr(CFlowDates)

ans = 4x11 char array
    '31-May-1997'
    '30-Nov-1997'
    '31-May-1998'
    '30-Nov-1998'

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, or LastCouponDate
are datetime arrays, then CFlowDates is returned as a datetime array. For example:

CFlowDates = cfdates('14-Mar-1997', datetime('30-Nov-1998','Locale','en_US'), 2, 0, 1)

CFlowDates = 1x4 datetime
   31-May-1997   30-Nov-1997   31-May-1998   30-Nov-1998

Given three securities with different maturity dates and the same default arguments:
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Maturity = ['30-Sep-1997'; '31-Oct-1998'; '30-Nov-1998'];
CFlowDates = cfdates('14-Mar-1997', Maturity)

CFlowDates = 3×4

      729480      729663         NaN         NaN
      729510      729694      729875      730059
      729541      729724      729906      730089

To look at the cash-flow dates for the last security:

datestr(CFlowDates(3,:))

ans = 4x11 char array
    '31-May-1997'
    '30-Nov-1997'
    '31-May-1998'
    '30-Nov-1998'

Input Arguments
Settle — Settlement date
cell array of date character vectors | vector of serial date numbers | datetime array

Settlement date, specified as an NINST-by-1 vector using serial date numbers, cell array of date
character vectors, or a datetime array. Settle must be earlier than Maturity.
Data Types: double | char | cell | datetime

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers | datetime array

Maturity date, specified as an NINST-by-1 vector using serial date numbers, cell array of date
character vectors, or a datetime array.
Data Types: double | char | cell | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

(Optional) Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

(Optional) Day-count basis, specified as positive integers using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

(Optional) End-of-month rule flag, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
cash flow payment dates are determined from other inputs (default) | serial date number | date
character vector | datetime

(Optional) Bond Issue date, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using
serial date numbers, date character vectors, or datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
cash flow payment dates are determined from other inputs (default) | serial date number | date
character vector | datetime

Irregular or normal first coupon date, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS
vector using serial date numbers, date character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime
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LastCouponDate — Irregular or normal last coupon date
cash flow payment dates are determined from other inputs (default) | serial date number | date
character vector | datetime

Irregular or normal last coupon date, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS
vector using serial date numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

Output Arguments
CFlowDates — Actual cash flow payment dates
matrix

Actual cash flow payment dates, returned as a N-row matrix of dates in serial date format or datetime
format (if any inputs are in datetime format). CFlowDates has NUMBONDS rows and the number of
columns is determined by the maximum number of cash flow payment dates required to hold the
bond portfolio. NaNs are padded for bonds which have less than the maximum number of cash flow
payment dates. Use the function datestr to convert serial date numbers to formatted date character
vectors.

If all of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, or LastCouponDate are
either serial date numbers or date character vectors, then CFlowDates is returned as a serial date
number.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, or LastCouponDate
are datetime arrays, then CFlowDates is returned as a datetime array.

Note The cash flow flags for a portfolio of bonds were formerly available as the cfdates second
output argument, CFlowFlags. You can now use cfamounts to get these flags. If you specify a
CFlowFlags argument, cfdates displays a message directing you to use cfamounts.

See Also
accrfrac | cfamounts | cftimes | cpncount | cpndaten | cpndatenq | cpndatep | cpndaysn |
cpndaysp | cpnpersz | datetime | cpndatepq

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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cfdatesq
Quasi-coupon dates for fixed-income security

Syntax
QuasiCouponDates = cfdatesq(Settle,Maturity)
QuasiCouponDates = cfdatesq( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,PeriodsBeforeSettle,PeriodsAfterMaturity)

Description
QuasiCouponDates = cfdatesq(Settle,Maturity) returns a matrix of quasi-coupon dates
expressed in serial date format (default) or datetime format (if any inputs are in datetime format).

Successive quasi-coupon dates determine the length of the standard coupon period for the fixed-
income security of interest, and do not necessarily coincide with actual coupon payment dates. Quasi-
coupon dates are determined regardless of whether the first or last coupon periods are normal, long,
or short.

QuasiCouponDates has NUMBONDS rows and the number of columns is determined by the maximum
number of quasi-coupon dates required to hold the bond portfolio. NaNs are padded for bonds which
have less than the maximum number quasi-coupon dates. By default, quasi-coupon dates after
settlement and on or preceding maturity are returned. If settlement occurs on maturity, and maturity
is a quasi-coupon date, then the maturity date is returned.

QuasiCouponDates = cfdatesq( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate,PeriodsBeforeSettle,PeriodsAfterMaturity)
specifies options using one or more optional arguments in addition to the input arguments in the
previous syntax.

Examples

Obtain Quasi-Coupon Dates for Fixed-Income Security

Compute the quasi-coupon dates given the Settle and Maturity dates.

QuasiCouponDates = cfdatesq('14-Mar-1997', '30-Nov-1998', 2, 0, 1)

QuasiCouponDates = 1×4

      729541      729724      729906      730089

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, or LastCouponDate
are datetime arrays, then QuasiCouponDates is returned as a datetime array. For example:

QuasiCouponDates = cfdatesq('14-Mar-1997', datetime('30-Nov-1998','Locale','en_US'), 2, 0, 1)
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QuasiCouponDates = 1x4 datetime
   31-May-1997   30-Nov-1997   31-May-1998   30-Nov-1998

Input Arguments
Settle — Settlement date
cell array of date character vectors | vector of serial date numbers | datetime array

Settlement date, specified as an NINST-by-1 vector using serial date numbers, cell array of date
character vectors, or a datetime array. Settle must be earlier than Maturity.
Data Types: double | char | cell | datetime

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers | datetime array

Maturity date, specified as an NINST-by-1 vector using serial date numbers, cell array of date
character vectors, or a datetime array.
Data Types: double | char | cell | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

(Optional) Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

(Optional) Day-count basis, specified as positive integers using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

(Optional) End-of-month rule flag, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
cash flow payment dates are determined from other inputs (default) | serial date number | date
character vector | datetime

(Optional) Bond Issue date, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using
serial date numbers, date character vectors, or datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
cash flow payment dates are determined from other inputs (default) | serial date number | date
character vector | datetime

Irregular or normal first coupon date, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS
vector using serial date numbers, date character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
cash flow payment dates are determined from other inputs (default) | serial date number | date
character vector | datetime

Irregular or normal last coupon date, specified as a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS
vector using serial date numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

PeriodsBeforeSettle — Number of quasi-coupon dates on or before settlement to include
0 (default) | nonnegative integer
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(Optional) Number of quasi-coupon dates on or before settlement to include, specified as a
nonnegative integer.
Data Types: double

PeriodsAfterMaturity — Number of quasi-coupon dates after maturity to include
0 (default) | nonnegative integer

(Optional) Number of quasi-coupon dates after maturity to include, specified as a nonnegative
integer.
Data Types: double

Output Arguments
QuasiCouponDates — Quasi-coupon dates
matrix

Quasi-coupon dates, returned as a N-row matrix of dates in serial date format or datetime format (if
any inputs are in datetime format). QuasiCouponDates has NUMBONDS rows and the number of
columns is determined by the maximum number of quasi-coupon dates required to hold the bond
portfolio. NaNs are padded for bonds which have less than the maximum number quasi-coupon dates.
By default, quasi-coupon dates after settlement and on or preceding maturity are returned. If
settlement occurs on maturity, and maturity is a quasi-coupon date, then the maturity date is
returned.

If all of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, or LastCouponDate are
either serial date numbers or date character vectors, then QuasiCouponDates is returned as a
serial date number.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, or LastCouponDate
are datetime arrays, then QuasiCouponDates is returned as a datetime array.

See Also
accrfrac | cfamounts | cftimes | cpncount | cpndaten | cpndatenq | cpndatep | cpndaysn |
cpndaysp | cpnpersz | datetime | cpndatepq

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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cfdur
Cash-flow duration and modified duration

Syntax
[Duration,ModDuration] = cfdur(CashFlow,Yield)

Description
[Duration,ModDuration] = cfdur(CashFlow,Yield) calculates the duration and modified
duration of a cash flow in periods.

Examples

Compute the Duration and Modified Duration of a Cash Flow

This example shows how to calculate the duration and modified duration of a cash flow, given a cash
flow of nine payments of $2.50 and a final payment $102.50, with a periodic yield of 2.5%.

CashFlow=[2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

[Duration, ModDuration] = cfdur(CashFlow, 0.025)

Duration = 8.9709

ModDuration = 8.7521

Input Arguments
CashFlow — Cash flow
vector of real numbers | matrix of real numbers

Cash flow, specified as a vector or matrix of real numbers. When using a matrix, each column of the
matrix is a separate CashFlow.
Data Types: double

Yield — Periodic yield
scalar decimal | vector of decimals

Periodic yield, specified as a scalar decimal or a vector of decimals.
Data Types: double

Output Arguments
Duration — Duration
vector

19 Functions

19-526



Duration returned as a scalar or vector.

ModDuration — Modified duration
vector

Modified duration, returned as a scalar or vector.

See Also
bndconvp | bndconvy | bnddurp | bnddury | cfconv

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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cfplot
Visualize cash flows of financial instruments

Syntax
cfplot(CFlowDates,CFlowAmounts)
cfplot( ___ ,Name,Value)

h = cfplot( ___ ,Name,Value)
[h,axes_handle] = cfplot( ___ ,Name,Value)

Description
cfplot(CFlowDates,CFlowAmounts) plots a cash flow diagram for the specified cash flow
amounts (CFlowAmounts) and dates (CFlowDates). The length and orientation of each arrow
correspond to the cash flow amount.

cfplot( ___ ,Name,Value) plots a cash flow diagram for the specified cash flow amounts
(CFlowAmounts), dates (CFlowDates), and optional name-value pair arguments.

h = cfplot( ___ ,Name,Value) returns the handle to the line objects used in the cash flow
diagram.

[h,axes_handle] = cfplot( ___ ,Name,Value) returns the handles to the line objects and the
axes using optional name-value pair arguments.

Examples

Plot Cash Flows

Define CFlowAmounts and CFlowDates using the cfamounts function.

CouponRate = [0.06; 0.05; 0.03];
Settle = '03-Jun-1999';
Maturity = ['15-Aug-2000';'15-Dec-2000';'15-Jun-2000'];
Period = [1; 2; 2];  Basis = [1; 0; 0];
[CFlowAmounts, CFlowDates] = cfamounts(...
CouponRate, Settle, Maturity, Period, Basis)

CFlowAmounts = 3×5

   -4.8000    6.0000  106.0000       NaN       NaN
   -2.3352    2.5000    2.5000    2.5000  102.5000
   -1.4011    1.5000    1.5000  101.5000       NaN

CFlowDates = 3×5

      730274      730347      730713         NaN         NaN
      730274      730286      730469      730652      730835
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      730274      730286      730469      730652         NaN

Plot all cash flows on the same axes, and label the first two.

cfplot(CFlowDates, CFlowAmounts, 'ShowAmnt', [1 2])

Group the second and third cash flows.

figure;
cfplot(CFlowDates, CFlowAmounts, 'Groups', {[2 3]}, 'ShowAmnt', 1);
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Format the date axis and place ticks on actual cash flow dates.

figure;
cfplot(CFlowDates, CFlowAmounts, 'Groups', {[2 3]}, 'ShowAmnt', 1, ...
'DateFormat', 6, 'DateSpacing', 100);
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Stack the cash flow arrows occurring on the same dates.

figure;
cfplot(CFlowDates, CFlowAmounts, 'Groups', {[2 3]}, 'ShowAmnt', 1, ...
'DateFormat', 6, 'DateSpacing', 100, 'Stacked', 1);
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Form subplots of multiple groups and add titles using axes handles.

figure;
[h, axes_handle] = cfplot(CFlowDates, CFlowAmounts, ...
'Groups', {[1] [2 3]}, 'ShowAmnt', 1, 'Stacked', 2, ...
'DateSpacing', [1 60 2 100], 'DateFormat', [1 12 2 6]);
title(axes_handle(1), 'Group 1', 'FontWeight', 'bold');
title(axes_handle(2), 'Group 2', 'FontWeight', 'bold');
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Plot Cash Flows Using datetime Input for CFlowDates

Define CFlowDates using datetime input and plot the cash flow.

CouponRate = [0.06; 0.05; 0.03];
Settle = '03-Jun-1999';
Maturity = ['15-Aug-2000';'15-Dec-2000';'15-Jun-2000'];
Period = [1; 2; 2];  Basis = [1; 0; 0];
[CFlowAmounts, CFlowDates] = cfamounts(...
CouponRate, Settle, Maturity, Period, Basis);
cfplot(datetime(CFlowDates,'ConvertFrom','datenum','Locale','en_US'), CFlowAmounts, 'ShowAmnt', [1 2])
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Plot Cash Flows for Swap

Define the swap using the swapbyzero function.

Settle = datenum('08-Jun-2010');
RateSpec = intenvset('Rates', [.005 .0075 .01 .014 .02 .025 .03]',...
'StartDates',Settle, 'EndDates',{'08-Dec-2010','08-Jun-2011',...
'08-Jun-2012','08-Jun-2013','08-Jun-2015','08-Jun-2017',...
'08-Jun-2020'}');
Maturity = datenum('15-Sep-2020');
LegRate = [.025 50];
LegType = [1 0]; % fixed/floating
LatestFloatingRate = .005;
[Price, SwapRate, AI, RecCF, RecCFDates, PayCF,PayCFDates] = ...
swapbyzero(RateSpec, LegRate, Settle, Maturity,'LegType',LegType,...
'LatestFloatingRate',LatestFloatingRate)

Price = -6.7258

SwapRate = NaN

AI = 1.4575

RecCF = 1×12
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   -1.8219    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000  102.5000

RecCFDates = 1×12

      734297      734396      734761      735127      735492      735857      736222      736588      736953      737318      737683      738049

PayCF = 1×12

   -0.3644    0.5000    1.4048    1.9823    2.8436    3.2842    3.8218    4.1733    4.5164    4.4666    4.8068  104.6743

PayCFDates = 1×12

      734297      734396      734761      735127      735492      735857      736222      736588      736953      737318      737683      738049

Define CFlowDates and CFlowAmounts for the swap and generate a cash flow plot using cfplot.

CFlowDates = [PayCFDates;RecCFDates];
CFlowAmounts = [-PayCF;RecCF];
cfplot(CFlowDates, CFlowAmounts, 'Groups', {[1 2]});
xlabel('Numeric Cash Flow Dates');
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Input Arguments
CFlowDates — Matrix of serial date numbers for cash flows
vector

Matrix of serial date numbers or datetime arrays for cash flows, specified as a NINST-by-(Number of
cash flows) matrix of cash flow dates in date numbers, with empty entries padded with NaNs.

Each row of the CFlowDates matrix represents an instrument so that CFlowDates(k,:) is the
vector of cash flow dates for the kth instrument. Rows are padded with trailing NaNs if the number of
cash flows is not the same for all instruments.

cfamounts can be used to generate CFlowDates.
Data Types: double

CFlowAmounts — Matrix of cash flow amounts
vector

Matrix of cash flow amounts, specified as a NINST-by-(Number of cash flows) matrix of cash
flow amounts, with empty entries padded with NaNs. The CFlowAmounts matrix must be the same
size as CFlowDates.

cfamounts can be used to generate CFlowAmounts.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: cfplot(CFlowDates,CFlowAmounts,'Groups',{[2
3]},'ShowAmnt',1,'DateFormat',6,'DateSpacing',100)

Groups — Group cash flows
'off' (default) | character vector with value 'off' or 'individual' | cell array of character
vectors

Group cash flows, specified as the comma-separated pair consisting of 'Groups' and the following
values:

• 'off' — Show all instruments in one set of axes, arranged from top to bottom.
• 'individual' — Generate subplots and plot each instrument in its own axis.
• GRP — Cell array of instrument groups, {Group1, Group2,... }. This generates subplots and

plots each group in each axis. When specifying {Group1, Group2,... }, each Group must be
mutually exclusive vectors of INSTIndex. Unspecified instruments are not shown in the grouped
plot.

Data Types: char | cell

Stacked — Stack arrows if cash flows are in same direction on same day
ignored when 'Groups' is 'off', otherwise 'off' (default) | character vector with values 'off',
'all', or 'GRPIndex'

19 Functions

19-536



Stack arrows if the cash flows are in the same direction on the same day, specified as the comma-
separated pair consisting of 'Stacked' and the following values:

• 'off' — For all groups, all arrows originate from the horizontal line.
• 'all' — For all groups, arrows are stacked if the cash flows are in the same direction on the

same day.
• 'GRPIndex' — For specified groups, arrows are stacked if the cash flows are in the same

direction on the same day.

Data Types: char

ShowAmnt — Show amount on arrows
'off' (default) | character vector with values 'off' or 'individual' | cell array of character
vectors

Show amount on the arrows, specified as the comma-separated pair consisting of 'ShowAmnt' and
the following values:

• 'off' — Hide cash flow amounts on arrows.
• 'all' — Show cash flow amounts on arrows.
• [INSTIndex or GRPIndex] — Show cash flow amounts for the specified vector of instruments

(when 'Groups' is 'off') or groups.

Data Types: char | cell

DateSpacing — Control for date axis tick spacing
'off' (default) | character vector with values 'off' or TickDateSpace | numeric value for
TickDateSpace

Control for data spacing, specified as the comma-separated pair consisting of 'DateSpacing' and
the following values:

• 'off' — The date axis ticks are spaced regularly.
• TickDateSpace — The date axis ticks are placed on actual cash flow dates. The ticks skip some

cash flows if they are less than TickDateSpace apart.

Data Types: char | double

DateFormat — Date format
'off' (default) | character vector with values 'off' or DateFormNum | numeric value for
DateFormNum

Date format, specified as the comma-separated pair consisting of 'DateFormat' and the following
values:

• 'off' — The date axis tick labels are in date numbers.
• DateFormNum — The date format number (2 = 'mm/dd/yy', 6 = 'mm/dd', and 10 = 'yyyy').

Additional values for DateFormNum are as follows:

DateFormNum Example
2 03/01/00
3 Mar
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DateFormNum Example
5 03
6 03/01
7 01
8 Wed
9 W
10 2000
11 00
12 Mar00
17 Q1–00
18 Q1
19 01/03
20 01/03/00
27 Q1–2000
28 Mar2000
29 2000–03–01

Data Types: char | double

Output Arguments
h — Handles to line objects
vector

Handles to line objects, returned as a NINST-by-3 matrix of handles to line objects, containing
[hLines, hUArrowHead, hDArrowHead] where:

• hLines — Horizontal and vertical lines used in the cash flow diagram
• hUArrowHead — "Up" arrowheads
• hDArrowHead — "Down" arrowheads

axes_handle — Handles to axes for plot or subplots
vector

Handles to axes for the plot or subplots, returned as a (Number of axes)-by-1 vector of handles to
axes.

See Also
cfamounts | cfdates | swapbyzero | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced in R2013a
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cfport
Portfolio form of cash flow amounts

Syntax
[CFBondDate,AllDates,AllTF,IndByBond] = cfport(CFlowAmounts,CFlowDates)
[CFBondDate,AllDates,AllTF,IndByBond] = cfport( ___ ,TFactors)

Description
[CFBondDate,AllDates,AllTF,IndByBond] = cfport(CFlowAmounts,CFlowDates)
computes a vector of all cash flow dates of a bond portfolio, and a matrix mapping the cash flows of
each bond to those dates. Use the matrix for pricing the bonds against a curve of discount factors.

[CFBondDate,AllDates,AllTF,IndByBond] = cfport( ___ ,TFactors) specifies options
using one or more optional arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Price for a Cash Flow Given Yield to Maturity

Use cfprice to compute the price for a cash flow given yield to maturity.

Define data for the yield curve.

Settle = datenum('01-Jul-2003');
Yield = .05;
CFAmounts = [30;40;30];
CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

Compute the Price.

Price = cfprice(CFAmounts, CFDates, Yield, Settle)

Price = 3×1

   28.4999
   36.1689
   25.8195

Compute the Price for a Cash Flow Given Yield to Maturity Using datetime Inputs

Use cfprice to compute the price for a cash flow given yield to maturity using datetime inputs.

Settle = datenum('01-Jul-2003');
Yield = .05;
CFAmounts = [30;40;30];
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CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

CFDates = datetime(CFDates,'ConvertFrom','datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
Price = cfprice(CFAmounts, CFDates, Yield, Settle)

Price = 3×1

   28.4999
   36.1689
   25.8195

Input Arguments
CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as number of bonds (NUMBONDS) by number of cash flows (NUMCFS)
matrix with entries listing cash flow amounts corresponding to each date in CFlowDates.
Data Types: double

CFlowDates — Cash flow dates
serial date numbers | date character vector | datetime array

Cash flow dates, specified as an NUMBONDS-by-NUMCFS matrix with rows listing cash flow dates using
a serial date number, date character vector, or datetime array, for each bond and padded with NaNs. If
CFlowDates is a serial date number or a date character vector, AllDates is returned as an array of
serial date numbers. If CFlowDates is a datetime array, then AllDates is returned as a datetime
array.
Data Types: double

TFactors — Time between settlement and the cash flow date
matrix

(Optional) Time between settlement and the cash flow date, specified as an NUMBONDS-by-NUMCFS
matrix with entries listing the time between settlement and the cash flow date measured in
semiannual coupon periods.
Data Types: double

Output Arguments
CFBondDate — Cash flows indexed by bond and by date
matrix

Cash flows indexed by bond and by date, returned as an NUMBONDS by number of dates (NUMDATES)
matrix. Each row contains a bond's cash flow values at the indices corresponding to entries in
AllDates. Other indices in the row contain zeros.

AllDates — List of all dates that have any cash flow from the bond portfolio
matrix
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List of all dates that have any cash flow from the bond portfolio, returned as an NUMDATES-by-1
matrix. The AllDates matrix is expressed in serial date format (default) or datetime format (if
CFlowDates is in datetime format).

AllTF — Time factors corresponding to the dates in AllDates
matrix

Time factors corresponding to the dates in AllDates, returned as an NUMDATES-by-1 matrix. If
TFactors is not entered, AllTF contains the number of days from the first date in AllDates.

IndByBond — Indices by bond
matrix

Indices by bond, returned as an NUMBONDS-by-NUMCFS matrix. The ith row contains a list of indices
into AllDates where the ith bond has cash flows. Since some bonds have more cash flows than
others, the matrix is padded with NaNs.

See Also
cfamounts | cfplot | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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cfprice
Compute price for cash flow given yield to maturity

Syntax
Price = cfprice(CFlowAmounts,CFlowDates,Yield,Settle)
Price = cfprice( ___ ,Name,Value)

Description
Price = cfprice(CFlowAmounts,CFlowDates,Yield,Settle) computes a price given yield
for a cash flow.

Price = cfprice( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Price for a Cash Flow Given Yield to Maturity

Use cfprice to compute the price for a cash flow given yield to maturity.

Define data for the yield curve.

Settle = datenum('01-Jul-2003');
Yield = .05;
CFAmounts = [30;40;30];
CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

Compute the Price.

Price = cfprice(CFAmounts, CFDates, Yield, Settle)

Price = 3×1

   28.4999
   36.1689
   25.8195

Compute the Price for a Cash Flow Given Yield to Maturity Using datetime Inputs

Use cfprice to compute the price for a cash flow given yield to maturity using datetime inputs.

Settle = datenum('01-Jul-2003');
Yield = .05;
CFAmounts = [30;40;30];
CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});
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CFDates = datetime(CFDates,'ConvertFrom','datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
Price = cfprice(CFAmounts, CFDates, Yield, Settle)

Price = 3×1

   28.4999
   36.1689
   25.8195

Input Arguments
CFlowAmounts — Cash flow amounts
vector

Cash flow amounts, specified as an NINST-by-MOSTCFS matrix. Each row is a list of cash flow values
for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded
with NaNs.
Data Types: double

CFlowDates — Cash flow dates
serial date number | date character vector | datetime array

Cash flow dates, specified as an NINST-by-MOSTCFS matrix. Each entry contains the date of the
corresponding cash flow in CFlowAmounts.
Data Types: double | char | datetime

Yield — Yields
vector

Yields specified as an NINST-by-1 vector.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. The Settle date is the date on which the cash flows are priced.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note An optional input of size NINST-by-1 is also acceptable as a single value applicable to all
contracts. Single values are internally expanded to an array of size NINST-by-1.
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Example: Price =
cfprice(CFlowAmounts,CFlowDates,Yield,Settle,'Basis',4,'CompoundingFrequency'
,4)

Basis — Day-count basis
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a positive integer
using a N-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

CompoundingFrequency — Compounding frequency
2 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Compounding frequency, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a positive integer using a N-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

CompoundingFrequency — Compounding frequency
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

Output Arguments
Price — Price of cash flows
vector

Price of cash flows, returned as an NINST-by-1 vector.

See Also
cfbyzero | cfyield | cfspread | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced in R2012a
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cfspread
Compute spread over yield curve for cash flow

Syntax
Spread = cfspread(RateSpec,Price,CFlowAmounts,CFlowDates,Settle)
Spread = cfspread( ___ ,Name,Value)

Description
Spread = cfspread(RateSpec,Price,CFlowAmounts,CFlowDates,Settle) computes spread
over a yield curve for a cash flow.

Spread = cfspread( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Compute Spread Over a Yield Curve for a Cash Flow

Use cfspread to compute the spread over a yield curve for a cash flow.

Define data for the yield curve.

Settle = datenum('01-Jul-2003');
CurveDates = daysadd(Settle,360*[.25 .5 1 2 3 5 7 10 20],1);
ZeroRates = [.0089 .0096 .0107 .0130 .0166 .0248 .0306 .0356 .0454]';

Compute the RateSpec.

RateSpec = intenvset('StartDates', Settle, 'EndDates', CurveDates,...
'Rates', ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [9x1 double]
            Rates: [9x1 double]
         EndTimes: [9x1 double]
       StartTimes: [9x1 double]
         EndDates: [9x1 double]
       StartDates: 731763
    ValuationDate: 731763
            Basis: 0
     EndMonthRule: 1

Compute the spread.

Price = 98;
CFAmounts = [30;40;30];
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CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

Spread = cfspread(RateSpec, Price, CFAmounts, CFDates, Settle)

Spread = 3×1
103 ×

   -8.7956
   -4.0774
   -3.7073

Compute Spread Over a Yield Curve for a Cash Flow Using datetime Inputs

Use cfspread to compute the spread over a yield curve for a cash flow using datetime inputs.

Settle = datenum('01-Jul-2003');
CurveDates = daysadd(Settle,360*[.25 .5 1 2 3 5 7 10 20],1);
ZeroRates = [.0089 .0096 .0107 .0130 .0166 .0248 .0306 .0356 .0454]';
RateSpec = intenvset('StartDates', Settle, 'EndDates', CurveDates,...
'Rates', ZeroRates);
Price = 98;
CFAmounts = [30;40;30];
CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

CFDates = datetime(CFDates,'ConvertFrom','datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
Spread = cfspread(RateSpec, Price, CFAmounts, CFDates, Settle)

Spread = 3×1
103 ×

   -8.7956
   -4.0774
   -3.7073

Input Arguments
RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

Price — Price of cash flows
vector

Price of cash flows, specified as an NINST-by-1 vector.
Data Types: double
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CFlowAmounts — Cash flow amounts
vector

Cash flow amounts, specified as an NINST-by-MOSTCFS matrix . Each row is a list of cash flow values
for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded
with NaNs.
Data Types: double

CFlowDates — Cash flow dates
serial date number | date character vector | datetime array

Cash flow dates, specified as an NINST-by-MOSTCFS matrix . Each entry contains the date of the
corresponding cash flow in CFlowAmounts.
Data Types: double | char | datetime

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NINST-by-1 vector using serial date numbers or a cell array of date
character vectors. The Settle date is the date on which the cash flows are priced.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note An optional input of size NINST-by-1 is also acceptable as a single value applicable to all
contracts. Single values are internally expanded to an array of size NINST-by-1.

Example: Spread =
cfspread(RateSpec,Price,CFlowAmounts,CFlowDates,Settle,'Basis',4)

Basis — Day-count basis
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a positive integer
using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
Spread — Spread of cash flows over a zero curve
vector

Spread of cash flows over a zero curve, returned as an NINST-by-1 vector. The Spread is expressed
in basis points.

See Also
cfbyzero | cfyield | cfprice | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced in R2012a

 cfspread

19-549



cfyield
Compute yield to maturity for cash flow given price

Syntax
Yield = cfyield(CFlowAmounts,CFlowDates,Price,Settle)
Yield = cfyield( ___ ,Name,Value)

Description
Yield = cfyield(CFlowAmounts,CFlowDates,Price,Settle) computes yield to maturity for
a cash flow given price.

Yield = cfyield( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Yield to Maturity for a Cash Flow When Given a Price

Use cfyield to compute yield to maturity for a cash flow when given a price.

Define data for the yield curve and price.

Settle = datenum('01-Jul-2003');
Price = 98;
CFlowAmounts = [30 40 30];
CFlowDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'})';

Compute the Yield.

 Yield = cfyield(CFlowAmounts, CFlowDates, Price, Settle)

Yield = 0.0099

Compute the Yield to Maturity for a Cash Flow When Given a Price Using datetime Inputs

Use cfyield to compute yield to maturity for a cash flow, when given a price using datetime
inputs.

Settle = datenum('01-Jul-2003');
Price = 98;
CFlowAmounts = [30 40 30];
CFlowDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'})';

CFlowDates = datetime(CFlowDates,'ConvertFrom','datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
Yield = cfyield(CFlowAmounts, CFlowDates, Price, Settle)
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Yield = 0.0099

Input Arguments
CFlowAmounts — Cash flow amounts
vector

Cash flow amounts, specified as an NINST-by-MOSTCFS matrix. Each row is a list of cash flow values
for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded
with NaNs.
Data Types: double

CFlowDates — Cash flow dates
serial date number | date character vector | datetime array

Cash flow dates, specified as an NINST-by-MOSTCFS matrix. Each entry contains the date of the
corresponding cash flow in CFlowAmounts.
Data Types: double | char | datetime

Price — Prices
vector

Prices specified as an NINST-by-1 vector.
Data Types: double

Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NMBS-by-1 vector using serial date numbers or a cell array of date
character vectors. The Settle date is the date on which the cash flows are priced.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note An optional input of size NINST-by-1 is also acceptable as a single value applicable to all
contracts. Single values are internally expanded to an array of size NINST-by-1.

Example: Yield =
cfyield(CFAmounts,CFDates,Yield,Settle,'Basis',4,'CompoundingFrequency',4)

Basis — Day-count basis
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a positive integer
using a N-by-1 vector.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

CompoundingFrequency — Compounding frequency
2 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Compounding frequency, specified as the comma-separated pair consisting of
'CompoundingFrequency' and a positive integer using a N-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double
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CompoundingFrequency — Compounding frequency
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

Output Arguments
Yield — Yield for cash flows
vector

Yield for cash flows, returned as an NINST-by-1 vector.

See Also
cfbyzero | cfspread | cfprice | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced in R2012a
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cftimes
Time factors corresponding to bond cash flow dates

Syntax
TFactors = cftimes(Settle,Maturity)
TFactors = cftimes( ___ ,Name,Value)

Description
TFactors = cftimes(Settle,Maturity) determines the time factors corresponding to the cash
flows of a bond or set of bonds.

cftimes computes the time factor of a cash flow, which is the difference between the settlement date
and the cash flow date, in units of semiannual coupon periods. In computing time factors, use SIA
actual/actual day count conventions for all time factor calculations.

TFactors = cftimes( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Time Factor of a Cash Flow

This example shows how to calculate a cash flow time factor.

Settle = '15-Mar-1997';
Maturity = '01-Sep-1999';
Period = 2;
TFactors = cftimes(Settle, Maturity, Period)

TFactors = 1×5

    0.9239    1.9239    2.9239    3.9239    4.9239

Input Arguments
Settle — Settlement date
cell array of date character vectors | vector of serial date numbers

Settlement date, specified as an NINST-by-1 vector using serial date numbers or a cell array of date
character vectors. Settle must be earlier than Maturity.
Data Types: double | char | cell

Maturity — Maturity date
cell array of date character vectors | vector of serial date numbers
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Maturity date, specified as an NINST-by-1 vector using serial date numbers or a cell array of date
character vectors. The Settle date is the date on which the cash flows are priced.
Data Types: double | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: TFactors = cftimes(Settle,Maturity,'Period',4)

Period — Number of coupon payments per year
2 (default) | numeric with values 0, 1, 2, 3, 4, 6 or 12

Number of coupon payments per year, specified as the comma-separated pair consisting of 'Period'
and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using the values: 0, 1, 2, 3, 4, 6, or 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a positive integer
using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1
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End-of-month rule flag, specified as the comma-separated pair consisting of 'EndMonthRule' and a
scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime

Bond Issue date, specified as the comma-separated pair consisting of 'IssueDate' and a scalar or a
NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers, date character vectors, or
datetime arrays.

If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

FirstCouponDate — Irregular or normal first coupon date
serial date number | date character vector | datetime

Irregular or normal first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

LastCouponDate — Irregular or normal last coupon date
serial date number | date character vector | datetime

Irregular or normal last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date
numbers, date character vectors, or datetime arrays.

If you do not specify a LastCouponDate, the cash flow payment dates are determined from other
inputs.
Data Types: double | char | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | datetime

Forward starting date of payments, specified as the comma-separated pair consisting of
'StartDate' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector using serial date numbers,
date character vectors, or datetime arrays. The StartDate is when a bond actually starts (the date
from which a bond cash flow is considered). To make an instrument forward-starting, specify this date
as a future date.

If you do not specify a StartDate, the effective start date is the Settle date.
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Data Types: double | char | datetime

CompoundingFrequency — Compounding frequency for yield calculation
SIA bases uses2, ICMA bases uses 1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Compounding frequency for yield calculation, specified as the comma-separated pair consisting of
'CompundingFrequency' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note By default, SIA bases (0-7) and BUS/252 use a semiannual compounding convention and ICMA
bases (8-12) use an annual compounding convention.

Data Types: double

DiscountBasis — Basis used to compute the discount factors for computing the yield
SIA uses 0 (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Basis used to compute the discount factors for computing the yield, specified as the comma-separated
pair consisting of 'DiscountBasis' and a scalar or a NUMBONDS-by-1 or 1-by-NUMBONDS vector.
Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
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Note If a SIA day-count basis is defined in the Basis input argument and there is no value assigned
for DiscountBasis, the default behavior is for SIA bases to use the actual/actual day count to
compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the specified bases from the Basis input argument are used.

Data Types: double

Output Arguments
TFactors — Time to cash flow
matrix

Time to cash flow, returned as an NUMBONDS rows. The number of columns is determined by the
maximum number of cash flow payment dates required to hold the bond portfolio. NaNs are padded
for bonds which have less than the maximum number of cash flow payment dates.

References
[1] Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons, 2002.

[2] Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities Formulas for
Analytic Measures.” SIA, Vol 2, Jan 1994.

[3] Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-Hill,
1996.

See Also
accrfrac | cfdates | cfamounts | cpncount | cpndaten | cpndatenq | cpndatep | cpndatepq |
cpndaysn | cpndaysp | date2time

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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chaikosc
Chaikin oscillator

Note Using a fints object for the Data argument of chaikosc is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
chosc = chaikocs(Data)

Description
chosc = chaikocs(Data) calculates the Chaikin oscillator.

Examples

Calculate the Chaikin Oscillator for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
oscillator = chaikosc(TMW);
plot(oscillator.Time, oscillator.ChaikinOscillator)
title('Chaikin Oscillator for TMW')
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Input Arguments
Data — Data with high, low, open, close information
matrix | table | timetable

Data with high, low, open, close information, specified as a matrix, table, or timetable. For matrix
input, Data is an M-by-4 matrix of high, low, opening, and closing prices. Timetables and tables with M
rows must contain variables named 'High', 'Low', 'Open', and 'Close' (case insensitive).
Data Types: double | table | timetable

Output Arguments
chosc — Chaikin oscillator
matrix | table | timetable

Chaikin oscillator, returned with the same number of rows (M) and type (matrix, table, or timetable)
as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 91–94.
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See Also
adline | timetable | table | chaikvolat

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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chaikvolat
Chaikin volatility

Note Using a fints object for the Data argument of chaikvolat is not recommended. Use a
matrix, timetable, or table instead for financial time series. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
volatility = chaikvolat(Data)
volatility = chaikvolat( ___ ,Name,Value)

Description
volatility = chaikvolat(Data) calculates the Chaikin volatility from a data series of high and
low stock prices.

volatility = chaikvolat( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Chaikin Volatility for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
volatility = chaikvolat(TMW,'NumPeriods',14,'WindowSize',14);
plot(volatility.Time,volatility.ChaikinVolatility)
title('Chaikin Volatility for TMW')
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Input Arguments
Data — Data with high, low, open, close information
matrix | table | timetable

Data with high, low, open, close information, specified as a vector, matrix, table, or timetable. For
matrix input, Data is an M-by-2 matrix of high and low prices stored in the first and second columns.
Timetables and tables with M rows must contain variables named 'High' and 'Low' (case
insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: volatility = chaikvolat(TMW,'NumPeriods',10,'WindowSize',10)

NumPeriods — Period difference
10 (default) | positive integer

Period difference, specified as the comma-separated pair consisting of 'NumPeriods' and a scalar
positive integer.
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Data Types: double

WindowSize — Length of the exponential moving average in periods
10 (default) | positive integer

Length of the exponential moving average in periods, specified as the comma-separated pair
consisting of 'WindowSize' and a scalar positive integer.
Data Types: double

Output Arguments
volatility — Chaikin volatility
matrix | table | timetable

Chaikin volatility, returned with the same number of rows (M) and the same type (matrix, table, or
timetable) as the input Data.

More About
Chaikin volatility

Chaikin volatility calculates the Chaikin's volatility from the series of high and low stock prices.

By default, Chaikin's volatility values are based on a 10-period exponential moving average and 10-
period difference.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 304–305.

See Also
timetable | table | chaikosc

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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chartfts
Interactive display

Note chartfts will be removed in a future release and will no longer accept a fints object.

Use fts2timetable to convert a fints object to a timetable object. For more information, see
“Convert Financial Time Series Objects fints to Timetables”.

Syntax
chartfts(tsobj)

Description
chartfts(tsobj) produces a figure window that contains one or more plots. You can use the mouse
to observe the data at a particular time point of the plot.

Note Help menu item is not available for chartfts in MATLAB Online.

Examples
Create a financial time series object from the supplied data file ibm9599.dat:

ibmfts = ascii2fts('ibm9599.dat', 1, 3, 2);

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64) 

Chart the financial time series object ibmfts:

chartfts(ibmfts)

 Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/chartfts (line 24) 

With the Zoom feature set off, a mouse click on the indicator line displays object data in a pop-up
box.
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With the Zoom feature set on, mouse clicks indicate the area of the chart to zoom.

You can find a tutorial on using chartfts in “Visualizing Financial Time Series Objects” on page 11-
24. See “Zoom Tool” on page 11-26 for details on performing the zoom. Also see “Combine Axes Tool”
on page 11-29 for information about combining axes for specified plots.

See Also
candle | highlow | plot

Introduced before R2006a
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checkFeasibility
Check feasibility of input portfolios against portfolio object

Syntax
status = checkFeasibility(obj,pwgt)

Description
status = checkFeasibility(obj,pwgt) checks the feasibility of input portfolios against a
portfolio object.

Use the checkFeasibility function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to check the feasibility of input portfolios against a portfolio object. For details on the
respective workflows when using these different objects, see “Portfolio Object Workflow” on page 4-
17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-
15.

Examples

Determine if the Portfolio Is Feasible for a Portfolio Object

Given portfolio p, determine if p is feasible.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans = 1x10 logical array

   1   1   1   1   1   1   1   1   1   1

Determine if the Portfolio Is Feasible for a PortfolioCVaR Object

Given portfolio p, determine if p is feasible.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
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    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans = 1x10 logical array

   1   1   1   1   1   1   1   1   1   1

Determine if the Portfolio Is Feasible for a PortfolioMAD Object

Given portfolio p, determine if p is feasible.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans = 1x10 logical array

   1   1   1   1   1   1   1   1   1   1

Input Arguments
obj — Object for portfolio
object
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Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

pwgt — Portfolios to check
matrix

Portfolios to check, specified as a NumAssets-by-NumPorts matrix.
Data Types: double

Output Arguments
status — Indicator if portfolio is feasible
row vector

Indicator if portfolio is feasible, returned as a row vector of NumPorts indicators that are true if
portfolio is feasible and false otherwise.

Note By definition, any portfolio set must be nonempty and bounded. If the set is empty, no portfolios
can be feasible. Use estimateBounds to test for nonempty and bounded sets.

Feasibility status is returned for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to check the feasibility of input portfolios against a portfolio object.

status = obj.checkFeasibility(pwgt);
• The constraint tolerance to assess whether a constraint is satisfied is obtained from the hidden

property obj.defaultTolCon.

See Also
estimateBounds

Topics
“Validate the Portfolio Problem for Portfolio Object” on page 4-90
“Validate the CVaR Portfolio Problem” on page 5-77
“Validate the MAD Portfolio Problem” on page 6-76
“Portfolio Optimization Examples” on page 4-141
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“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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chfield
Change data series name

Note chfield is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = chfield(oldfts,oldname,newname)

Arguments
oldfts Name of an existing financial time series object.
oldname Name of the existing component in oldfts. A MATLAB character vector or

column cell array.
newname New name for the component in oldfts. A MATLAB character vector or

column cell array.

Description
newfts = chfield(oldfts,oldname,newname) changes the name of the financial time series
object component from oldname to newname.

Set newfts = oldfts to change the name of an existing component without changing the name of
the financial time series object.

To change the names of several components at once, specify the series of old and new component
names in corresponding column cell arrays.

You cannot change the names of the object components desc, freq, and dates.

See Also
fieldnames | isfield | rmfield

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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convert2sur
Convert multivariate normal regression model to seemingly unrelated regression (SUR) model

Syntax
DesignSUR = convert2sur(Design,Group)

Description
DesignSUR = convert2sur(Design,Group) converts a multivariate normal regression model
into a seemingly unrelated regression model with a specified grouping of the data series.

Examples

Use convert2sur to Estimate Stock Alpha and Beta Values

This example shows a CAPM demonstration using 6 stocks and 60 months of simulated asset returns,
where the model for each stock is AssetReturn = Alpha * 1 + CashReturn + Beta *
(MarketReturn - CashReturn) + Noise and the parameters to estimate are Alpha and Beta.

Using simulated data, where the Alpha estimate(s) are displayed in the first row(s) and the Beta
estimate(s) are display in the second row(s).

Market = (0.1 - 0.04) + 0.17*randn(60, 1);
Asset = (0.1 - 0.04) + 0.35*randn(60, 6);

Design = cell(60, 1);
for i = 1:60
            Design{i} = repmat([ 1, Market(i) ], 6, 1);
end

Obtain the aggregate estimates for all stocks.

[Param, Covar] = mvnrmle(Asset, Design);

disp({'All 6 Assets Combined'});

    {'All 6 Assets Combined'}

disp(Param);

    0.0233
    0.1050

Estimate parameters for individual stocks using convert2sur

Group = 1:6;
DesignSUR = convert2sur(Design, Group);
[Param, Covar] = mvnrmle(Asset, DesignSUR);
Param = reshape(Param, 2, 6);

disp({ 'A', 'B', 'C', 'D', 'E', 'F' });

19 Functions

19-572



    {'A'}    {'B'}    {'C'}    {'D'}    {'E'}    {'F'}

disp(Param);

    0.0144    0.0270    0.0046    0.0419    0.0376    0.0291
    0.3264   -0.1716    0.3248   -0.0630   -0.0001    0.0637

Estimate parameters for pairs of stocks by forming groups.

disp({'A & B', 'C & D','E & F'});

    {'A & B'}    {'C & D'}    {'E & F'}

Group = { [1,2 ],[3,4],[5,6]};
DesignSUR = convert2sur(Design, Group);
[Param, Covar] = mvnrmle(Asset, DesignSUR);

Param = reshape(Param, 2, 3);

disp(Param);

    0.0186    0.0190    0.0334
    0.0988    0.1757    0.0293

Input Arguments
Design — Data series
matrix | cell array

Data series, specified as a matrix or a cell array that depends on the number of data series
NUMSERIES.

• If NUMSERIES = 1, convert2sur returns the Design matrix.
• If NUMSERIES > 1, Design is a cell array with NUMSAMPLES cells, where each cell contains a

NUMSERIES-by-NUMPARAMS matrix of known values.

Data Types: double | cell

Group — Grouping for data series
vector | cell array

Grouping for data series, specified using separate parameters for each group. Specify groups either
by series or by groups:

• To identify groups by series, construct an index vector that has NUMSERIES elements. Element i
= 1, ..., NUMSERIES in the vector, and has the index j = 1, ..., NUMGROUPS of the group
in which series i is a member.

• To identify groups by groups, construct a cell array with NUMGROUPS elements. Each cell contains
a vector with the indexes of the series that populate a given group.

In either case, the number of series is NUMSERIES and the number of groups is NUMGROUPS, with
1 ≤ NUMGROUPS ≤ NUMSERIES.

Data Types: double | cell
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Output Arguments
DesignSUR — Seemingly unrelated regression model with a specified grouping of the data
series
matrix | cell array

Seemingly unrelated regression model with a specified grouping of the data series, returned as either
a matrix or a cell array that depends on the value of NUMSERIES.

• If NUMSERIES = 1, DesignSUR = Design, which is a NUMSAMPLES-by-NUMPARAMS matrix.
• If NUMSERIES > 1 and NUMGROUPS groups are to be formed, Design is a cell array with

NUMSAMPLES cells, where each cell contains a NUMSERIES-by-(NUMGROUPS * NUMPARAMS)
matrix of known values.

The original collection of parameters that are common to all series are replicated to form collections
of parameters for each group.

See Also
ecmnfish | mvnrfish

Topics
“Seemingly Unrelated Regression Without Missing Data” on page 9-17
“Multivariate Normal Linear Regression” on page 9-2

Introduced in R2006a
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convertto
Convert to specified frequency

Note convertto is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = convertto(oldfts,newfreq)

newfts = convertto(oldfts,newfreq,'param1','value1','param2','value2', ... )

Arguments

oldfts Name of an existing financial time series object.
newfreq 1, DAILY, Daily, daily, D, d

2, WEEKLY, Weekly, weekly, W, w

3, MONTHLY, Monthly, monthly, M, m

4, QUARTERLY, Quarterly, quarterly, Q, q

5, SEMIANNUAL, Semiannual, semiannual, S, s

6, ANNUAL, Annual, annual, A, a

Description
convertto converts a financial time series of any frequency to one of a specified frequency.

newfts = convertto(oldfts,newfreq) converts the object oldfts to the new time series
object newfts with the frequency newfreq.

Refer to the documentation for each frequency conversion function to determine the valid parameter/
value pairs.

See Also
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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corrcoef
Correlation coefficients for financial time series object

Note corrcoef is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
r = corrcoef(X)

r = corrcoef(X,Y)

Arguments
X Financial time series object, where each row is an observation and each

column is a variable.
Y Financial time series object, where each row is an observation and each

column is a variable.

Description
corrcoef is based on the MATLAB corrcoef function. See corrcoef.

r=corrcoef(X) calculates a matrix r of correlation coefficients for a financial times series object
(fints) X, in which each row is an observation, and each column is a variable.

r=corrcoef(X,Y), where X and Y are financial time series objects as column vectors, is the same as
r=corrcoef([X Y]). corrcoef converts X and Y to column vectors if they are not; that is, r =
corrcoef(X,Y) is equivalent to r=corrcoef([X(:) Y(:)]) in that case.

If c is the covariance matrix, c= cov(X), then corrcoef(X) is the matrix whose (i,j) 'th element
is ci,j/sqrt(ci,i*c(j,j)).

[r,p]=corrcoef(...) also returns p, a matrix of p-values for testing the hypothesis of no
correlation. Each p-value is the probability of getting a correlation as large as the observed value by
random chance, when the true correlation is zero. If p(i,j) is less than 0.05, then the correlation
r(i,j) is significant.

[r,p,rlo,rup]=corrcoef(...) also returns matrices rlo and rup, of the same size as r,
containing lower and upper bounds for a 95% confidence interval for each coefficient.

[...]=corrcoef(...,'PARAM1',VAL1,'PARAM2',VAL2,...) specifies additional parameters
and their values. Valid parameters are:

• 'alpha' — A number from 0 through 1 to specify a confidence level of 100*(1-ALPHA)%. Default
is 0.05 for 95% confidence intervals.

• 'rows' — Either 'all' (default) to use all rows, 'complete' to use rows with no NaN values, or
'pairwise' to compute r(i,j) using rows with no NaN values in column i or j.
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The p-value is computed by transforming the correlation to create a t-statistic having N – 2 degrees of
freedom, where N is the number of rows of X. The confidence bounds are based on an asymptotic
normal distribution of 0.5*log((1 + r)/(1 – r)), with an approximate variance equal to 1/(N – 3). These
bounds are accurate for large samples when X has a multivariate normal distribution. The
'pairwise' option can produce an r matrix that is not positive definite.

Examples

Compute Correlation Coefficients

This example shows how to generate random data having correlation between column 4 and the other
columns.

x = randn(30,4);       % uncorrelated data
x(:,4) = sum(x,2);     % introduce correlation
f = fints((today:today+29)', x);  % create a fints object using x

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

[r,p] = corrcoef(x);    % compute sample correlation and p-values
[i,j] = find(p<0.05);  % find significant correlations
[i,j]                  % display their (row,col) indices

ans = 4×2

     4     1
     3     2
     2     3
     1     4

Class support for inputs X,Y: float: double and single.

See Also
cov | std | var | nearcorr

Introduced before R2006a
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corr2cov
Convert standard deviation and correlation to covariance

Syntax
ExpCovariance = corr2cov(ExpSigma)
ExpCovariance = corr2cov( ___ ,ExpCorrC)

Description
ExpCovariance = corr2cov(ExpSigma) converts standard deviation and correlation to
covariance.

ExpCovariance = corr2cov( ___ ,ExpCorrC) specifies options using one or more optional
arguments in addition to the input arguments in the previous syntax.

Examples

Convert Standard Deviation and Correlation to Covariance

This example shows how to convert standard deviation and correlation to covariance.

ExpSigma = [0.5  2.0];

ExpCorrC = [1.0 -0.5
           -0.5  1.0];

ExpCovariance = corr2cov(ExpSigma, ExpCorrC)

ExpCovariance = 2×2

    0.2500   -0.5000
   -0.5000    4.0000

Input Arguments
ExpSigma — Standard deviations of each process
vector

Standard deviations of each process, specified as a vector of length n with the standard deviations of
each process. n is the number of random processes.
Data Types: double

ExpCorrC — Correlation matrix
matrix
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(Optional) Correlation matrix, specified as an n-by-n correlation coefficient matrix. A correlation
coefficient is a statistic in which the covariance is scaled to a value between minus one (perfect
negative correlation) and plus one (perfect positive correlation).

If ExpCorrC is not specified, the processes are assumed to be uncorrelated, and the identity matrix is
used.
Data Types: double

Output Arguments
ExpCovariance — Covariance matrix
matrix

Covariance matrix, returned as an n-by-n covariance matrix, where n is the number of processes.

The (i,j) entry is the expectation of the i'th fluctuation from the mean times the j'th fluctuation from
the mean.
ExpCov(i,j) = ExpCorrC(i,j)*ExpSigma(i)*ExpSigma(j) 

See Also
corrcoef | cov | std | cov2corr | ewstats | nearcorr

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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cov
Covariance matrix for financial time series object

Note cov is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
cov(X)

cov(X,Y)

Arguments

X Financial time series object.
Y Financial time series object.

Description
cov for financial time series objects is based on the MATLAB cov function. See cov.

If X is a financial time series object with one series, cov(X) returns the variance. For a financial time
series object containing multiple series, where each row is an observation, and each series a variable,
cov(X) is the covariance matrix.

diag(cov(X)) is a vector of variances for each series and sqrt(diag(cov(X))) is a vector of
standard deviations.

cov(X, Y), where X and Y are financial time series objects with the same number of elements, is
equivalent to cov([X(:) Y(:)]).

cov(X) or cov(X, Y) normalizes by (N -1) if N > 1, where N is the number of observations. This
makes cov(X) the best unbiased estimate of the covariance matrix if the observations are from a
normal distribution. For N = 1, cov normalizes by N.

cov(X, 1) or cov(X, Y, 1) normalizes by N and produces the second moment matrix of the
observations about their mean. cov(X, Y, 0) is the same as cov(X, Y) and cov(X, 0) is the
same as cov(X). The mean is removed from each column before calculating the result.

Examples

Create a Covariance Matrix

This example shows how to create a covariance matrix for the following dates.
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dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
A = [-1 1 2 ; -2 3 1 ; 4 0 3];
f = fints(dates, A);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

c = cov(f)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

c = 3×3

   10.3333   -4.1667    3.0000
   -4.1667    2.3333   -1.5000
    3.0000   -1.5000    1.0000

See Also
corrcoef | mean | std | var | nearcorr

Introduced before R2006a
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cov2corr
Convert covariance to standard deviation and correlation coefficient

Syntax
[ExpSigma,ExpCorrC] = cov2corr(ExpCovariance)

Description
[ExpSigma,ExpCorrC] = cov2corr(ExpCovariance) converts covariance to standard
deviations and correlation coefficients.

Examples

Convert Covariance to Standard Deviations and Correlation Coefficients

This example shows how to convert a covariance matrix to standard deviations and correlation
coefficients.

ExpCovariance = [0.25 -0.5
                -0.5   4.0];

[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)

ExpSigma = 1×2

    0.5000    2.0000

ExpCorrC = 2×2

    1.0000   -0.5000
   -0.5000    1.0000

Input Arguments
ExpCovariance — Covariance matrix
matrix

Covariance matrix, specified as an n-by-n covariance matrix, where n is the number of random
processes. For an example, see cov or ewstats.
Data Types: double

Output Arguments
ExpSigma — Standard deviation of each process
vector
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Standard deviation of each process, returned as an 1-by-n vector.

The entries of ExpCorrC range from 1 (completely correlated) to -1 (completely anti-correlated). A
value of 0 in the (i,j) entry indicates that the i'th and j'th processes are uncorrelated.
ExpSigma(i) = sqrt( ExpCovariance(i,i) );
ExpCorrC(i,j) = ExpCovariance(i,j)/( ExpSigma(i)*ExpSigma(j) );

Data Types: double

ExpCorrC — Correlation coefficients
matrix

Correlation coefficients, returned as an n-by-n matrix.

See Also
corr2cov | corrcoef | cov | std | ewstats | nearcorr

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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cpncount
Coupon payments remaining until maturity

Syntax
NumCouponsRemaining = cpncount(Settle,Maturity)
NumCouponsRemaining = cpncount( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate)

Description
NumCouponsRemaining = cpncount(Settle,Maturity) returns the whole number of coupon
payments between the Settle and Maturity dates for a coupon bond or set of bonds. Coupons
falling on or before Settle are not counted, except for the Maturity payment which is always
counted.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

NumCouponsRemaining = cpncount( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate) returns the whole number of coupon payments between the
Settle and Maturity dates for a coupon bond or set of bonds using optional input arguments.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

Examples

Find Coupon Payments Remaining Until Maturity

This example shows how to find the coupon payments remaining until maturity.

NumCouponsRemaining = cpncount('14 Mar 1997', '30 Nov 2000',...  
2, 0, 0)

NumCouponsRemaining = 8

Find Coupon Payments Remaining Until Maturity for Different Maturity Dates

This example shows how to find the coupon payments remaining until maturity, given three coupon
bonds with different maturity dates and the same default arguments.

Maturity = ['30 Sep 2000'; '31 Oct 2001'; '30 Nov 2002'];
NumCouponsRemaining = cpncount('14 Sep 1997', Maturity)

NumCouponsRemaining = 3×1

     7
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     9
    11

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: double

Basis — Day-count basis of the bond
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the bond, specified as an integer with a value of 0 through 13 or an N-by-1 vector
of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as scalar nonnegative integer [0,
1] or a using an N-by-1 vector of values. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime
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Output Arguments
NumCouponsRemaining — Whole number of coupon payments between the settlement and
maturity dates for a coupon bond or set of bonds
vector

Whole number of coupon payments between the settlement and maturity dates for a coupon bond or
set of bonds, returned as an NBONDS-by-1 vector.

Coupons falling on or before settlement are not counted, except for the maturity payment which is
always counted.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpndaten | cpndatenq | cpndatep | cpndaysn |
cpndaysp | cpnpersz | datetime | cpndatepq

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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cpndaten
Next coupon date for fixed-income security

Syntax
NextCouponDate = cpndaten(Settle,Maturity)
NextCouponDate = cpndaten( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate)

Description
NextCouponDate = cpndaten(Settle,Maturity) returns the next coupon date after the
Settle date. This function finds the next coupon date whether or not the coupon structure is
synchronized with the Maturity date.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

NextCouponDate = cpndaten( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate) returns the next coupon date after the Settle date using
optional input arguments.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NextCouponDate is returned as a serial
date number. The function datestr converts a serial date number to a formatted date character
vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NextCouponDate is returned as a datetime array.

Examples

Calculate the Next Coupon Date After the Settlement Date

Determine the NextCouponDate when using character vectors for input arguments.

NextCouponDate = cpndaten('14-Mar-1997', '30-Nov-2000', 2, 0, 0);
datestr(NextCouponDate)

ans = 
'30-May-1997'

Determine the NextCouponDate when using datetime arrays for input arguments.

NextCouponDate = cpndaten('14-Mar-1997', datetime('30-Nov-2000','Locale','en_US'),...
2, 0, 0)
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NextCouponDate = datetime
   30-May-1997

Determine the NextCouponDate when using character vectors for input arguments and the optional
argument for EndMonthRule.

NextCouponDate = cpndaten('14-Mar-1997', '30-Nov-2000', 2, 0, 1);
datestr(NextCouponDate)

ans = 
'31-May-1997'

Determine the NextCouponDate when using an input vector for Maturity.

Maturity = ['30-Sep-2000'; '31-Oct-2000'; '30-Nov-2000'];
NextCouponDate = cpndaten('14-Mar-1997', Maturity);
datestr(NextCouponDate)

ans = 3x11 char array
    '31-Mar-1997'
    '30-Apr-1997'
    '31-May-1997'

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: single | double

Basis — Day-count basis of the bond
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the bond, specified as an integer with a value of 0 through 13 or an N-by-1 vector
of integers with values of 0 through 13.
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• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as scalar nonnegative integer [0,
1] or a using an N-by-1 vector of values. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
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Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
NextCouponDate — Next coupon date after the settlement date
vector

Next coupon date after the settlement date, returned as an NUMBONDS-by-1 vector of next actual
coupon dates after settlement. If settlement is a coupon date, this function never returns the
settlement date. Instead, the actual coupon date strictly after settlement is returned, but not
exceeding the maturity date. Thus, this function will always return the lesser of the actual maturity
date and the next coupon payment date.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NextCouponDate is returned as a serial
date number. The function datestr converts a serial date number to a formatted date character
vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NextCouponDate is returned as a datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndatenq | cpndatep | cpndaysn |
cpndaysp | cpnpersz | datetime | cpndatepq

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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cpndatenq
Next quasi-coupon date for fixed-income security

Syntax
NextQuasiCouponDate = cpndatenq(Settle,Maturity)
NextQuasiCouponDate = cpndatenq( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate)

Description
NextQuasiCouponDate = cpndatenq(Settle,Maturity) determines the next quasi coupon
date for a portfolio of NUMBONDS fixed income securities whether or not the first or last coupon is
normal, short, or long. For zero coupon bonds, cpndatenq returns quasi coupon dates as if the bond
had a semiannual coupon structure. Successive quasi coupon dates determine the length of the
standard coupon period for the fixed income security of interest and do not necessarily coincide with
actual coupon payment dates.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

NextQuasiCouponDate = cpndatenq( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate) determines the next quasi coupon date for a portfolio of
NUMBONDS fixed income securities whether or not the first or last coupon is normal, short, or long
using optional input arguments.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NextQuasiCouponDate is returned as a
serial date number. The function datestr converts a serial date number to a formatted date
character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NextQuasiCouponDate is returned as a datetime array.

Examples

Determine the Next Quasi Coupon Date for a Portfolio of Fixed-Income Securities

Given a pair of bonds with the following characteristics:

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

Compute NextCouponDate for this pair of bonds.

NextCouponDate = cpndaten(Settle, Maturity);
datestr(NextCouponDate)
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ans = 2x11 char array
    '31-May-1997'
    '10-Jun-1998'

Compute the next quasi coupon dates for these two bonds.

NextQuasiCouponDate = cpndatenq(Settle, Maturity);
datestr(NextQuasiCouponDate)

ans = 2x11 char array
    '31-May-1997'
    '10-Jun-1998'

Because no FirstCouponDate has been specified, the results are identical.

Now supply an explicit FirstCouponDate for each bond.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');

Compute the next coupon dates.

NextCouponDate = cpndaten(Settle, Maturity, 2, 0, 1, [],... 
FirstCouponDate);
datestr(NextCouponDate)

ans = 2x11 char array
    '30-Nov-1997'
    '10-Dec-1998'

The next coupon dates are identical to the specified first coupon dates.

Now recompute the next quasi coupon dates.

NextQuasiCouponDate = cpndatenq(Settle, Maturity, 2, 0, 1, [],... 
FirstCouponDate);
datestr(NextQuasiCouponDate)

ans = 2x11 char array
    '31-May-1997'
    '10-Jun-1998'

These results illustrate the distinction between actual coupon payment dates and quasi coupon dates.
FirstCouponDate (and LastCouponDate, as well), when specified, is associated with an actual
coupon payment and also serves as the synchronization date for determining all quasi coupon dates.
Since each bond in this example pays semiannual coupons, and the first coupon date occurs more
than six months after settlement, each will have an intermediate quasi coupon date before the actual
first coupon payment occurs.

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object
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Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or an N-by-1
vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]
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End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative integer [0, 1]
using an N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
NextQuasiCouponDate — Next quasi coupon date for portfolio of NUMBONDS fixed income
securities
vector

Next quasi coupon date for a portfolio of NUMBONDS fixed income securities, whether or not the first
or last coupon is normal, short, or long, returned as a NUMBONDS-by-1 vector.

For zero coupon bonds, cpndatenq returns quasi coupon dates as if the bond had a semiannual
coupon structure. Successive quasi coupon dates determine the length of the standard coupon period
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for the fixed income security of interest and do not necessarily coincide with actual coupon payment
dates.

If all of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are either serial date numbers or date character vectors, then NextQuasiCouponDate is returned as
a serial date number. The function datestr converts a serial date number to a formatted date
character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NextQuasiCouponDate is returned as a datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatep | cpndatepq |
cpndaysn | cpndaysp | cpnpersz | datetime

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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cpndatepq
Previous quasi-coupon date for fixed-income security

Syntax
PreviousQuasiCouponDate = cpndatepq(Settle,Maturity)
PreviousQuasiCouponDate = cpndatepq( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate)

Description
PreviousQuasiCouponDate = cpndatepq(Settle,Maturity) determines the previous quasi-
coupon date for a set of NUMBONDS fixed income securities. Prior quasi-coupon dates determine the
length of the standard coupon period for the fixed income security of interest, and do not necessarily
coincide with actual coupon payment dates. This function finds the previous quasi-coupon date for
bonds with a coupon structure whose first or last period is either normal, short, or long.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

PreviousQuasiCouponDate = cpndatepq( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate), using optional input arguments, determines the previous
quasi-coupon date for a set of NUMBONDS fixed income securities.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then PreviousQuasiCouponDate is returned
as a serial date number. The function datestr converts a serial date number to a formatted date
character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then PreviousQuasiCouponDate is returned as a datetime array.

Examples

Determine the Previous Quasi Coupon Date for a Portfolio of Fixed-Income Securities

Given a pair of bonds with the following characteristics:

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

With no FirstCouponDate explicitly supplied, compute the PreviousCouponDate for this pair of
bonds.

PreviousCouponDate = cpndatep(Settle, Maturity);
datestr(PreviousCouponDate)

 cpndatepq

19-597



ans = 2x11 char array
    '30-Nov-1996'
    '10-Dec-1997'

Note that since the settlement date for the second bond is also a coupon date, cpndatep returns this
date as the previous coupon date.

Now establish a FirstCouponDate and IssueDate for this pair of bonds.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');
IssueDate = char('30-May-1996', '10-Dec-1996');

Recompute the PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity, 2, 0, 1, ... 
IssueDate, FirstCouponDate);
datestr(PreviousCouponDate)

ans = 2x11 char array
    '30-May-1996'
    '10-Dec-1996'

Since both of these bonds settled before the first coupon had been paid, cpndatep returns the
IssueDate as the PreviousCouponDate.

Using the same data, compute PreviousQuasiCouponDate.

PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, 2, 0, 1,... 
IssueDate, FirstCouponDate);
datestr(PreviousQuasiCouponDate)

ans = 2x11 char array
    '30-Nov-1996'
    '10-Dec-1997'

For the first bond the settlement date is not a normal coupon date. The PreviousQuasiCouponDate
is the coupon date before or on the settlement date. Since the coupon structure is synchronized to
FirstCouponDate, the previous quasi coupon date is 30-Nov-1996. PreviousQuasiCouponDate
disregards IssueDate and FirstCouponDate in this case. For the second bond the settlement date
(10-Dec-1997) occurs on a date when a coupon would normally be paid in the absence of an explicit
FirstCouponDate. cpndatepq returns this date as PreviousQuasiCouponDate.

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array
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Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or an N-by-1
vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative integer [0, 1]
using an N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.
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Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
PreviousQuasiCouponDate — Previous quasi coupon date for portfolio of NUMBONDS fixed
income securities
vector

Previous quasi coupon date for a portfolio of NUMBONDS fixed income securities, whether or not the
first or last coupon is normal, short, or long, returned as a NUMBONDS-by-1 vector of previous quasi-
coupon dates before settlement. If settlement is a coupon date, this function returns the settlement
date.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then PreviousQuasiCouponDate is returned
as a serial date number. The function datestr converts a serial date number to a formatted date
character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then PreviousQuasiCouponDate is returned as a datetime array.
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See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatep | cpndatenq |
cpndaysn | cpndaysp | cpnpersz | datetime

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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cpndatep
Previous coupon date for fixed-income security

Syntax
PreviousCouponDate = cpndatep(Settle,Maturity)
PreviousCouponDate = cpndatep( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate)

Description
PreviousCouponDate = cpndatep(Settle,Maturity) returns the previous coupon date on or
before settlement for a portfolio of bonds. This function finds the previous coupon date whether or
not the coupon structure is synchronized with the maturity date. For zero coupon bonds the previous
coupon date is the issue date, if available. However, if the issue date is not supplied, the previous
coupon date for zero coupon bonds is the previous quasi coupon date calculated as if the frequency is
semiannual.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

PreviousCouponDate = cpndatep( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate) returns the previous coupon date on or before settlement
for a portfolio of bonds.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then PreviousCouponDate is returned as a
serial date number. The function datestr converts a serial date number to a formatted date
character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then PreviousCouponDate is returned as a datetime array.

Examples

Calculate the Previous Coupon Date on or Before Settlement

Determine the PreviousCouponDate when using character vectors for input arguments.

PreviousCouponDate = cpndatep('14-Mar-1997', '30-Jun-2000',...  
2, 0, 0);
datestr(PreviousCouponDate)

ans = 
'30-Dec-1996'

Determine the PreviousCouponDate when using datetime arrays for input arguments.
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PreviousCouponDate = cpndatep(datetime('14-Mar-1997','Locale','en_US'), '30-Jun-2000',...
2, 0, 0)

PreviousCouponDate = datetime
   30-Dec-1996

Determine the PreviousCouponDate when using character vectors for input arguments and the
optional argument for EndMonthRule.

PreviousCouponDate = cpndatep('14-Mar-1997', '30-Jun-2000',... 
2, 0, 1);
datestr(PreviousCouponDate)

ans = 
'31-Dec-1996'

Determine the PreviousCouponDate when using an input vector for Maturity.

Maturity = ['30-Apr-2000'; '31-May-2000'; '30-Jun-2000'];
PreviousCouponDate = cpndatep('14-Mar-1997', Maturity);
datestr(PreviousCouponDate)

ans = 3x11 char array
    '31-Oct-1996'
    '30-Nov-1996'
    '31-Dec-1996'

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: single | double
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Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or an N-by-1
vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative integer [0, 1]
using an N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array
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Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
PreviousCouponDate — Previous coupon date on or before settlement for portfolio of
bonds
vector

Previous coupon date on or before settlement for portfolio of bonds, returned as an NUMBONDS-by-1
vector. If settlement is a coupon date, this function returns the settlement date. The actual coupon
date strictly on or before settlement is returned, but not exceeding the issue date, if available. Thus,
this function always returns the lesser of the actual issue date and the previous coupon payment date
with respect to the settlement date.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then PreviousCouponDate is returned as a
serial date number. The function datestr converts a serial date number to a formatted date
character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then PreviousCouponDate is returned as a datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq | cpndatepq |
cpndaysn | cpndaysp | cpnpersz | datetime

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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cpndaysn
Number of days to next coupon date

Syntax
NumDaysNext = cpndaysn(Settle,Maturity)
NumDaysNext = cpndaysn( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate)

Description
NumDaysNext = cpndaysn(Settle,Maturity) returns the number of days from the settlement
date to the next coupon date for a bond or set of bonds. For zero coupon bonds coupon dates are
computed as if the bonds have a semiannual coupon structure. NumDaysNext returns a double for
serial date number, date character vector, and datetime inputs.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

NumDaysNext = cpndaysn( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate) returns the number of days from the settlement date to the
next coupon date for a bond or set of bonds using optional input arguments.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NumDaysNext is returned as a serial date
number. The function datestr converts a serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NumDaysNext is returned as a datetime array.

Examples

Calculate the Number of Days From Settlement Date to Next Coupon Date

Determine the NumDaysNext when using character vectors for input arguments.

NumDaysNext = cpndaysn('14-Sep-2000', '30-Jun-2001', 2, 0, 0)

NumDaysNext = 107

Determine the NumDaysNext when using datetime arrays for input arguments.

NumDaysNext = cpndaysn(datetime('14-Sep-2000','Locale','en_US'), '30-Jun-2001', 2, 0, 0)

NumDaysNext = 107

Determine the NumDaysNext when using character vectors for input arguments and the optional
argument for EndMonthRule.
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NumDaysNext = cpndaysn('14-Sep-2000', '30-Jun-2001', 2, 0, 1)

NumDaysNext = 108

Determine the NumDaysNext when using an input vector for Maturity.

Maturity = ['30-Apr-2001'; '31-May-2001'; '30-Jun-2001'];
NumDaysNext = cpndaysn('14-Sep-2000', Maturity)

NumDaysNext = 3×1

    47
    77
   108

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or an N-by-1
vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)

 cpndaysn

19-607



• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative integer [0, 1]
using an N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.
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LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
NumDaysNext — Number of days from settlement date to next coupon date
vector

Number of days from settlement date to next coupon date, returned as an NUMBONDS-by-1 vector. For
zero coupon bonds coupon dates are computed as if the bonds have a semiannual coupon structure.
NumDaysNext returns a double for serial date number, date character vector, and datetime inputs.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NumDaysNext is returned as a serial date
number. The function datestr converts a serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NumDaysNext is returned as a datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatep | cpndatenq |
cpndaysp | cpnpersz | datetime | cpndatepq

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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cpndaysp
Number of days since previous coupon date

Syntax
NumDaysPrevious = cpndaysp(Settle,Maturity)
NumDaysPrevious = cpndaysp( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate)

Description
NumDaysPrevious = cpndaysp(Settle,Maturity) returns the number of days between the
previous coupon date and the settlement date for a bond or set of bonds. When the coupon frequency
is 0 (a zero coupon bond), the previous coupon date is calculated as if the frequency were
semiannual. NumDaysPrevious returns a double for serial date number, date character vector, and
datetime inputs.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

NumDaysPrevious = cpndaysp( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate) returns the number of days between the previous coupon
date and the settlement date for a bond or set of bonds using optional input arguments.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NumDaysPrevious is returned as a serial
date number. The function datestr converts a serial date number to a formatted date character
vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NumDaysPrevious is returned as a datetime array.

Examples

Calculate the Number of Days Between Previous Coupon Date and Settlement Date

Determine the NumDaysPrevious when using character vectors for input arguments.

NumDaysPrevious = cpndaysp('14-Mar-2000', '30-Jun-2001', 2, 0, 0)

NumDaysPrevious = 75

Determine the NumDaysPrevious when using a datetime array for an input argument.

NumDaysPrevious = cpndaysp(datetime('14-Mar-2000','Locale','en_US'), '30-Jun-2001', 2, 0, 0)

NumDaysPrevious = 75
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Determine the NumDaysPrevious when using character vectors for input arguments and the
optional argument for EndMonthRule.

NumDaysPrevious = cpndaysp('14-Mar-2000', '30-Jun-2001', 2, 0, 1)

NumDaysPrevious = 74

Determine the NumDaysPrevious when using an input vector for Maturity.

Maturity = ['30-Apr-2001'; '31-May-2001'; '30-Jun-2001'];
NumDaysPrevious = cpndaysp('14-Mar-2000', Maturity)

NumDaysPrevious = 3×1

   135
   105
    74

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a with value 0 through 13 or an N-by-1
vector of integers with values 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360

 cpndaysp

19-611



• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative integer [0, 1]
using an N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array
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Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
NumDaysPrevious — Number of days between previous coupon date and settlement date
vector

Number of days between the previous coupon date and the settlement date, returned as an
NUMBONDS-by-1 vector. If the settlement date is a coupon date, this function always returns the
settlement date.

When the coupon frequency is 0 (a zero coupon bond), the previous coupon date is calculated as if
the frequency were semiannual. NumDaysPrevious returns a double for serial date number, date
character vector, and datetime inputs.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NumDaysPrevious is returned as a serial
date number. The function datestr converts a serial date number to a formatted date character
vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NumDaysPrevious is returned as a datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq | cpndatep |
cpndaysn | cpndatepq | cpnpersz | datetime

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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cpnpersz
Number of days in coupon period

Syntax
NumDaysPeriod = cpnpersz(Settle,Maturity)
NumDaysPeriod = cpnpersz( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate)

Description
NumDaysPeriod = cpnpersz(Settle,Maturity) returns the number of days in the coupon
period containing the settlement date. For zero coupon bonds, coupon dates are computed as if the
bonds have a semiannual coupon structure. NumDaysPeriod returns a double for serial date number,
date character vector, and datetime inputs.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS, conforming
vectors or scalars.

NumDaysPeriod = cpnpersz( ___ ,Period,Basis,EndMonthRule,IssueDate,
FirstCouponDate,LastCouponDate) returns the number of days in the coupon period containing
the settlement date using optional input arguments.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors,
scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NumDaysPeriod is returned as a serial
date number. The function datestr converts a serial date number to a formatted date character
vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NumDaysPeriod is returned as a datetime array.

Examples

Calculate the Number of Days in the Coupon Period Containing Settlement Date

Determine the NumDaysPeriod when using character vectors for input arguments.

NumDaysPeriod = cpnpersz('14-Sep-2000', '30-Jun-2001', 2, 0, 0)

NumDaysPeriod = 183

Determine the NumDaysPeriod when using a datetime array for an input argument.

NumDaysPeriod = cpnpersz(datetime('14-Sep-2000','Locale','en_US'), '30-Jun-2001', 2, 0, 0)

NumDaysPeriod = 183
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Determine the NumDaysPeriod when using character vectors for input arguments and the optional
argument for EndMonthRule.

NumDaysPeriod = cpnpersz('14-Sep-2000', '30-Jun-2001', 2, 0, 1)

NumDaysPeriod = 184

Determine the NumDaysPeriod when using an input vector for Maturity.

Maturity = ['30-Apr-2001'; '31-May-2001'; '30-Jun-2001'];
NumDaysPeriod = cpnpersz('14-Sep-2000', Maturity)

NumDaysPeriod = 3×1

   184
   183
   184

Input Arguments
Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or datetime array.
Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].
Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or an N-by-1
vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative integer [0, 1]
using an N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number, date character
vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other inputs.
Data Types: double | char | datetime

LastCouponDate — Last coupon date of bond before maturity date
serial date number | date character vector | datetime array
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Last coupon date of a bond before maturity date, specified as a serial date number, date character
vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
NumDaysPeriod — Number of days in coupon period containing settlement date
vector

Number of days in the coupon period containing the settlement date, returned as an NUMBONDS-by-1
vector. For zero coupon bonds, coupon dates are computed as if the bonds have a semiannual coupon
structure.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate are
either serial date numbers or date character vectors, then NumDaysPeriod is returned as a serial
date number. The function datestr converts a serial date number to a formatted date character
vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and LastCouponDate
are datetime arrays, then NumDaysPeriod is returned as a datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq | cpndatep |
cpndaysn | cpndatepq | cpndaysp | datetime

Topics
“Pricing and Computing Yields for Fixed-Income Securities” on page 2-18

Introduced before R2006a
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createholidays
Create trading calendars

Syntax
createholidays(Filename,Codefile,InfoFile,TargetDir,IncludeWkds,Wprompt,
NoGUI)

Description
createholidays(Filename,Codefile,InfoFile,TargetDir,IncludeWkds,Wprompt,
NoGUI) programmatically generates the market-specific holidays.m files (from
FinancialCalendar.com financial center holiday data) without displaying the interface.

Note To use createholidays, you must obtain data, codes, and info files from https://
www.FinancialCalendar.com trading calendars. The data files must be in the required MATLAB
format.

Examples

Create holidays.m Files Using createholidays

Use createholidays to create holidays*.m files from My_datafile.csv in the folder c:\work.
Weekends are included in the holidays list based on the input flag INCLUDEWDKS = 1
createholidays('FinancialCalendar\My_datafile.csv',...
'FinancialCalendar\My_codesfile.csv',...
'FinancialCalendar\My_infofile.csv','c:\work',1,1,1)

Input Arguments
Filename — Data file name
character vector

Data file name, specified using a character vector.
Data Types: char

Codefile — Code file name
character vector

Code file name, specified using a character vector.
Data Types: char

InfoFile — Info file name
character vector

Info file name, specified using a character vector.
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Data Types: char

TargetDir — Target folder where to write new holidays.m files
character vector

Target folder where to write the new holidays.m files, specified using a character vector.
Data Types: char

IncludeWkds — Option to include weekends in holiday list
numeric with value 0 or 1

Option to include weekends in the holiday list, specified using a numeric with value 0 or 1. Values
are:

• 0 – Do not include weekends in the holiday list.
• 1 – Include weekends in the holiday list.

Data Types: logical

Wprompt — Option to prompt for file location for each holiday.m file that is created
numeric with value 0 or 1

Option to prompt for the file location for each holiday.m file that is created, specified using a
numeric with value 0 or 1. Values are:

• 0 – Do not prompt for the file location.
• 1 – Prompt for the file location.

Data Types: logical

NoGUI — Run createholidays without displaying Trading Calendars user interface
numeric with value 0 or 1

Run createholidays without displaying the Trading Calendars user interface, specified using a
numeric with value 0 or 1. Values are:

• 0 – Display the GUI.
• 1 – Do not display the GUI.

Data Types: logical

See Also
holidays

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced in R2007b
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cumsum
Cumulative sum

Note cumsum is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = cumsum(oldfts)

Description
newfts = cumsum(oldfts) calculates the cumulative sum of each individual time series data
series in the financial time series object oldfts and returns the result in another financial time
series object newfts. newfts contains the same data series names as oldfts.

Examples

Compute the Cumulative Sum

This example shows how to compute the cumulative sum for Disney stock and plot the results.

load disney.mat 
cs_dis = cumsum(fillts(dis));

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

plot(cs_dis)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Cumulative Sum for Disney')
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See Also
fints

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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cur2frac
Decimal currency values to fractional values

Syntax
Fraction = cur2frac(Decimal,Denominator)

Description
Fraction = cur2frac(Decimal,Denominator) converts decimal currency values to fractional
values. Fraction is returned as a character vector.

Examples

Convert Decimal Currency Values to Fractional Values

This example shows how to convert decimal currency values to fractional values.

Fraction = cur2frac(12.125, 8)

Fraction = 
'12.1'

Input Arguments
Decimal — Decimal currency value
numeric decimal

Decimal currency value, specified as a scalar or vector using numeric decimal values.
Data Types: double

Denominator — Denominator of the fractions
numeric

Denominator of the fractions, specified as a scalar or vector using numeric values for the
denominator.
Data Types: double

Output Arguments
Fraction — Fractional values
character vector | cell array of character vectors

Fractional values, returned as a character vector or cell array of character vectors.
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See Also
cur2str | frac2cur

Introduced before R2006a
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cur2str
Bank-formatted text

Syntax
BankText = cur2str(Value,Digits)

Description
BankText = cur2str(Value,Digits) returns the given value in bank format.

The output format for BankText is a numerical format with dollar sign prefix, two decimal places,
and negative numbers in parentheses; for example, ($123.45) and $6789.01. The standard MATLAB
bank format uses two decimal places, no dollar sign, and a minus sign for negative numbers; for
example, −123.45 and 6789.01.

Examples

Return Bank Formatted Text

Return bank formatted text for a negative numeric value.

BankText = cur2str(-826444.4456,3)   

BankText = 
'($826444.446)'

% Negative numbers are displayed in parentheses.

Input Arguments
Value — Value to be formatted
numeric value

Value to be formatted, specified as a numeric value.
Data Types: double

Digits — Number of significant digits
2 (default) | integer

Number of significant digits, specified as an integer. A negative Digits rounds the value to the left of
the decimal point.
Data Types: double
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Output Arguments
BankText — Bank-formatted text
character vector

Bank-formatted text (BankText) is returned as a character vector with a leading dollar sign ($).
Negative numbers are displayed in parentheses.

See Also
frac2cur | cur2frac

Introduced before R2006a
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date2time
Time and frequency from dates

Syntax
[TFactors,F] = date2time(Settle,Maturity)
[TFactors,F] = date2time( ___ ,Compounding,Basis,EndMonthRule)

Description
[TFactors,F] = date2time(Settle,Maturity) computes time factors appropriate to
compounded rate quotes between the Settle and Maturity dates. date2time is the inverse of
time2date.

[TFactors,F] = date2time( ___ ,Compounding,Basis,EndMonthRule) computes time
factors appropriate to compounded rate quotes between the Settle and Maturity dates using
optional input arguments for Compounding, Basis, and EndMonthRule. date2time is the inverse
of time2date.

Examples

Compute date2time Using an actual/actual Basis

To get the date2time period between '31-Jul-2015' and '30-Sep-2015' using an actual/actual basis:

date2time('31-Jul-2015', '30-Sep-2015', 2, 0, 1)

ans = 0.3333

When using date2time quasi coupon, two quasi coupon dates are computed for a bond with a
maturity corresponding to the Dates input. In this case, that would be "30-Sep-2015". Assuming that
the compounding frequency is 2, the other quasi coupon date is six months prior to this date.
Assuming the end of month rule is in place, then the other quasi coupon date is "31-Mar-2015". You
can use these two dates to compute the total number of actual days in a period (which is 183). Given
this, the fraction of time between the start and end date for the actual/actual basis is computed as
follows.

(Actual Days between Start Date and End Date)/(Actual Number of Days between
Quasi Coupon Dates)

There are 61 days between 31-Jul-2015 and 30-Sep-2015 and 183 days between the quasi coupon
dates ("31-Mar-2015" and "30-Sep-2015") which leads to a final result of 61/183 or exactly 1/3.

Input Arguments
Settle — Settlement date
serial date number | date character vector | datetime object
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Settlement date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as a scalar or N-by-1 vector using serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Compounding — Rate at which input zero rates are compounded when annualized
2 (Semiannual compounding) (default) | scalar with numeric values of 0, 1, 2, 3, 4, 5, 6, 12, 365, –1

Rate at which input zero rates are compounded when annualized, specified as a scalar with numeric
values of: 0, 1, 2, 3, 4, 5, 6, 12, 365, or –1. Allowed values are defined as:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

The optional Compounding argument determines the formula for the discount factors (Disc):

• Compounding = 0 for simple interest

• Disc = 1/(1 + Z * T), where T is time in years and simple interest assumes annual times
F = 1.

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is
the time in periodic units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number
of days elapsed computed by basis.

• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.

Basis — Day-count basis
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis, specified as an integer with a value 0 through 13 or a N-by-1 vector of integers with
values 0 through 13.
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• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as scalar nonnegative integer [0,
1] or a using a N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date
for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
TFactors — Time factors
vector

Time factors, appropriate to compounded rate quotes between Settle and Maturity dates,
returned as a vector.

F — Compounding frequencies
scalar

Compounding frequencies, returned as a scalar.
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More About
Difference Between yearfrac and date2time

The difference between yearfrac and date2time is that date2time counts full periods as a whole
integer, even if the number of actual days in the periods are different. yearfrac does not count full
periods.

For example,

yearfrac('1/1/2000', '1/1/2001', 9)

ans =

    1.0167

yearfrac for Basis 9 (ACT/360 ICMA) calculates 366/360 = 1.0167. So, even if the dates have the
same month and date, with a difference of 1 in the year, the returned value may not be exactly 1. On
the other hand, date2time calculates one full year period:

date2time('1/1/2000', '1/1/2001', 1, 9)

ans =

     1

See Also
cftimes | disc2rate | rate2disc | time2date | yearfrac | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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dateaxis
Convert serial-date axis labels to calendar-date axis labels

Syntax
dateaxis(Tickaxis,DateForm,StartDate)

Description
dateaxis(Tickaxis,DateForm,StartDate) replaces axis tick labels with date labels.

Examples

Replace Axis Tick Labels with Date Labels

This example shows how to use dateaxis to replaces axis tick labels with date labels on a graphic
figure.

Convert the x-axis labels to an automatically determined date format.

dateaxis('y', 6)

Convert the y-axis labels to the month/day format.

dateaxis('x', 2, datetime(1999,3,3))

Convert the x-axis labels to the month/day/year format. The minimum x-tick value is treated as March
3, 1999.

dateaxis('x', 2, datetime(1999,3,3))
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Input Arguments
Tickaxis — Determines which axis tick labels, x, y, z to replace
'x' (default) | character vector with value 'x', 'y', or 'z'

(Optional) Determines which axis tick labels —x, y, or z— to replace, specified as a character vector.
Data Types: char

DateForm — Defines which date format to use
date format based on the span of the axis limits (default) | integer from 0 to 17

(Optional) Defines which date format to use, specified as an integer from 0 to 17.

If no DateForm argument is entered, this function determines the date format based on the span of
the axis limits. For example, if the difference between the axis minimum and maximum is less than
15, the tick labels are converted to three-letter day-of-the-week abbreviations (DateForm = 8).

DateForm Format Description
0 01-Mar-1999 15:45:17 day-month-year hour:minute:second
1 01-mar-1999 day-month-year
2 03/01/99 month/day/year
3 Mar month, three letters
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DateForm Format Description
4 M month, single letter
5 3 month
6 03/01 month/day
7 1 day of month
8 Wed day of week, three letters
9 W day of week, single letter
10 1999 year, four digits
11 99 year, two digits
12 Mar99 month year
13 15:45:17 hour:minute:second
14 03:45:17 PM hour:minute:second AM or PM
15 15:45 hour:minute
16 03:45 PM hour:minute AM or PM
17 95/03/01 year month day

Refer to the MATLAB set command for information on modifying the axis tick values and other axis
parameters.
Data Types: double

StartDate — Assigns the date to the first axis tick value
lower axis limit converted to the appropriate date number (default) | date character vector | serial
date number | datetime

(Optional) Assigns the date to the first axis tick value, specified as a serial date number, date
character vector, or datetime. The tick values are treated as serial date numbers.

The default StartDate is the lower axis limit converted to the appropriate date number. For
example, a tick value of 1 is converted to the date 01-Jan-0000. Entering StartDate as '06-
apr-1999' assigns the date April 6, 1999 to the first tick value and the axis tick labels are set
accordingly.
Data Types: char | double | datetime

See Also
bolling | candle | datenum | datestr | highlow | movavg | pointfig | datetime

Introduced before R2006a
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datedisp
Display date entries

Syntax
datedisp(NumMat)
datedisp( ___ ,DateForm)
CharMat = datedisp(NumMat,DateForm)

Description
datedisp(NumMat) displays a matrix with the serial dates formatted as date character vectors,
using a matrix with mixed numeric entries and serial date number entries. Integers between
datenum('01-Jan-1900') and datenum('01-Jan-2200') are assumed to be serial date
numbers, while all other values are treated as numeric entries.

datedisp( ___ ,DateForm), using the optional argument DateForm, displays a matrix with the
serial dates formatted as date character vectors, using a matrix with mixed numeric entries and serial
date number entries. Integers between datenum('01-Jan-1900') and datenum('01-
Jan-2200') are assumed to be serial date numbers, while all other values are treated as numeric
entries.

CharMat = datedisp(NumMat,DateForm) returns CharMat, character array representing
NumMat. If no output variable is assigned, the function prints the array to the display.

Examples

Display a Matrix with the Serial Dates Formatted as Date Character Vectors

This example shows how to display a matrix with the serial dates formatted as date character vectors.

NumMat = [730730, 0.03, 1200 730100;
          730731, 0.05, 1000 NaN];

datedisp(NumMat)

01-Sep-2000   0.03   1200   11-Dec-1998   
02-Sep-2000   0.05   1000      NaN        

Input Arguments
NumMat — Numeric matrix to display
serial date numbers

Numeric matrix to display, specified as a serial date numbers.
Data Types: double
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DateForm — Date format
scalar character vector to indicate format of text representing dates

Date format, specified as a scalar character vector to indicate the format of text representing dates.
See datestr for available and default format flags.
Data Types: char

Output Arguments
CharMat — Character array representing NumMat
array of date character vectors

Character array representing NumMat, returned as an array of date character vectors. If no output
variable is assigned, the function prints the array to the display.

See Also
datenum | datestr

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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datefind
Indices of dates in matrix

Syntax
Indices = datefind(Subset,Superset)
Indices = datefind( ___ ,Tolerance)

Description
Indices = datefind(Subset,Superset) returns a vector of indices to the date numbers in
Superset that are present in Subset. If no date numbers match, Indices = [].

Indices = datefind( ___ ,Tolerance) returns a vector of indices to the date numbers in
Superset that are present in Subset, plus the optional argument for Tolerance. If no date
numbers match, Indices = [].

Examples

Return a Vector of Indices to Date Numbers

This example shows how to return a vector of indices to date numbers.

Superset = datenum(1999, 7, 1:31);
Subset = [datenum(1999, 7, 10); datenum(1999, 7, 20)];
Indices = datefind(Subset, Superset, 1)

Indices = 6×1

     9
    10
    11
    19
    20
    21

Input Arguments
Subset — Subset of dates to find matching dates
matrix of nonnegative integers with values for serial date numbers or datetime arrays

Subset of dates to find matching dates in Superset, specified as a matrix of nonnegative integers
with values for serial date numbers or datetime arrays.

Subset and Superset can be either serial date numbers or datetime arrays. These types do not have
to match. datefind determines the underlying date to match dates of different data types.
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Note The elements of Subset must be contained in Superset, without repetition. datefind works
with non-repeating sequences of dates.

Example: Subset = [datenum(1997,7,10); datenum(1997,7,20)];
Data Types: single | double

Superset — Superset of dates
matrix of nonnegative integers with values for serial date numbers or datetime arrays

Superset of dates, specified as a matrix of serial date numbers or datetime arrays, whose elements
are sought.

Subset and Superset can be either serial date numbers or datetime arrays. These types do not have
to match. datefind determines the underlying date to match dates of different data types.

Note The elements of Subset must be contained in Superset, without repetition. datefind works
with non-repeating sequences of dates.

Example: Superset = datenum(1997,7,1:31);
Data Types: single | double

Tolerance — Tolerance for matching dates in Superset
0 (default) | positive integer or duration object

Tolerance for matching dates (+/-) in Superset, specified as a positive integer or duration object.
Data Types: single | double

Output Arguments
Indices — Indices of dates in Superset that are present in Subset
vector

Indices of dates in Superset that are present in Subset (plus or minus the tolerance if defined using
the optional argument Tolerance), returned as a vector of indices to the date numbers or datetimes.

See Also
datenum | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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datemnth
Date of day in future or past month

Syntax
TargetDate = datemnth(StartDate,NumberMonths)
TargetDate = datemnth( ___ ,DayFlag,Basis,EndMonthRule)

Description
TargetDate = datemnth(StartDate,NumberMonths) determines a date in a future or past
month based on movement either forward or backward in time by a given number of months.

Any input can contain multiple values, but if so, all other inputs must contain the same number of
values or a single value that applies to all. For example, if StartDate is an n-row character array of
date character vectors, then NumberMonths must be an N-by-1 vector of integers or a single integer.
TargetDate is then an N-by-1 vector of date numbers.

If StartDate is a serial date number or date character vector, TargetDate is returned as a serial
date number. Use datestr to convert serial date numbers to formatted date character vectors.

If StartDate is a datetime array, then TargetDate is returned as a datetime array.

TargetDate = datemnth( ___ ,DayFlag,Basis,EndMonthRule) determines a date in a future
or past month based on movement either forward or backward in time by a given number of months,
using optional input arguments for DayFlag,Basis, and EndMonthRule.

Examples

Determine the Dates of Days in a Future Month

Determine the TargetDate in a future month using a date character vector for StartDate.

StartDate = '03-Jun-1997';
NumberMonths = 6;
DayFlag = 0;
Basis = 0;
EndMonthRule = 1;
 
TargetDate = datemnth(StartDate, NumberMonths, DayFlag,...
Basis, EndMonthRule)

TargetDate = 729727

datestr(TargetDate)

ans = 
'03-Dec-1997'

Determine the TargetDate in a future month using a datetime array for StartDate.
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Day = datemnth(datetime('3-jun-2001','Locale','en_US'), 6, 0, 0, 0)

Day = datetime
   03-Dec-2001

Determine the TargetDate in a future month using a vector for NumberMonths.

NumberMonths = [1; 3; 5; 7; 9];
TargetDate = datemnth('31-jan-2001', NumberMonths); 
datestr(TargetDate)

ans = 5x11 char array
    '28-Feb-2001'
    '30-Apr-2001'
    '30-Jun-2001'
    '31-Aug-2001'
    '31-Oct-2001'

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date character vectors,
or datetime arrays.
Data Types: double | char | datetime

NumberMonths — Number of months in future (positive) or past (negative)
positive or negative integers

Number of months in future (positive) or past (negative), specified as an N-by-1 or 1-by-N vector
containing positive or negative integers.
Data Types: double

DayFlag — Flag for how actual day number for target date in future or past month is
determined
0 (day number should be the day in the future or past month corresponding to the actual day number
of the start date) (default) | numeric with values 0, 1, or 2

Flag for how the actual day number for the target date in future or past month is determined,
specified as an N-by-1 or 1-by-N vector using a numeric with values0, 1, or 2.

Possible values are:

• 0 (default) = day number should be the day in the future or past month corresponding to the
actual day number of the start date.

• 1 = day number should be the first day of the future or past month.
• 2 = day number should be the last day of the future or past month.

This flag has no effect if EndMonthRule is set to 1.
Data Types: double
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Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis to be used when determining the past or future date, specified as a scalar value with
an integer with value of 0 through 13, or an N-by-1 or 1-by-N vector of integers with values of 0
through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
0 (not in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a scalar with a nonnegative
integer 0 or 1, or as an N-by-1 or 1-by-N vector of values 0 or 1.

• 0 = Ignore rule, meaning that rule is not in effect.
• 1 = Set rule on, meaning that if you are beginning on the last day of a month, and the month has

30 or fewer days, you will end on the last actual day of the future or past month regardless of
whether that month has 28, 29, 30 or 31 days.

Data Types: logical

Output Arguments
TargetDate — Target date in the future or past month
vector

Target date in the future or past month, returned as an N-by-1 or 1-by-N vector containing the serial
date number (default) or datetime (if StartDate is a datetime array) of the target date.
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See Also
datestr | datevec | days360 | days365 | daysact | daysdif | wrkdydif | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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datewrkdy
Date of future or past workday

Syntax
EndDate = datewrkdy(StartDate,NumberWorkDays,NumberHolidays)

Description
EndDate = datewrkdy(StartDate,NumberWorkDays,NumberHolidays) returns the serial
number of the date a given number of workdays before or after the start date.

Any input can contain multiple values, but if so, all other inputs must contain the same number of
values or a single value that applies to all.

For example, if StartDate is an n-row character array of date character vectors, then
NumberWorkDays must be an N-by-1 vector of integers or a single integer. EndDate is then an N-by-1
vector of date numbers.

If StartDate is a serial date number or date character vector, EndDate is returned as a date
number. Use datestr to convert serial date numbers to formatted date character vectors.

If StartDate is a datetime array, then EndDate is returned as a datetime array.

Examples

Determine the Date for a Future Workday

Determine the EndDate for a future workday using a date character vector for StartDate.

StartDate = '20-Dec-1994';
NumberWorkDays = 16;
NumberHolidays = 2;
 
EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays)

EndDate = 728671

datestr(EndDate)

ans = 
'12-Jan-1995'

Determine the EndDate for a future workday using a datetime array for StartDate.

EndDate = datewrkdy(datetime('12-dec-2000','Locale','en_US'), 16, 2)

EndDate = datetime
   04-Jan-2001

Determine the EndDate for future workdays using a vector for NumberWorkDays.
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NumberWorkDays = [16; 20; 44];
EndDate = datewrkdy('12-dec-2000', NumberWorkDays, 2);
datestr(EndDate)

ans = 3x11 char array
    '04-Jan-2001'
    '10-Jan-2001'
    '13-Feb-2001'

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date character vectors,
or datetime arrays.
Data Types: double | char | datetime

NumberWorkDays — Number of work or business days in future (positive) or past (negative)
positive or negative integers

Number of work or business days in future (positive) or past (negative) that includes the starting
date, specified as an N-by-1 or 1-by-N vector containing positive or negative integers.

NumberHolidays and NumberWorkDays must have the same sign.
Data Types: double

NumberHolidays — Number of holidays within NumberWorkDays
positive or negative integers

Number of holidays within NumberWorkDays, specified as positive or negative integers using an N-
by-1 or 1-by-N containing values for the number of days movement in terms of holidays into the future
(if positive) or past (if negative).

NumberHolidays and NumberWorkDays must have the same sign.
Data Types: double

Output Arguments
EndDate — Date of future or past workday
vector

Date of future or past workday, returned as an N-by-1 or 1-by-N vector containing the serial date
number (default) or the datetime (if StartDate is a datetime array) of the future or past date.

See Also
busdate | holidays | isbusday | wrkdydif | datetime

Topics
“Handle and Convert Dates” on page 2-2
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“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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day
Day of month

Syntax
DayMonth = day(Date)
DayMonth = day( ___ ,F)

Description
DayMonth = day(Date) returns the day of the month given a serial date number or date character
vector.

DayMonth = day( ___ ,F) returns the day of the month, given a serial date number, or character
vector and an optional argument, F, defining the date format for Date.

Examples

Determine the Day of the Month for Various Date Formats

Find the day of the month using a serial date number.

DayMonth = day(730544)

DayMonth = 28

Find the day of the month using a date character vector.

DayMonth = day('2/28/00')

DayMonth = 28

Find the day of the month using a date character vector with an optional argument F for a country-
specific date format.

DayMonth = day('28/02/00','dd/mm/yyyy')

DayMonth = 28

Input Arguments
Date — Date to determine day of month
serial date number | date character vector | cell array of date character vectors

Date to determine day of month, specified as a serial date number, date character vector, or cell array
of date character vectors.

All the date character vectors in Date must have same date character vector format. For more
information on supported date character vector formats, see datestr.
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Example: DayMonth = day({'2/28/00','3/10/06'})
Data Types: single | double | char | cell

F — Country-specific date format
character vector designating date format

Country-specific date format, specified as a character vector to designate the date format for the
input argument Date. For more information on supported date character vector format symbols, see
datestr. Note, formats with 'Q' are not accepted.
Example: DayMonth = day('28/02/00','dd/mm/yyyy')
Data Types: char

Output Arguments
DayMonth — Day of the month
nonnegative integer

Day of the month, returned as a nonnegative integer, given a serial date number, or date character
vector.

See Also
datevec | eomday | month | year | datestr

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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days252bus
Number of business days between dates

Syntax
NumberDays = days252bus(StartDate,EndDate)
NumberDays = days252bus( ___ HolidayVector)

Description
NumberDays = days252bus(StartDate,EndDate) computes the number of business days (that
is, non-holiday or non-weekend) between the two input dates.

NumberDays = days252bus( ___ HolidayVector) adds an optional argument for
HolidayVector. If a holiday vector is not optionally specified, then the holidays.m file is used to
determine the holidays.

Examples

Computes the Number of Business Days Between Two Input Dates

This example shows how to compute the number of business days (i.e. non-holiday or non-weekend)
between two dates using the days252bus convention.

NumberDays = days252bus('1/1/2009', '8/1/2009')

NumberDays = 146

Computes the Number of Business Days Between Two Input Dates Using a datetime Array

This example shows how to compute the number of business days (i.e. non-holiday or non-weekend)
between two dates, specified as a datetime array, using the days252bus convention.

NumberDays = days252bus(datetime('1-Jan-2009','Locale','en_US'), '8/1/2009')

NumberDays = 146

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, a cell array
of date character vectors, or datetime array.
Data Types: double | char | datetime
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EndDate — End date
serial date number | date character vector | datetime

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, a cell array of
date character vectors, or datetime array.
Data Types: double | char | datetime

HolidayVector — Holidays
holidays.m (default) | serial date number | date character vector | datetime

Holidays, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, a cell array of
date character vectors, or datetime array.
Data Types: double | char | datetime

Output Arguments
NumberDays — Number of days between two dates
vector

Number of days between two dates, returned as a scalar or an N-by-1 or 1-by-N vector containing the
number of days.

See Also
days360psa | daysact | daysdif | days365 | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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days360
Days between dates based on 360-day year

Syntax
NumDays = days360(StartDate,EndDate)

Description
NumDays = days360(StartDate,EndDate) returns the number of days between StartDate and
EndDate based on a 360-day year (that is, all months contain 30 days). If EndDate is earlier than
StartDate, NumDays is negative.

Either input argument can contain multiple values, but if so, the other must contain the same number
of values or a single value that applies to all. For example, if StartDate is an n-row character array
of date character vectors, then EndDate must be an N-by-1 vector of integers or a single integer.
NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Based on a 360-Day Year

Determine the NumDays using date character vectors for StartDate and EndDate.

NumDays = days360('15-jan-2000', '15-mar-2000')

NumDays = 60

Determine the NumDays using a datetime array for StartDate.

NumDays = days360(datetime('15-jan-2000','Locale','en_US'), '15-mar-2000')

NumDays = 60

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days360('15-jan-2000', MoreDays)

NumDays = 3×1

    60
    90
   150

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object
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Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
NumDays — Number of days between two dates
vector

Number of days between two dates, returned as a scalar or an N-by-1 or 1-by-N vector containing the
number of days.

NumDays returns as a double for serial date number, date character vector, or datetime inputs for
StartDate and EndDate.

References
[1] Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed

Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
days365 | daysact | daysdif | wrkdydif | yearfrac | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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days360e
Days between dates based on 360-day year (European)

Syntax
NumDays = days360e(StartDate,EndDate)

Description
NumDays = days360e(StartDate,EndDate) returns the number of days between StartDate
and EndDate based on a 360-day year (that is, all months contain 30 days). If EndDate is earlier than
StartDate, NumDays is negative. This day count convention is used primarily in Europe. Under this
convention, all months contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain the same number
of values or a single value that applies to all. For example, if StartDate is an n-row character array
of date character vectors, then EndDate must be an N-by-1 vector of integers or a single integer.
“Determine the Number of Days Between Two Dates Given a Basis of 30/360 Based on European
Convention” on page 19-650NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Given a Basis of 30/360 Based on
European Convention

Determine the NumDays using date character vectors for StartDate and EndDate for the month of
January.

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360e(StartDate, EndDate)

NumDays = 30

Determine the NumDays in the month of January using a datetime array for StartDate.

NumDays = days360e(datetime('1-Jan-2002','Locale','en_US'), '1-Feb-2002')

NumDays = 30

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days360e('15-jan-2000', MoreDays)

NumDays = 3×1

    60
    90
   150
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Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
NumDays — Number of days between two dates given a basis of 30/360 based on European
convention
vector

Number of days between two dates given a basis of 30/360 based on European convention, returned
as a scalar or an N-by-1 or 1-by-N vector containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime inputs for
StartDate and EndDate.

References
[1] Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed

Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
days360 | days360isda | days360psa | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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days360isda
Days between dates based on 360-day year (International Swap Dealer Association (ISDA) compliant)

Syntax
NumDays = days360isda(StartDate,EndDate)

Description
NumDays = days360isda(StartDate,EndDate) returns the number of days between StartDate
and EndDate based on a 360-day year (that is, all months contain 30 days) and is International Swap
Dealer Association (ISDA) compliant. If EndDate is earlier than StartDate, NumDays is negative.
Under this convention, all months contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain the same number
of values or a single value that applies to all. For example, if StartDate is an n-row character array
of date character vectors, then EndDate must be an N-by-1 vector of integers or a single integer.
NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Given a Basis of 30/360 Based on ISDA
Compliance

Determine the NumDays using date character vectors for StartDate and EndDate for the month of
January.

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360isda(StartDate, EndDate)

NumDays = 30

Determine the NumDays in the month of January using a datetime array for StartDate.

NumDays = days360isda(datetime('1-Jan-2002','Locale','en_US'), '1-Feb-2002')

NumDays = 30

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days360isda('15-jan-2000', MoreDays)

NumDays = 3×1

    60
    90
   150
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Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
NumDays — Number of days between two dates given a basis of 30/360 based on European
convention
vector

Number of days between two dates given a basis of 30/360 based on International Swap Dealer
Association (ISDA) compliance, returned as a scalar or an N-by-1 or 1-by-N vector containing the
number of days.

NumDays returns as a double for serial date number, date character vector, or datetime inputs for
StartDate and EndDate.

References
[1] Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed

Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
days360 | days360e | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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days360psa
Days between dates based on 360-day year (Public Securities Association (PSA) compliant)

Syntax
NumDays = days360psa(StartDate,EndDate)

Description
NumDays = days360psa(StartDate,EndDate) returns the number of days between StartDate
and EndDate based on a 360-day year (that is, all months contain 30 days) and is Public Securities
Association (PSA) compliant. If EndDate is earlier than StartDate, NumDays is negative. Under this
convention, all months contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain the same number
of values or a single value that applies to all. For example, if StartDate is an n-row character array
of date character vectors, then EndDate must be an N-by-1 vector of integers or a single integer.
NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Given a Basis of 30/360 Based on PSA
Compliance

Determine the NumDays using date character vectors for StartDate and EndDate for the month of
January.

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360psa(StartDate, EndDate)

NumDays = 30

Determine the NumDays in the month of January using a datetime array for StartDate.

NumDays = days360psa(datetime('1-Jan-2002','Locale','en_US'), '1-Feb-2002')

NumDays = 30

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days360psa('15-jan-2000', MoreDays)

NumDays = 3×1

    60
    90
   150
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Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
NumDays — Number of days between two dates given a basis of 30/360 based on European
convention
vector

Number of days between two dates given a basis of 30/360 based on Public Securities Association
(PSA) compliance, returned as a scalar or an N-by-1 or 1-by-N vector containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime inputs for
StartDate and EndDate.

References
[1] Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed

Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
days360 | days360e | days360isda | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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days365
Days between dates based on 365-day year

Syntax
NumDays = days365(StartDate,EndDate)

Description
NumDays = days365(StartDate,EndDate) returns the number of days between StartDate and
EndDate based on a 365-day year. All months contain their actual number of days. February always
contains 28 days.

If EndDate is earlier than StartDate, NumDays is negative. Under this convention, all months
contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain the same number
of values or a single value that applies to all. For example, if StartDate is an n-row character array
of date character vectors, then EndDate must be an N-by-1 vector of integers or a single integer.
NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Based on a 365-Day Year

Determine the NumDays using date character vectors for StartDate and EndDate.

NumDays = days365('15-jan-2000', '15-mar-2000')

NumDays = 59

Determine the NumDays using a datetime array for StartDate.

NumDays = days365(datetime('15-jan-2000','Locale','en_US'), '15-mar-2000')

NumDays = 59

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days365('15-jan-2000', MoreDays)

NumDays = 3×1

    59
    90
   151
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Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
NumDays — Number of days between two dates based on 365-day year
vector

Number of days between two dates based on a 365-day year, returned as a scalar or an N-by-1 or 1-
by-N vector containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime inputs for
StartDate and EndDate.

References
[1] Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed

Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
days360 | daysact | daysdif | wrkdydif | yearfrac | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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daysact
Actual number of days between dates

Syntax
NumDays = daysact(StartDate)
NumDays = daysact( ___ ,EndDate)

Description
NumDays = daysact(StartDate) returns the actual number of days between the MATLAB base
date and StartDate. In MATLAB, the base date 1 is 1-Jan-0000 A.D. See datenum for a similar
function.

NumDays = daysact( ___ ,EndDate) returns the actual number of days between StartDate and
the optional argument EndDate.

If EndDate is earlier than StartDate, NumDays is negative. Under this convention, all months
contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain the same number
of values or a single value that applies to all. For example, if StartDate is an n-row character array
of date character vectors, then EndDate must be an N-by-1 vector of integers or a single integer.
NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Based the Actual Number of Days

Determine the NumDays using date character vectors for StartDate and EndDate.

NumDays = daysact('7-sep-2002',  '25-dec-2002')

NumDays = 109

Determine the NumDays using a datetime array for StartDate.

NumDays = daysact(datetime('7-sep-2002','Locale','en_US'),  '25-dec-2002')

NumDays = 109

Determine the NumDays using a vector for EndDate.

MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];
NumDays = daysact(MoreDays, '12/25/2002')

NumDays = 3×1

   109
    64
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    50

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
NumDays — Number of days between two dates based actual number of days
vector

Number of days between two dates based on the actual number of days, returned as a scalar or an N-
by-1 or 1-by-N vector containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime inputs for
StartDate and EndDate.

References
[1] Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed

Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
datenum | datevec | days360 | days365 | daysdif | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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daysadd
Date away from starting date for any day-count basis

Syntax
NewDate = daysadd(StartDate,NumDays)
NewDate = daysadd( ___ ,Basis)

Description
NewDate = daysadd(StartDate,NumDays) returns a date NewDate number of days away from
StartDate.

If StartDate is a serial date number or date character vector, NewDate is returned as a date
number.

If StartDate is a datetime array, then NewDate is returned as a datetime array.

NewDate = daysadd( ___ ,Basis) returns a date NewDate number of days away from
StartDate, using the optional argument Basis for day-count.

If StartDate is a serial date number or date character vector, NewDate is returned as a date
number.

If StartDate is a datetime array, then NewDate is returned as a datetime array.

Examples

Determine the Date for Given Number of Days Away From StartDate

Determine the NewDate using a date character vector for StartDate.

NewDate = daysadd('01-Feb-2004', 31)

NewDate = 732009

datestr(NewDate)

ans = 
'03-Mar-2004'

Determine the NewDate using a datetime array for StartDate.

NewDate = daysadd(datetime('01-Feb-2004','Locale','en_US'), 31)

NewDate = datetime
   03-Mar-2004

Determine the NewDate using a vector for StartDate.
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MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];
NewDate = daysadd(MoreDays, 31 ,2)

NewDate = 3×1

      731497
      731542
      731556

datestr(NewDate)

ans = 3x11 char array
    '08-Oct-2002'
    '22-Nov-2002'
    '06-Dec-2002'

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

NumDays — Number of days from StartDate
positive or negative integer

Number of days from StartDate, specified an N-by-1 or 1-by-N vector using positive or negative
integers. Enter a negative integer for dates before start date.
Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or a N-by-1
vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note When using the 30/360 day-count basis, it is not always possible to find the exact date
NewDate number of days away because of a known discontinuity in the method of counting days. A
warning is displayed if this occurs.

Data Types: single | double

Output Arguments
NewDate — Date for given number of days away from StartDate
vector

Date for given number of days away from StartDate, returned as a scalar or an N-by-1 vector
containing dates.

If StartDate is a serial date number or date character vector, NewDate is returned as a date
number.

If StartDate is a datetime array, then NewDate is returned as a datetime array.

References
[1] Stigum, Marcia L. and Franklin Robinson. Money Market and Bond Calculations. Richard D. Irwin,

1996, ISBN 1-55623-476-7

See Also
daysdif | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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daysdif
Days between dates for any for any day-count basis

Syntax
NumDays = daysdif(StartDate,EndDate)
NumDays = daysdif( ___ ,Basis)

Description
NumDays = daysdif(StartDate,EndDate) returns the number of days between dates
StartDate and EndDate. The first date for StartDate is not included when determining the
number of days between first and last date.

Any input argument can contain multiple values, but if so, the other inputs must contain the same
number of values or a single value that applies to all. For example, if StartDate is an n-row array of
character vector dates, thenEndDate must be an n-row array of character vector dates or a single
date. NumDays is then an N-by-1 vector of numbers.

NumDays = daysdif( ___ ,Basis) returns the number of days between dates StartDate and
EndDate using the optional argument Basis for day-count. The first date for StartDate is not
included when determining the number of days between first and last date.

Any input argument can contain multiple values, but if so, the other inputs must contain the same
number of values or a single value that applies to all. For example, if StartDate is an n-row array of
character vector dates, then EndDate must be an n-row array of character vector dates or a single
date. NumDays is then an N-by-1 vector of numbers.

Examples

Determine the Number of Days Between StartDate and EndDate

Determine the NumDays using date character vectors for StartDate and EndDate.

NumDays = daysdif('3/1/99', '3/1/00', 1)

NumDays = 360

Determine the NumDays using a datetime array for StartDate.

NumDays = daysdif(datetime('1-Mar-1999','Locale','en_US'), '3/1/00', 1)

NumDays = 360

Determine the NumDays using a vector for EndDate.

MoreDays = ['3/1/2001'; '3/1/2002'; '3/1/2003']; 
NumDays = daysdif('3/1/98', MoreDays)

NumDays = 3×1
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        1096
        1461
        1826

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or a N-by-1
vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double
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Output Arguments
NumDays — Number of days between dates StartDate and EndDate
integer

Number of days between the StartDate and EndDate. NumDays returns as a double for serial date
number, date character vector, and datetime inputs.

The first date for StartDate is not included when determining the number of days between first and
last date.

References
[1] Stigum, Marcia L. and Franklin Robinson. Money Market and Bond Calculations. Richard D. Irwin,

1996, ISBN 1-55623-476-7

See Also
dec2thirtytwo | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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dec2thirtytwo
Decimal to thirty-second quotation

Syntax
[OutNumber,Fractions] = dec2thirtytwo(InNumber,Accuracy)

Description
[OutNumber,Fractions] = dec2thirtytwo(InNumber,Accuracy) changes a decimal price
quotation for a bond or bond future to a fraction with a denominator of 32.

Examples

Convert Decimal to Thirty-Second Quotation

This example shows two bonds that are quoted with decimal prices of 101.78 and 102.96. These
prices are converted to fractions with a denominator of 32.

InNumber  = [101.78; 102.96];
[OutNumber, Fractions] = dec2thirtytwo(InNumber)

OutNumber = 2×1

   101
   102

Fractions = 2×1

    25
    31

Input Arguments
InNumber — Input number
numeric decimal fraction

Input number, specified as an N-by-1 vector of numeric decimal fractions.
Data Types: double

Accuracy — Rounding
1 (round down to nearest thirty second) (default) | numeric with values 1, 2, 4 or 10

Rounding, specified as an N-by-1 vector of accuracy desired with numeric values of 1, 2, 4 or 10. The
values are: 1, round down to nearest thirty second, 2 (nearest half), 4 (nearest quarter), or 10
(nearest decile).
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Data Types: double

Output Arguments
OutNumber — Output number which is InNumber rounded downward to closest integer
numeric

Output number which is InNumber rounded downward to closest integer, returned as a numeric
value.

Fractions — Fractional part in units of thirty-second
numeric

Fractional part in units of thirty-second, returned as a numeric value. The Fractions output
conforms to accuracy as prescribed by the input Accuracy.

See Also
thirtytwo2dec

Introduced before R2006a
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depfixdb
Fixed declining-balance depreciation schedule

Syntax
Depreciation = depfixdb(Cost,Salvage,Life,Period)
Depreciation = depfixdb( ___ ,Month)

Description
Depreciation = depfixdb(Cost,Salvage,Life,Period) computes the fixed declining-
balance depreciation for each Period.

Depreciation = depfixdb( ___ ,Month) adds an optional argument.

Examples

Compute the Fixed Declining-Balance Depreciation

This example shows how to calculate the depreciation for the first five years for a car is purchased for
$11,000, with a salvage value of $1500, and a lifetime of eight years.

Depreciation = depfixdb(11000, 1500, 8, 5)

Depreciation = 1×5
103 ×

    2.4251    1.8904    1.4737    1.1488    0.8955

Input Arguments
Cost — Initial value of the asset
numeric

initial value of the asset, specified as a scalar numeric.
Data Types: double

Salvage — Salvage value of the asset
numeric

Salvage value of the asset, specified as a scalar numeric.
Data Types: double

Life — Life of the asset in years
numeric

life of the asset in years, specified as scalar numeric.
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Data Types: double

Period — Number of years to calculate
integer

Number of years to calculate, specified as scalar integer.
Data Types: double

Month — Number of months in the first year of asset life
12 (default) | numeric

(Optional) Number of months in the first year of asset life, specified as a scalar numeric.
Data Types: double

Output Arguments
Depreciation — Depreciation
vector

Depreciation, returned as the fixed declining-balance depreciation for each Period.

See Also
depgendb | deprdv | depsoyd | depstln

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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depgendb
General declining-balance depreciation schedule

Syntax
Depreciation = depgendb(Cost,Salvage,Life,Factor)

Description
Depreciation = depgendb(Cost,Salvage,Life,Factor) computes the declining-balance
depreciation for each period.

Examples

Calculate the Declining-Balance Depreciation

A car is purchased for $10,000 and is to be depreciated over five years. The estimated salvage value
is $1000. Using the double-declining-balance method, the function calculates the depreciation for
each year and returns the remaining depreciable value at the end of the life of the car.

Define the depreciation.

Life = 5;
Salvage = 0;
Cost = 10000;
Factor=2;

Use depgendb to calculate the depreciation.

Depreciation = depgendb(10000, 1000, 5, 2)

Depreciation = 1×5
103 ×

    4.0000    2.4000    1.4400    0.8640    0.2960

The large value returned at the final year is the sum of the depreciation over the life time and is equal
to the difference between the Cost and Salvage. The value of the asset in the final year is computed
as (Cost - Salvage) = Sum_Depreciation_Upto_Final_Year.

Input Arguments
Cost — Initial value of the asset
numeric

initial value of the asset, specified as a scalar numeric.
Data Types: double
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Salvage — Salvage value of the asset
numeric

Salvage value of the asset, specified as a scalar numeric.
Data Types: double

Life — Number of periods over which the asset is depreciated
numeric

Number of periods over which the asset is depreciated, specified as a scalar numeric.
Data Types: double

Factor — Depreciation factor
numeric

Depreciation factor, specified as a scalar numeric. When Factor = 2, then the double-declining-
balance method is used.
Data Types: double

Output Arguments
Depreciation — Depreciation
vector

Depreciation, returned as the declining-balance depreciation for each period.

See Also
depfixdb | deprdv | depsoyd | depstln

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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deprdv
Remaining depreciable value

Syntax
Depreciation = deprdv(Cost,Salvage,Accum)

Description
Depreciation = deprdv(Cost,Salvage,Accum) computes the remaining depreciable value for
an asset.

Examples

Compute the Remaining Depreciable Value for an Asset

This example shows how to find the remaining depreciable value after six years for the cost of an
asset for $13,000 with a life of 10 years. The salvage value is $1000.

Accum = depstln(13000, 1000, 10) * 6

Accum = 7200

Value = deprdv(13000, 1000, 7200)

Value = 4800

Input Arguments
Cost — Initial value of the asset
numeric

Initial value of the asset, specified as a scalar numeric.
Data Types: double

Salvage — Salvage value of the asset
numeric

Salvage value of the asset, specified as a scalar numeric.
Data Types: double

Accum — Accumulated depreciation of the asset for prior periods
numeric

Accumulated depreciation of the asset for prior periods, specified as a scalar numeric.
Data Types: double
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Output Arguments
Depreciation — Depreciation
numeric

Depreciation, returned as the remaining depreciable value for an asset.

See Also
depfixdb | depgendb | depsoyd | depstln

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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depsoyd
Sum of years' digits depreciation

Syntax
Sum = depsoyd(Cost,Salvage,Life)

Description
Sum = depsoyd(Cost,Salvage,Life) computes the depreciation for an asset using the sum of
years' digits method.

Examples

Compute the Depreciation for an Asset Using the Sum of Years' Digits Method

This example shows how to calculate the depreciation for an asset using the sum of years' digits
method where the asset is $13,000 with a life of 10 years. The salvage value of the asset is $1000.

Sum = depsoyd(13000, 1000, 10)'

Sum = 10×1
103 ×

    2.1818
    1.9636
    1.7455
    1.5273
    1.3091
    1.0909
    0.8727
    0.6545
    0.4364
    0.2182

Input Arguments
Cost — Initial value of the asset
numeric

initial value of the asset, specified as a scalar numeric.
Data Types: double

Salvage — Salvage value of the asset
numeric

Salvage value of the asset, specified as a scalar numeric.
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Data Types: double

Life — Depreciable life of the asset in years
numeric

Depreciable life of the asset in years, specified as a scalar numeric.
Data Types: double

Output Arguments
Sum — Depreciation values
vector

Depreciation values, returned as a 1-by-Life vector of depreciation values with each element
corresponding to a year of the asset's life.

See Also
depfixdb | depgendb | deprdv | depstln

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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depstln
Straight-line depreciation schedule

Syntax
Depreciation = depstln(Cost,Salvage,Life)

Description
Depreciation = depstln(Cost,Salvage,Life) computes the straight-line depreciation for an
asset.

Examples

Compute the Straight-Line Depreciation for an Asset

This example shows how to calculate the straight-line depreciation for an asset that costs $13,000
with a life of 10 years. The salvage value of the asset is $1000.

Depreciation = depstln(13000, 1000, 10)

Depreciation = 1200

Input Arguments
Cost — Initial value of the asset
numeric

Initial value of the asset, specified as a scalar numeric.
Data Types: double

Salvage — Salvage value of the asset
numeric

Salvage value of the asset, specified as a scalar numeric.
Data Types: double

Life — Depreciable life of the asset in years
numeric

Depreciable life of the asset in years, specified as a scalar numeric.
Data Types: double
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Output Arguments
Depreciation — Depreciation
numeric

Depreciation, returned as a straight-line depreciation for an asset.

See Also
depfixdb | depgendb | deprdv | depsoyd

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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diff
Differencing

Note diff is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = diff(oldfts)

Description
diff computes the differences of the data series in a financial time series object. It returns another
time series object containing the difference.

newfts = diff(oldfts) computes the difference of all the data in the data series of the object
oldfts and returns the result in the object newfts. newfts is a financial time series object
containing the same data series (names) as the input oldfts.

See Also
diff

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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disc2zero
Zero curve given discount curve

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Compounding and Basis.

Syntax
[ZeroRates,CurveDates] = disc2zero(DiscRates,CurveDates,Settle)
[ZeroRates,CurveDates] = disc2zero( ___ ,Name,Value)

Description
[ZeroRates,CurveDates] = disc2zero(DiscRates,CurveDates,Settle) returns a zero
curve given a discount curve and its maturity dates. If either inputs for CurveDates or Settle are
datetime arrays, the output CurveDates is returned as datetime arrays.

[ZeroRates,CurveDates] = disc2zero( ___ ,Name,Value) adds optional name-value pair
arguments

Examples

Determine the Zero Curve Given a Discount Curve and Maturity Dates

Given the following discount factors DiscRates over a set of maturity dates CurveDates, and a
settlement date Settle:

DiscRates = [0.9996
             0.9947
             0.9896
             0.9866
             0.9826
             0.9786
             0.9745
             0.9665
             0.9552
             0.9466];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];
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Settle = datenum('03-Nov-2000');

Set daily compounding for the output zero curve, on an actual/365 basis.

Compounding = 365;
Basis = 3;

Execute the function disc2zero which returns the zero curve ZeroRates at the maturity dates
CurveDates.

[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,... 
Settle, Compounding, Basis)

ZeroRates = 10×1

    0.0487
    0.0510
    0.0523
    0.0524
    0.0530
    0.0526
    0.0530
    0.0532
    0.0549
    0.0536

CurveDates = 10×1

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

For readability, DiscRates and ZeroRates are shown here only to the basis point. However,
MATLAB® software computed them at full precision. If you enter DiscRates as shown, ZeroRates
may differ due to rounding.

Determine the Zero Curve Given a Discount Curve and Maturity Dates Using datetime
Inputs

Given the following discount factors, DiscRates, over a set of maturity dates, CurveDates, and a
settlement date, Settle, use datetime inputs to return the zero curve, ZeroRates, at the maturity
dates, CurveDates.

DiscRates = [0.9996
             0.9947
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             0.9896
             0.9866
             0.9826
             0.9786
             0.9745
             0.9665
             0.9552
             0.9466];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
Compounding = 365;
Basis = 3;

CurveDates = datetime(CurveDates,'ConvertFrom','datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,...
Settle, Compounding, Basis)

ZeroRates = 10×1

    0.0487
    0.0510
    0.0523
    0.0524
    0.0530
    0.0526
    0.0530
    0.0532
    0.0549
    0.0536

CurveDates = 10x1 datetime
   06-Nov-2000
   11-Dec-2000
   15-Jan-2001
   05-Feb-2001
   04-Mar-2001
   02-Apr-2001
   30-Apr-2001
   25-Jun-2001
   04-Sep-2001
   12-Nov-2001
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Input Arguments
DiscRates — Discount factors
decimal fraction

Discount factors, specified as a column vector of decimal fractions. In aggregate, the factors in
DiscRates constitute a discount curve for the investment horizon represented by CurveDates.
Data Types: double

CurveDates — Maturity dates
serial date number | date character vector | datetime

Maturity dates that correspond to the discount factors in DiscRates, specified as a column vector
using serial date numbers, date character vectors, or datetime arrays.
Data Types: double | datetime | char

Settle — Common settlement date for discount rates in DiscRates
serial date number | date character vector | datetime

Common settlement date for the discount rates in DiscRates, specified as serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | datetime | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [ZeroRates,CurveDates] =
disc2zero(DiscRates,CurveDates,Settle,'Compounding',6,'Basis',9)

Compounding — Rate at which output zero rates are compounded when annualized
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Rate at which the output zero rates are compounded when annualized, specified as a numeric value.
Allowed values are:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Data Types: double

19 Functions

19-682



Basis — Day-count basis used for annualizing output zero rates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis used for annualizing the output zero rates, specified as a numeric value. Allowed
values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
ZeroRates — Zero curve for investment horizon represented by CurveDates
numeric

Zero curve for the investment horizon represented by CurveDates, returned as a column vector of
decimal fractions. The zero rates are the yields to maturity on theoretical zero-coupon bonds.

CurveDates — Maturity dates that correspond to ZeroRates
serial date number | date character vector | datetime

Maturity dates that correspond to the ZeroRates, returned as a column vector. This vector is the
same as the input vector CurveDates, but the output is sorted by ascending maturity. If either inputs
for CurveDates or Settle are datetime arrays, the output CurveDates is returned as datetime
arrays.

See Also
zero2disc | datetime | fwd2zero | prbyzero | pyld2zero | zbtprice | zbtyield | zero2disc
| zero2fwd | zero2pyld

Topics
“Term Structure of Interest Rates” on page 2-32
“Fixed-Income Terminology” on page 2-18
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Introduced before R2006a
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discrate
Bank discount rate of security

Syntax
DiscRate = discrate(Settle,Maturity,Face,Price)
DiscRate = discrate( ___ ,Basis)

Description
DiscRate = discrate(Settle,Maturity,Face,Price)computes the bank discount rate of a
security. The bank discount rate normalizes by the face value of the security (for example, U. S.
Treasury Bills) and understates the true yield earned by investors.

DiscRate = discrate( ___ ,Basis) adds an optional argument for Basis.

Examples

Compute the Bank Discount Rate of a Security

This example shows how to find the bank discount rate of a security.

DiscRate = discrate('12-jan-2000', '25-jun-2000', 100, 97.74, 0)

DiscRate = 0.0501

Compute the Bank Discount Rate of a Security Using datetime Inputs

This example shows how to use datetime inputs to find the bank discount rate of a security.

DiscRate = discrate(datetime('12-jan-2000','Locale','en_US'), datetime('25-jun-2000','Locale','en_US'), 100, 97.74, 0)

DiscRate = 0.0501

Input Arguments
Settle — Settlement date
serial date number | date character vector | datetime

Settlement date, specified as serial date numbers, date character vectors, or datetime arrays.
Data Types: double | datetime | char

Maturity — Maturity date
serial date number | date character vector | datetime

Maturity date, specified as serial date number, date character vector, or datetime array.
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Data Types: double | char | datetime

Face — Redemption (par, face) value
numeric

Redemption (par, face) value, specified as a numeric value.
Data Types: double

Price — Security price
numeric

Security price, specified as a numeric value.
Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | integer with value of 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
DiscRate — Discount rate of security
decimal

Discount rate of security, returned as a decimal.

References
[1] Mayle. "Standard Securities Calculation Methods." Volumes I-II, 3rd edition. Formula 2.
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See Also
acrudisc | fvdisc | prdisc | ylddisc | datetime

Topics
“Term Structure of Interest Rates” on page 2-32
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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ecmlsrmle
Least-squares regression with missing data

Syntax
[Parameters,Covariance,Resid,Info] = ecmlsrmle(Data,Design,MaxIterations,TolParam,TolObj,Param0,Covar0,CovarFormat)

Arguments
Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a

NUMSERIES-dimensional random vector. Missing values are
represented as NaNs. Only samples that are entirely NaNs are
ignored. (To ignore samples with at least one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form for
regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains
either one or NUMSAMPLES cells. Each cell contains a NUMSERIES-
by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

MaxIterations (Optional) Maximum number of iterations for the estimation
algorithm. Default value is 100.

TolParam (Optional) Convergence tolerance for estimation algorithm based on
changes in model parameter estimates. Default value is sqrt(eps)
which is about 1.0e-8 for double precision. The convergence test for
changes in model parameters is

 Paramk− Paramk− 1 < TolParam × 1 + Paramk

 where Param represents the output Parameters, and iteration k =
2, 3, ... . Convergence is assumed when both the TolParam and
TolObj conditions are satisfied. If both TolParam ≤ 0 and TolObj
≤ 0, do the maximum number of iterations (MaxIterations),
whatever the results of the convergence tests.
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TolObj (Optional) Convergence tolerance for estimation algorithm based on
changes in the objective function. Default value is eps ∧ 3/4 which is
about 1.0e-12 for double precision. The convergence test for changes
in the objective function is

Ob jk− Ob jk− 1 < TolOb j × 1 + Ob jk

for iteration k = 2, 3, ... . Convergence is assumed when both the
TolParam and TolObj conditions are satisfied. If both TolParam ≤
0 and TolObj ≤ 0, do the maximum number of iterations
(MaxIterations), whatever the results of the convergence tests.

Param0 (Optional) NUMPARAMS-by-1 column vector that contains a user-
supplied initial estimate for the parameters of the regression model.
Default is a zero vector.

Covar0 (Optional) NUMSERIES-by-NUMSERIES matrix that contains a user-
supplied initial or known estimate for the covariance matrix of the
regression residuals. Default is an identity matrix.

For covariance-weighted least-squares calculations, this matrix
corresponds with weights for each series in the regression. The
matrix also serves as an initial guess for the residual covariance in
the expectation conditional maximization (ECM) algorithm.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. Compute the full covariance matrix.
• 'diagonal' — Force the covariance matrix to be a diagonal

matrix.

Description
[Parameters, Covariance, Resid, Info] = ecmlsrmle(Data, Design,
MaxIterations, TolParam, TolObj, Param0, Covar0, CovarFormat) estimates a least-
squares regression model with missing data. The model has the form

Datak ∼ N Designk × Parameters, Covariance

for samples k = 1, ... , NUMSAMPLES.

ecmlsrmle estimates a NUMPARAMS-by-1 column vector of model parameters called Parameters,
and a NUMSERIES-by-NUMSERIES matrix of covariance parameters called Covariance.

ecmlsrmle(Data, Design) with no output arguments plots the log-likelihood function for each
iteration of the algorithm.

To summarize the outputs of ecmlsrmle:

• Parameters is a NUMPARAMS-by-1 column vector of estimates for the parameters of the
regression model.

• Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the
regression model's residuals. For least-squares models, this estimate may not be a maximum
likelihood estimate except under special circumstances.
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• Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the regression.

Another output, Info, is a structure that contains additional information from the regression. The
structure has these fields:

• Info.Obj — A variable-extent column vector, with no more than MaxIterations elements, that
contain each value of the objective function at each iteration of the estimation algorithm. The last
value in this vector, Obj(end), is the terminal estimate of the objective function. If you do least-
squares, the objective function is the least-squares objective function.

• Info.PrevParameters — NUMPARAMS-by-1 column vector of estimates for the model parameters
from the iteration just prior to the terminal iteration.

• Info.PrevCovariance — NUMSERIES-by-NUMSERIES matrix of estimates for the covariance
parameters from the iteration just prior to the terminal iteration.

Notes
If doing covariance-weighted least-squares, Covar0 should usually be a diagonal matrix. Series with
greater influence should have smaller diagonal elements in Covar0 and series with lesser influence
should have larger diagonal elements. Note that if doing CWLS, Covar0 do not need to be a diagonal
matrix even if CovarFormat = 'diagonal'.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row vector.
• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS

matrix.

These points concern how Design handles missing data:

• Although Design should not have NaN values, ignored samples due to NaN values in Data are also
ignored in the corresponding Design array.

• If Design is a 1-by-1 cell array, which has a single Design matrix for each sample, no NaN values
are permitted in the array. A model with this structure must have NUMSERIES ≥ NUMPARAMS with
rank(Design{1}) = NUMPARAMS.

• ecmlsrmle is more strict than mvnrmle about the presence of NaN values in the Design array.

Use the estimates in the optional output structure Info for diagnostic purposes.

Examples
See “Multivariate Normal Regression” on page 9-13, “Least-Squares Regression” on page 9-14,
“Covariance-Weighted Least Squares” on page 9-14, “Feasible Generalized Least Squares” on page 9-
15, and “Seemingly Unrelated Regression” on page 9-16.

References
Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd Edition. John
Wiley & Sons, Inc., 2002.

Xiao-Li Meng and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM Algorithm.”
Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.
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Joe Sexton and Anders Rygh Swensen. “ECM Algorithms that Converge at the Rate of EM.”
Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.

A. P. Dempster, N.M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete Data via the EM
Algorithm.” Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp. 1–37.

See Also
ecmlsrobj | ecmmvnrmle | ecmmvnrmle

Topics
“Least-Squares Regression Without Missing Data” on page 9-14
“Covariance-Weighted Least Squares Without Missing Data” on page 9-15

Introduced in R2006a
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ecmlsrobj
Log-likelihood function for least-squares regression with missing data

Syntax
Objective = ecmlsrobj(Data,Design,Parameters,Covariance)

Arguments
Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a

NUMSERIES-dimensional random vector. Missing values are represented as
NaNs. Only samples that are entirely NaNs are ignored. (To ignore samples
with at least one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form for regression on a
single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains either
one or NUMSAMPLES cells. Each cell contains a NUMSERIES-by-
NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same Design matrix
for each sample. If Design has more than one cell, each cell contains a
Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the parameters of the
regression model.

Covariance (Optional) NUMSERIES-by-NUMSERIES matrix that contains a user-supplied
estimate for the covariance matrix of the residuals of the regression. Default
is an identity matrix.

Description
Objective = ecmlsrobj(Data,Design,Parameters,Covariance) computes a least-squares
objective function based on current parameter estimates with missing data. Objective is a scalar
that contains the least-squares objective function.

Notes
ecmlsrobj requires that Covariance be positive-definite.

Note that

ecmlsrobj(Data, Design, Parameters) = ecmmvnrobj(Data, ... 
Design, Parameters, IdentityMatrix)

where IdentityMatrix is a NUMSERIES-by-NUMSERIES identity matrix.
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You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row vector.
• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS

matrix.

Examples
See “Multivariate Normal Regression” on page 9-13, “Least-Squares Regression” on page 9-14,
“Covariance-Weighted Least Squares” on page 9-14, “Feasible Generalized Least Squares” on page 9-
15, and “Seemingly Unrelated Regression” on page 9-16.

See Also
ecmlsrmle | mvnrmle

Topics
“Least-Squares Regression With Missing Data” on page 9-14

Introduced in R2006a
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ecmmvnrfish
Fisher information matrix for multivariate normal regression model

Syntax
Fisher = ecmmvnrfish(Data,Design,Covariance,Method,MatrixFormat,CovarFormat)

Arguments
Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a

NUMSERIES-dimensional random vector. Missing values are
represented as NaNs. Only samples that are entirely NaNs are
ignored. (To ignore samples with at least one NaN, use mvnrfish.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form for
regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains
either one or NUMSAMPLES cells. Each cell contains a NUMSERIES-
by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of
the residuals of the regression.

Method (Optional) Character vector that identifies method of calculation for
the information matrix:

• hessian — Default method. Use the expected Hessian matrix of
the observed log-likelihood function. This method is
recommended since the resultant standard errors incorporate the
increased uncertainties due to missing data.

• fisher — Use the Fisher information matrix.
MatrixFormat (Optional) Character vector that identifies parameters to be included

in the Fisher information matrix:

• full — Default format. Compute the full Fisher information
matrix for both model and covariance parameter estimates.

• paramonly — Compute only components of the Fisher
information matrix associated with the model parameter
estimates.
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CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full matrix.
• 'diagonal' — The covariance matrix is a diagonal matrix.

Description
Fisher = ecmmvnrfish(Data,Design,Covariance,Method,MatrixFormat,CovarFormat)
computes a Fisher information matrix based on current maximum likelihood or least-squares
parameter estimates that account for missing data.

Fisher is a NUMPARAMS-by-NUMPARAMS Fisher information matrix or Hessian matrix. The size of
NUMPARAMS depends on MatrixFormat and on current parameter estimates. If MatrixFormat =
'full',

NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2

If MatrixFormat = 'paramonly',

NUMPARAMS = NUMSERIES

Note ecmmvnrfish operates slowly if you calculate the full Fisher information matrix.

Examples
See “Multivariate Normal Regression” on page 9-13, “Least-Squares Regression” on page 9-14,
“Covariance-Weighted Least Squares” on page 9-14, “Feasible Generalized Least Squares” on page 9-
15, and “Seemingly Unrelated Regression” on page 9-16.

See Also
ecmnmle | ecmnstd

Topics
“Multivariate Normal Regression Without Missing Data” on page 9-13
“Fisher Information” on page 9-4
“Multivariate Normal Linear Regression” on page 9-2

Introduced in R2006a
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ecmmvnrmle
Multivariate normal regression with missing data

Syntax
[Param,Covar] = ecmmvnrmle(Data,Design)
[Param,Covar,Resid,Info] = ecmmvnrmle( ___ ,MaxIterations,TolParam,TolObj,
Param0,Covar0,CovarFormat)

Description
[Param,Covar] = ecmmvnrmle(Data,Design) estimates a multivariate normal regression model
with missing data. The model has the form

Datak ∼ N Designk × Parameters, Covariance

for samples k = 1, ... , NUMSAMPLES.

[Param,Covar,Resid,Info] = ecmmvnrmle( ___ ,MaxIterations,TolParam,TolObj,
Param0,Covar0,CovarFormat) adds an optional arguments for MaxIterations, TolParam,
TolObj, Param0, Covar0, and CovarFormat.

Examples

Compute Multivariate Normal Regression With Missing Data

This example shows how to estimate a multivariate normal regression model with missing data.

First, load dates, total returns, and ticker symbols for the twelve stocks from the MAT-file.

load CAPMuniverse
whos Assets Data Dates

  Name           Size             Bytes  Class     Attributes

  Assets         1x14              1568  cell                
  Data        1471x14            164752  double              
  Dates       1471x1              11768  double              

Dates = datetime(Dates,'ConvertFrom','datenum');

The assets in the model have the following symbols, where the last two series are proxies for the
market and the riskless asset.

Assets(1:14)

ans = 1x14 cell
  Columns 1 through 6

    {'AAPL'}    {'AMZN'}    {'CSCO'}    {'DELL'}    {'EBAY'}    {'GOOG'}
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  Columns 7 through 12

    {'HPQ'}    {'IBM'}    {'INTC'}    {'MSFT'}    {'ORCL'}    {'YHOO'}

  Columns 13 through 14

    {'MARKET'}    {'CASH'}

The data covers the period from January 1, 2000 to November 7, 2005 with daily total returns. Two
stocks in this universe have missing values that are represented by NaNs. One of the two stocks had
an IPO during this period and, consequently, has significantly less data than the other stocks.

Compute separate regressions for each stock, where the stocks with missing data have estimates that
reflect their reduced observability.

[NumSamples, NumSeries] = size(Data);
NumAssets = NumSeries - 2;

StartDate = Dates(1);
EndDate = Dates(end);

Alpha = NaN(1, length(NumAssets));
Beta = NaN(1, length(NumAssets));
Sigma = NaN(1, length(NumAssets));
StdAlpha = NaN(1, length(NumAssets));
StdBeta = NaN(1, length(NumAssets));
StdSigma = NaN(1, length(NumAssets));
for i = 1:NumAssets
    % Set up separate asset data and design matrices
    TestData = zeros(NumSamples,1);
    TestDesign = zeros(NumSamples,2);

    TestData(:) = Data(:,i) - Data(:,14);
    TestDesign(:,1) = 1.0;
    TestDesign(:,2) = Data(:,13) - Data(:,14);

    % Estimate the multivariate normal regression for each asset separately.
    [Param, Covar] = ecmmvnrmle(TestData, TestDesign)
    
end   

Param = 2×1

    0.0012
    1.2294

Covar = 0.0010

Param = 2×1

    0.0006
    1.3661

Covar = 0.0020
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Param = 2×1

   -0.0002
    1.5653

Covar = 8.8911e-04

Param = 2×1

   -0.0000
    1.2594

Covar = 6.4996e-04

Param = 2×1

    0.0014
    1.3441

Covar = 0.0014

Param = 2×1

    0.0046
    0.3742

Covar = 6.3272e-04

Param = 2×1

    0.0001
    1.3745

Covar = 6.5040e-04

Param = 2×1

   -0.0000
    1.0807

Covar = 2.8562e-04

Param = 2×1

    0.0001
    1.6002

Covar = 6.9146e-04

Param = 2×1

   -0.0002
    1.1765

19 Functions

19-698



Covar = 3.7138e-04

Param = 2×1

    0.0000
    1.5010

Covar = 0.0010

Param = 2×1

    0.0001
    1.6543

Covar = 0.0015

Input Arguments
Data — Data
matrix

Data, specified as an NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-
dimensional random vector. Missing values are indicated by NaNs. Only samples that are entirely
NaNs are ignored. (To ignore samples with at least one NaN, use mvnrmle.)
Data Types: double

Design — Design model
matrix | cell array

Design model, specified as a matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS matrix with known values. This
structure is the standard form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains either one or NUMSAMPLES cells.
Each cell contains a NUMSERIES-by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same Design matrix for each sample. If
Design has more than one cell, each cell contains a Design matrix for each sample.

Data Types: double | cell

MaxIterations — Maximum number of iterations for the estimation algorithm
100 (default) | numeric

(Optional) Maximum number of iterations for the estimation algorithm, specified as a numeric.
Data Types: double

TolParam — Convergence tolerance for estimation algorithm based on changes in model
parameter estimates
1.0e-8 (default) | numeric
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(Optional) Convergence tolerance for estimation algorithm based on changes in model parameter
estimates, specified as a numeric. The convergence test for changes in model parameters is

Paramk− Paramk− 1 < TolParam × 1 + Paramk

where Param represents the output Parameters, and iteration k = 2, 3, ... . Convergence is assumed
when both the TolParam and TolObj conditions are satisfied. If both TolParam ≤ 0 and TolObj ≤
0, do the maximum number of iterations (MaxIterations), whatever the results of the convergence
tests.
Data Types: double

TolObj — Convergence tolerance for estimation algorithm based on changes in objective
function
1.0e-12 (default) | numeric

(Optional) Convergence tolerance for estimation algorithm based on changes in the objective
function, specified as a numeric. The convergence test for changes in the objective function is

Ob jk− Ob jk− 1 < TolOb j × 1 + Ob jk

for iteration k = 2, 3, ... . Convergence is assumed when both the TolParam and TolObj conditions
are satisfied. If both TolParam ≤ 0 and TolObj ≤ 0, do the maximum number of iterations
(MaxIterations), whatever the results of the convergence tests.
Data Types: double

Param0 — Estimate for the parameters of regression model
[] (default) | vector

(Optional) Estimate for the parameters of the regression model, specified as an NUMPARAMS-by-1
column vector.
Data Types: double

Covar0 — Estimate for the covariance matrix of regression residuals
[] (default) | matrix

(Optional) Estimate for the covariance matrix of the regression residuals, specified as NUMSERIES-by-
NUMSERIES matrix.
Data Types: double

CovarFormat — Format for the covariance matrix
'full' (default) | character vector

(Optional) Format for the covariance matrix, specified as a character vector. The choices are:

• 'full' — Compute the full covariance matrix.
• 'diagonal' — Force the covariance matrix to be a diagonal matrix.

Data Types: char
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Output Arguments
Param — Estimates for parameters of the regression model
vector

Estimates for the parameters of the regression model, returned as a NUMPARAMS-by-1 column vector.

Covar — Estimates for the covariance of regression model's residuals
matrix

Estimates for the covariance of the regression model's residuals, returned as a NUMSERIES-by-
NUMSERIES matrix.

Resid — Residuals from regression
matrix

Residuals from the regression, returned as a NUMSAMPLES-by-NUMSERIES matrix. For any missing
values in Data, the corresponding residual is the difference between the conditionally imputed value
for Data and the model, that is, the imputed residual.

Note The covariance estimate Covariance cannot be derived from the residuals.

Info — Additional information from regression
structure

Additional information from the regression, returned as a structure. The structure has these fields:

• Info.Obj — A variable-extent column vector, with no more than MaxIterations elements, that
contain each value of the objective function at each iteration of the estimation algorithm. The last
value in this vector, Obj(end), is the terminal estimate of the objective function. If you do
maximum likelihood estimation, the objective function is the log-likelihood function.

• Info.PrevParameters — NUMPARAMS-by-1 column vector of estimates for the model parameters
from the iteration just prior to the terminal iteration.Info.PrevCovariance – NUMSERIES-by-
NUMSERIES matrix of estimates for the covariance parameters from the iteration just prior to the
terminal iteration.

References
[1] Little, Roderick J. A. and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd Edition. John

Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM Algorithm.”
Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

[3] Sexton, Joe and Anders Rygh Swensen. “ECM Algorithms that Converge at the Rate of EM.”
Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.

[4] Dempster, A. P., N. M. Laird, and Donald B. Rubin. “Maximum Likelihood from Incomplete Data via
the EM Algorithm.” Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp.
1–37.
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See Also
ecmmvnrobj | mvnrmle

Topics
“Multivariate Normal Regression With Missing Data” on page 9-14
“Multivariate Normal Regression” on page 9-13
“Least-Squares Regression” on page 9-14
“Covariance-Weighted Least Squares” on page 9-14
“Feasible Generalized Least Squares” on page 9-15
“Seemingly Unrelated Regression” on page 9-16
“Multivariate Normal Linear Regression” on page 9-2

Introduced in R2006a
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ecmmvnrobj
Log-likelihood function for multivariate normal regression with missing data

Syntax
Objective = ecmmvnrobj(Data,Design,Parameters,Covariance,CovarFormat)

Arguments
Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a

NUMSERIES-dimensional random vector. Missing values are represented as
NaNs. Only samples that are entirely NaNs are ignored. (To ignore samples
with at least one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form for regression on a
single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains either
one or NUMSAMPLES cells. Each cell contains a NUMSERIES-by-
NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same Design matrix
for each sample. If Design has more than one cell, each cell contains a
Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the parameters of the
regression model.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the
residuals of the regression.

CovarFormat (Optional) Character vector that specifies the format for the covariance
matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full matrix.
• 'diagonal' — The covariance matrix is a diagonal matrix.

Description
Objective = ecmmvnrobj(Data,Design,Parameters,Covariance,CovarFormat) computes
a log-likelihood function based on current maximum likelihood parameter estimates with missing
data. Objective is a scalar that contains the least-squares objective function.

Notes
You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row vector.

 ecmmvnrobj

19-703



• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS
matrix.

Examples
See “Multivariate Normal Regression” on page 9-13, “Least-Squares Regression” on page 9-14,
“Covariance-Weighted Least Squares” on page 9-14, “Feasible Generalized Least Squares” on page 9-
15, and “Seemingly Unrelated Regression” on page 9-16.

See Also
ecmmvnrmle | mvnrmle | mvnrobj

Topics
“Multivariate Normal Regression With Missing Data” on page 9-14
“Portfolios With Missing Data” on page 9-21
“Multivariate Normal Linear Regression” on page 9-2

Introduced in R2006a
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ecmmvnrstd
Evaluate standard errors for multivariate normal regression model

Syntax
[StdParameters,StdCovariance] = ecmmvnrstd(Data,Design,Covariance)
[StdParameters,StdCovariance] = ecmmvnrstd( ___ ,Method,CovarFormat)

Description
[StdParameters,StdCovariance] = ecmmvnrstd(Data,Design,Covariance) evaluates
standard errors for a multivariate normal regression model with missing data. The model has the
form

Datak ∼ N Designk × Parameters, Covariance

for samples k = 1, ... , NUMSAMPLES.

[StdParameters,StdCovariance] = ecmmvnrstd( ___ ,Method,CovarFormat) adds an
optional arguments for Method and CovarFormat.

Examples

Compute Standard Errors for Multivariate Normal Regression

This example shows how to compute standard errors for a multivariate normal regression model.

First, load dates, total returns, and ticker symbols for the twelve stocks from the MAT-file.

load CAPMuniverse
whos Assets Data Dates

  Name           Size             Bytes  Class     Attributes

  Assets         1x14              1568  cell                
  Data        1471x14            164752  double              
  Dates       1471x1              11768  double              

Dates = datetime(Dates,'ConvertFrom','datenum');

The assets in the model have the following symbols, where the last two series are proxies for the
market and the riskless asset.

Assets(1:14)

ans = 1x14 cell
  Columns 1 through 6

    {'AAPL'}    {'AMZN'}    {'CSCO'}    {'DELL'}    {'EBAY'}    {'GOOG'}

  Columns 7 through 12
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    {'HPQ'}    {'IBM'}    {'INTC'}    {'MSFT'}    {'ORCL'}    {'YHOO'}

  Columns 13 through 14

    {'MARKET'}    {'CASH'}

The data covers the period from January 1, 2000 to November 7, 2005 with daily total returns. Two
stocks in this universe have missing values that are represented by NaNs. One of the two stocks had
an IPO during this period and, consequently, has significantly less data than the other stocks.

[Mean,Covariance] = ecmnmle(Data);

Compute separate regressions for each stock, where the stocks with missing data have estimates that
reflect their reduced observability.

[NumSamples, NumSeries] = size(Data);
NumAssets = NumSeries - 2;

StartDate = Dates(1);
EndDate = Dates(end);

Alpha = NaN(1, length(NumAssets));
Beta = NaN(1, length(NumAssets));
Sigma = NaN(1, length(NumAssets));
StdAlpha = NaN(1, length(NumAssets));
StdBeta = NaN(1, length(NumAssets));
StdSigma = NaN(1, length(NumAssets));
for i = 1:NumAssets
    % Set up separate asset data and design matrices
    TestData = zeros(NumSamples,1);
    TestDesign = zeros(NumSamples,2);

    TestData(:) = Data(:,i) - Data(:,14);
    TestDesign(:,1) = 1.0;
    TestDesign(:,2) = Data(:,13) - Data(:,14);

    [Param, Covar] = ecmmvnrmle(TestData, TestDesign);
    
    % Estimate the sample standard errors for model parameters for each asset.
    StdParam = ecmmvnrstd(TestData, TestDesign, Covar,'hessian')
    
end   

StdParam = 2×1

    0.0008
    0.0715

StdParam = 2×1

    0.0012
    0.1000

StdParam = 2×1
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    0.0008
    0.0663

StdParam = 2×1

    0.0007
    0.0567

StdParam = 2×1

    0.0010
    0.0836

StdParam = 2×1

    0.0014
    0.2159

StdParam = 2×1

    0.0007
    0.0567

StdParam = 2×1

    0.0004
    0.0376

StdParam = 2×1

    0.0007
    0.0585

StdParam = 2×1

    0.0005
    0.0429

StdParam = 2×1

    0.0008
    0.0709

StdParam = 2×1

    0.0010
    0.0853
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Input Arguments
Data — Data
matrix

Data, specified as an NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-
dimensional random vector. Missing values are indicated by NaNs. Only samples that are entirely
NaNs are ignored. (To ignore samples with at least one NaN, use mvnrmle.)
Data Types: double

Design — Design model
matrix | cell array

Design model, specified as a matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS matrix with known values. This
structure is the standard form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains either one or NUMSAMPLES cells.
Each cell contains a NUMSERIES-by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same Design matrix for each sample. If
Design has more than one cell, each cell contains a Design matrix for each sample.

Data Types: double | cell

Covariance — Estimates for covariance of regression residuals
matrix

Estimates for the covariance of the regression residuals, specified as an NUMSERIES-by-NUMSERIES
matrix.
Data Types: double

Method — Method of calculation for the information matrix
'hessian' (default) | character vector

(Optional) Method of calculation for the information matrix, specified as a character vector defined
as:

• 'hessian' — The expected Hessian matrix of the observed log-likelihood function. This method
is recommended since the resultant standard errors incorporate the increased uncertainties due
to missing data.

• 'fisher' — The Fisher information matrix.

Note If Method = 'fisher', to obtain more quickly just the standard errors of variance
estimates without the standard errors of the covariance estimates, set CovarFormat =
'diagonal' regardless of the form of the covariance matrix.

Data Types: char

CovarFormat — Format for the covariance matrix
'full' (default) | character vector

(Optional) Format for the covariance matrix, specified as a character vector. The choices are:

19 Functions

19-708



• 'full' — Compute the full covariance matrix.
• 'diagonal' — Force the covariance matrix to be a diagonal matrix.

Data Types: char

Output Arguments
StdParameters — Standard errors for each element of Parameters
vector

Standard errors for each element of Parameters, returned as an NUMPARAMS-by-1 column vector.

StdCovariance — Standard errors for each element of Covariance
matrix

Standard errors for each element of Covariance, returned as an NUMSERIES-by-NUMSERIES matrix.

References
[1] Little, Roderick J. A. and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd Edition. John

Wiley & Sons, Inc., 2002.

See Also
ecmmvnrmle

Topics
“Multivariate Normal Regression” on page 9-13
“Least-Squares Regression” on page 9-14
“Covariance-Weighted Least Squares” on page 9-14
“Feasible Generalized Least Squares” on page 9-15
“Seemingly Unrelated Regression” on page 9-16
“Multivariate Normal Regression With Missing Data” on page 9-14
“Multivariate Normal Linear Regression” on page 9-2

Introduced in R2006a
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ecmnfish
Fisher information matrix

Syntax
Fisher = ecmnfish(Data,Covariance)
Fisher = ecmnfish( ___ ,InvCovar,MatrixType)

Description
Fisher = ecmnfish(Data,Covariance) computes an NUMPARAMS-by-NUMPARAMS Fisher
information matrix based on the current maximum likelihood parameter estimates.

Use ecmnfish after estimating the mean and covariance of Data with ecmnmle.

Fisher = ecmnfish( ___ ,InvCovar,MatrixType) adds optional arguments for InvCovar and
MatrixType.

Examples

Compute Fisher Information Matrix Based on Parameter Estimates for Data

This example shows how to compute the Fisher information matrix based on paraemter estimates for
Data for five years of daily total returns for 12 computer technology stocks, with six hardware and
six software companies

load ecmtechdemo.mat

The time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets
is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004
are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values
scattered throughout the past five years.

[ECMMean, ECMCovar] = ecmnmle(Data)

ECMMean = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

ECMCovar = 12×12
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    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
      ⋮

To evaluate the negative log-likelihood function for ecmnmle, use ecmnfish based on the current
maximum likelihood parameter estimates for ECMCovar.

Fisher = ecmnfish(Data,ECMCovar)

Fisher = 90×90
107 ×

    0.0001    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
    0.0000    0.0001   -0.0000    0.0000   -0.0000    0.0001    0.0000    0.0000    0.0000    0.0000    0.0000   -0.0001         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000    0.0002   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000    0.0003   -0.0000    0.0000   -0.0000   -0.0000   -0.0001   -0.0001    0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0000    0.0001   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0001   -0.0000    0.0000   -0.0000    0.0002    0.0000   -0.0000    0.0000    0.0001    0.0000   -0.0002         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0002   -0.0001   -0.0000    0.0000   -0.0000   -0.0001         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0001    0.0004   -0.0000   -0.0001   -0.0000    0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000   -0.0001    0.0000    0.0000   -0.0000   -0.0000    0.0002   -0.0001   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
    0.0000    0.0000   -0.0000   -0.0001   -0.0000    0.0001    0.0000   -0.0001   -0.0001    0.0004   -0.0000   -0.0001         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
      ⋮

Input Arguments
Data — Data
matrix

Data, specified as an NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-
dimensional random vector. Missing values are indicated by NaNs.
Data Types: double

Covariance — Maximum likelihood parameter estimates for covariance of Data
matrix

Maximum likelihood parameter estimates for the covariance of the Data using the ECM algorithm,
specified as a NUMSERIES-by-NUMSERIES matrix.

InvCovar — Cholesky decomposition of covariance matrix
[ ] (default) | matrix

(Optional) Inverse of covariance matrix, specified as a matrix using inv as:

inv(Covariance)
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Data Types: double

MatrixType — Matrix format
'full' (default) | character vector

(Optional) Matrix format, specified as a character vector with a value of:

• 'full' — Computes the full Fisher information matrix.
• 'meanonly' — Computes only the components of the Fisher information matrix associated with

the mean.

Data Types: char

Output Arguments
Fisher — Fisher information matrix
matrix

Fisher information matrix, returned as an NUMPARAMSNUMPARAMS matrix based on current parameter
estimates, where NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2 if the MatrixFormat =
'full'. If the MatrixFormat = 'meanonly', then the NUMPARAMS = NUMSERIES.

See Also
ecmnhess | ecmnmle

Topics
“Multivariate Normal Regression With Missing Data” on page 9-14
“Fisher Information” on page 9-4

Introduced before R2006a

19 Functions

19-712



ecmnhess
Hessian of negative log-likelihood function

Syntax
Hessian = ecmnhess(Data,Covariance)
Hessian = ecmnhess( ___ ,InvCovar,MatrixType)

Description
Hessian = ecmnhess(Data,Covariance) computes an NUMPARAMS-by-NUMPARAMS Hessian
matrix of the observed negative log-likelihood function based on current parameter estimates.

Use ecmnhess after estimating the mean and covariance of Data with ecmnmle.

Hessian = ecmnhess( ___ ,InvCovar,MatrixType) adds optional arguments for InvCovar and
MatrixType.

Examples

Compute Hessian for Negative Log-Likelihood Function for Data

This example shows how to compute the Hessian for the negative log-likelihood function for five years
of daily total return data for 12 computer technology stocks, with six hardware and six software
companies

load ecmtechdemo.mat

The time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets
is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004
are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values
scattered throughout the past five years.

[ECMMean, ECMCovar] = ecmnmle(Data)

ECMMean = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

ECMCovar = 12×12
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    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
      ⋮

To evaluate the negative log-likelihood function for ecmnmle, use ecmnhess based on the current
maximum likelihood parameter estimates for ECMCovar.

Hessian = ecmnhess(Data,ECMCovar)

Hessian = 90×90
107 ×

    0.0001    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
    0.0000    0.0001   -0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000    0.0002   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000    0.0003   -0.0000    0.0000   -0.0000   -0.0000   -0.0001   -0.0001   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0000    0.0001   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000    0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0002   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0004   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0001    0.0000    0.0000   -0.0000   -0.0000    0.0002   -0.0001   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
    0.0000   -0.0000   -0.0000   -0.0001   -0.0000    0.0000   -0.0000   -0.0000   -0.0001    0.0004   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
      ⋮

Input Arguments
Data — Data
matrix

Data, specified as an NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-
dimensional random vector. Missing values are indicated by NaNs.
Data Types: double

Covariance — Maximum likelihood parameter estimates for covariance of Data
matrix

Maximum likelihood parameter estimates for the covariance of the Data using the ECM algorithm,
specified as a NUMSERIES-by-NUMSERIES matrix.

InvCovar — Cholesky decomposition of covariance matrix
[ ] (default) | matrix

(Optional) Inverse of covariance matrix, specified as a matrix using inv as:

inv(Covariance)
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Data Types: double

MatrixType — Matrix format
'full' (default) | character vector

(Optional) Matrix format, specified as a character vector with a value of:

• 'full' — Computes the full Hessian matrix.
• 'meanonly' — Computes only the components of the Hessian matrix associated with the mean.

Data Types: char

Output Arguments
Hessian — Hessian matrix
matrix

Hessian matrix, returned as an NUMPARAMSNUMPARAMS matrix of the observed log-likelihood function
based on current parameter estimates, where NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2
if the MatrixFormat = 'full'. If the MatrixFormat = 'meanonly', then the NUMPARAMS =
NUMSERIES.

See Also
ecmnfish | ecmnmle

Topics
“Maximum Likelihood Estimation” on page 9-3

Introduced before R2006a
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ecmninit
Initial mean and covariance

Syntax
[Mean,Covariance] = ecmninit(Data,InitMethod)
[Mean,Covariance] = ecmninit( ___ ,InitMethod)

Description
[Mean,Covariance] = ecmninit(Data,InitMethod) creates initial mean and covariance
estimates for the function ecmnmle.

[Mean,Covariance] = ecmninit( ___ ,InitMethod) adds an optional argument for
InitMethod.

Examples

Compute Initial Mean and Covariance

This example shows how to compute the initial mean and covariance for five years of daily total
return data for 12 computer technology stocks, with six hardware and six software companies

load ecmtechdemo.mat

The time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets
is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004
are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values
scattered throughout the past five years.

A naïve approach to the estimation of the mean and covariance for these 12 assets is to eliminate all
days that have missing values for any of the 12 assets. Use the ecminit function with the
'nanskip' option to do this.

[NaNMean, NaNCovar] = ecmninit(Data,'nanskip')

NaNMean = 12×1

    0.0054
   -0.0006
   -0.0006
    0.0002
   -0.0009
    0.0042
    0.0011
   -0.0005
    0.0002
    0.0001
      ⋮
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NaNCovar = 12×12
10-3 ×

    0.7271    0.1003    0.0755    0.0585    0.1363    0.1030    0.0084    0.0741    0.0808    0.0407    0.0889    0.1219
    0.1003    0.5958    0.1293    0.0919    0.2700    0.0554    0.0668    0.0548    0.1223    0.0724    0.1252    0.2317
    0.0755    0.1293    0.2480    0.0841    0.0680    0.0322    0.0721    0.0632    0.1360    0.0562    0.0808    0.1014
    0.0585    0.0919    0.0841    0.1414    0.0656   -0.0010    0.0386    0.0460    0.0617    0.0331    0.0499    0.0528
    0.1363    0.2700    0.0680    0.0656    0.6223    0.2062    0.0797    0.0515    0.0850    0.0436    0.1155    0.2515
    0.1030    0.0554    0.0322   -0.0010    0.2062    0.8376   -0.0103    0.0345    0.0236   -0.0034    0.0069    0.2788
    0.0084    0.0668    0.0721    0.0386    0.0797   -0.0103    0.2462    0.0414    0.0881    0.0268    0.0406    0.0621
    0.0741    0.0548    0.0632    0.0460    0.0515    0.0345    0.0414    0.1011    0.0561    0.0321    0.0494    0.0548
    0.0808    0.1223    0.1360    0.0617    0.0850    0.0236    0.0881    0.0561    0.2642    0.0647    0.1102    0.1094
    0.0407    0.0724    0.0562    0.0331    0.0436   -0.0034    0.0268    0.0321    0.0647    0.0619    0.0583    0.0472
      ⋮

Input Arguments
Data — Data
matrix

Data, specified as an NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-
dimensional random vector. Missing values are indicated by NaNs.
Data Types: double

InitMethod — Initialization methods to compute initial estimates for mean and covariance
of data
'nanskip' (default) | character vector

(Optional) Initialization methods to compute the initial estimates for the mean and covariance of data,
specified as a character vector. The initialization methods are:

• 'nanskip' — Skip all records with NaNs.
• 'twostage' — Estimate mean. Fill NaNs with the mean. Then estimate the covariance.
• 'diagonal' — Form a diagonal covariance.

Data Types: char

Output Arguments
Mean — Initial estimate of mean of Data
vector

Initial estimate of the mean of the Data, returned as a NUMSERIES-by-1 column vector.

Covariance — Initial estimate of covariance of Data
matrix

Initial estimate of covariance of the Data, returned as a NUMSERIES-by-NUMSERIES matrix.
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Algorithms
Model

The general model is

Z ∼ N Mean, Covariance ,

where each row of Data is an observation of Z.

Each observation of Z is assumed to be iid (independent, identically distributed) multivariate normal,
and missing values are assumed to be missing at random (MAR).

Initialization Methods

This routine has three initialization methods that cover most cases, each with its advantages and
disadvantages.

nanskip

The nanskip method works well with small problems (fewer than 10 series or with monotone
missing data patterns). It skips over any records with NaNs and estimates initial values from
complete-data records only. This initialization method tends to yield fastest convergence of the ECM
algorithm. This routine switches to the twostage method if it determines that significant numbers of
records contain NaN.

twostage

The twostage method is the best choice for large problems (more than 10 series). It estimates the
mean for each series using all available data for each series. It then estimates the covariance matrix
with missing values treated as equal to the mean rather than as NaNs. This initialization method is
robust but tends to result in slower convergence of the ECM algorithm.

diagonal

The diagonal method is a worst-case approach that deals with problematic data, such as disjoint
series and excessive missing data (more than 33% missing data). Of the three initialization methods,
this method causes the slowest convergence of the ECM algorithm.

See Also
ecmnmle

Topics
“Portfolios With Missing Data” on page 9-21
“Mean and Covariance Estimation” on page 9-4

Introduced before R2006a
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ecmnmle
Mean and covariance of incomplete multivariate normal data

Syntax
ecmnmle(Data)
[Mean,Covariance] = ecmnmle(Data)
[Mean,Covariance] = ecmnmle( ___ ,InitMethod,MaxIterations,Tolerance,Mean0,
Covar0)

Description
ecmnmle(Data) with no output arguments, this mode displays the convergence of the ECM
algorithm in a plot by estimating objective function values for each iteration of the ECM algorithm
until termination.

[Mean,Covariance] = ecmnmle(Data) estimates the mean and covariance of a data set (Data).
If the data set has missing values, this routine implements the ECM algorithm of Meng and Rubin [2]
with enhancements by Sexton and Swensen [3]. ECM stands for a conditional maximization form of
the EM algorithm of Dempster, Laird, and Rubin [4].

[Mean,Covariance] = ecmnmle( ___ ,InitMethod,MaxIterations,Tolerance,Mean0,
Covar0) adds an optional arguments for InitMethod, MaxIterations, Tolerance,Mean0, and
Covar0.

Examples

Compute Mean and Covariance of Incomplete Multivariate Normal Data

This example shows how to compute the mean and covariance of incomplete multivariate normal data
for five years of daily total return data for 12 computer technology stocks, with six hardware and six
software companies

load ecmtechdemo.mat

The time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets
is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004
are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values
scattered throughout the past five years.

ecmnmle(Data)
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ans = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

This plot shows that, even with almost 87% of the Google data being NaN values, the algorithm
converges after only four iterations.

[Mean,Covariance] = ecmnmle(Data)

Mean = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038

19 Functions

19-720



   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

Covariance = 12×12

    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
      ⋮

Input Arguments
Data — Data
matrix

Data, specified as an NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-
dimensional random vector. Missing values are indicated by NaNs.
Data Types: double

InitMethod — Initialization methods to compute initial estimates for mean and covariance
of data
'nanskip' (default) | character vector

(Optional) Initialization methods to compute the initial estimates for the mean and covariance of data,
specified as a character vector. The initialization methods are:

• 'nanskip' — Skip all records with NaNs.
• 'twostage' — Estimate mean. Fill NaNs with the mean. Then estimate the covariance.
• 'diagonal' — Form a diagonal covariance.

Note If you supply Mean0 and Covar0, InitMethod is not executed.

Data Types: char

MaxIterations — Maximum number of iterations
50 (default) | numeric

(Optional) Maximum number of iterations for the expectation conditional maximization (ECM)
algorithm, specified as a numeric.
Data Types: double
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Tolerance — Convergence tolerance
1.0e-8 (default) | numeric

(Optional) Convergence tolerance for the ECM algorithm, specified as a numeric. If Tolerance ≤ 0,
perform maximum iterations specified by MaxIterations and do not evaluate the objective function
at each step unless in display mode.
Data Types: double

Mean0 — Estimate for the mean
[] (default) | matrix

(Optional) Estimate for the mean, specified as an NUMSERIES-by-1 column vector. If you leave Mean0
unspecified ([]), the method specified by InitMethod is used. If you specify Mean0, you must also
specify Covar0.
Data Types: double

Covar0 — Estimate for the covariance
[] (default) | matrix

(Optional) Estimate for the covariance, specified as an NUMSERIES-by-NUMSERIES matrix, where the
input matrix must be positive-definite. If you leave Covar0 unspecified ([]), the method specified by
InitMethod is used. If you specify Covar0, you must also specify Mean0.
Data Types: double

Output Arguments
Mean — Maximum likelihood parameter estimates for mean of Data
vector

Maximum likelihood parameter estimates for the mean of the Data using ECM algorithm, returned as
a NUMSERIES-by-1 column vector.

Covariance — Maximum likelihood parameter estimates for covariance of Data
matrix

Maximum likelihood parameter estimates for the covariance of the Data using ECM algorithm,
returned as a NUMSERIES-by-NUMSERIES matrix.

Algorithms
Model

The general model is

Z ∼ N Mean, Covariance ,

where each row of Data is an observation of Z.

Each observation of Z is assumed to be iid (independent, identically distributed) multivariate normal,
and missing values are assumed to be missing at random (MAR). See Little and Rubin [1] for a
precise definition of MAR.
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This routine estimates the mean and covariance from given data. If data values are missing, the
routine implements the ECM algorithm of Meng and Rubin [2] with enhancements by Sexton and
Swensen [3].

If a record is empty (every value in a sample is NaN), this routine ignores the record because it
contributes no information. If such records exist in the data, the number of nonempty samples used in
the estimation is ≤ NumSamples.

The estimate for the covariance is a biased maximum likelihood estimate (MLE). To convert to an
unbiased estimate, multiply the covariance by Count/(Count – 1), where Count is the number of
nonempty samples used in the estimation.

Requirements

This routine requires consistent values for NUMSAMPLES and NUMSERIES with NUMSAMPLES >
NUMSERIES. It must have enough nonmissing values to converge. Finally, it must have a positive-
definite covariance matrix. Although the references provide some necessary and sufficient conditions,
general conditions for existence and uniqueness of solutions in the missing-data case, do not exist.
The main failure mode is an ill-conditioned covariance matrix estimate. Nonetheless, this routine
works for most cases that have less than 15% missing data (a typical upper bound for financial data).

Initialization Methods

This routine has three initialization methods that cover most cases, each with its advantages and
disadvantages. The ECM algorithm always converges to a minimum of the observed negative log-
likelihood function. If you override the initialization methods, you must ensure that the initial
estimate for the covariance matrix is positive-definite.

The following is a guide to the supported initialization methods.

• nanskip — The nanskip method works well with small problems (fewer than 10 series or with
monotone missing data patterns). It skips over any records with NaNs and estimates initial values
from complete-data records only. This initialization method tends to yield fastest convergence of
the ECM algorithm. This routine switches to the twostage method if it determines that
significant numbers of records contain NaN.

• twostage — The twostage method is the best choice for large problems (more than 10 series). It
estimates the mean for each series using all available data for each series. It then estimates the
covariance matrix with missing values treated as equal to the mean rather than as NaNs. This
initialization method is robust but tends to result in slower convergence of the ECM algorithm.

• diagonal —

The diagonal method is a worst-case approach that deals with problematic data, such as disjoint
series and excessive missing data (more than 33% of data missing). Of the three initialization
methods, this method causes the slowest convergence of the ECM algorithm. If problems occur
with this method, use display mode to examine convergence and modify either MaxIterations
or Tolerance, or try alternative initial estimates with Mean0 and Covar0. If all else fails, try

Mean0 = zeros(NumSeries);
Covar0 = eye(NumSeries,NumSeries);

Given estimates for mean and covariance from this routine, you can estimate standard errors with
the companion routine ecmnstd.
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Convergence

The ECM algorithm does not work for all patterns of missing values. Although it works in most cases,
it can fail to converge if the covariance becomes singular. If this occurs, plots of the log-likelihood
function tend to have a constant upward slope over many iterations as the log of the negative
determinant of the covariance goes to zero. In some cases, the objective fails to converge due to
machine precision errors. No general theory of missing data patterns exists to determine these cases.
An example of a known failure occurs when two time series are proportional wherever both series
contain nonmissing values.

References
[1] Little, Roderick J. A. and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd Edition. John

Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM Algorithm.”
Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

[3] Sexton, Joe and Anders Rygh Swensen. “ECM Algorithms that Converge at the Rate of EM.”
Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.

[4] Dempster, A. P., N. M. Laird, and Donald B. Rubin. “Maximum Likelihood from Incomplete Data via
the EM Algorithm.” Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp.
1–37.

See Also
ecmnfish | ecmnhess | ecmninit | ecmnobj | ecmnstd

Topics
“Multivariate Normal Regression With Missing Data” on page 9-14
“Portfolios With Missing Data” on page 9-21
“Mean and Covariance Estimation” on page 9-4

Introduced before R2006a
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ecmnobj
Multivariate normal negative log-likelihood function

Syntax
Objective = ecmnobj(Data,Mean,Covariance)
Objective = ecmnobj( ___ ,CholCovariance)

Description
Objective = ecmnobj(Data,Mean,Covariance) evaluates the negative log-likelihood function
for ecmnmle.

Use ecmnobj after estimating the mean and covariance of Data with ecmnmle.

Objective = ecmnobj( ___ ,CholCovariance) adds an optional argument for
CholCovariance.

Examples

Compute Value of the Observed Negative Log-Likelihood Function for Data

This example shows how to compute the value of the observed negative log-likelihood function for
five years of daily total return data for 12 computer technology stocks, with six hardware and six
software companies

load ecmtechdemo.mat

The time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets
is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004
are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values
scattered throughout the past five years.

[ECMMean, ECMCovar] = ecmnmle(Data)

ECMMean = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

ECMCovar = 12×12
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    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
      ⋮

To evaluate the negative log-likelihood function for ecmnmle, use ecmnobj based on the current
maximum likelihood parameter estimates.

Objective = ecmnobj(Data,ECMMean,ECMCovar)

Objective = -3.0898e+04

Input Arguments
Data — Data
matrix

Data, specified as an NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-
dimensional random vector. Missing values are indicated by NaNs.
Data Types: double

Mean — Maximum likelihood parameter estimates for mean of Data
vector

Maximum likelihood parameter estimates for the mean of the Data using the ECM algorithm,
specified as a NUMSERIES-by-1 column vector.

Covariance — Maximum likelihood parameter estimates for covariance of Data
matrix

Maximum likelihood parameter estimates for the covariance of the Data using the ECM algorithm,
specified as a NUMSERIES-by-NUMSERIES matrix.

CholCovariance — Cholesky decomposition of covariance matrix
[ ] (default) | matrix

(Optional) Cholesky decomposition of covariance matrix, specified as a matrix using chol as:

chol(Covariance)

Data Types: double

Output Arguments
Objective — Value of the observed negative log-likelihood function over Data
numeric
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Value of the observed negative log-likelihood function over the Data, returned as a numeric value.

See Also
chol | ecmnmle

Topics
“Multivariate Normal Regression Without Missing Data” on page 9-13
“Multivariate Normal Regression With Missing Data” on page 9-14

Introduced before R2006a
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ecmnstd
Standard errors for mean and covariance of incomplete data

Syntax
[StdMean,StdCovar] = ecmnstd(Data,Mean,Covariance)
[StdMean,StdCovar] = ecmnstd( ___ ,Method)

Description
[StdMean,StdCovar] = ecmnstd(Data,Mean,Covariance) computes standard errors for mean
and covariance of incomplete data.

Use ecmnstd after estimating the mean and covariance of Data with ecmnmle. If the mean and
distinct covariance elements are treated as the parameter θ in a complete-data maximum-likelihood
estimation, then as the number of samples increases, θ attains asymptotic normality such that

θ− E θ ∼ N 0, I−1 θ ,

where E[θ] is the mean and I(θ) is the Fisher information matrix.

With missing data, the Hessian H(θ) is a good approximation for the Fisher information (which can
only be approximated when data is missing).

[StdMean,StdCovar] = ecmnstd( ___ ,Method) adds an optional argument for Method.

Examples

Compute Standard Errors for Mean and Covariance of Incomplete Data

This example shows how to compute the standard errors for mean and covariance of incomplete data
for five years of daily total return data for 12 computer technology stocks, with six hardware and six
software companies

load ecmtechdemo.mat

The time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets
is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004
are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values
scattered throughout the past five years.

[ECMMean, ECMCovar] = ecmnmle(Data)

ECMMean = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
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    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

ECMCovar = 12×12

    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
      ⋮

To evaluate the impact of the estimation error and, in particular, the effect of missing data, use
ecmnstd to calculate standard errors. Although it is possible to estimate the standard errors for both
the mean and covariance, the standard errors for the mean estimates alone are usually the main
quantities of interest.

StdMeanF = ecmnstd(Data,ECMMean,ECMCovar,'fisher')

StdMeanF = 12×1

    0.0010
    0.0014
    0.0010
    0.0009
    0.0011
    0.0013
    0.0009
    0.0006
    0.0009
    0.0007
      ⋮

Calculate standard errors that use the data-generated Hessian matrix (which accounts for the
possible loss of information due to missing data) with the option 'hessian'.

StdMeanH = ecmnstd(Data,ECMMean,ECMCovar,'hessian')

StdMeanH = 12×1

    0.0010
    0.0014
    0.0010
    0.0009
    0.0011
    0.0021
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    0.0009
    0.0006
    0.0009
    0.0007
      ⋮

The difference in the standard errors shows the increase in uncertainty of estimation of asset
expected returns due to missing data. To view the differences:

Assets

Assets = 1x12 cell
  Columns 1 through 6

    {'AAPL'}    {'AMZN'}    {'CSCO'}    {'DELL'}    {'EBAY'}    {'GOOG'}

  Columns 7 through 12

    {'HPQ'}    {'IBM'}    {'INTC'}    {'MSFT'}    {'ORCL'}    {'YHOO'}

StdMeanH'

ans = 1×12

    0.0010    0.0014    0.0010    0.0009    0.0011    0.0021    0.0009    0.0006    0.0009    0.0007    0.0010    0.0012

StdMeanF'

ans = 1×12

    0.0010    0.0014    0.0010    0.0009    0.0011    0.0013    0.0009    0.0006    0.0009    0.0007    0.0010    0.0012

StdMeanH' - StdMeanF'

ans = 1×12
10-3 ×

   -0.0000    0.0021   -0.0000   -0.0000   -0.0000    0.7742   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000

The two assets with missing data, AMZN and GOOG, are the only assets to have differences due to
missing information.

Input Arguments
Data — Data
matrix

Data, specified as an NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-
dimensional random vector. Missing values are indicated by NaNs.
Data Types: double
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Mean — Maximum likelihood parameter estimates for mean of Data
vector

Maximum likelihood parameter estimates for the mean of the Data using the ECM algorithm,
specified as a NUMSERIES-by-1 column vector.

Covariance — Maximum likelihood parameter estimates for covariance of Data
matrix

Maximum likelihood parameter estimates for the covariance of the Data using the ECM algorithm,
specified as a NUMSERIES-by-NUMSERIES matrix.

Method — Method of estimation for standard error calculations
'hessian' (default) | character vector

(Optional) Method of estimation for standard error calculations, specified as a character vector. The
estimation methods are:

• 'hessian' — The Hessian of the observed negative log-likelihood function. This method is
recommended since the resultant standard errors incorporate the increase uncertainties due to
missing data. In particular, standard errors calculated with the Hessian are generally larger than
standard errors calculated with the Fisher information matrix.

• 'fisher' — The Fisher information matrix.

Data Types: char

Output Arguments
StdMean — Standard errors of estimates for each element of Mean vector
vector

Standard errors of estimates for each element of Mean vector, returned as a NUMSERIES-by-1 column
vector.

StdCovar — Standard errors of estimates for each element of Covariance matrix
matrix

Standard errors of estimates for each element of Covariance matrix, returned as a NUMSERIES-by-
NUMSERIES matrix.

See Also
ecmnmle

Topics
“Portfolios With Missing Data” on page 9-21
“Mean and Covariance Estimation” on page 9-4

Introduced before R2006a
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effrr
Effective rate of return

Syntax
Return = effrr(Rate,NumPeriods)

Description
Return = effrr(Rate,NumPeriods) calculates the annual effective rate of return. Compounding
continuously returns Return equivalent to (e^Rate-1).

Examples

Compute the Annual Effective Rate of Return

This example shows how to find the effective annual rate of return based on an annual percentage
rate of 9% compounded monthly.

Return = effrr(0.09, 12)

Return = 0.0938

Input Arguments
Rate — Annual percentage rate
scalar numeric decimal

Annual percentage rate, specified as a scalar numeric decimal.
Data Types: double

NumPeriods — Number of compounding periods per year
scalar integer

Number of compounding periods per year, specified as a scalar integer.
Data Types: double

Output Arguments
Return — Annual effective rate of return
scalar numeric decimal

Annual effective rate of return, returned as a scalar numeric decimal.

See Also
nomrr
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Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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elpm
Compute expected lower partial moments for normal asset returns

Syntax
elpm(Mean,Sigma)
elpm(Mean,Sigma,MAR)
elpm(Mean,Sigma,MAR,Order)
Moment = elpm(MeanSigmaMAROrder)

Description
elpm(Mean,Sigma) compute expected lower partial moments (elpm) relative to a default value of
MAR for each asset in a NUMORDERS-by-NUMSERIES matrix.

elpm(Mean,Sigma,MAR) computes expected lower partial moments (elpm) relative to a MAR for
each asset in a NUMORDERS-by-NUMSERIES matrix.

elpm(Mean,Sigma,MAR,Order) computes expected lower partial moments (elpm) relative to a MAR
and Order for each asset in a NUMORDERS-by-NUMSERIES matrix.

Moment = elpm(MeanSigmaMAROrder) computes expected lower partial moments (elpm) relative
to a default value of MAR for each asset in a NUMORDERS-by-NUMSERIES matrix Moment.

Examples

Compute Expected Lower Partial Moments

This example shows how to compute expected lower partial moments based on the mean and
standard deviations of normally distributed asset returns. The elpm function works with the mean
and standard deviations for multiple assets and multiple orders.

load FundMarketCash
Returns = tick2ret(TestData);
MAR = mean(Returns(:,3))

MAR = 0.0017

Mean = mean(Returns)

Mean = 1×3

    0.0038    0.0030    0.0017

Sigma = std(Returns, 1)

Sigma = 1×3

    0.0229    0.0389    0.0009
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Assets

Assets = 1x3 cell
    {'Fund'}    {'Market'}    {'Cash'}

ELPM = elpm(Mean, Sigma, MAR, [0 1 2])

ELPM = 3×3

    0.4647    0.4874    0.5000
    0.0082    0.0149    0.0004
    0.0002    0.0007    0.0000

Based on the moments of each asset, the expected values for lower partial moments imply better than
expected performance for the fund and market and worse than expected performance for cash. The
elpm function works with either degenerate or nondegenerate normal random variables. For
example, if cash were truly riskless, its standard deviation would be 0. You can examine the
difference in average shortfall.

RisklessCash = elpm(Mean(3), 0, MAR, 1)

RisklessCash = 0

Input Arguments
Mean — Mean returns
vector

Mean returns, specified as a NUMSERIES vector with mean returns for a collection of NUMSERIES
assets.
Data Types: double

Sigma — Standard deviation of returns
vector

Standard deviation of returns, specified as a NUMSERIES vector with standard deviation of returns for
a collection of NUMSERIES assets.
Data Types: double

MAR — Minimum acceptable return
0 (default) | numeric

(Optional) Minimum acceptable return, specified as a scalar numeric. MAR is a cutoff level of return
such that all returns above MAR contribute nothing to the lower partial moment.
Data Types: double

Order — Moment orders
0 (default) | scalar numeric | vector

(Optional) Moment orders, specified as a either a scalar or a NUMORDERS vector of nonnegative
integer moment orders. If no order specified, the default Order = 0, which is the shortfall probability.
The elpm function does not work for negative or a noninteger Order.
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Data Types: double

Output Arguments
Moment — Expected lower partial moments
matrix

Expected Lower partial moments, returned as a NUMORDERS-by-NUMSERIES matrix of expected lower
partial moments with NUMORDERS Orders and NUMSERIES series, that is, each row contains expected
lower partial moments for a given Order. The output Moment for the lower partial moment
represents the moments of asset returns that fall below a minimum acceptable level of return.

Note To compute upper partial moments, reverse the signs of both the input Mean and MAR (do not
reverse the signs of either Sigma or the output). This function computes expected lower partial
moments with the mean and standard deviation of normally distributed asset returns. To compute
sample lower partial moments from asset returns which have no distributional assumptions, use lpm.

More About
Lower Partial Moments

Use lower partial moments to examine what is colloquially known as “downside risk.”

The main idea of the lower partial moment framework is to model moments of asset returns that fall
below a minimum acceptable level of return. To compute lower partial moments from data, use lpm to
calculate lower partial moments for multiple asset return series and for multiple moment orders. To
compute expected values for lower partial moments under several assumptions about the distribution
of asset returns, use elpm to calculate lower partial moments for multiple assets and for multiple
orders.

References
[1] Bawa, V.S. "Safety-First, Stochastic Dominance, and Optimal Portfolio Choice." Journal of

Financial and Quantitative Analysis. Vol. 13, No. 2, June 1978, pp. 255–271.

[2] Harlow, W.V. "Asset Allocation in a Downside-Risk Framework." Financial Analysts Journal. Vol. 47,
No. 5, September/October 1991, pp. 28–40.

[3] Harlow, W.V. and K. S. Rao. "Asset Pricing in a Generalized Mean-Lower Partial Moment
Framework: Theory and Evidence." Journal of Financial and Quantitative Analysis. Vol. 24,
No. 3, September 1989, pp. 285–311.

[4] Sortino, F.A. and Robert van der Meer. "Downside Risk." Journal of Portfolio Management. Vol. 17,
No. 5, Spring 1991, pp. 27–31.

See Also
lpm

Topics
“Performance Metrics Overview” on page 7-2
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Introduced in R2006b
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emaxdrawdown
Compute expected maximum drawdown for Brownian motion

Syntax
ExpDrawdown = emaxdrawdown(Mu,Sigma,T)

Description
ExpDrawdown = emaxdrawdown(Mu,Sigma,T) computes the expected maximum drawdown for a
Brownian motion for each time period in T using the following equation:

dX t = μdt + σdW t .

If the Brownian motion is geometric with the stochastic differential equation

dS t = μ0S t dt + σ0S t dW t

then use Ito's lemma with X(t) = log(S(t)) such that

μ = μ0− 0.5σ02,
σ = σ0

converts it to the form used here.

Examples

Compute Expected Maximum Drawdown

This example shows how to use log-return moments of a fund to compute the expected maximum
drawdown (EMaxDD) and then compare it with the realized maximum drawdown (MaxDD).

load FundMarketCash
logReturns = log(TestData(2:end,:) ./ TestData(1:end - 1,:));
Mu = mean(logReturns(:,1));
Sigma = std(logReturns(:,1),1);
T = size(logReturns,1);

MaxDD = maxdrawdown(TestData(:,1),'geometric')

MaxDD = 0.1813

EMaxDD = emaxdrawdown(Mu, Sigma, T)

EMaxDD = 0.1545

The drawdown observed in this time period is above the expected maximum drawdown. There is no
contradiction here. The expected maximum drawdown is not an upper bound on the maximum losses
from a peak, but an estimate of their average, based on a geometric Brownian motion assumption.

19 Functions

19-738



Input Arguments
Mu — Drift term of a Brownian motion with drift
numeric

Drift term of a Brownian motion with drift., specified as a scalar numeric.
Data Types: double

Sigma — Diffusion term of a Brownian motion with drift
numeric

Diffusion term of a Brownian motion with drift, specified as a scalar numeric.
Data Types: double

T — A time period of interest
numeric | vector

A time period of interest, specified as a scalar numeric or vector.
Data Types: double

Output Arguments
ExpDrawdown — Expected maximum drawdown
numeric

Expected maximum drawdown, returned as a numeric. ExpDrawdown is computed using an
interpolation method. Values are accurate to a fraction of a basis point. Maximum drawdown is
nonnegative since it is the change from a peak to a trough.

Note To compare the actual results from maxdrawdown with the expected results of emaxdrawdown,
set the Format input argument of maxdrawdown to either of the nondefault values ('arithmetic'
or 'geometric'). These are the only two formats that emaxdrawdown supports.

References
[1] Malik, M. I., Amir F. Atiya, Amrit Pratap, and Yaser S. Abu-Mostafa. “On the Maximum Drawdown

of a Brownian Motion.” Journal of Applied Probability. Vol. 41, Number 1, March 2004, pp.
147–161.

See Also
maxdrawdown

Topics
“Performance Metrics Overview” on page 7-2

Introduced in R2006b
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end
Last date entry

Note end is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
end

Description
end returns the index to the last date entry in a financial time series object.

Examples
Consider a financial time series object called MyFts:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
 '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 
times]);
myFts = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

myFts = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

Use end to return the last date entry in the financial time series object myFts.

myFts(end)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/end (line 57) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

ans = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (1)'    'times:  (1)'    'Data1:  (1)'
    '03-Jan-2001'    '12:00'          [          6]

See Also
subsasgn | subsref

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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eomdate
Last date of month

Syntax
DayMonth = eomdate(Date)
DayMonth = eomdate(Year,Month,outputType)

Description
DayMonth = eomdate(Date) returns the serial date number of the last date of the month for the
given Date.

DayMonth = eomdate(Year,Month,outputType) returns the serial date number of the last date
of the month for the given year and month. However, if outputType is 'datetime', then DayMonth
is a datetime array. By default, outputType is 'datenum'.

Examples

Determine the Last Day of the Month for Various Dates

Find the last day of the month using Year and Month.

DayMonth = eomdate(2001, 2)

DayMonth = 730910

datestr(DayMonth)

ans = 
'28-Feb-2001'

Find the last day of the month using multiples values for Year and a single Month.

Year = [2002 2003 2004 2005];
DayMonth = eomdate(Year, 2);
datestr(DayMonth)

ans = 4x11 char array
    '28-Feb-2002'
    '28-Feb-2003'
    '29-Feb-2004'
    '28-Feb-2005'

Find the last day of the month using a datetime array for Date.

DayMonth = eomdate(datetime('1-Jan-2015','Locale','en_US'))

DayMonth = datetime
   31-Jan-2015
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Find the last day of the month using an outputType for 'datetime'.

DayMonth = eomdate(2001, 2,'datetime')

DayMonth = datetime
   28-Feb-2001

Input Arguments
Date — Date to determine last day of month
serial date number | date character vector | datetime array

Date to determine last day of month, specified as a serial date number, date character vector, or
datetime array.

If Date is a serial date number or a date character vector, DayMonth is returned as a serial date
number. If Date is a datetime array, then DayMonth is returned as a datetime array.

Use the function datestr to convert serial date numbers to formatted date character vectors or
datenum to convert date and time to a serial date number.
Data Types: single | double | char | datetime

Year — Year to determine last date of month
four-digit nonnegative integer | vector of four-digit nonnegative integers

Year to determine last date of month, specified as a four-digit nonnegative integer.

Either input argument for Year or Month can contain multiple values, but if so, the other input must
contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-
n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. DayMonth
output is then a 1-by-n vector of date numbers.
Data Types: single | double

Month — Month to determine last date of month
integer from 1 through 12 | vector of integers from 1 through 12

Month to determine last date of month, specified as an integer from 1 through 12.

Either input argument for Year or Month can contain multiple values, but if so, the other input must
contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-
n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. DayMonth
output is then a 1-by-n vector of date numbers.
Data Types: single | double

outputType — Output date format
'datenum' (default) | character vector with values 'datenum' or 'datetime'

Output date format, specified as a character vector with values 'datenum' or 'datetime'. If
outputType is 'datenum', then DayMonth is a serial date number. However, if outputType is
'datetime', then DayMonth is a datetime array.
Data Types: char
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Output Arguments
DayMonth — Last day of month
serial date number | datetime array

Last day of the month, returned as a serial date number or datetime array.

See Also
day | eomday | lbusdate | month | year | datetime

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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eq (fts)
Multiple financial time series object equality

Note eq (fts) is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tsobj_1 == tsobj_2

iseq = eq(tsobj_1,tsobj_2)

Arguments

tsobj_1 Financial time series object.
tsobj_2 Financial time series object.

Description
tsobj_1 == tsobj_2 returns True (1) if both financial time series objects have the same dates,
frequencies, data series names, and data values. Otherwise, eq returns False (0).

Note The data series names are case-sensitive, but do not have to be in the same order within each
object.

Examples

Determine Multiple Financial Times Series Object Equality

This example shows how to determine if multiple financial times series objects are equal.

load disney 

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

dis == dis 

ans = logical
   1

See Also
isequal
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Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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estimateAssetMoments
Estimate mean and covariance of asset returns from data

Note Using a fints object for the AssetReturns argument of estimateAssetMoments is not
recommended. Use timetable instead for financial time series. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
obj = estimateAssetMoments(obj,AssetReturns)
obj = estimateAssetMoments( ___ ,Name,Value)

Description
obj = estimateAssetMoments(obj,AssetReturns) estimates mean and covariance of asset
returns from data for a Portfolio object. For details on the workflow, see “Portfolio Object
Workflow” on page 4-17.

obj = estimateAssetMoments( ___ ,Name,Value) estimates mean and covariance of asset
returns from data for a Portfolio object with additional options for one or more Name,Value pair
arguments.

Examples

Estimate Mean and Covariance of Asset Returns from Data for a Portfolio Object

To illustrate using the estimateAssetMoments function, generate random samples of 120
observations of asset returns for four assets from the mean and covariance of asset returns in the
variables m and C with the portsim function. The default behavior portsim creates simulated data
with estimated mean and covariance identical to the input moments m and C. In addition to a return
series created by the portsim function in the variable X, a price series is created in the variable Y:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);

Given asset returns and prices in the variables X and Y from above, the following examples
demonstrate equivalent ways to estimate asset moments for the Portfolio object. A Portfolio object is
created in p with the moments of asset returns set directly in the Portfolio object and a second
Portfolio object is created in q to obtain the mean and covariance of asset returns from asset return
data in X using the estimateAssetMoments function.
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m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
X = portsim(m', C, 120);
p = Portfolio('mean',m,'covar',C);
q = Portfolio;
q = estimateAssetMoments(q, X);
 
[passetmean, passetcovar] = getAssetMoments(p)

passetmean = 4×1

    0.0042
    0.0083
    0.0100
    0.0150

passetcovar = 4×4

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

[qassetmean, qassetcovar] = getAssetMoments(q)

qassetmean = 4×1

    0.0042
    0.0083
    0.0100
    0.0150

qassetcovar = 4×4

    0.0005    0.0003    0.0002   -0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
   -0.0000    0.0010    0.0028    0.0102

Notice how either approach yields the same moments. The default behavior of the
estimateAssetMoments function is to work with asset returns. If, instead, you have asset prices,
such as in the variable Y, the estimateAssetMoments function accepts a parameter name
'DataFormat' with a corresponding value set to 'prices' to indicate that the input to the method
is in the form of asset prices and not returns (the default parameter value for 'DataFormat' is
'returns'). The following example compares direct assignment of moments in the Portfolio object p
with estimated moments from asset price data in Y in the Portfolio object q:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
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      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
X = portsim(m', C, 120);
Y = ret2tick(X);

p = Portfolio('mean',m,'covar',C);
        
q = Portfolio;
q = estimateAssetMoments(q, Y, 'dataformat', 'prices');
 
[passetmean, passetcovar] = getAssetMoments(p)

passetmean = 4×1

    0.0042
    0.0083
    0.0100
    0.0150

passetcovar = 4×4

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102

[qassetmean, qassetcovar] = getAssetMoments(q)

qassetmean = 4×1

    0.0042
    0.0083
    0.0100
    0.0150

qassetcovar = 4×4

    0.0005    0.0003    0.0002   -0.0000
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
   -0.0000    0.0010    0.0028    0.0102

Estimate Mean and Covariance of Asset Returns from Timetable Data for a Portfolio Object

To illustrate using the estimateAssetMoments function with AssetReturns data continued in a
timetable object, use the CAPMuniverse.mat which contains a timetable object
(AssetTimeTable) for returns data.
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load CAPMuniverse
AssetsTimeTable.Properties;
head(AssetsTimeTable,5)

ans=5×14 timetable
       Time          AAPL         AMZN         CSCO         DELL         EBAY       GOOG       HPQ          IBM         INTC         MSFT         ORCL         YHOO        MARKET         CASH   
    ___________    _________    _________    _________    _________    _________    ____    _________    _________    _________    _________    _________    _________    _________    __________

    03-Jan-2000     0.088805       0.1742     0.008775    -0.002353      0.12829    NaN       0.03244     0.075368      0.05698    -0.001627     0.054078     0.097784    -0.012143    0.00020522
    04-Jan-2000    -0.084331     -0.08324     -0.05608     -0.08353    -0.093805    NaN     -0.075613    -0.033966    -0.046667    -0.033802      -0.0883    -0.067368     -0.03166    0.00020339
    05-Jan-2000     0.014634     -0.14877    -0.003039     0.070984     0.066875    NaN     -0.006356      0.03516     0.008199     0.010567    -0.052837    -0.073363     0.011443    0.00020376
    06-Jan-2000    -0.086538    -0.060072    -0.016619    -0.038847    -0.012302    NaN     -0.063688    -0.017241     -0.05824    -0.033477    -0.058824     -0.10307     0.011743    0.00020266
    07-Jan-2000     0.047368     0.061013       0.0587    -0.037708    -0.000964    NaN      0.028416    -0.004386      0.04127     0.013091     0.076771      0.10609      0.02393    0.00020157

Notice that GOOG has missing data (NaN), because it was not listed before Aug 2004. The
estimateAssetMoments function has a name-value pair argument 'MissingData' that indicates
with a Boolean value whether to use the missing data capabilities of Financial Toolbox™ software.
The default value for 'MissingData' is false which removes all samples with NaN values. If,
however, 'MissingData' is set to true, estimateAssetMoments uses the ECM algorithm to
estimate asset moments.

r = Portfolio;
r = estimateAssetMoments(r,AssetsTimeTable,'dataformat','returns','missingdata',true);

In addition, the estimateAssetMoments function also extracts asset names or identifiers from a
timetable object when the name-value argument 'GetAssetList' set to true (its default value is
false). If the 'GetAssetList' value is true, the timetable column identifiers are used to set the
AssetList property of the Portfolio object. To show this, the formation of the Portfolio object r is
repeated with the 'GetAssetList' flag set to true.

r = estimateAssetMoments(r,AssetsTimeTable,'GetAssetList',true);
disp(r.AssetList')

    {'AAPL'  }
    {'AMZN'  }
    {'CSCO'  }
    {'DELL'  }
    {'EBAY'  }
    {'GOOG'  }
    {'HPQ'   }
    {'IBM'   }
    {'INTC'  }
    {'MSFT'  }
    {'ORCL'  }
    {'YHOO'  }
    {'MARKET'}
    {'CASH'  }

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on creating a portfolio
object, see

19 Functions

19-750



• Portfolio

Data Types: object

AssetReturns — Matrix, table, or timetable that contains asset price data that can be
converted to asset returns
matrix | table | table

Matrix, table, or timetable that contains asset price data that can be converted to asset returns,
specified by a NumSamples-by-NumAssets matrix.

AssetReturns data can be:

• NumSamples-by-NumAssets matrix.
• Table of NumSamples prices or returns at a given periodicity for a collection of NumAssets assets
• Timetable object with NumSamples observations and NumAssets time series

Use the optional DataFormat argument to convert AssetReturns input data that is asset prices
into asset returns. Be careful when using asset price data because portfolio optimization usually
requires total returns and not simply price returns.
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: p = estimateAssetMoments(p,Y,'dataformat','prices')

DataFormat — Flag to convert input data as prices into returns
'Returns' (default) | character vector with values 'Returns' or 'Prices'

Flag to convert input data as prices into returns, specified as the comma-separated pair consisting of
'DataFormat' and a character vector with the values:

• 'Returns' — Data in AssetReturns contains asset total returns.
• 'Prices' — Data in AssetReturns contains asset total return prices.

Data Types: char

MissingData — Flag indicating whether to use ECM algorithm or exclude samples with NaN
values
false (default) | logical with value true or false

Flag indicating whether to use ECM algorithm or excludes samples with NaN values, specified as the
comma-separated pair consisting of 'MissingData' and a logical with a value of true or false.

To handle time series with missing data (indicated with NaN values), the MissingData flag either
uses the ECM algorithm to obtain maximum likelihood estimates in the presences of NaN values or
excludes samples with NaN values. Since the default is false, it is necessary to specify
MissingData as true to use the ECM algorithm.

Acceptable values for MissingData are:
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• false — Do not use ECM algorithm to handle NaN values (exclude NaN values).
• true — Use ECM algorithm to handle NaN values.

For more information on the ECM algorithm, see ecmnmle and “Multivariate Normal Regression” on
page 9-2.
Data Types: logical

GetAssetList — Flag indicating which asset names to use for asset list
false (default) | logical with value true or false

Flag indicating which asset names to use for the asset list, specified as the comma-separated pair
consisting of 'GetAssetList' and a logical with a value of true or false. Acceptable values for
GetAssetList are:

• false — Do not extract or create asset names.
• true — Extract or create asset names from a table or timetable object.

If a table or timetable is passed into this function using the AssetReturns argument and the
GetAssetList flag is true, the column names from the table or timetable object are used as asset
names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are created based on
the AbstractPortfolio property defaultforAssetList, which is 'Asset'.

If the GetAssetList flag is false, no action occurs, which is the default behavior.
Data Types: logical

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio object. For more information on creating a
portfolio object, see

• Portfolio

Tips
You can also use dot notation to estimate the mean and covariance of asset returns from data.

obj = obj.estimateAssetMoments(AssetReturns);

See Also
Portfolio | estimateBounds | portsim

Topics
“Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-41
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3
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Introduced in R2011a

 estimateAssetMoments

19-753



estimateBounds
Estimate global lower and upper bounds for set of portfolios

Syntax
[glb,gub,isbounded] = estimateBounds(obj)
[glb,gub,isbounded] = estimateBounds(obj,obtainExactBounds)

Description
[glb,gub,isbounded] = estimateBounds(obj) estimates global lower and upper bounds for
set of portfolios for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the
respective workflows when using these different objects, see “Portfolio Object Workflow” on page 4-
17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-
15.

Note The estimateBounds function does not consider cardinality or semicontinuous constraints.
For more information, see “Working with 'Conditional' BoundType, MinNumAssets, and
MaxNumAssets Constraints Using Portfolio Objects” on page 4-78.

[glb,gub,isbounded] = estimateBounds(obj,obtainExactBounds) estimates global lower
and upper bounds for set of portfolios with an additional option specified for obtainExactBounds.

Examples

Create an Unbounded Portfolio for a Portfolio Object

Create an unbounded portfolio set.

p = Portfolio('AInequality', [1 -1; 1 1 ], 'bInequality', 0);
[lb, ub, isbounded] = estimateBounds(p)

lb = 2×1

  -Inf
  -Inf

ub = 2×1

     0
   Inf

isbounded = logical
   0
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The estimateBounds function returns (possibly infinite) bounds and sets the isbounded flag to
false. The result shows which assets are unbounded so that you can apply bound constraints as
necessary.

Create an Unbounded Portfolio for a PortfolioCVaR Object

Create an unbounded portfolio set.

p = PortfolioCVaR('AInequality', [1 -1; 1 1 ], 'bInequality', 0);
[lb, ub, isbounded] = estimateBounds(p)

lb = 2×1

  -Inf
  -Inf

ub = 2×1

     0
   Inf

isbounded = logical
   0

The estimateBounds function returns (possibly infinite) bounds and sets the isbounded flag to
false. The result shows which assets are unbounded so that you can apply bound constraints as
necessary.

Create an Unbounded Portfolio for a PortfolioMAD Object

Create an unbounded portfolio set.

p = PortfolioMAD('AInequality', [1 -1; 1 1 ], 'bInequality', 0);
[lb, ub, isbounded] = estimateBounds(p)

lb = 2×1

  -Inf
  -Inf

ub = 2×1

     0
   Inf

isbounded = logical
   0
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The estimateBounds function returns (possibly infinite) bounds and sets the isbounded flag to
false. The result shows which assets are unbounded so that you can apply bound constraints as
necessary.

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

obtainExactBounds — Flag to specify whether to solve for all bounds or to accept specified
bounds whenever available
true (default) | logical

Flag to specify whether to solve for all bounds or to accept specified bounds whenever available,
specified as a logical with values of true or false. If bounds are known, set obtainExactBounds
to false to accept known bounds. The default for obtainExactBounds is true.
Data Types: logical

Output Arguments
glb — Global lower bounds for portfolio set
vector

Global lower bounds for portfolio set, returned as vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

gub — Global upper bounds for portfolio set
vector

Global upper bounds for portfolio set, returned as vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

isbounded — Indicator for whether portfolio set is empty, bounded, or unbounded
logical

Indicator for whether portfolio set is empty ([]), bounded (true), or unbounded (false), returned as
a logical.

Note By definition, any portfolio set must be nonempty and bounded:

• If the set is empty, isbounded = [ ].
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• If the set is nonempty and unbounded, isbounded = false.
• If the set is nonempty and bounded, isbounded = true.
• If the set is empty, glb and gub are set to NaN vectors.

An isbounded value is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).

Tips
• You can also use dot notation to estimate the global lower and upper bounds for a given set of

portfolios.

[glb, gub, isbounded] = obj.estimateBounds;
• Estimated bounds are accurate in most cases to within 1.0e-8. If you intend to use these bounds

directly in a portfolio object, ensure that if you impose such bound constraints, a lower bound of 0
is probably preferable to a lower bound of, for example, 1.0e-10 for portfolio weights.

See Also
checkFeasibility

Topics
“Validate the Portfolio Problem for Portfolio Object” on page 4-90
“Validate the CVaR Portfolio Problem” on page 5-77
“Validate the MAD Portfolio Problem” on page 6-76
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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estimateFrontier
Estimate specified number of optimal portfolios on the efficient frontier

Syntax
[pwgt,pbuy,psell] = estimateFrontier(obj)
[pwgt,pbuy,psell] = estimateFrontier(obj,NumPorts)

Description
[pwgt,pbuy,psell] = estimateFrontier(obj) estimates the specified number of optimal
portfolios on the efficient frontier for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For
details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[pwgt,pbuy,psell] = estimateFrontier(obj,NumPorts) estimates the specified number of
optimal portfolios on the efficient frontier with an additional option specified for NumPorts.

Examples

Create a Portfolio Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = Portfolio('AssetList',Assets(1:12));
p = estimateAssetMoments(p, Data(:,1:12),'missingdata',true);
p = setDefaultConstraints(p);
plotFrontier(p);
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pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
    pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1        Port2       Port3       Port4      Port5
    AAPL     0.017926    0.058247    0.097816    0.12955    0    
    AMZN            0           0           0          0    0    
    CSCO            0           0           0          0    0    
    DELL    0.0041906           0           0          0    0    
    EBAY            0           0           0          0    0    
    GOOG      0.16144     0.35678     0.55228    0.75116    1    
    HPQ      0.052566    0.032302    0.011186          0    0    
    IBM       0.46422     0.36045     0.25577    0.11928    0    
    INTC            0           0           0          0    0    
    MSFT      0.29966     0.19222    0.082949          0    0    
    ORCL            0           0           0          0    0    
    YHOO            0           0           0          0    0    

 estimateFrontier

19-759



Create a Portfolio Object with BoundType and MaxNumAssets Constraints and Determine
Efficient Portfolios

Create a Portfolio object for 12 stocks based on CAPMuniverse.mat.

load CAPMuniverse
p0 = Portfolio('AssetList',Assets(1:12));
p0 = estimateAssetMoments(p0, Data(:,1:12),'missingdata',true);
p0 = setDefaultConstraints(p0);

Use setMinMaxNumAssets to define a maximum number of 3 assets.

p1 = setMinMaxNumAssets(p0, [], 3);

Use setBounds to define a lower and upper bound and a BoundType of 'Conditional'.

p1 = setBounds(p1, 0.1, 0.5,'BoundType', 'Conditional');
pwgt = estimateFrontier(p1, 5);     

The following table shows that the optimized allocations only have maximum 3 assets invested, and
small positions less than 0.1 are avoided.

result = table(p0.AssetList', pwgt)

result=12×2 table
      Var1                             pwgt                        
    ________    ___________________________________________________

    {'AAPL'}          0          0          0    0.14308          0
    {'AMZN'}          0          0          0          0          0
    {'CSCO'}          0          0          0          0          0
    {'DELL'}          0          0          0          0          0
    {'EBAY'}          0          0          0          0        0.5
    {'GOOG'}    0.16979    0.29587    0.42213    0.49998        0.5
    {'HPQ' }          0          0          0          0          0
    {'IBM' }    0.49602     0.4363    0.37309    0.35694          0
    {'INTC'}          0          0          0          0          0
    {'MSFT'}    0.33419    0.26783    0.20479          0          0
    {'ORCL'}          0          0          0          0          0
    {'YHOO'}          0          0          0          0          0

The estimateFrontier function uses the MINLP solver to solve this problem. Use the
setSolverMINLP function to configure the SolverType and options.

p1.solverTypeMINLP

ans = 
'OuterApproximation'

p1.solverOptionsMINLP

ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 1000
                  ObjectiveScalingFactor: 1000
                                 Display: 'off'
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                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

Construct a PortfolioCVaR Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = PortfolioCVaR('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

plotFrontier(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
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    pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1       Port2        Port3       Port4      Port5
    AAPL    0.010562      0.07364     0.11931    0.13073    0    
    AMZN           0            0           0          0    0    
    CSCO           0            0           0          0    0    
    DELL    0.022649            0           0          0    0    
    EBAY           0            0           0          0    0    
    GOOG       0.203      0.38011     0.56202    0.75919    1    
    HPQ     0.042772    0.0094711           0          0    0    
    IBM      0.44444      0.36456     0.26305    0.11009    0    
    INTC           0            0           0          0    0    
    MSFT     0.27658      0.17222    0.055624          0    0    
    ORCL           0            0           0          0    0    
    YHOO           0            0           0          0    0    

Create a PortfolioMAD Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = PortfolioMAD('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);
p = setDefaultConstraints(p);

plotFrontier(p);
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pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
    pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1        Port2       Port3       Port4      Port5
    AAPL     0.029787    0.076199     0.11265    0.13397    0    
    AMZN            0           0           0          0    0    
    CSCO            0           0           0          0    0    
    DELL    0.0089177           0           0          0    0    
    EBAY            0           0           0          0    0    
    GOOG      0.16094      0.3516     0.54479    0.74898    1    
    HPQ      0.056856    0.023073           0          0    0    
    IBM       0.46074     0.37919     0.29379    0.11705    0    
    INTC            0           0           0          0    0    
    MSFT      0.28277     0.16994    0.048762          0    0    
    ORCL            0           0           0          0    0    
    YHOO            0           0           0          0    0    
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Obtain the Default Number of Efficient Portfolios for a Portfolio Object

Obtain the default number of efficient portfolios over the entire range of the efficient frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontier(p);
disp(pwgt);

  Columns 1 through 7

    0.8891    0.7215    0.5540    0.3865    0.2190    0.0515         0
    0.0369    0.1289    0.2209    0.3129    0.4049    0.4969    0.4049
    0.0404    0.0567    0.0730    0.0893    0.1056    0.1219    0.1320
    0.0336    0.0929    0.1521    0.2113    0.2705    0.3297    0.4630

  Columns 8 through 10

         0         0         0
    0.2314    0.0579         0
    0.1394    0.1468         0
    0.6292    0.7953    1.0000

Obtain Purchases and Sales for Portfolios on the Efficient Frontier for a Portfolio Object

Starting from the initial portfolio, the estimateFrontier function returns purchases and sales to
get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial
portfolio in pwgt0, you can obtain purchases and sales.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

pwgt = 4×10

    0.8891    0.7215    0.5540    0.3865    0.2190    0.0515         0         0         0         0
    0.0369    0.1289    0.2209    0.3129    0.4049    0.4969    0.4049    0.2314    0.0579         0
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    0.0404    0.0567    0.0730    0.0893    0.1056    0.1219    0.1320    0.1394    0.1468         0
    0.0336    0.0929    0.1521    0.2113    0.2705    0.3297    0.4630    0.6292    0.7953    1.0000

display(pbuy);

pbuy = 4×10

    0.5891    0.4215    0.2540    0.0865         0         0         0         0         0         0
         0         0         0    0.0129    0.1049    0.1969    0.1049         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0    0.0521    0.1113    0.1705    0.2297    0.3630    0.5292    0.6953    0.9000

display(psell);

psell = 4×10

         0         0         0         0    0.0810    0.2485    0.3000    0.3000    0.3000    0.3000
    0.2631    0.1711    0.0791         0         0         0         0    0.0686    0.2421    0.3000
    0.1596    0.1433    0.1270    0.1107    0.0944    0.0781    0.0680    0.0606    0.0532    0.2000
    0.0664    0.0071         0         0         0         0         0         0         0         0

Obtain the Default Number of Efficient Portfolios for a PortfolioCVaR Object

Obtain the default number of efficient portfolios over the entire range of the efficient frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);

disp(pwgt);

  Columns 1 through 7

    0.8451    0.6849    0.5159    0.3541    0.1903    0.0323         0
    0.0613    0.1429    0.2291    0.3165    0.3983    0.4721    0.3528
    0.0451    0.0634    0.0944    0.1082    0.1340    0.1580    0.1736
    0.0485    0.1089    0.1606    0.2213    0.2775    0.3376    0.4736
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  Columns 8 through 10

         0         0         0
    0.1804         0         0
    0.1918    0.2212         0
    0.6277    0.7788    1.0000

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Obtain Purchases and Sales for Portfolios on the Efficient Frontier for a PortfolioCVaR
Object

Starting from the initial portfolio, the estimateFrontier function returns purchases and sales to
get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial
portfolio in pwgt0, you can obtain purchases and sales.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

pwgt = 4×10

    0.8451    0.6849    0.5159    0.3541    0.1903    0.0323         0         0         0         0
    0.0613    0.1429    0.2291    0.3165    0.3983    0.4721    0.3528    0.1804         0         0
    0.0451    0.0634    0.0944    0.1082    0.1340    0.1580    0.1736    0.1918    0.2212         0
    0.0485    0.1089    0.1606    0.2213    0.2775    0.3376    0.4736    0.6277    0.7788    1.0000

display(pbuy);

pbuy = 4×10

    0.5451    0.3849    0.2159    0.0541         0         0         0         0         0         0
         0         0         0    0.0165    0.0983    0.1721    0.0528         0         0         0
         0         0         0         0         0         0         0         0    0.0212         0
         0    0.0089    0.0606    0.1213    0.1775    0.2376    0.3736    0.5277    0.6788    0.9000
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display(psell);

psell = 4×10

         0         0         0         0    0.1097    0.2677    0.3000    0.3000    0.3000    0.3000
    0.2387    0.1571    0.0709         0         0         0         0    0.1196    0.3000    0.3000
    0.1549    0.1366    0.1056    0.0918    0.0660    0.0420    0.0264    0.0082         0    0.2000
    0.0515         0         0         0         0         0         0         0         0         0

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Obtain the Default Number of Efficient Portfolios for a PortfolioMAD Object

Obtain the default number of efficient portfolios over the entire range of the efficient frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

disp(pwgt);

  Columns 1 through 7

    0.8817    0.7150    0.5488    0.3812    0.2167    0.0494         0
    0.0431    0.1285    0.2127    0.2993    0.3832    0.4679    0.3599
    0.0387    0.0604    0.0826    0.1047    0.1237    0.1480    0.1799
    0.0366    0.0961    0.1559    0.2148    0.2763    0.3348    0.4601

  Columns 8 through 10

         0         0         0
    0.1758         0         0
    0.2091    0.2266         0
    0.6151    0.7734    1.0000

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.
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Obtain Purchases and Sales for Portfolios on the Efficient Frontier for a PortfolioMAD
Object

Starting from the initial portfolio, the estimateFrontier function returns purchases and sales to
get from your initial portfolio to each efficient portfolio on the efficient frontier. Given an initial
portfolio in pwgt0, you can obtain purchases and sales.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = setInitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

pwgt = 4×10

    0.8817    0.7150    0.5488    0.3812    0.2167    0.0494         0         0         0         0
    0.0431    0.1285    0.2127    0.2993    0.3832    0.4679    0.3599    0.1758         0         0
    0.0387    0.0604    0.0826    0.1047    0.1237    0.1480    0.1799    0.2091    0.2266         0
    0.0366    0.0961    0.1559    0.2148    0.2763    0.3348    0.4601    0.6151    0.7734    1.0000

display(pbuy);

pbuy = 4×10

    0.5817    0.4150    0.2488    0.0812         0         0         0         0         0         0
         0         0         0         0    0.0832    0.1679    0.0599         0         0         0
         0         0         0         0         0         0         0    0.0091    0.0266         0
         0         0    0.0559    0.1148    0.1763    0.2348    0.3601    0.5151    0.6734    0.9000

display(psell);

psell = 4×10

         0         0         0         0    0.0833    0.2506    0.3000    0.3000    0.3000    0.3000
    0.2569    0.1715    0.0873    0.0007         0         0         0    0.1242    0.3000    0.3000
    0.1613    0.1396    0.1174    0.0953    0.0763    0.0520    0.0201         0         0    0.2000
    0.0634    0.0039         0         0         0         0         0         0         0         0

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.
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Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

NumPorts — Number of points to obtain on efficient frontier
value from hidden property defaultNumPorts (default value is 10) (default) | scalar integer

Number of points to obtain on the efficient frontier, specified as a scalar integer.

Note If no value is specified for NumPorts, the default value is obtained from the hidden property
defaultNumPorts (default value is 10). If NumPorts = 1, this function returns the portfolio
specified by the hidden property defaultFrontierLimit (current default value is 'min').

Data Types: double

Output Arguments
pwgt — Optimal portfolios on efficient frontier with specified number of portfolios spaced
equally from minimum to maximum portfolio return
matrix

Optimal portfolios on the efficient frontier with specified number of portfolios spaced equally from
minimum to maximum portfolio return, returned as a NumAssets-by-NumPorts matrix. pwgt is
returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

pbuy — Purchases relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as
NumAssets-by-NumPorts matrix.

Note If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that
pbuy = max(0, pwgt) and psell = max(0, -pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

psell — Sales relative to initial portfolio for optimal portfolios on efficient frontier
matrix
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Sales relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as a
NumAssets-by-NumPorts matrix.

Note If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that
pbuy = max(0, pwgt) and psell = max(0, -pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Tips
• You can also use dot notation to estimate the specified number of optimal portfolios over the entire
efficient frontier.

     [pwgt, pbuy, psell] = obj.estimateFrontier(NumPorts);
• When introducing transaction costs and turnover constraints to the Portfolio, PortfolioCVaR,

or PortfolioMAD object, the portfolio optimization objective contains a term with an absolute
value. For more information on how Financial Toolbox handles such cases algorithmically, see
“References” on page 19-770.

References
[1] Cornuejols, G., and R. Tutuncu. Optimization Methods in Finance. Cambridge University Press,

2007.

See Also
estimateFrontierByReturn | estimateFrontierByRisk | estimateFrontierLimits |
setBounds | setMinMaxNumAssets

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Estimate Efficient Frontiers for Portfolio Object” on page 4-116
“Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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estimateFrontierByReturn
Estimate optimal portfolios with targeted portfolio returns

Syntax
[pwgt,pbuy,psell] = estimateFrontierByReturn(obj,TargetReturn)

Description
[pwgt,pbuy,psell] = estimateFrontierByReturn(obj,TargetReturn) estimates optimal
portfolios with targeted portfolio returns for Portfolio, PortfolioCVaR, or PortfolioMAD
objects. For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD
Object Workflow” on page 6-15.

Examples

Obtain the Portfolio for Targeted Portfolio Returns for a Portfolio Object

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn
function accepts one or more target portfolio returns and obtains efficient portfolios with the
specified returns. Assume you have a universe of four assets where you want to obtain efficient
portfolios with target portfolio returns of 6%, 9%, and 12%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt);

pwgt = 4×3

    0.8772    0.5032    0.1293
    0.0434    0.2488    0.4541
    0.0416    0.0780    0.1143
    0.0378    0.1700    0.3022
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Obtain Portfolios with Targeted Portfolio Returns for a Portfolio Object with BoundType,
MinNumAsset, and MaxNumAsset Constraints

When any one, or any combination of the constraints from 'Conditional' BoundType,
MinNumAssets, and MaxNumAssets are active, the portfolio problem is formulated as mixed integer
programming problem and the MINLP solver is used.

Create a Portfolio object for three assets.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p);           

Use setBounds with semicontinuous constraints to set xi = 0 or 0.02 <= xi <= 0.5 for all i =
1,...NumAssets.

p = setBounds(p, 0.02, 0.7,'BoundType', 'Conditional', 'NumAssets', 3);                    

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up
the limits on the number of assets invested (as known as cardinality) constraints. This sets the total
number of allocated assets satisfying the Bound constraints that are between MinNumAssets and
MaxNumAssets. By setting MinNumAssets = MaxNumAssets = 2, only two of the three assets are
invested in the portfolio.

p = setMinMaxNumAssets(p, 2, 2);  

Use estimateFrontierByReturn to estimate optimal portfolios with targeted portfolio returns.

[pwgt, pbuy, psell] = estimateFrontierByReturn(p,[ 0.0072321, 0.0119084 ])

pwgt = 3×2

         0    0.5000
    0.6922         0
    0.3078    0.5000

pbuy = 3×2

         0    0.5000
    0.6922         0
    0.3078    0.5000

psell = 3×2

     0     0
     0     0
     0     0

The estimateFrontierByReturn function uses the MINLP solver to solve this problem. Use the
setSolverMINLP function to configure the SolverType and options.

p.solverTypeMINLP
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ans = 
'OuterApproximation'

p.solverOptionsMINLP

ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 1000
                  ObjectiveScalingFactor: 1000
                                 Display: 'off'
                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

Obtain the Portfolio for Targeted Portfolio Returns for a PortfolioCVaR Object

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn
function accepts one or more target portfolio returns and obtains efficient portfolios with the
specified returns. Assume you have a universe of four assets where you want to obtain efficient
portfolios with target portfolio returns of 7%, 10%, and 13%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioCVaR;
p = simulateNormalScenariosByMoments(p, m, C, 2000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierByReturn(p, [0.07 0.10, 0.13]);

display(pwgt);

pwgt = 4×3

    0.7370    0.3067         0
    0.1502    0.3937    0.4396
    0.0290    0.0997    0.1360
    0.0838    0.1999    0.4244

The function rng(seed) is used to reset the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.
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Obtain the Portfolio for Targeted Portfolio Returns for a PortfolioMAD Object

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn
function accepts one or more target portfolio returns and obtains efficient portfolios with the
specified returns. Assume you have a universe of four assets where you want to obtain efficient
portfolios with target portfolio returns of 7%, 10%, and 13%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioMAD;
p = simulateNormalScenariosByMoments(p, m, C, 2000);
p = setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.07 0.10, 0.13]);

display(pwgt);

pwgt = 4×3

    0.7437    0.3146         0
    0.1357    0.3837    0.4425
    0.0326    0.0939    0.1319
    0.0881    0.2079    0.4255

The function rng(seed) is used to reset the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

TargetReturn — Target values for portfolio return
vector

Target values for portfolio return, specified as a NumPorts vector.

Note TargetReturn specifies target returns for portfolios on the efficient frontier. If any
TargetReturn values are outside the range of returns for efficient portfolios, the TargetReturn is
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replaced with the minimum or maximum efficient portfolio return, depending upon whether the
target return is below or above the range of efficient portfolio returns.

Data Types: double

Output Arguments
pwgt — Optimal portfolios on efficient frontier with specified target returns
matrix

Optimal portfolios on the efficient frontier with specified target returns from TargetReturn,
returned as a NumAssets-by-NumPorts matrix. pwgt is returned for a Portfolio, PortfolioCVaR,
or PortfolioMAD input object (obj).

pbuy — Purchases relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as
NumAssets-by-NumPorts matrix.

Note If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that
pbuy = max(0, pwgt) and psell = max(0, -pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

psell — Sales relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as a
NumAssets-by-NumPorts matrix.

Note If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that
pbuy = max(0, pwgt) and psell = max(0, -pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Tips
You can also use dot notation to estimate optimal portfolios with targeted portfolio returns.

[pwgt, pbuy, psell] = obj.estimateFrontierByReturn(TargetReturn);

See Also
estimateFrontier | estimateFrontierByRisk | estimateFrontierLimits | setBounds |
setMinMaxNumAssets

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Estimate Efficient Frontiers for Portfolio Object” on page 4-116
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“Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
“Portfolio Optimization Examples” on page 4-141
“Black-Litterman Portfolio Optimization” on page 4-204
“Portfolio Optimization Using Factor Models” on page 4-213
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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estimateFrontierByRisk
Estimate optimal portfolios with targeted portfolio risks

Syntax
[pwgt,pbuy,psell] = estimateFrontierByRisk(obj,TargetRisk)

[pwgt,pbuy,psell] = estimateFrontierByRisk( ___ ,Name,Value)

Description
[pwgt,pbuy,psell] = estimateFrontierByRisk(obj,TargetRisk) estimates optimal
portfolios with targeted portfolio risks for Portfolio, PortfolioCVaR, or PortfolioMAD objects.
For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[pwgt,pbuy,psell] = estimateFrontierByRisk( ___ ,Name,Value) adds name-optional
name-value pair arguments for Portfolio or PortfolioMAD objects.

Examples

Obtain Portfolios with Targeted Portfolio Risks for a Portfolio Object

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio risks and obtains efficient portfolios with the specified
risks. Assume you have a universe of four assets where you want to obtain efficient portfolios with
target portfolio risks of 12%, 14%, and 16%. This example uses the default 'direct' method to
estimate the optimal portfolios with targeted portfolio risks.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
 p = Portfolio;
 p = setAssetMoments(p, m, C);
 p = setDefaultConstraints(p);
 pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

 display(pwgt);

pwgt = 4×3

    0.3984    0.2659    0.1416
    0.3064    0.3791    0.4474
    0.0882    0.1010    0.1131
    0.2071    0.2540    0.2979
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Obtain Portfolios with Targeted Portfolio Risks for a Portfolio Object with BoundType,
MinNumAsset, and MaxNumAsset Constraints

When any one, or any combination of the constraints from 'Conditional' BoundType,
MinNumAssets, and MaxNumAssets are active, the portfolio problem is formulated as mixed integer
programming problem and the MINLP solver is used.

Create a Portfolio object for three assets.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p);           

Use setBounds with semicontinuous constraints to set xi = 0 or 0.02 <= xi <= 0.5 for all i =
1,...NumAssets.

p = setBounds(p, 0.02, 0.7,'BoundType', 'Conditional', 'NumAssets', 3);                    

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up
the limits on the number of assets invested (as known as cardinality) constraints. This sets the total
number of allocated assets satisfying the Bound constraints that are between MinNumAssets and
MaxNumAssets. By setting MinNumAssets = MaxNumAssets = 2, only two of the three assets are
invested in the portfolio.

p = setMinMaxNumAssets(p, 2, 2);  

Use estimateFrontierByRisk to estimate optimal portfolios with targeted portfolio risks.

[pwgt, pbuy, psell] = estimateFrontierByRisk(p,[0.0324241, 0.0694534 ])

pwgt = 3×2

    0.0000    0.5000
    0.6907    0.0000
    0.3093    0.5000

pbuy = 3×2

    0.0000    0.5000
    0.6907    0.0000
    0.3093    0.5000

psell = 3×2

     0     0
     0     0
     0     0

The estimateFrontierByRisk function uses the MINLP solver to solve this problem. Use the
setSolverMINLP function to configure the SolverType and options.
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p.solverTypeMINLP

ans = 
'OuterApproximation'

p.solverOptionsMINLP

ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 1000
                  ObjectiveScalingFactor: 1000
                                 Display: 'off'
                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

Obtain Portfolios with Targeted Portfolio Risks for a Portfolio Object Using the Direct
Method and Solver Options

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio risks and obtains efficient portfolios with the specified
risks. Assume you have a universe of four assets where you want to obtain efficient portfolios with
target portfolio risks of 12%, 14%, and 16%. This example uses the default'direct' method to
estimate the optimal portfolios with targeted portfolio risks. The 'direct' method uses fmincon to
solve the optimization problem that maximizes portfolio return, subject to the target risk as the
quadratic nonlinear constraint. setSolver specifies the solverType and SolverOptions for
fmincon.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
       
 p = Portfolio;
 p = setAssetMoments(p, m, C);
 p = setDefaultConstraints(p);
 
 p = setSolver(p, 'fmincon', 'Display', 'off', 'Algorithm', 'sqp', ...
        'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, ...
        'ConstraintTolerance', 1.0e-8, 'OptimalityTolerance', 1.0e-8, 'StepTolerance', 1.0e-8); 

 pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

 display(pwgt);

pwgt = 4×3

    0.3984    0.2659    0.1416
    0.3064    0.3791    0.4474
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    0.0882    0.1010    0.1131
    0.2071    0.2540    0.2979

Obtain Portfolios with Targeted Portfolio Risks for a PortfolioCVaR Object

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio risks and obtains efficient portfolios with the specified
risks. Assume you have a universe of four assets where you want to obtain efficient portfolios with
target portfolio risks of 12%, 20%, and 30%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioCVaR;
p = simulateNormalScenariosByMoments(p, m, C, 2000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierByRisk(p, [0.12, 0.20, 0.30]);

display(pwgt);

pwgt = 4×3

    0.5363    0.1387         0
    0.2655    0.4991    0.3830
    0.0570    0.1239    0.1461
    0.1412    0.2382    0.4709

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Obtain Portfolios with Targeted Portfolio Risks for a PortfolioMAD Object

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio risks and obtains efficient portfolios with the specified
risks. Assume you have a universe of four assets where you want to obtain efficient portfolios with
target portfolio risks of 12%, 20%, and 25%. This example uses the default 'direct' method to
estimate the optimal portfolios with targeted portfolio risks.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

19 Functions

19-780



rng(11);

p = PortfolioMAD;
p = simulateNormalScenariosByMoments(p, m, C, 2000);
p = setDefaultConstraints(p);

pwgt = estimateFrontierByRisk(p, [0.12, 0.20, 0.25]);

display(pwgt);

pwgt = 4×3

    0.1610         0         0
    0.4784    0.2137    0.0047
    0.1116    0.1384    0.1200
    0.2490    0.6480    0.8753

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Obtain Portfolios with Targeted Portfolio Risks for a PortfolioMAD Object Using the Direct
Method and Solver Options

To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio risks and obtains efficient portfolios with the specified
risks. Assume you have a universe of four assets where you want to obtain efficient portfolios with
target portfolio risks of 12%, 20%, and 25%. This example uses the default 'direct' method to
estimate the optimal portfolios with targeted portfolio risks. The 'direct' method uses fmincon to
solve the optimization problem that maximizes portfolio return, subject to the target risk as the
quadratic nonlinear constraint. setSolver specifies the solverType and SolverOptions for
fmincon.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioMAD;
p = simulateNormalScenariosByMoments(p, m, C, 2000);
p = setDefaultConstraints(p);

p = setSolver(p, 'fmincon', 'Display', 'off', 'Algorithm', 'sqp', ...
        'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, ...
        'ConstraintTolerance', 1.0e-8, 'OptimalityTolerance', 1.0e-8, 'StepTolerance', 1.0e-8); 
    plotFrontier(p);
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pwgt = estimateFrontierByRisk(p, [0.12 0.20, 0.25]);

display(pwgt);

pwgt = 4×3

    0.1613    0.0000    0.0000
    0.4777    0.2139    0.0037
    0.1118    0.1381    0.1214
    0.2492    0.6480    0.8749

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD
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Note If no initial portfolio is specified in obj.InitPort, it is assumed to be 0 so that pbuy =
max(0,pwgt) and psell = max(0,-pwgt). For more information on setting an initial portfolio, see
setInitPort.

Data Types: object

TargetRisk — Target values for portfolio risk
vector

Target values for portfolio risk, specified as a NumPorts vector.

Note If any TargetRisk values are outside the range of risks for efficient portfolios, the target risk
is replaced with the minimum or maximum efficient portfolio risk, depending on whether the target
risk is below or above the range of efficient portfolio risks.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [pwgt,pbuy,psell] = estimateFrontierByRisk(p,‘method’,‘direct’)

Method — Method to estimate frontier by risk for Portfolio or PortfolioMAD objects
'direct' (default) | character vector with value 'direct' or 'iterative'

Method to estimate frontier by risk for Portfolio or PortfolioMAD objects, specified as the
comma-separated pair consisting of 'Method' and a character vector with one of the following
values:

• 'direct' — Construct one optimization problem to maximize the portfolio return with target risk
as the nonlinear constraint, and solve it directly using fmincon, instead of iteratively exploring
the efficient frontier. For an example of using the 'direct' option, see “Obtain Portfolios with
Targeted Portfolio Risks for a Portfolio Object Using the Direct Method and Solver Options” on
page 19-779 and “Obtain Portfolios with Targeted Portfolio Risks for a PortfolioMAD Object Using
the Direct Method and Solver Options” on page 19-781.

• 'iterative' — One-dimensional optimization using fminbnd to find the portfolio return
between min and max return on the frontier that minimizes the difference between the actual risk
and target risk. Then the portfolio weights are obtained by solving a frontier by return problem.
Consequently, the 'iterative' method is slower than the 'direct'.

Data Types: char

Output Arguments
pwgt — Optimal portfolios on efficient frontier with specified target risks
matrix
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Optimal portfolios on the efficient frontier with specified target returns from TargetRisk, returned
as a NumAssets-by-NumPorts matrix. pwgt is returned for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

pbuy — Purchases relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as
NumAssets-by-NumPorts matrix.

Note If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that
pbuy = max(0,pwgt) and psell = max(0,-pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

psell — Sales relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as a
NumAssets-by-NumPorts matrix.

Note If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that
pbuy = max(0,pwgt) and psell = max(0,-pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Tips
You can also use dot notation to estimate optimal portfolios with targeted portfolio risks.

[pwgt,pbuy,psell] = obj.estimateFrontierByRisk(TargetRisk);

or

[pwgt,pbuy,psell] = obj.estimateFrontierByRisk(TargetRisk,Name,Value);

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierLimits | setInitPort
| rng | setBounds | setMinMaxNumAssets

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Estimate Efficient Frontiers for Portfolio Object” on page 4-116
“Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
“Portfolio Optimization Examples” on page 4-141
“Black-Litterman Portfolio Optimization” on page 4-204
“Portfolio Optimization Using Factor Models” on page 4-213
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“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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estimateFrontierLimits
Estimate optimal portfolios at endpoints of efficient frontier

Syntax
[pwgt,pbuy,psell] = estimateFrontierLimits(obj)
[pwgt,pbuy,psell] = estimateFrontierLimits(obj,Choice)

Description
[pwgt,pbuy,psell] = estimateFrontierLimits(obj) estimates optimal portfolios at
endpoints of efficient frontier for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For
details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[pwgt,pbuy,psell] = estimateFrontierLimits(obj,Choice) estimates optimal portfolios at
endpoints of efficient frontier with an additional option specified for the Choice argument.

Examples

Obtain Endpoint Portfolios for a Portfolio Object

Given portfolio p, the estimateFrontierLimits function obtains the endpoint portfolios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);

disp(pwgt);

    0.8891         0
    0.0369         0
    0.0404         0
    0.0336    1.0000
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Obtain Endpoint Portfolios for a Portfolio Object with BoundType, MinNumAsset, and
MaxNumAsset Constraints

When any one, or any combination of the constraints from 'Conditional' BoundType,
MinNumAssets, and MaxNumAssets are active, the portfolio problem is formulated as mixed integer
programming problem and the MINLP solver is used.

Create a Portfolio object for three assets.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p);           

Use setBounds with semicontinuous constraints to set xi = 0 or 0.02 <= xi <= 0.5 for all i =
1,...NumAssets.

p = setBounds(p, 0.02, 0.7,'BoundType', 'Conditional', 'NumAssets', 3);                    

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up
the limits on the number of assets invested (as known as cardinality) constraints. This sets the total
number of allocated assets satisfying the Bound constraints that are between MinNumAssets and
MaxNumAssets. By setting MinNumAssets = MaxNumAssets = 2, only two of the three assets are
invested in the portfolio.

p = setMinMaxNumAssets(p, 2, 2);  

Use estimateFrontierLimits to estimate the optimal portfolios at endpoints of the efficient
frontier.

[pwgt, pbuy, psell] = estimateFrontierLimits(p,'Both')

pwgt = 3×2

    0.3000    0.3000
    0.7000         0
         0    0.7000

pbuy = 3×2

    0.3000    0.3000
    0.7000         0
         0    0.7000

psell = 3×2

     0     0
     0     0
     0     0

The estimateFrontierLimits function uses the MINLP solver to solve this problem. Use the
setSolverMINLP function to configure the SolverType and options.
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p.solverTypeMINLP

ans = 
'OuterApproximation'

p.solverOptionsMINLP

ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 1000
                  ObjectiveScalingFactor: 1000
                                 Display: 'off'
                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

Obtain Endpoint Portfolios for a PortfolioCVaR Object

Given portfolio p, the estimateFrontierLimits function obtains the endpoint portfolios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

disp(pwgt);

    0.8451         0
    0.0613         0
    0.0451         0
    0.0485    1.0000

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.
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Obtain Endpoint Portfolios for a PortfolioMAD Object

Given portfolio p, the estimateFrontierLimits function obtains the endpoint portfolios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

disp(pwgt);

    0.8817         0
    0.0431         0
    0.0387         0
    0.0366    1.0000

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

Choice — Indicator for which portfolios to obtain at extreme ends of efficient frontier
[] (default) | character vector with values 'Both', 'Min', 'Max' | string with values "Both",
"Min", "Max"

(Optional) Indicator which portfolios to obtain at the extreme ends of the efficient frontier, specified
as a character vector with values 'Both' or "Both", 'Min' or "Min", or 'Max' or "Max". The
options for a Choice action are:
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• [] — Compute both minimum-risk and maximum-return portfolios.
• 'Both' or "Both" — Compute both minimum-risk and maximum-return portfolios.
• 'Min' or "Min" — Compute minimum-risk portfolio only.
• 'Max' or "Max" — Compute maximum-return portfolio only.

Data Types: char | string

Output Arguments
pwgt — Optimal portfolios at endpoints of efficient frontier
matrix

Optimal portfolios at the endpoints of the efficient frontier TargetReturn, returned as a
NumAssets-by-NumPorts matrix. pwgt is returned for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

pbuy — Purchases relative to an initial portfolio for optimal portfolios at endpoints of
efficient frontier
matrix

Purchases relative to an initial portfolio for optimal portfolios at the endpoints of the efficient frontier,
returned as NumAssets-by-NumPorts matrix.

Note If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that
pbuy = max(0, pwgt) and psell = max(0, -pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

psell — Sales relative to an initial portfolio for optimal portfolios at endpoints of efficient
frontier
matrix

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as a
NumAssets-by-NumPorts matrix.

Note If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that
pbuy = max(0, pwgt) and psell = max(0, -pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Tips
You can also use dot notation to estimate the optimal portfolios at the endpoints of the efficient
frontier.

[pwgt, pbuy, psell] = obj.estimateFrontierLimits(Choice);
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See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk | rng |
setBounds | setMinMaxNumAssets

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Estimate Efficient Frontiers for Portfolio Object” on page 4-116
“Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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estimateMaxSharpeRatio
Estimate efficient portfolio to maximize Sharpe ratio for Portfolio object

Syntax
[pwgt,pbuy,psell] = estimateMaxSharpeRatio(obj)
[pwgt,pbuy,psell] = estimateMaxSharpeRatio( ___ ,Name,Value)

Description
[pwgt,pbuy,psell] = estimateMaxSharpeRatio(obj) estimates efficient portfolio to
maximize Sharpe ratio for Portfolio object. For details on the workflow, see “Portfolio Object
Workflow” on page 4-17.

[pwgt,pbuy,psell] = estimateMaxSharpeRatio( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Estimate Efficient Portfolio that Maximizes the Sharpe Ratio for a Portfolio Object

Estimate the efficient portfolio that maximizes the Sharpe ratio. The estimateMaxSharpeRatio
function maximizes the Sharpe ratio among portfolios on the efficient frontier. This example uses the
default 'direct' method to estimate the maximum Sharpe ratio. For more information on the
'direct' method, see “Algorithms” on page 19-799.

p = Portfolio('AssetMean',[0.3, 0.1, 0.5], 'AssetCovar',...
[0.01, -0.010,  0.004; -0.010,  0.040, -0.002;  0.004, -0.002,  0.023]);
p = setDefaultConstraints(p);
plotFrontier(p, 20);
weights = estimateMaxSharpeRatio(p);
[risk, ret] = estimatePortMoments(p, weights);
hold on
plot(risk,ret,'*r');
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Estimate Efficient Portfolio that Maximizes the Sharpe Ratio for a Portfolio Object Using
Solver Options with the Direct Method

Estimate the efficient portfolio that maximizes the Sharpe ratio. The estimateMaxSharpeRatio
function maximizes the Sharpe ratio among portfolios on the efficient frontier. This example uses the
'direct' method for a Portfolio object (p) that does not specify a tracking error and only uses
linear constraints. The setSolver function is used to control the SolverType and
SolverOptions. In this case, the SolverType is quadprog. For more information on the
'direct' method, see “Algorithms” on page 19-799.

p = Portfolio('AssetMean',[0.3, 0.1, 0.5], 'AssetCovar',...
[0.01, -0.010,  0.004; -0.010,  0.040, -0.002;  0.004, -0.002,  0.023]);
p = setDefaultConstraints(p);
plotFrontier(p, 20);
p = setSolver(p,'quadprog','Display','off','ConstraintTolerance',1.0e-8,'OptimalityTolerance',1.0e-8,'StepTolerance',1.0e-8,'MaxIterations',10000); 
weights = estimateMaxSharpeRatio(p); 
[risk, ret] = estimatePortMoments(p, weights);
hold on
plot(risk,ret,'*r');
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Estimate Efficient Portfolio that Maximizes the Sharpe Ratio for a Portfolio Object With
Tracking Error Using the Direct Method and Solver Options

Estimate the efficient portfolio that maximizes the Sharpe ratio. The estimateMaxSharpeRatio
function maximizes the Sharpe ratio among portfolios on the efficient frontier. This example uses the
'direct' method for a Portfolio object (p) that specifies a tracking error uses nonlinear
constraints. The setSolver function is used to control the SolverType and SolverOptions. In
this case fmincon is the SolverType.

p = Portfolio('AssetMean',[0.3, 0.1, 0.5], 'AssetCovar',...
[0.01, -0.010,  0.004; -0.010,  0.040, -0.002;  0.004, -0.002,  0.023],'lb', 0,'budget', 1);
plotFrontier(p, 20);

p = setSolver(p, 'fmincon', 'Display', 'off', 'Algorithm', 'sqp', ...
        'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, ...
        'ConstraintTolerance', 1.0e-8, 'OptimalityTolerance', 1.0e-8, 'StepTolerance', 1.0e-8); 

weights = estimateMaxSharpeRatio(p);        

te = 0.08;
p = setTrackingError(p,te,weights);

[risk, ret] = estimatePortMoments(p,weights);
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hold on
plot(risk,ret,'*r');

Estimate Efficient Portfolio that Maximizes the Sharpe Ratio for a Portfolio Object With a
Risk-Free Asset Using the Direct and Iterative Method

The estimateMaxSharpeRatio function maximizes the Sharpe ratio among portfolios on the
efficient frontier. In the case of Portfolio with a risk-free asset, there are multiple efficient portfolios
that maximize the Sharpe ratio on the capital asset line. Because of the nature of 'direct' and
'iterative' methods, the portfolio weights (pwgts) output from each of these methods might be
different, but the Sharpe ratio is the same. This example demonstrates the scenario where the pwgts
are different and the Sharpe ratio is the same.

load BlueChipStockMoments

mret = MarketMean;
mrsk = sqrt(MarketVar);
cret = CashMean;
crsk = sqrt(CashVar);

p = Portfolio('AssetList', AssetList, 'RiskFreeRate', CashMean);
p = setAssetMoments(p, AssetMean, AssetCovar);

p = setInitPort(p, 1/p.NumAssets);
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[ersk, eret] = estimatePortMoments(p, p.InitPort);

p = setDefaultConstraints(p);
pwgt = estimateFrontier(p, 20);
[prsk, pret] = estimatePortMoments(p, pwgt);
pwgtshpr_fully = estimateMaxSharpeRatio(p,'Method','direct');
[riskshpr_fully, retshpr_fully] = estimatePortMoments(p,pwgtshpr_fully);

q = setBudget(p, 0, 1);
qwgt = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

Plot the efficient frontier with a tangent line (0 to 1 cash).

pwgtshpr_direct = estimateMaxSharpeRatio(q,'Method','direct');
pwgtshpr_iter = estimateMaxSharpeRatio(q,'Method','iterative');
[riskshpr_diret, retshpr_diret] = estimatePortMoments(q,pwgtshpr_direct);
[riskshpr_iter, retshpr_iter] = estimatePortMoments(q,pwgtshpr_iter);

clf;
portfolioexamples_plot('Efficient Frontier with Capital Allocation Line', ...
                {'line', prsk, pret, {'EF'}, '-r', 2}, ...
                {'line', qrsk, qret, {'EF with riskfree'}, '-b', 1}, ...
                {'scatter', [mrsk, crsk, ersk, riskshpr_fully, riskshpr_diret, riskshpr_iter], ...
    [mret, cret, eret, retshpr_fully , retshpr_diret, retshpr_iter], {'Market', 'Cash', 'Equal','Sharpe fully invest', 'Sharpe diret','Sharpe iter'}}, ...
                {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});  
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When a risk-free asset is not available to the portfolio, or in other words, the portfolio is fully
invested, the efficient frontier is curved, corresponding to the red line in the above figure. Therefore,
there is a unique (risk, return) point that maximizes the Sharpe ratio, which the 'iterative' and
'direct' methods will both find. If the portfolio is allowed to invest in a risk-free asset, part of the
red efficient frontier line is replaced by the capital allocation line, resulting in the efficient frontier of
a portfolio with a risk-free investment (blue line). All the (risk, return) points on the straight blue line
share the same Sharpe ratio. Also, it is likely that the 'iterative' and 'direct' methods end up
with different points, therefore there are different portfolio allocations.

Estimate Efficient Portfolio that Maximizes the Sharpe Ratio for a Portfolio Object with
Semicontinuous and Cardinality Constraints

Create a Portfolio object for three assets.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p);           

Use setBounds with semicontinuous constraints to set xi = 0 or 0.02 <= xi <= 0.5 for all i =
1,...NumAssets.

p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3);                    

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up
cardinality constraints for a long-only portfolio. This sets the cardinality constraints for the
Portfolio object, where the total number of allocated assets satisfying the nonzero semi-continuous
constraints are between MinNumAssets and MaxNumAssets. By setting MinNumAssets =
MaxNumAssets = 2, only two of the three assets are invested in the portfolio.

p = setMinMaxNumAssets(p, 2, 2);  

Use estimateMaxSharpeRatio to estimate efficient portfolio to maximize Sharpe ratio.

weights = estimateMaxSharpeRatio(p,'Method','iterative')

weights = 3×1

    0.0000
    0.5000
    0.5000

The estimateMaxSharpeRatio function uses the MINLP solver to solve this problem. Use the
setSolverMINLP function to configure the SolverType and options.

p.solverOptionsMINLP

ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 1000
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                  ObjectiveScalingFactor: 1000
                                 Display: 'off'
                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object.

Note The risk-free rate is obtained from the property RiskFreeRate in the Portfolio object. If you
leave the RiskFreeRate unset, it is assumed to be 0. If the max return of portfolio is less than the
RiskFreeRate, the solution is set as pwgt at max return and the resulting Sharpe ratio will be
negative.

For more information on creating a portfolio object, see

• Portfolio

Data Types: object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [pwgt,pbuy,psell] = estimateMaxSharpeRatio(p,'Method’,'iterative')

Method — Method to estimate Sharpe ratio
'direct' (default) | character vector with value 'direct' or 'iterative'

Method to estimate Sharpe ratio, specified as the comma-separated pair consisting of 'Method' and
a character vector with one of the following values:

• 'direct' — Transform the Sharpe ratio function into a quadratic one and solve one optimization
problem directly, instead of iteratively exploring the efficient frontier. The 'direct' option either
uses the solver quadprog (for a problem with linear constraints) or fmincon (for a problem with
nonlinear constraints). For an example of using the 'direct' option, see “Estimate Efficient
Portfolio that Maximizes the Sharpe Ratio for a Portfolio Object Using Solver Options with the
Direct Method” on page 19-793 and “Estimate Efficient Portfolio that Maximizes the Sharpe Ratio
for a Portfolio Object With Tracking Error Using the Direct Method and Solver Options” on page
19-794.

• 'iterative' — One-dimensional optimization using fminbnd to find the portfolio that
maximizes the Sharpe ratio by iteratively exploring the efficient frontier.
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Note If you are using estimateMaxSharpeRatio with a Portfolio object with semicontinuous
and cardinality constraints specified by setBounds and setMinMaxNumAssets, you can only use the
'iterative' method.

Data Types: char

Output Arguments
pwgt — Portfolio on efficient frontier with maximum Sharpe ratio
vector

Portfolio on the efficient frontier with a maximum Sharpe ratio, returned as a NumAssets vector.

pbuy — Purchases relative to initial portfolio for portfolio on efficient frontier with
maximum Sharpe ratio
vector

Purchases relative to an initial portfolio for a portfolio on the efficient frontier with a maximum
Sharpe ratio, returned as a NumAssets vector.

pbuy is returned for a Portfolio input object (obj).

psell — Sales relative to initial portfolio for portfolio on efficient frontier with maximum
Sharpe ratio
vector

Sales relative to an initial portfolio for a portfolio on the efficient frontier with maximum Sharpe ratio,
returned as a NumAssets vector.

psell is returned for a Portfolio input object (obj).

More About
Sharpe Ratio

The Sharpe ratio is the ratio of the difference between the mean of portfolio returns and the risk-free
rate divided by the standard deviation of portfolio returns.

The estimateMaxSharpeRation function maximizes the Sharpe ratio among portfolios on the
efficient frontier.

Tips
You can also use dot notation to estimate an efficient portfolio that maximizes the Sharpe ratio.

[pwgt,pbuy,psell] = obj.estimateMaxSharpeRatio;

Algorithms
The maximization of the Sharpe ratio is accomplished by either using the 'direct' or 'iterative'
method. For the 'direct' method, consider the following scenario. To maximize the Sharpe ratio is
to:
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Maximize
μTx− rf

xTCx
, s . t .∑xi = 1,   0 ≤ xi ≤ 1,

where μ and C are the mean and covariance matrix, and rf is the risk-free rate.

If μT x - rf ≤ 0 for all x the portfolio that maximizes the Sharpe ratio is the one with maximum return.

If μT x - rf > 0, let t = 1
μTx− rf

and y = tx (Cornuejols [1] section 8.2). Then after some substitutions, you can transform the original
problem into the following form,

Minimize yTCy,  s . t .  ∑yi = t,  t > 0,  0 ≤ yi ≤ t , μTy − rf t = 1. 

Only one optimization needs to be solved, hence the name “direct”. The portfolio weights can be
recovered by x* = y* / t*.

For the 'iterative' method, the idea is to iteratively explore the portfolios at different return
levels on the efficient frontier and locate the one with maximum Sharpe ratio. Therefore, multiple
optimization problems are solved during the process, instead of only one in the 'direct' method.
Consequently, the 'iterative' method is slow compared to 'direct' method.

References
[1] Cornuejols, G. and Reha Tütüncü. Optimization Methods in Finance. Cambridge University Press,

2007.

See Also
estimatePortSharpeRatio | estimateFrontier | estimateFrontierByReturn |
estimateFrontierByRisk | setBounds | setMinMaxNumAssets

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using
Portfolio Objects” on page 4-78
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011b
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estimatePortSharpeRatio
Estimate Sharpe ratio of given portfolio weights for Portfolio object

Syntax
psharpe = estimatePortSharpeRatio(obj,pwgt)

Description
psharpe = estimatePortSharpeRatio(obj,pwgt) estimates the Sharpe ratio of given portfolio
weights for a Portfolio object. For details on the workflow, see “Portfolio Object Workflow” on page
4-17.

Examples

Estimate Sharpe Ratios of the Given Portfolio Weights

This example shows how to find efficient portfolios that satisfy the target returns and then find the
Sharpe ratios corresponding to each of the portfolios.

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn
function accepts one or more target portfolio returns and obtains efficient portfolios with the
specified returns. Assume you have a universe of four assets where you want to obtain efficient
portfolios with target portfolio returns of 6%, 9%, and 12%. Use estimatePortSharpeRatio to
obtain the Sharpe ratio for the collection of portfolios (pwgt).

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt);

pwgt = 4×3

    0.8772    0.5032    0.1293
    0.0434    0.2488    0.4541
    0.0416    0.0780    0.1143
    0.0378    0.1700    0.3022

pwgt is a NumAssets-by-NumPorts matrix where NumAssets is the number of asset in the universe
and NumPorts is the number of portfolios in the collection of portfolios.

psharpe = estimatePortSharpeRatio(p,pwgt) 
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psharpe = 3×1

    0.7796
    0.8519
    0.7406

psharpe is a NumPorts-by-1 vector, where NumPorts is the number of portfolios in the collection of
portfolios.

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object.

Note The risk-free rate is obtained from the property RiskFreeRate in the Portfolio object. If you
leave the RiskFreeRate unset, it is assumed to be 0. For more information on creating a portfolio
object, see Portfolio.

Data Types: object

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by- NumPorts matrix where NumAssets is the
number of assets in the universe and NumPorts is the number of portfolios in the collection of
portfolios.
Data Types: double

Output Arguments
psharpe — Sharpe ratios of the given portfolios
vector

Sharpe ratios of the given portfolios, returned as a NumPorts-by-1 vector.

More About
Sharpe Ratio

The Sharpe ratio is the ratio of the difference between the mean of portfolio returns and the risk-free
rate divided by the standard deviation of portfolio returns for each portfolio in pwgt.

estimatePortSharpeRatio computes the Sharpe ratio with mean and standard deviation (which is
the square-root of variance) of portfolio returns.
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Tips
You can also use dot notation to estimate the Sharpe ratio of given portfolio weights.

psharpe = obj.estimatePortSharpeRatio(pwgt);

See Also
estimateMaxSharpeRatio | estimateFrontier | estimateFrontierByReturn |
estimateFrontierByRisk

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2018a

 estimatePortSharpeRatio

19-803



estimatePortMoments
Estimate moments of portfolio returns for Portfolio object

Syntax
[prsk,pret] = estimatePortMoments(obj,pwgt)

Description
[prsk,pret] = estimatePortMoments(obj,pwgt) estimate moments of portfolio returns for a
Portfolio object. For details on the workflow, see “Portfolio Object Workflow” on page 4-17.

The estimate of port moments is specific to mean-variance portfolio optimization and computes the
mean and standard deviation (which is the square-root of variance) of portfolio returns.

Examples

Identify the Range of Risks and Returns for Efficient Portfolios for a Portfolio Object

Given portfolio p, use the estimatePortMoments function to show the range of risks and returns for
efficient portfolios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);

[prsk, pret] = estimatePortMoments(p, pwgt);
disp([prsk, pret]);

    0.0769    0.0590
    0.3500    0.1800

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on creating a portfolio
object, see

• Portfolio

19 Functions

19-804



Data Types: object

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix where NumAssets is the
number of assets in the universe and NumPorts is the number of portfolios in the collection of
portfolios.
Data Types: double

Output Arguments
prsk — Estimates for standard deviations of portfolio returns for each portfolio in pwgt
vector

Estimates for standard deviations of portfolio returns for each portfolio in pwgt, returned as a
NumPorts vector.

prsk is returned for a Portfolio input object (obj).

pret — Estimates for means of portfolio returns for each portfolio in pwgt
vector

Estimates for means of portfolio returns for each portfolio in pwgt, returned as a NumPorts vector.

pret is returned for a Portfolio input object (obj).

Tips
You can also use dot notation to estimate the moments of portfolio returns.

[prsk, pret] = obj.estimatePortMoments(pwgt);

See Also
estimatePortReturn | estimatePortRisk

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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estimatePortReturn
Estimate mean of portfolio returns

Syntax
pret = estimatePortReturn(obj,pwgt)

Description
pret = estimatePortReturn(obj,pwgt) estimates the mean of portfolio returns (as the proxy
for portfolio return) for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the
respective workflows when using these different objects, see “Portfolio Object Workflow” on page 4-
17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-
15.

Examples

Estimate the Mean of Portfolio Returns for a Portfolio Object

Given portfolio p, use the estimatePortReturn function to estimate the mean of portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);
pret = estimatePortReturn(p, pwgt);
disp(pret)

    0.0590
    0.1800

Estimate the Mean of Portfolio Returns for a PortfolioCVaR Object

Given portfolio p, use the estimatePortReturn function to estimate the mean of portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
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rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);
pret = estimatePortReturn(p, pwgt);
disp(pret)

    0.0050
    0.0154

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Estimate the Mean of Portfolio Returns for a PortfolioMAD Object

Given portfolio p, use the estimatePortReturn function to estimate the mean of portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);
pret = estimatePortReturn(p, pwgt);
disp(pret)

    0.0048
    0.0154

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Input Arguments
obj — Object for portfolio
object
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Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where NumAssets is the
number of assets in the universe and NumPorts is the number of portfolios in the collection of
portfolios.
Data Types: double

Output Arguments
pret — Estimates for means of portfolio returns for each portfolio in pwgt
vector

Estimates for means of portfolio returns for each portfolio in pwgt, returned as a NumPorts vector.

pret is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Note Depending on whether costs have been set, the portfolio return is either gross or net portfolio
returns. For information on setting costs, see setCosts.

Tips
You can also use dot notation to estimate the mean of portfolio returns (as the proxy for portfolio
return).

pret = obj.estimatePortReturn(pwgt);

See Also
estimatePortRisk | estimateFrontierByReturn | estimateFrontierByRisk | rng

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Estimate Efficient Frontiers for Portfolio Object” on page 4-116
“Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3
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Introduced in R2011a
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estimatePortRisk
Estimate portfolio risk according to risk proxy associated with corresponding object

Syntax
prsk = estimatePortRisk(obj,pwgt)

Description
prsk = estimatePortRisk(obj,pwgt) estimates portfolio risk according to the risk proxy
associated with the corresponding object (obj) for Portfolio, PortfolioCVaR, or PortfolioMAD
objects. For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD
Object Workflow” on page 6-15.

Examples

Standard Deviation of Portfolio Returns as the Proxy for Portfolio Risk for a Portfolio Object

Given portfolio p, use the estimatePortRisk function to show the standard deviation of portfolio
returns for each portfolio in pwgt.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);
prsk = estimatePortRisk(p, pwgt);
disp(prsk)

    0.0769
    0.3500

Conditional Value-at-Risk of Portfolio Returns as the Proxy for Portfolio Risk for a
PortfolioCVaR Object

Given a portfolio pwgt, use the estimatePortRisk function to show the conditional value-at-risk
(CVaR) of portfolio returns for each portfolio.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;

19 Functions

19-810



    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);
prsk = estimatePortRisk(p, pwgt);
disp(prsk)

    0.0407
    0.1911

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Mean-Absolute Deviation Returns as the Proxy for Portfolio Risk for a PortfolioMAD Object

Given a portfolio pwgt, use the estimatePortRisk function to show the mean-absolute deviation of
portfolio returns for each portfolio.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);
prsk = estimatePortRisk(p, pwgt);
disp(prsk)

    0.0177
    0.0809

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.
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Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where NumAssets is the
number of assets in the universe and NumPorts is the number of portfolios in the collection of
portfolios.
Data Types: double

Output Arguments
prsk — Estimates for portfolio risk according to the risk proxy associated with the
corresponding object (obj) for each portfolio in pwgt
vector

Estimates for portfolio risk according to the risk proxy associated with the corresponding object
(obj) for each portfolio in pwgt, returned as a NumPorts vector.

prsk is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Tips
You can also use dot notation to estimate portfolio risk according to the risk proxy associated with the
corresponding object (obj).

prsk = obj.estimatePortRisk(pwgt);

See Also
estimatePortStd | estimatePortVaR | estimateFrontierByReturn |
estimateFrontierByRisk | rng

Topics
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Estimate Efficient Frontiers for Portfolio Object” on page 4-116
“Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
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“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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estimatePortStd
Estimate standard deviation of portfolio returns

Syntax
pstd = estimatePortStd(obj,pwgt)

Description
pstd = estimatePortStd(obj,pwgt) estimate standard deviation of portfolio returns for
PortfolioCVaR or PortfolioMAD objects. For details on the workflows, see “PortfolioCVaR Object
Workflow” on page 5-15 and “PortfolioMAD Object Workflow” on page 6-15.

Examples

Estimate Standard Deviations for Portfolio Returns for a PortfolioCVaR Object

Given a portfolio pwgt, use the estimatePortStd function to show the standard deviation of
portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

pstd = estimatePortStd(p, pwgt);
disp(pstd)

    0.0223
    0.1010

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.
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Estimate Standard Deviations for Portfolio Returns for a PortfolioMAD Object

Given a portfolio pwgt, use the estimatePortStd function to show the standard deviation of
portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

pstd = estimatePortStd(p, pwgt);
disp(pstd)

    0.0222
    0.1010

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMADobject.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

Data Types: object

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where NumAssets is the
number of assets in the universe and NumPorts is the number of portfolios in the collection of
portfolios.
Data Types: double
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Output Arguments
pstd — Estimates for standard deviations of portfolio returns for each portfolio in pwgt
vector

Estimates for standard deviations of portfolio returns for each portfolio in pwgt, returned as a
NumPorts vector.

Tips
You can also use dot notation to estimate the standard deviation of portfolio returns.

pstd = obj.estimatePortStd(pwgt);

See Also
estimatePortReturn | estimateFrontierByReturn | estimateFrontierByRisk |
estimatePortVaR | rng

Topics
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
“Portfolio Optimization Theory” on page 4-3

External Websites
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b
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estimatePortVaR
Estimate value-at-risk for PortfolioCVaR object

Syntax
pvar = estimatePortVaR(obj,pwgt)

Description
pvar = estimatePortVaR(obj,pwgt) estimates value-at-risk for a PortfolioCVaR object where
the probability level used is from the PortfolioCVaR property ProbabilityLevel. For details on
the workflow, see “PortfolioCVaR Object Workflow” on page 5-15.

Examples

Estimate Value-at-Risk for a PortfolioCVaR Object

Given a portfolio pwgt, use the estimatePortVaR function to estimate the value-at-risk of portfolio.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

pvar = estimatePortVaR(p, pwgt);
disp(pvar)

    0.0314
    0.1483

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.
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Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR object.

For more information on creating a PortfolioCVaR object, see

• PortfolioCVaR

Data Types: object

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where NumAssets is the
number of assets in the universe and NumPorts is the number of portfolios in the collection of
portfolios.
Data Types: double

Output Arguments
pvar — Estimates for value-at-risk of portfolio returns for each portfolio in pwgt
vector

Estimates for value-at-risk of portfolio returns for each portfolio in pwgt, returned as a NumPorts
vector.

Tips
You can also use dot notation to estimate the value-at-risk of PortfolioCVaR object.

pvar = obj.estimatePortVaR(pwgt);

See Also
estimatePortStd | setProbabilityLevel | rng

Topics
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Conditional Value-at-Risk” on page 5-4

External Websites
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b
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estimateScenarioMoments
Estimate mean and covariance of asset return scenarios

Syntax
[ScenarioMean,ScenarioCovar] = estimateScenarioMoments(obj)

Description
[ScenarioMean,ScenarioCovar] = estimateScenarioMoments(obj) estimates mean and
covariance of asset return scenarios for PortfolioCVaR or PortfolioMAD objects. For details on
the workflows, see “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

Examples

Estimate Mean and Covariance of Asset Return Scenarios for a PortfolioCVaR Object

Given PortfolioCVaR object p, use the estimatePortRisk function to estimate mean and covariance
of asset return scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

[ScenarioMean, ScenarioCovar] = estimateScenarioMoments(p)

ScenarioMean = 4×1

    0.0039
    0.0082
    0.0102
    0.0154

ScenarioCovar = 4×4

    0.0005    0.0003    0.0001   -0.0001
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    0.0003    0.0024    0.0017    0.0010
    0.0001    0.0017    0.0048    0.0028
   -0.0001    0.0010    0.0028    0.0102

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Estimate Mean and Covariance of Asset Return Scenarios for a PortfolioMAD Object

Given PortfolioMAD object p, use the estimatePortRisk function to estimate mean and covariance
of asset return scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

[ScenarioMean, ScenarioCovar] = estimateScenarioMoments(p)

ScenarioMean = 4×1

    0.0039
    0.0082
    0.0102
    0.0154

ScenarioCovar = 4×4

    0.0005    0.0003    0.0001   -0.0001
    0.0003    0.0024    0.0017    0.0010
    0.0001    0.0017    0.0048    0.0028
   -0.0001    0.0010    0.0028    0.0102

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Input Arguments
obj — Object for portfolio
object
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Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

Data Types: object

Output Arguments
ScenarioMean — Estimate for mean of scenarios
[] (default) | vector

Estimate for mean of scenarios, returned as a NumPorts vector or [].

Note If no scenarios are associated with the specified object, both ScenarioMean and
ScenarioCovar are set to empty [].

ScenarioCovar — Estimate for covariance of scenarios
[] (default) | matrix

Estimate for covariance of scenarios, returned as a NumAssets-by-NumAssets matrix or [].

Note If no scenarios are associated with the specified object, both ScenarioMean and
ScenarioCovar are set to empty [].

Tips
You can also use dot notation to estimate the mean and covariance of asset return scenarios for a
portfolio.

[ScenarioMean, ScenarioCovar] = obj.estimateScenarioMoments

See Also
setScenarios | estimatePortRisk | simulateNormalScenariosByMoments | rng

Topics
“Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
“Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

External Websites
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b
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ewstats
Expected return and covariance from return time series

Syntax
[ExpReturn,ExpCovariance,NumEffObs] = ewstats(RetSeries)
[ExpReturn,ExpCovariance,NumEffObs] = ewstats( ___ ,DecayFactor,WindowLength)

Description
[ExpReturn,ExpCovariance,NumEffObs] = ewstats(RetSeries) computes estimated
expected returns (ExpReturn), estimated covariance matrix (ExpCovariance), and the number of
effective observations (NumEffObs). These outputs are maximum likelihood estimates which are
biased.

[ExpReturn,ExpCovariance,NumEffObs] = ewstats( ___ ,DecayFactor,WindowLength)
adds optional input arguments for DecayFactor and WindowLength.

Examples

Compute Estimated Expected Returns and Estimated Covariance Matrix

This example shows how to compute the estimated expected returns and the estimated covariance
matrix.

RetSeries = [ 0.24 0.08 
              0.15 0.13 
              0.27 0.06 
              0.14 0.13 ];

DecayFactor = 0.98;

[ExpReturn, ExpCovariance] = ewstats(RetSeries, DecayFactor)

ExpReturn = 1×2

    0.1995    0.1002

ExpCovariance = 2×2

    0.0032   -0.0017
   -0.0017    0.0010

Input Arguments
RetSeries — Return series
matrix
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Return series, specified the number of observations (NUMOBS) by number of assets (NASSETS) matrix
of equally spaced incremental return observations. The first row is the oldest observation, and the
last row is the most recent.
Data Types: double

DecayFactor — Controls how much less each observation is weighted than its successor
1 (default) | numeric

(Optional) Controls how much less each observation is weighted than its successor, specified as a
numeric value. The kth observation back in time has weight DecayFactork. DecayFactor must lie
in the range: 0 < DecayFactor <= 1.

The default value of 1 is the equally weighted linear moving average model (BIS).
Data Types: double

WindowLength — Number of recent observations in computation
NUMOBS (default) | numeric

(Optional) Number of recent observations in the computation, specified as a numeric value.
Data Types: double

Output Arguments
ExpReturn — Estimated expected returns
vector

Estimated expected returns, returned as a 1-by-NASSETS vector.

ExpCovariance — Estimated covariance matrix
matrix

Estimated covariance matrix, returned as a NASSETS-by-NASSETS matrix.

The standard deviations of the asset return processes are defined as

     STDVec = sqrt(diag(ExpCovariance))

The correlation matrix is

     CorrMat = ExpCovariance./( STDVec*STDVec' )

NumEffObs — Number of effective observations
numeric

NumEffObs is the number of effective observations where

NumEf fObs = 1− DecayFactorWindowLength

1− DecayFactor

A smaller DecayFactor or WindowLength emphasizes recent data more strongly but uses less of
the available data set.
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Algorithms
For a return series r(1),…,r(n), where (n) is the most recent observation, and w is the decay factor,
the expected returns (ExpReturn) are calculated by

E(r) = (r(n) + wr(n− 1) + w2r(n− 2) + ... + wn− 1r(1))
NumEf fObs

where the number of effective observations NumEffObs is defined as

NumEf fObs = 1 + w + w2 + ... + wn− 1 = 1−wn

1−w

E(r) is the weighed average of r(n),…,r(1). The unnormalized weights are w, w2, …, w(n-1). The
unnormalized weights do not sum up to 1, so NumEffObs rescales the unnormalized weights. After
rescaling, the normalized weights (which sum up to 1) are used for averaging. When w = 1, then
NumEffObs = n, which is the number of observations. When w < 1, NumEffObs is still interpreted as
the sample size, but it is less than n due to the down-weight on the observations of the remote past.

Note There is no relationship between ewstats function and the RiskMetrics® approach for
determining the expected return and covariance from a return time series.

See Also
cov | mean | cov2corr

Topics
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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exp
Exponential values

Note exp is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = exp(tsobj)

Description
newfts = exp(tsobj) calculates the natural exponential (base e) of all the data in the data series
of the financial time series object tsobj and returns the result in the object newfts.

See Also
log | log2 | log10

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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extfield
Data series extraction

Note extfield is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
ftse = extfield(tsobj,fieldnames)

Arguments
tsobj Financial time series object
fieldnames Data series to be extracted. A cell array of character vectors if a list of data

series names (fieldnames) is supplied. A character vector if only one is
wanted.

Description
ftse = extfield(tsobj,fieldnames) extracts from tsobj the dates and data series specified
by fieldnames into a new financial time series object ftse. ftse has all the dates in tsobj but
contains a smaller number of data series.

Examples
extfield is identical to referencing a field in the object. For example,

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
 '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 
times]);
myFts = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS');
ftse = extfield(myFts,'Data1')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/extfield (line 26) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ftse = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
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    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

is the same as

ftse = ftse.Data1

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ftse = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

This function is the complement of the function rmfield.

See Also
rmfield

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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fanplot
Plot combined historical and forecast data to visualize possible outcomes

Syntax
fanplot(historical,forecast)
fanplot( ___ ,Name,Value)

fanplot(ax,historical,forecast)
fanplot( ___ ,Name,Value)

h = fanplot(ax,historical,forecast)
h = fanplot( ___ ,Name,Value)

Description
fanplot(historical,forecast) generates a fan chart. In time series analysis, a fan chart is a
chart that joins a simple line chart for observed past data with ranges for possible values of future
data. The historical data and possible future data are joined with a line showing a central estimate or
most likely value for the future outcomes.

fanplot supports three plotting scenarios:

• Matching — This scenario occurs when the time period perfectly matches for historical and
forecast data.

• Backtest — This scenario occurs when there are overlaps between historical and forecast
data.

• Gap — This scenario occurs when there are NaN values in the historical or forecast data.

fanplot( ___ ,Name,Value) generates a fan chart using optional name-value pair arguments.

fanplot(ax,historical,forecast) generates a fan chart using an optional ax argument.

fanplot( ___ ,Name,Value) generates a fan chart using optional name-value pair arguments.

h = fanplot(ax,historical,forecast) generates a fan chart and returns the figure handle h.
In time series analysis, a fan chart is a chart that joins a simple line chart for observed past data with
ranges for possible values of future data. The historical data and possible future data are joined with
a line showing a central estimate or most likely value for the future outcomes.

fanplot supports three plotting scenarios:

• Matching — This scenario occurs when the time period perfectly matches for historical and
forecast data.

• Backtest — This scenario occurs when there are overlaps between historical and forecast
data.

• Gap — This scenario occurs when there are NaN values in the historical or forecast data.

h = fanplot( ___ ,Name,Value) generates a fan chart and returns the figure handle h using
optional name-value pair arguments.
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Examples

Create a Fan Plot Using Cell Array Data

Define the data inputs for historical as a 5-by-2 cell array and forecast as a 5-by-21 cell array
with 20 observations.

historical =  {[2006]    [-0.0110]
               [2007]    [ 0.0120]
               [2008]    [ 0.0090]
               [2009]    [ 0.0120]
               [2010]    [ 0.0150]};

forecast =    {[2011]  [0.0203]      [-0.0155]    [0.0311]     [-0.0026]     [0.0035]    [0.0049]      [0.0026]    [0.0298]    [-0.0212]     [0.0128]    ...
                       [0.0533]      [0.0139]     [0.0037]     [-0.0727]     [-0.0291]   [-0.0058]     [0.0183]    [0.0490]    [0.0072]      [-0.0604];
               [2012]  [0.0430]      [-0.0094]    [0.0587]     [ 0.0095]     [0.0185]    [0.0205]      [0.0172]    [0.0569]    [-0.0177]     [0.0320]    ...
                       [0.0141]      [0.0337]     [0.0187]     [0.0132]      [-0.0292]   [0.0048]      [0.0400]    [0.0126]    [0.0239]      [0.0124];
               [2013]  [0.0518]      [-0.0116]    [0.0708]     [0.0112]      [0.0221]    [0.0246]      [0.0205]    [0.0686]    [-0.0217]     [0.0385]    ...
                       [0.0168]      [0.0405]     [0.0224]     [0.0157]      [-0.0356]   [0.0056]      [0.0482]    [0.0150]    [0.0286]      [0.0148];
               [2014]  [0.0546]      [-0.0171]    [0.0762]     [0.0088]      [0.0210]    [0.0239]      [0.0193]    [0.0737]    [-0.0285]     [0.0396]    ...
                       [0.0151]      [0.0419]     [0.0214]     [0.0139]      [-0.0442]   [0.0024]      [0.0506]    [0.0130]    [0.0284]      [0.0128];
               [2015]  [0.0565]      [-0.0207]    [0.0797]     [0.0072]      [0.0203]    [0.0234]      [0.0185]    [0.0770]    [-0.0329]     [0.0404]    ...
                       [0.0139]      [0.0428]     [0.0207]     [0.0126]      [-0.0499]   [0.0026]      [0.0522]    [0.0117]    [0.0283]      [0.0115]};

Generate the fan plot.

fanplot (historical, forecast);
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The dotted points are the historical lines and the filled lines indicate the mean for the forecasts. This
fanplot represents a matching scenario where the time period perfectly matches for the historical and
forecast data.

Create a Fan Plot Using Matrix Data

Define the data inputs for historical as a 5-by-2 matrix and forecast as a 5-by-21 matrix with 20
observations.

historical =  [ 1.0000    2.8046 ; 
                2.0000    4.1040 ; 
                3.0000    6.7292 ; 
                4.0000    8.6486 ; 
                5.0000   10.4747 ];

forecast  =   [ 3.0000   28.9874   18.3958   19.6376   29.5627    8.3462    7.1502   25.3845    2.2963    8.0517   13.1328   19.5155   14.7369 , ...                                           
                         20.8557   27.0691   23.0803   20.7885   18.0205   17.2294   10.0197   29.4254 ;

                4.0000    4.8933   27.2659    7.2206   24.4703   10.5895   15.0212   29.1137    6.3784   10.2638   11.0671   12.6656    4.3285 , ...
                          8.0007   18.7114   19.1691   24.5963    4.2835    4.0676    3.2612   29.5784 ;
                                
                5.0000   20.9732   19.7069   11.6862   25.7018   31.8940    7.2664   19.2113   10.0001   31.5482   25.7193   13.8881   30.1476 , ... 
                         31.7996    3.6419    3.2695   27.1422   10.5487   32.6529   18.8370    6.6373 ;

                6.0000   11.0069   29.1965    4.5551   20.2627   10.9209   15.2675   28.5359   11.4010   14.4001   14.7923    6.0546   12.4509 , ...
                         23.9532   18.4804   25.5484    4.8747    8.0036   11.5329   11.6807   21.7583 ;

                7.0000    5.9699   11.1486   26.0449   13.4619   21.1196   28.8068   26.2525   10.1085   13.9197    8.7470   31.0149   23.4163 , ...
                         21.2390   29.2396   18.4828   28.3945   21.9342   14.4642   17.2613   15.7896 ];

Generate the fan plot and return the figure handle.

h = fanplot(historical, forecast)
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h = 
  Figure (1) with properties:

      Number: 1
        Name: ''
       Color: [1 1 1]
    Position: [360 502 560 420]
       Units: 'pixels'

  Show all properties

The dotted points are the historical lines and the filled lines indicate the mean for the forecasts. This
fanplot represents a backtest scenario where there is an overlap between the historical and forecast
data.

Create a Fan Plot Using Cell Array Data and Customize the Plot With Name-Value Pair
Arguments

Define the data inputs for historical as a 5-by-2 cell array and forecast as a 5-by-21 cell array
with 20 observations.

historical =  {[2006]    [-0.0110]
               [2007]    [ 0.0120]
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               [2008]    [ 0.0090]
               [2009]    [ 0.0120]
               [2010]    [ 0.0150]};

forecast =    {[2011]  [0.0203]      [-0.0155]    [0.0311]     [-0.0026]     [0.0035]    [0.0049]      [0.0026]    [0.0298]    [-0.0212]     [0.0128]    ...
                       [0.0533]      [0.0139]     [0.0037]     [-0.0727]     [-0.0291]   [-0.0058]     [0.0183]    [0.0490]    [0.0072]      [-0.0604];
               [2012]  [0.0430]      [-0.0094]    [0.0587]     [ 0.0095]     [0.0185]    [0.0205]      [0.0172]    [0.0569]    [-0.0177]     [0.0320]    ...
                       [0.0141]      [0.0337]     [0.0187]     [0.0132]      [-0.0292]   [0.0048]      [0.0400]    [0.0126]    [0.0239]      [0.0124];
               [2013]  [0.0518]      [-0.0116]    [0.0708]     [0.0112]      [0.0221]    [0.0246]      [0.0205]    [0.0686]    [-0.0217]     [0.0385]    ...
                       [0.0168]      [0.0405]     [0.0224]     [0.0157]      [-0.0356]   [0.0056]      [0.0482]    [0.0150]    [0.0286]      [0.0148];
               [2014]  [0.0546]      [-0.0171]    [0.0762]     [0.0088]      [0.0210]    [0.0239]      [0.0193]    [0.0737]    [-0.0285]     [0.0396]    ...
                       [0.0151]      [0.0419]     [0.0214]     [0.0139]      [-0.0442]   [0.0024]      [0.0506]    [0.0130]    [0.0284]      [0.0128];
               [2015]  [0.0565]      [-0.0207]    [0.0797]     [0.0072]      [0.0203]    [0.0234]      [0.0185]    [0.0770]    [-0.0329]     [0.0404]    ...
                       [0.0139]      [0.0428]     [0.0207]     [0.0126]      [-0.0499]   [0.0026]      [0.0522]    [0.0117]    [0.0283]      [0.0115]};

Generate the fan plot using name-value pair arguments to customize the presentation.

fanplot(historical,forecast,'FanFaceColor',[1 1 1;1 0 0],'FanLineStyle','--','ForecastMarker','p','ForecastMarkerSize',10)

Create a Fan Plot Using Table Data

Create table of historical dates and data.

historicalDates = datetime(2006:2010,1,1)';
historicalData = [-0.0110;0.0120;0.0090;0.0120;0.0150];
historical = table(historicalDates,historicalData,'VariableNames',{'Dates','Data'});

19 Functions

19-832



Create table of forecast dates and data.

forecastDates = datetime(2011:2015,1,1)';
forecastData =      [0.0203      -0.0155    0.0311     -0.0026     0.0035    0.0049      0.0026    0.0298    -0.0212     0.0128    ...
                     0.0533      0.0139     0.0037     -0.0727     -0.0291   -0.0058     0.0183    0.0490    0.0072      -0.0604;
                     0.0430      -0.0094    0.0587     0.0095      0.0185    0.0205      0.0172    0.0569    -0.0177     0.0320    ...
                     0.0141      0.0337     0.0187     0.0132      -0.0292   0.0048      0.0400    0.0126    0.0239      0.0124;
                     0.0518      -0.0116    0.0708     0.0112      0.0221    0.0246      0.0205    0.0686    -0.0217     0.0385    ...
                     0.0168      0.0405     0.0224     0.0157      -0.0356   0.0056      0.0482    0.0150    0.0286      0.0148;
                     0.0546      -0.0171    0.0762     0.0088      0.0210    0.0239      0.0193    0.0737    -0.0285     0.0396    ...
                     0.0151      0.0419     0.0214     0.0139      -0.0442   0.0024      0.0506    0.0130    0.0284      0.0128;
                     0.0565      -0.0207    0.0797     0.0072      0.0203    0.0234      0.0185    0.0770    -0.0329     0.0404    ...
                     0.0139      0.0428     0.0207     0.0126      -0.0499   0.0026      0.0522    0.0117    0.0283      0.0115];
forecast = [table(forecastDates,'VariableName',{'Dates'}),array2table(forecastData)];

Plot the data using fanplot.

fanplot(historical,forecast);

Input Arguments
historical — Historical dates and data
matrix | cell array | table | timetable

Historical dates and data, specified as an N-by-2 matrix, cell array, table, or timetable where the first
column is the date, and the second column is the data associated for that date. N indicates the
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number of dates. By using the cell array format for the input, you can make the first column datetime
and produce the same plot as would serial date numbers or date character vectors. For example:

historical(:,1) = num2cell(datetime(2006:2010,1,1));
forecast(:,1) = num2cell(datetime(2011:2015,1,1));
fanplot (historical, forecast);

Data Types: cell | double | table | timetable

forecast — Forecast dates and data
matrix | cell array of character vectors | table | timetable

Forecast dates and data, specified as an N-by-M matrix, cell array, table, or timetable where the first
column is the date, and the second to the last columns are the data observations. N indicates the
number of the dates and (M – 1) is the number for data observations. By using the cell array format
for the input, you can make the first column datetime and produce the same plot as would serial date
numbers or date character vectors. For example:

historical(:,1) = num2cell(datetime(2006:2010,1,1));
forecast(:,1) = num2cell(datetime(2011:2015,1,1));
fanplot (historical, forecast);

Data Types: cell | double | table | timetable

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax can precede any of the input argument combinations.
Data Types: object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example:
fanplot(historical,forecast,'NumQuantiles',14,'FanLineColor','blue','Historic
alLineWidth', 1.8,'ForecastLineColor','red')

NumQuantiles — Number of quantiles to display
20 (default) | positive integer

Number of quantiles to display in fan chart, specified as a positive integer.
Data Types: double

FanLineStyle — Style of the lines separating fans
'none' (default) | character vector

Style of the lines separating fans, specified as a character vector. For more information on supported
character vectors for line styles, see Primitive Line.
Data Types: char
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FanLineColor — Color of lines separating fans
'black' (default) | character vector for color or RGB triplet

Color of lines separating fans, specified as a character vector for color or an RGB triplet. For more
information on supported color character vectors, see Primitive Line.
Data Types: double | char

FanFaceColor — Color of each fan
[1 1 0;1 0 0] (yellow to red) (default) | matrix

Color of each fan, specified as an N-by-3 matrix controlling the color of each fan, where each row is
an RGB triplet. There are three possible values of N:

• When N = NumQuantiles, the color of each fan is specified by the corresponding row in the
matrix.

• When N = ceil(NumQuantiles/2), the specified colors represent the bottom half of the fans. The
colors of the top half are determined by reversing the order of these colors. For more information,
see ceil.

• When N = 2, the colors in the bottom half of the fan are a linear interpolation between the two
specified colors. The pattern is reversed for the top half.

Data Types: double

HistoricalMarker — Marker symbol of historical line
'o' (default) | character vector

Marker symbol of historical line, specified as a character vector. For more information on supported
character vectors for markers, see Primitive Line.
Data Types: char

HistoricalMarkerSize — Marker size of historical line
5 (default) | positive value in point units

Marker size of historical line, specified as a positive value in point units.
Data Types: double | char

HistoricalMarkerFaceColor — Marker fill color of historical line
'blue' (default) | character vector with a value of 'none', 'auto', color identifier, or RGB triplet

Marker fill color of historical line, specified as a character vector with a value of 'none', 'auto', a
character vector for color, or an RGB triplet. For more information on supported character vectors for
color, see Primitive Line.
Data Types: double | char

HistoricalMarkerEdgeColor — Marker outline color of historical line
'blue' (default) | character vector with a value of 'none', 'auto', color identifier, or RGB triplet

Marker outline color of historical line, specified as a character vector with a value of 'none',
'auto', a character vector for color, or an RGB triplet. For more information on supported character
vectors for color, see Primitive Line.
Data Types: double | char
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HistoricalLineColor — Color of historical line
'black' (default) | character vector with a value of 'none', color identifier, or RGB triplet

Color of historical line, specified as a character vector with a value of 'none', a character vector for
color, or an RGB triplet. For more information on supported character vectors for color, see Primitive
Line.
Data Types: double | char

HistoricalLineStyle — Style of historical line
'--' (default) | character vector

Style of historical line, specified as a character vector. For more information on supported character
vectors for line styles, see Primitive Line.
Data Types: char

HistoricalLineWidth — Width of historical line
1.5 (default) | positive value in point units

Width of historical line, specified as a positive value in point units.
Data Types: double

ForcecastMarker — Marker symbol of forecast line
'none' (default) | character vector

Marker symbol of forecast line, specified as a character vector. For more information on supported
character vectors for marker symbols, see Primitive Line.
Data Types: char

ForecastMarkerSize — Marker size of forecast line
5 (default) | positive value in point units

Marker size of forecast line, specified as a positive value in point units.
Data Types: double

ForecastMarkerFaceColor — Marker fill color of forecast line
'none' (default) | character vector with a value of 'none', 'auto', color identifier, or RGB triplet

Marker fill color of forecast line, specified as a character vector with a value of 'none', 'auto', a
character vector for color, or an RGB triplet. For more information on supported character vectors for
color, see Primitive Line.
Data Types: double | char

ForecastMarkerEdgeColor — Marker outline color of forecast line
'auto' (default) | character vector with a value of 'none', 'auto', color identifier, or RGB triplet

Marker outline color of forecast line, specified as a character vector with a value of 'none', 'auto',
character vector for color, or an RGB triplet. For more information on supported character vectors for
color, see Primitive Line.
Data Types: double | char

ForecastLineColor — Color of forecast line
'black' (default) | character vector with a value of 'none', color identifier, or RGB triplet
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Color of forecast line, specified as a character vector with a value of 'none', a character vector for
color, or an RGB triplet. For more information on supported character vectors for color, see Primitive
Line.
Data Types: double | char

ForecastLineStyle — Style of forecast line
'-' (default) | character vector

Style of forecast line, specified as a character vector. For more information on supported character
vectors for line styles, see Primitive Line.
Data Types: char

ForecastLineWidth — Width of forecast line
2 (default) | positive value in point units

Width of forecast line, specified as a positive value in point units.
Data Types: double

Output Arguments
h — Figure handle for fanplot
handle object

Figure handle for the fanplot, returned as handle object.

See Also
bolling | candle | highlow | linebreak | movavg | pointfig | renko | volarea | priceandvol
| datetime | ceil | timetable

Introduced in R2014b
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fbusdate
First business date of month

Syntax
Date = fbusdate(Year,Month)
Date = fbusdate( ___ ,Holiday,Weekend,outputType)

Description
Date = fbusdate(Year,Month) returns the serial date number for the first business date of the
given year and month.

Year and Month can contain multiple values. If one contains multiple values, the other must contain
the same number of values or a single value that applies to all. For example, ifYear is a 1-by-N vector
of integers, then Month must be a 1-by-N vector of integers or a single integer. Date is then a 1-by-N
vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date character vectors.

Date = fbusdate( ___ ,Holiday,Weekend,outputType) returns the serial date number for the
first business date of the given year and month using optional input arguments. The optional
argument Holiday specifies nontrading days.

If neither Holiday nor outputType are specified, Date is returned as a serial date number. If
Holiday is specified, but not outputType, then the type of the holiday variable controls the type of
date. If Holiday is a serial date number or date character vector, then Date is returned as a serial
date number.

Examples

Return a Serial Date Number for the First Business Date

This example shows how to return serial date numbers for the first business date, given year and
month.

Date = fbusdate(2001, 11)

Date = 731156

datestr(Date)

ans = 
'01-Nov-2001'

Year = [2002 2003 2004];
Date = fbusdate(Year, 11) 

Date = 1×3
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      731521      731888      732252

datestr(Date)

ans = 3x11 char array
    '01-Nov-2002'
    '03-Nov-2003'
    '01-Nov-2004'

Return a Serial Date Number for the First Business Date Using the Weekend Argument

This example shows how to return serial date numbers for the first business date, given year and
month, and also indicate that Saturday is a business day by setting the Weekend argument. March 1,
2003, is a Saturday. Use fbusdate to check that this Saturday is actually the first business day of the
month.

Weekend = [1 0 0 0 0 0 0];
Date = datestr(fbusdate(2003, 3, [], Weekend))

Date = 
'01-Mar-2003'

Return a datetime array for Date for the First Business Date Using the outputType
Argument

This example shows how to return a datetime array for Date using an outputType of 'datetime'.

Date = fbusdate(2001, 11,[],[],'datetime')

Date = datetime
   01-Nov-2001

Input Arguments
Year — Year to determine occurrence of weekday
4-digit integer | vector of 4-digit integers

Year to determine occurrence of weekday, specified as a 4-digit integer or vector of 4-digit integers.
Data Types: single | double

Month — Month to determine occurrence of weekday
integer with value 1 through 12 | vector of integers with values 1 through 12

Month to determine occurrence of weekday, specified as an integer or vector of integers with values 1
through 12.
Data Types: single | double
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Holiday — Holidays and nontrading-day dates
non-trading day vector is determined by the routine holidays (default) | serial date number | date
character vector | datetime array

Holidays and nontrading-day dates, specified as vector.

All dates in Holiday must be the same format: either serial date numbers, or date character vectors,
or datetime arrays. (Using serial date numbers improves performance.) The holidays function
supplies the default vector.

If Holiday is a datetime array, then Date is returned as a datetime array. If outputType is
specified, then its value determines the output type of Date. This overrides any influence of
Holiday.
Data Types: double | char | datetime

Weekend — Weekend days
[1 0 0 0 0 0 1] (Saturday and Sunday form the weekend) (default) | vector of length 7,
containing 0 and 1, where 1 indicates weekend days

Weekend days, specified as a vector of length 7, containing 0 and 1, where 1 indicates weekend days
and the first element of this vector corresponds to Sunday.
Data Types: double

outputType — Year to determine days
'datenum' (default) | character vector with values 'datenum' or 'datetime'

A character vector specified as either 'datenum' or 'datetime'. The output Date is in serial date
format if 'datenum' is specified, or datetime format if 'datetime' is specified. By default the
output Date is in serial date format, or match the format of Holiday, if specified.
Data Types: char

Output Arguments
Date — Date for the first business date of given year and month
serial date number | date character vector | datetime array

Date for the first business date of a given year and month, returned as a serial date number, date
character vector, or datetime array.

If neither Holiday nor outputType are specified, Date is returned as a serial date number. If
Holiday is specified, but not outputType, then the type of the holiday variable controls the type of
date:

• If Holiday is a serial date number or date character vector, then Date is returned as a serial date
number

• If Holiday is a datetime array, then Date is returned as a datetime array.

.

See Also
busdate | eomdate | holidays | isbusday | lbusdate | datetime
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Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a

 fbusdate

19-841



fetch
Data from financial time series object

Note fetch is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = fetch(oldfts,StartDate,StartTime,EndDate,EndTime,delta,dmy_specifier,time_ref) 

Arguments
oldfts Existing financial time series object.
StartDate First date in the range from which data is to be extracted.
StartTime Beginning time on each day. If you do not require specific times or

oldfts does not contain time information, use []. If you specify
StartTime, you must also specify EndTime.

EndDate Last date in the range from which data is to be extracted.
EndTime Ending time on each day. If you do not require specific times or

oldfts does not contain time information, use []. If you specify
EndTime, you must also specify StartTime.

delta Skip interval. Can be any positive integer. Units for the skip interval
specified by dmy_specifier.

dmy_specifier Specifies the units for delta. Can be

• D, d (Days)
• M, m (Months)
• Y, y (Years)

time_ref Time reference intervals or specific times. Valid time reference
intervals are 1, 5, 15, or 60 minutes. Enter specific times as
'hh:mm'.

Description
newfts =
fetch(oldfts,StartDate,StartTime,EndDate,EndTime,delta,dmy_specifier,time_ref
) requests data from a financial time series object beginning from the start date and/or start time to
the end date and/or end time, skipping a specified number of days, months, or years.

Note If time information is present in oldfts, using [] for start or end times results in fetch
returning all instances of a specific date.
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Examples
Example 1. Create a financial time series object containing both dates and times:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
 '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 
times]);
myFts = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
myFts = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

To fetch all dates and times from this financial time series, enter

fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],1,'d')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fetch (line 126) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

or
fetch(myFts,'01-Jan-2001','11:00','03-Jan-2001','12:00',1,'d')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fetch (line 126) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
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ans = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

These commands reproduce the entire time series shown above.

To fetch every other day's data, enter

fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],2,'d')

This returns:

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fetch (line 126) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (4)'    'times:  (4)'    'Data1:  (4)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

Example 2. Create a financial time series object with time intervals of less than 1 hour:
dates2 = ['01-Jan-2001';'01-Jan-2001'; '01-Jan-2001';...
'02-Jan-2001'; '02-Jan-2001';'02-Jan-2001'];
times2 = ['11:00';'11:05';'11:06';'12:00';'12:05';'12:06'];
dates_times2 = cellstr([dates2, repmat(' ',size(dates2,1),1),... 
times2]);
myFts2 = fints(dates_times2,(1:6)',{'Data1'},1,'My second FINTS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
myFts2 = 
 
    desc:  My second FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '11:05'          [          2]
    '     "     '    '11:06'          [          3]
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    '02-Jan-2001'    '12:00'          [          4]
    '     "     '    '12:05'          [          5]
    '     "     '    '12:06'          [          6]

Use fetch to extract data from this time series object at 5-minute intervals for each day starting at
11:00 o'clock on January 1, 2001.

fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',5)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fetch (line 126) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  My second FINTS
    freq:  Daily (1)

    'dates:  (4)'    'times:  (4)'    'Data1:  (4)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '11:05'          [          2]
    '02-Jan-2001'    '12:00'          [          4]
    '     "     '    '12:05'          [          5]

You can use this version of fetch to extract data at specific times. For example, to fetch data only at
11:06 and 12:06 from myFts2, enter

fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',... 
{'11:06';'12:06'})

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fetch (line 126) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  My second FINTS
    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'
    '01-Jan-2001'    '11:06'          [          3]
    '02-Jan-2001'    '12:06'          [          6]

See Also
extfield | ftsbound | getfield | subsref

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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fieldnames
Get names of fields

Note fieldnames is not recommended. Use timetable instead. For more information, see
“Convert Financial Time Series Objects fints to Timetables”.

Syntax
fnames = fieldnames(tsobj)

fnames = fieldnames(tsobj,srsnameonly)

Arguments
tsobj Financial time series object
srsnameonly Field names returned:

0 = All field names (default).

1 = Data series names only.

Description
fieldnames gets field names in a financial time series object.

fnames = fieldnames(tsobj) returns the field names associated with the financial time series
object tsobj as a cell array of character vectors, including the common fields: desc, freq, dates
(and times if present).

fnames = fieldnames(tsobj,srsnameonly) returns field names depending upon the setting of
srsnameonly. If srsnameonly is 0, the function returns all field names, including the common
fields: desc, freq, dates, and times. If srsnameonly is set to 1, fieldnames returns only the
data series in fnames.

See Also
chfield | getfield | isfield | rmfield | setfield

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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fillts
Fill missing values in time series

Note fillts is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = fillts(oldfts,fill_method)

newfts = fillts(oldfts,fill_method,newdates)

newfts = fillts(oldfts,fill_method,newdates,{'T1','T2',...})

newfts = fillts(oldfts,fill_method,newdates,'SPAN',{'TS','TE'},delta)

newfts = fillts(... sortmode)

Arguments

oldfts Financial time series object.
fill_method (Optional) Replaces missing values (NaN) in oldfts using an

interpolation process, a constant, or a zero-order hold.

Valid fill methods (interpolation methods) are:

• linear - 'linear ' - 'l' (default)
• linear with extrapolation - 'linearExtrap' - 'le'
• cubic - 'cubic' - 'c'
• cubic with extrapolation - 'cubicExtrap' - 'ce'
• spline - 'spline' - 's'
• spline with extrapolation - 'splineExtrap' -'se'
• nearest - 'nearest' - 'n'
• nearest with extrapolation - 'nearestExtrap' -'ne'
• pchip - 'pchip' - 'p'
• pchip with extrapolation - 'pchipExtrap' -'pe'

(See interp1 for a discussion of extrapolation.)

To fill with a constant, enter that constant.

A zero-order hold ('zero') fills a missing value with the value
immediately preceding it. If the first value in the time series is
missing, it remains a NaN.
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newdates (Optional) Column vector of serial dates, a date character vector, or a
column cell array of character vector dates. If oldfts contains time
of day information, newdates must be accompanied by a time vector
(newtimes). Otherwise, newdates is assumed to have times of
'00:00'.

T1, T2, TS, TE First time, second time, start time, end time
delta Time interval in minutes to span between the start time and end time
sortmode (Optional) Default = 0 (unsorted). 1 = sorted.

Description
newfts = fillts(oldfts,fill_method) replaces missing values (represented by NaN) in the
financial time series object oldfts with real values, using either a constant or the interpolation
process indicated by fill_method.

newfts = fillts(oldfts,fill_method,newdates) replaces all the missing values on the
specified dates newdates added to the financial time series oldfts with new values. The values can
be a single constant or values obtained through the interpolation process designated by
fill_method. If any of the dates in newdates exists in oldfts, the existing one has precedence.

newfts = fillts(oldfts,fill_method, newdates,{'T1','T2',...}) additionally allows
the designation of specific times of day for addition or replacement of data.

newfts = fillts(oldfts,fill_method,newdates,'SPAN',{'TS','TE'},delta) is similar
to the previous format except that you designate only a start time and an end time. You follow these
times with a spanning time interval, delta.

If you specify only one date for newdates, specifying a start and end time generates only times for
that specific date.

newfts = fillts(... sortmode) additionally denotes whether you want the order of the dates
in the output object to stay the same as in the input object or to be sorted chronologically.

sortmode = 0 (unsorted) appends any new dates to the end. The interpolation and zero-order
processes that calculate the values for the new dates work on a sorted object. Upon completion, the
existing dates are reordered as they were originally, and the new dates are appended to the end.

sortmode = 1 sorts the output. After interpolation, no reordering of the date sequence occurs.

Examples
Example 1. Create a financial time series object with missing data in the fourth and fifth rows.
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001';...
         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 
                       times]);
OpenFts = fints(dates_times,[(1:3)'; nan; nan; 6],{'Data1'},1,... 
'Open Financial Time Series')

OpenFts looks like this:

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

OpenFts = 
 
    desc:  Open Financial Time Series
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [        NaN]
    '03-Jan-2001'    '11:00'          [        NaN]
    '     "     '    '12:00'          [          6]

Example 2. Fill the missing data in OpenFts using cubic interpolation.

FilledFts = fillts(OpenFts,'cubic')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fillts (line 213) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

FilledFts = 
  
       desc:  Filled Open Financial Time Series
       freq:  Unknown (0)
 
       'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
       '01-Jan-2001'    '11:00'          [          1]
       '     "     '    '12:00'          [          2]
       '02-Jan-2001'    '11:00'          [          3]
       '     "     '    '12:00'          [     3.0663]
       '03-Jan-2001'    '11:00'          [     5.8411]
       '     "     '    '12:00'          [     6.0000]

Example 3. Fill the missing data in OpenFts with a constant value.

FilledFts = fillts(OpenFts,0.3)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fillts (line 213) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

FilledFts = 
 
    desc:  Filled Open Financial Time Series
    freq:  Unknown (0)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [     0.3000]
    '03-Jan-2001'    '11:00'          [     0.3000]
    '     "     '    '12:00'          [          6]
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Example 4. You can use fillts to identify a specific time on a specific day for the replacement of
missing data. This example shows how to replace missing data at 12:00 on January 2 and 11:00 on
January 3.

FilltimeFts = fillts(OpenFts,'c',... 
{'02-Jan-2001';'03-Jan-2001'}, {'12:00';'11:00'},0)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fillts (line 213) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

FilltimeFts = 
  
       desc:  Filled Open Financial Time Series
       freq:  Unknown (0)
 
       'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
       '01-Jan-2001'    '11:00'          [          1]
       '     "     '    '12:00'          [          2]
       '02-Jan-2001'    '11:00'          [          3]
       '     "     '    '12:00'          [     3.0663]
       '03-Jan-2001'    '11:00'          [     5.8411]
       '     "     '    '12:00'          [     6.0000]

Example 5. Use a spanning time interval to add an additional day to OpenFts.

SpanFts = fillts(OpenFts,'c','04-Jan-2001','span',... 
               {'11:00';'12:00'},60,0)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fillts (line 213) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

SpanFts = 
  
       desc:  Filled Open Financial Time Series
       freq:  Unknown (0)
 
       'dates:  (8)'    'times:  (8)'    'Data1:  (8)'
       '01-Jan-2001'    '11:00'          [          1]
       '     "     '    '12:00'          [          2]
       '02-Jan-2001'    '11:00'          [          3]
       '     "     '    '12:00'          [     3.0663]
       '03-Jan-2001'    '11:00'          [     5.8411]
       '     "     '    '12:00'          [     6.0000]
       '04-Jan-2001'    '11:00'          [     9.8404]
       '     "     '    '12:00'          [     9.9994]

See Also
interp1

Topics
“Data Transformation and Frequency Conversion” on page 13-11
“What Is the Financial Time Series App?” on page 14-2
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filter
Linear filtering

Note filter is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = filter(B,A,oldfts)

Description
filter filters an entire financial time series object with certain filter specifications. The filter is
specified in a transfer function expression.

newfts = filter(B,A,oldfts) filters the data in the financial time series object oldfts with the
filter described by vectors A and B to create the new financial time series object newfts. The filter is
a “Direct Form II Transposed” implementation of the standard difference equation. newfts is a
financial time series object containing the same data series (names) as the input oldfts.

See Also
filter2

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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fints
Construct financial time series object

Note fints is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tsobj = fints(dates_and_data)

tsobj = fints(dates,data)

tsobj = fints(dates,data,datanames)

tsobj = fints(dates,data,datanames,freq)

tsobj = fints(dates,data,datanames,freq,desc)

Arguments
dates_and_data Column-oriented matrix containing one column of dates and a single

column for each series of data. In this format, dates must be entered
in serial date number format. If the input serial date numbers encode
time-of-day information, the output object contains a column labeled
'dates' containing the date information and another labeled
'times' containing the time information.

You can use the MATLAB function today to enter date information
or the MATLAB function now to enter date with time information.

dates Column vector of dates. Dates can be date character vectors or serial
date numbers and can include time of day information. When
entering time-of-day information as serial date numbers, the entry
must be a column-oriented matrix when multiple entries are present.
If the time-of-day information is in character vector format, the entry
must be a column-oriented cell array of character vector dates and
times when multiple entries are present.

Valid date and time character vector formats are:

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'
• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

Dates and times can initially be separate column-oriented vectors,
but they must be concatenated into a single column-oriented matrix
before being passed to fints. You can use the MATLAB functions
today and now to help with entering date and time information.
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data Column-oriented matrix containing a column for each series of data.
The number of values in each data series must match the number of
dates. If a mismatch occurs, MATLAB does not generate the financial
time series object, and you receive an error message.

datanames Cell array of data series names. Overrides the default data series
names. Default data series names are series1, series2, and so on.

Note Not all character vectors are accepted as datanames
parameters. Supported data series names cannot start with a
number and must contain only these characters:

• Lowercase Latin alphabet, a to z
• Uppercase Latin alphabet, A to Z
• Underscore, _

freq Frequency indicator. Allowed values are:

UNKNOWN, Unknown, unknown, U, u,0

DAILY, Daily, daily, D, d,1

WEEKLY, Weekly, weekly, W, w,2

MONTHLY, Monthly, monthly, M, m, 3

QUARTERLY, Quarterly, quarterly, Q, q,4

SEMIANNUAL, Semiannual, semiannual, S, s,5

ANNUAL, Annual, annual, A, a, 6

Default = Unknown.
desc Character vector providing descriptive name for financial time series

object. Default = ''.

Description
fints constructs a financial time series object. A financial time series object is a MATLAB object that
contains a series of dates and one or more series of data. Before you perform an operation on the
data, you must set the frequency indicator (freq). You can optionally provide a description (desc) for
the time series.

tsobj = fints(dates_and_data) creates a financial time series object containing the dates and
data from the matrix dates_and_data. If the dates contain time-of-day information, the object
contains an additional series of times. The date series and each data series must each be a column in
the input matrix. The names of the data series default to series1, ..., seriesn. The desc and
freq fields are set to their defaults.

tsobj = fints(dates,data) generates a financial time series object containing dates from the
dates column vector of dates and data from the matrix data. If the dates contain time-of-day
information, the object contains an additional series of times. The data matrix must be column-
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oriented, that is, each column in the matrix is a data series. The names of the series default to
series1, ..., seriesn, where n is the total number of columns in data. The desc and freq fields are set
to their defaults.

tsobj = fints(dates,data,datanames) also allows you to rename the data series. The names
are specified in the datanames cell array. The number of character vectors in datanames must
correspond to the number of columns in data. The desc and freq fields are set to their defaults.

tsobj = fints(dates,data,datanames,freq) also sets the frequency when you create the
object. The desc field is set to its default ''.

tsobj = fints(dates,data,datanames,freq,desc) provides a description (desc) specified as
a character vector for the financial time series object.

Note fints only supports hourly and minute time series. Seconds are not supported and will be
disregarded when the fints object is created (that is, 01-jan-2001 12:00:01 will be considered as 01-
jan-2001 12:00). If there are duplicate dates and times, the fints constructor sorts the dates and
times and chooses the first instance of the duplicate dates and times. The other duplicate dates and
times are removed from the object along with their corresponding data.

Examples

Create a Financial Time Series Object Containing Days and Data

Define the data:

data = [1:6]'

data = 6×1

     1
     2
     3
     4
     5
     6

Define the dates:

dates = [today:today+5]'

dates = 6×1

      738400
      738401
      738402
      738403
      738404
      738405

Create the financial times series object:
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tsobjkt = fints(dates, data)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
tsobjkt = 
 
    desc:  (none)
    freq:  Unknown (0)

    {'dates:  (6)'}    {'series1:  (6)'}
    {'01-Sep-2021'}    {[            1]}
    {'02-Sep-2021'}    {[            2]}
    {'03-Sep-2021'}    {[            3]}
    {'04-Sep-2021'}    {[            4]}
    {'05-Sep-2021'}    {[            5]}
    {'06-Sep-2021'}    {[            6]}

Create a Financial Time Series Object Containing Days, Time of Day, and Data

Define the data:

data = [1:6]'

data = 6×1

     1
     2
     3
     4
     5
     6

Define the dates:

dates = [now:now+5]'

dates = 6×1
105 ×

    7.3840
    7.3840
    7.3840
    7.3840
    7.3840
    7.3841

Create the financial times series object:

tsobjkt = fints(dates, data)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
tsobjkt = 
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    desc:  (none)
    freq:  Unknown (0)

    {'dates:  (6)'}    {'times:  (6)'}    {'series1:  (6)'}
    {'01-Sep-2021'}    {'10:14'      }    {[            1]}
    {'02-Sep-2021'}    {'10:14'      }    {[            2]}
    {'03-Sep-2021'}    {'10:14'      }    {[            3]}
    {'04-Sep-2021'}    {'10:14'      }    {[            4]}
    {'05-Sep-2021'}    {'10:14'      }    {[            5]}
    {'06-Sep-2021'}    {'10:14'      }    {[            6]}

Create a Financial Time Series Object From a Single Input for Dates and Times

Define the dates and times:

dates_and_times = (now:now+5)'

dates_and_times = 6×1
105 ×

    7.3840
    7.3840
    7.3840
    7.3840
    7.3840
    7.3841

Create the financial times series object:

 f = fints(dates_and_times, randn(6,1))

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
f = 
 
    desc:  (none)
    freq:  Unknown (0)

    {'dates:  (6)'}    {'times:  (6)'}    {'series1:  (6)'}
    {'01-Sep-2021'}    {'10:14'      }    {[       0.5377]}
    {'02-Sep-2021'}    {'10:14'      }    {[       1.8339]}
    {'03-Sep-2021'}    {'10:14'      }    {[      -2.2588]}
    {'04-Sep-2021'}    {'10:14'      }    {[       0.8622]}
    {'05-Sep-2021'}    {'10:14'      }    {[       0.3188]}
    {'06-Sep-2021'}    {'10:14'      }    {[      -1.3077]}

This generates a financial time series object, f, and obtains the dates and data from the matrix
dates_and_times. The dates and times in the input matrix must be oriented column-wise (i.e. the
date series and each time series are columns in the input matrix). In addition, the dates entered must
be in the serial date format (i.e. 01-Jan-2001 is 730852). You can also use the function now to enter in
date information. The names of the series will default to 'series1', ..., '|seriesN'| where N is the
total number of columns in dates_and_times less 1 (that is the number of data columns). The
default contents of the desc and freq fields are|''| and | 'Unknown'| (0), respectively.
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See Also
datenum | datestr | ftstool | ftsgui

Topics
“Data Transformation and Frequency Conversion” on page 13-11
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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floatdiscmargin
Discount margin for floating-rate bond

Syntax
Margin = floatdiscmargin(Price,SpreadSettle,Maturity,RateInfo,
LatestFloatingRate)
Margin = floatdiscmargin( ___ ,Name,Value)

Description
Margin = floatdiscmargin(Price,SpreadSettle,Maturity,RateInfo,
LatestFloatingRate) calculates the discount margin or zero discount margin for a floating-rate
bond.

The input RateInfo determines whether the discount margin or the zero discount margin is
calculated. Principal schedules are supported using Principal.

Margin = floatdiscmargin( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Zero Discount Margin Using a Yield Curve

Use floatdiscmargin to compute the discount margin and zero discount margin for a floating-rate
note.

Define data for the floating-rate note.

Price = 99.99;
Spread = 50;
Settle = '20-Jan-2011';
Maturity = '15-Jan-2012';
LatestFloatingRate = 0.05;
StubRate = 0.049;
SpotRate = 0.05;
Reset = 4;
Basis = 2;

Compute the discount margin.

dMargin = floatdiscmargin(Price, Spread, Settle, Maturity, ...
[StubRate, SpotRate], LatestFloatingRate,'Reset', Reset, 'Basis', Basis, ...
'AdjustCashFlowsBasis', true)

dMargin = 48.4810

Usually you want to set AdjustCashFlowsBasis to true, so cash flows are calculated with
adjustments on accrual amounts.

Create an annualized zero-rate term structure to calculate the zero discount margin.
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Rates = [0.0500;
         0.0505;
         0.0510;
         0.0520];
StartDates = ['20-Jan-2011';
              '15-Apr-2011';
              '15-Jul-2011';
              '15-Oct-2011'];
EndDates =   ['15-Apr-2011';
              '15-Jul-2011';
              '15-Oct-2011';
              '15-Jan-2012'];
ValuationDate = '20-Jan-2011';
RateSpec = intenvset('Compounding', Reset, 'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate, 'Basis', Basis);

Calculate the zero discount margin using the previous yield curve.

dMargin = floatdiscmargin(Price, Spread, Settle, Maturity, ...
RateSpec, LatestFloatingRate,'Reset', Reset, 'Basis', Basis, ...
'AdjustCashFlowsBasis', true)

dMargin = 46.0688

Compute the Zero Discount Margin Using a Yield Curve With datetime Inputs

Use floatdiscmargin to compute the discount margin and zero discount margin for a floating-rate
note using datetime inputs.

Price = 99.99;
Spread = 50;
Settle = '20-Jan-2011';
Maturity = '15-Jan-2012';
LatestFloatingRate = 0.05;
StubRate = 0.049;
SpotRate = 0.05;
Reset = 4;
Basis = 2;

Settle = datetime(Settle,'Locale','en_US');
Maturity = datetime(Maturity,'Locale','en_US');
dMargin = floatdiscmargin(Price, Spread, Settle, Maturity, ...
[StubRate, SpotRate], LatestFloatingRate,'Reset', Reset, 'Basis', Basis, ...
'AdjustCashFlowsBasis', true)

dMargin = 48.4810

Input Arguments
Price — Bond prices where discount margin is to be computed
matrix

Bond prices where discount margin is to be computed, specified as a NINST-by-1 matrix.
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Note The spread is calculated against the clean price (the function internally does not add the
accrued interest to the price specified by the Price input). If the spread is required against the dirty
price, the price of a bond that includes the accrued interest, you must supply the dirty price for the
Price input.

Data Types: double

Spread — Number of basis points over the reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 matrix.
Data Types: double

Settle — Settlement date of the floating-rate bonds
serial date number | date character vector | datetime

Settlement date of the floating-rate bonds, specified as serial date number, date character vector, or
datetime array. If supplied as a NINST-by-1 vector of dates, all settlement dates must be the same
(only a single settlement date is supported)
Data Types: double | char | datetime

Maturity — Maturity date of the floating-rate bond
serial date number | date character vector | datetime

Maturity date of the floating-rate bond, specified as serial date number, date character vector, or
datetime array.
Data Types: double | char | datetime

RateInfo — Interest-rate information
numeric

interest-rate information, specified as NINST-by-2 vector where the:

• First column is the stub rate between the settlement date and the first coupon rate.
• Second column is the reference rate for the term of the floating coupons (for example, the 3-

month LIBOR from settlement date for a bond with a Reset of 4).

Note If the RateInfo argument is an annualized zero-rate term structure created by intenvset,
the zero discount margin is calculated.

Data Types: double

LatestFloatingRate — Rate for next floating payment set at last reset date
numeric

Rate for the next floating payment set at the last reset date, specified as NINST-by-1 vector.
Data Types: double
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Margin =
floatdiscmargin(Price,Spread,Settle,Maturity,RateInfo,LatestFloatingRate,'Res
et',2,'Basis',5)

Reset — Frequency of payments per year
1 (default) | numeric

Frequency of payments per year, specified as NINST-by-1 vector.
Data Types: double

Basis — Day-count basis used for time factor calculations
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Day-count basis used for time factor calculations, specified as a NINST-by-1 vector. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Principal — Notional principal amounts
100 (default) | numeric

Notional principal amounts, specified as a NINST-by-1 vector or a NINST-by-1 cell array where each
element is a NUMDATES-by-2 cell array where the first column is dates and the second column is the
associated principal amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1
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End-of-month rule flag, specified as a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Adjust cash flows according to accrual amount
0 (not in effect) (default) | nonnegative integer 0 or 1

Adjusts cash flows according to the accrual amount, specified as a NINST-by-1 vector of logicals.

Note Usually you want to set AdjustCashFlowsBasis to 1, so cash flows are calculated with
adjustments on accrual amounts. The default is set to 0 to be consistent with floatbyzero.

Data Types: logical

Holidays — Dates for holidays
holidays.m used (default)

Dates for holidays, specified as NHOLIDAYS-by-1 vector of MATLAB dates using serial date numbers,
date character vectors, or datetime arrays. Holidays are used in computing business days.
Data Types: double | char | datetime

BusinessDayConvention — Business day conventions
'actual' (default) | character vector with values'actual', 'follow', 'modifiedfollow',
'previous'or 'modifiedprevious'

Business day conventions, specified as a NINST-by-1 cell array of character vectors of business day
conventions to be used in computing payment dates. The selection for business day convention
determines how nonbusiness days are treated. Nonbusiness days are defined as weekends plus any
other date that businesses are not open (for example, statutory holidays). Values are:

• 'actual' — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• 'follow' — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• 'modifiedfollow' — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• 'previous' — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• 'modifiedprevious' — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell
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Output Arguments
Margin — Discount margin
numeric

Discount margin, returned as a NINST-by-1 vector of the discount margin if RateInfo is specified as
a NINST-by-2 vector of stub and spot rates.

If RateInfo is specified as an annualized zero rate term structure created by intenvset, Margin is
returned as a NINST-by-NCURVES matrix of the zero discount margin.

References
[1] Fabozzi, Frank J., Mann, Steven V. Floating-Rate Securities. John Wiley and Sons, New York, 2000.

[2] Fabozzi, Frank J., Mann, Steven V. Introduction to Fixed Income Analytics: Relative Value Analysis,
Risk Measures and Valuation. John Wiley and Sons, New York, 2010.

[3] O'Kane, Dominic, Sen, Saurav. “Credit Spreads Explained.” Lehman Brothers Fixed Income
Quantitative Research, March 2004.

See Also
floatmargin | floatbyzero | bndspread | intenvset | datetime

Topics
“Fixed-Income Terminology” on page 2-18

Introduced in R2012b
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floatmargin
Margin measures for floating-rate bond

Syntax
[Margin,AdjPrice] = floatmargin(Price,SpreadSettle,Maturity)
[Margin,AdjPrice] = floatmargin( ___ ,Name,Value)

Description
[Margin,AdjPrice] = floatmargin(Price,SpreadSettle,Maturity) calculates margin
measures for a floating-rate bond.

Use floatmargin to calculate the following types of margin measures for a floating-rate bond:

• Spread for life
• Adjusted simple margin
• Adjusted total margin

To calculate the discount margin or zero discount margin, see floatdiscmargin.

[Margin,AdjPrice] = floatmargin( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute Margin Measures for a Floating-Rate Bond

Use floatmargin to compute margin measures for spreadforlife, adjustedsimple, and
adjustedtotal for a floating-rate note.

Define data for the floating-rate note.

Price = 99.99;
Spread = 50;
Settle = '20-Jan-2011';
Maturity = '15-Jan-2012';
LatestFloatingRate = 0.05;
StubRate = 0.049;
SpotRate = 0.05;
Reset = 4;
Basis = 2;

Calculate spreadforlife.

Margin = floatmargin(Price, Spread, Settle, Maturity, 'Reset', ...
Reset, 'Basis', Basis)

Margin = 51.0051
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Calculate adjustedsimple margin.

[Margin, AdjPrice] = floatmargin(Price, Spread, Settle, Maturity, ...
'SpreadType', 'adjustedsimple', 'RateInfo', [StubRate, SpotRate], ...
'LatestFloatingRate', LatestFloatingRate, 'Reset', Reset, 'Basis', Basis)

Margin = 53.2830

AdjPrice = 99.9673

Calculate adjustedtotal margin.

[Margin, AdjPrice] = floatmargin(Price, Spread, Settle, Maturity, ...
'SpreadType', 'adjustedtotal', 'RateInfo', [StubRate, SpotRate], ...
'LatestFloatingRate', LatestFloatingRate, 'Reset', Reset, 'Basis', Basis)

Margin = 53.4463

AdjPrice = 99.9673

Compute Margin Measures for a Floating-Rate Bond Using datetime Inputs

Use floatmargin to calculate margin measures for spreadforlife, adjustedsimple, and
adjustedtotal for a floating-rate note using datetime inputs.

Price = 99.99;
Spread = 50;
Settle = '20-Jan-2011';
Maturity = '15-Jan-2012';
LatestFloatingRate = 0.05;
StubRate = 0.049;
SpotRate = 0.05;
Reset = 4;
Basis = 2;

Settle = datetime(Settle,'Locale','en_US');
Maturity = datetime(Maturity,'Locale','en_US');
[Margin, AdjPrice] = floatmargin(Price, Spread, Settle, Maturity, ...
'SpreadType', 'adjustedsimple', 'RateInfo', [StubRate, SpotRate], ...
'LatestFloatingRate', LatestFloatingRate, 'Reset', Reset, 'Basis', Basis)

Margin = 53.2830

AdjPrice = 99.9673

Input Arguments
Price — Bond prices where spreads are to be computed
matrix

Bond prices where spreads are to be computed, specified as a NINST-by-1 matrix.
Data Types: double
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Spread — Number of basis points over the reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 matrix.
Data Types: double

Settle — Settlement date of the floating-rate bonds
serial date number | date character vector | datetime

Settlement date of the floating-rate bonds, specified as serial date number, date character vector, or
datetime array. If supplied as a NINST-by-1 vector of dates, all settlement dates must be the same
(only a single settlement date is supported)
Data Types: double | char | datetime

Maturity — Maturity date of the floating-rate bond
serial date number | date character vector | datetime

Maturity date of the floating-rate bond, specified as serial date number, date character vector, or
datetime array.
Data Types: double | char | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Margin,AdjPrice] = floatmargin(Price,Spread,Settle,Maturity,
'SpreadType','adjustedtotal','RateInfo',
[StubRate,SpotRate],'LatestFloatingRate',.0445,'Reset',2,'Basis',5)

SpreadType — Type of spread to calculate
spreadforlife (default) | adjustedsimpleadjustedtotal

Type of spread to calculates, specified by type, specified as spreadforlife,adjustedsimple, or
adjustedtotal.

Note If the SpreadType is spreadforlife (default), then the name-value arguments
LatestFloatingRate and RateInfo are not used. If the SpreadType is adjustedsimple or
adjustedtotal, then the name-value arguments LatestFloatingRate and RateInfo must be
specified.

Data Types: double

LatestFloatingRate — Rate for next floating payment set at last reset date
numeric

Rate for the next floating payment set at the last reset date, specified as NINST-by-1 vector.

Note This rate must be specified for a SpreadType of adjustedsimple and adjustedtotal.
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Data Types: double

RateInfo — Interest-rate information
numeric

interest-rate information, specified as NINST-by-2 vector where the:

• First column is the stub rate between the settlement date and the first coupon rate.
• Second column is the reference rate for the term of the floating coupons (for example, the 3-

month LIBOR from settlement date for a bond with a Reset of 4).

Note The RateInfo must be specified for SpreadType of adjustedsimple and adjustedtotal.

Data Types: double

Reset — Frequency of payments per year
1 (default) | numeric

Frequency of payments per year, specified as NINST-by-1 vector.
Data Types: double

Basis — Day-count basis used for time factor calculations
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Day-count basis used for time factor calculations, specified as a NINST-by-1 vector. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Principal — Notional principal amounts
100 (default) | numeric

Notional principal amounts, specified as NINST-by-1 vector.
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Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer 0 or 1

End-of-month rule flag, specified as a NINST-by-1 vector. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the
month.

Data Types: logical

Holidays — Dates for holidays
holidays.m used (default)

Dates for holidays, specified as NHOLIDAYS-by-1 vector of MATLAB dates using serial date numbers,
date character vectors, or datetime arrays. Holidays are used in computing business days.
Data Types: double | char | datetime

BusinessDayConvention — Business day conventions
'actual' (default) | character vector with values'actual', 'follow', 'modifiedfollow',
'previous'or 'modifiedprevious'

Business day conventions, specified as a NINST-by-1 cell array of character vectors of business day
conventions to be used in computing payment dates. The selection for business day convention
determines how nonbusiness days are treated. Nonbusiness days are defined as weekends plus any
other date that businesses are not open (for example, statutory holidays). Values are:

• 'actual' — Nonbusiness days are effectively ignored. Cash flows that fall on non-business days
are assumed to be distributed on the actual date.

• 'follow' — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
following business day.

• 'modifiedfollow' — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day. However if the following business day is in a different month, the
previous business day is adopted instead.

• 'previous' — Cash flows that fall on a nonbusiness day are assumed to be distributed on the
previous business day.

• 'modifiedprevious' — Cash flows that fall on a nonbusiness day are assumed to be distributed
on the previous business day. However if the previous business day is in a different month, the
following business day is adopted instead.

Data Types: char | cell

Output Arguments
Margin — Spreads for floating-rate bond
numeric

Spreads for the floating-rate bond, returned as a NINST-by-1 vector.
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AdjPrice — Adjusted price used to calculate spreads for SpreadType of adjustedsimple
and adjustedtotal
numeric

Adjusted price used to calculate spreads for SpreadType of adjustedsimple and adjustedtotal,
returned as a NINST-by-1 vector.

References
[1] Fabozzi, Frank J., Mann, Steven V. Floating-Rate Securities. John Wiley and Sons, New York, 2000.

[2] Fabozzi, Frank J., Mann, Steven V. Introduction to Fixed Income Analytics: Relative Value Analysis,
Risk Measures and Valuation. John Wiley and Sons, New York, 2010.

See Also
floatdiscmargin | floatbyzero | bndspread | datetime

Topics
“Fixed-Income Terminology” on page 2-18

Introduced in R2012b
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fpctkd
Fast stochastics

Note fpctkd is not recommended. Use stochosc instead.

Syntax
[pctk,pctd] = fpctkd(highp,lowp,closep)

[pctk,pctd] = fpctkd([highp lowp closep])

[pctk,pctd] = fpctkd(highp,lowp,closep,kperiods,dperiods, dmamethod)

[pctk,pctd] = fpctkd([highp lowp closep],kperiods,dperiods,dmamethod)

pkdts = fpctkd(tsobj,kperiods,dperiods,dmamethod)

pkdts = fpctkd(tsobj,kperiods,dperiods,dmamethod,'ParameterName',ParameterValue, ...)

Arguments

highp High price (vector).
lowp Low price (vector).
closep Closing price (vector).
kperiods (Optional) %K periods. Default = 10.
dperiods (Optional) %D periods. Default = 3.
damethod (Optional) %D moving average method. Default = 'e' (exponential).
tsobj Financial time series object.
'ParameterName' Valid parameter names are:

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name

ParameterValue Parameter values are the character vectors that represent the valid
parameter names.

Description
fpctkd calculates the stochastic oscillator.

[pctk,pctd] = fpctkd(highp,lowp,closep) calculates the fast stochastics F%K and F%D from
the stock price data highp (high prices), lowp (low prices), and closep (closing prices).

[pctk,pctd] = fpctkd([highp lowp closep]) accepts a three-column matrix of high (highp),
low (lowp), and closing prices (closep), in that order.
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[pctk,pctd] = fpctkd(highp,lowp,closep,kperiods,dperiods,dmamethod) calculates
the fast stochastics F%K and F%D from the stock price data highp (high prices), lowp (low prices),
and closep (closing prices). kperiods sets the %K period. dperiods sets the %D period.

damethod specifies the %D moving average method. Valid moving average methods for %D are
Exponential ('e') and Triangular ('t'). See tsmovavg for explanations of these methods.

[pctk,pctd]= fpctkd([highp lowp closep],kperiods,dperiods,dmamethod) accepts a
three-column matrix of high (highp), low (lowp), and closing prices (closep), in that order.

pkdts = fpctkd(tsobj,kperiods,dperiods,dmamethod) calculates the fast stochastics F%K
and F%D from the stock price data in the financial time series object tsobj. tsobj must minimally
contain the series High (high prices), Low (low prices), and Close (closing prices). pkdts is a
financial time series object with similar dates to tsobj and two data series named PercentK and
PercentD.

pkdts =
fpctkd(tsobj,kperiods,dperiods,dmamethod,'ParameterName',ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Parameter values are the
character vectors that represent the valid parameter names.

Examples

Compute the Stochastic Oscillator

This example shows how to compute the stochastic oscillator for Disney stock and plot the results.

load disney.mat
dis_FastStoc = fpctkd(dis);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

plot(dis_FastStoc)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Stochastic Oscillator for Disney')
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References
Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 268–271.

See Also
spctkd | stochosc | tsmovavg

Introduced before R2006a
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frac2cur
Fractional currency value to decimal value

Syntax
Decimal = frac2cur(Fraction,Denominator)

Description
Decimal = frac2cur(Fraction,Denominator) converts a fractional currency value to a decimal
value. Fraction is the fractional currency value input as a character vector, and Denominator is
the denominator of the fraction.

Examples

Convert a Fractional Currency Value to a Decimal Value

This example shows how to convert a fractional currency value to a decimal value.

Decimal = frac2cur('12.1', 8)

Decimal = 12.1250

Input Arguments
Fraction — Fractional currency values
character vector | cell array of character vectors

Fractional currency values, specified as a character vector or cell array of character vectors.
Data Types: char | cell

Denominator — Denominator of the fractions
numeric

Denominator of the fractions, specified as a scalar or vector using numeric values for the
denominator.
Data Types: double

Output Arguments
Decimal — Decimal currency value
numeric decimal

Decimal currency value, returned as a scalar or vector with numeric decimal values.
Data Types: double
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See Also
cur2frac | cur2str

Introduced before R2006a
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freqnum
Convert character vector frequency indicator to numeric frequency indicator

Note freqnum is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
nfreq = freqnum(sfreq)

Arguments

sfreq UNKNOWN, Unknown, unknown, U, u

DAILY, Daily, daily, D, d

WEEKLY, Weekly, weekly, W, w

MONTHLY, Monthly, monthly, M, m

QUARTERLY, Quarterly, quarterly, Q, q

SEMIANNUAL, Semiannual, semiannual, S, s

ANNUAL, Annual, annual, A, a

Description
nfreq = freqnum(sfreq) converts a character vector frequency indicator into a numeric value.

Character Vector Frequency Indicator Numeric Representation
UNKNOWN, Unknown, unknown, U, u 0
DAILY, Daily, daily, D, d 1
WEEKLY, Weekly, weekly, W, w 2
MONTHLY, Monthly, monthly, M, m 3
QUARTERLY, ly, quarterly, Q, q 4
SEMIANNUAL, Semiannual, semiannual, S, s 5
ANNUAL, Annual, annual, A, a 6

See Also
freqstr

Topics
“What Is the Financial Time Series App?” on page 14-2
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Introduced before R2006a
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freqstr
Convert numeric frequency indicator to character vector representation

Note freqstr is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
sfreq = freqstr(nfreq)

Arguments
nfreq 0

1

2

3

4

5

6

Description
sfreq = freqstr(nfreq) converts a numeric frequency indicator into a character vector
representation.

Numeric Frequency Indicator Character Vector Representation
0 Unknown
1 Daily
2 Weekly
3 Monthly
4 Quarterly
5 Semiannual
6 Annual

See Also
freqnum

Topics
“What Is the Financial Time Series App?” on page 14-2
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Introduced before R2006a
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frontier
Rolling efficient frontier

Syntax
[PortWts,AllMean,AllCovariance] = frontier(Universe,Window,Offset,NumPorts)
[PortWts,AllMean,AllCovariance] = frontier( ___ ,ActiveMap,Conset,NumNonNan)

Description
[PortWts,AllMean,AllCovariance] = frontier(Universe,Window,Offset,NumPorts)
generates a surface of efficient frontiers showing how asset allocation influences risk and return over
time.

[PortWts,AllMean,AllCovariance] = frontier( ___ ,ActiveMap,Conset,NumNonNan)
specifies options using one or more optional arguments in addition to the input arguments in the
previous syntax.

Input Arguments
Universe — Total return data for a group of securities
array

Total return data for a group of securities, specified as a number of observations (NUMOBS) by number
of assets plus one (NASSETS + 1) time series array. Each row represents an observation. Column 1
contains MATLAB serial date numbers. The remaining columns contain the total return data for each
security.
Data Types: double

Window — Number of data periods used to calculate each frontier
positive integer

Number of data periods used to calculate each frontier, specified as a positive integer value.
Data Types: double

Offset — Increment in number of periods between each frontier
numeric

Increment in number of periods between each frontier, specified as a numeric value.
Data Types: double

NumPorts — Number of portfolios to calculate on each frontier
positive integer

Number of portfolios to calculate on each frontier, specified as a positive integer.
Data Types: double
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ActiveMap — Indicates if an asset is part of the Universe on the corresponding date
NUMOBS-by-NASSETS matrix of 1's (all assets active on all dates) (default) | matrix

(Optional) Indicates if an asset is part of the Universe on the corresponding date, specified as a
number of observations (NUMOBS) by number of assets (NASSETS) matrix with Boolean elements
corresponding to the Universe.
Data Types: double

Conset — Constraint matrix for a portfolio of asset investments
matrix

Constraint matrix for a portfolio of asset investments, specified using portcons with the 'Default'
constraint type. This single constraint matrix is applied to each frontier..
Data Types: double

NumNonNan — Minimum number of non-NaN points for each active asset in each window of
data
Window - NASSETS (default) | numeric value

Minimum number of non-NaN points for each active asset in each window of data needed to perform
the optimization, specified as a numeric value.
Data Types: double

Output Arguments
PortWts — Weights allocated to each asset
matrix

Weights allocated to each asset., returned as a number of curves (NCURVES)-by-1 cell array, where
each element is a NPORTS-by-NASSETS matrix of weights.

AllMean — Expected asset returns used to generate each curve on the surface
vector

Expected asset returns used to generate each curve on the surface, returned as an NCURVES-by-1 cell
array, where each element is a 1-by-NASSETS vector of the expected asset returns.

AllCovariance — Covariance matrix used to generate each curve on the surface
vector

Covariance matrix used to generate each curve on the surface, returned as an NCURVES-by-1 cell
array, where each element is a NASSETS-by-NASSETS vector.

See Also
portcons | portopt | portstats

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Selection and Risk Aversion” on page 3-7
“Active Returns and Tracking Error Efficient Frontier” on page 3-32
“Analyzing Portfolios” on page 3-2
“Portfolio Optimization Functions” on page 3-3
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Introduced before R2006a
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fts2ascii
Write elements of time series data into ASCII file

Note fts2ascii is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
stat = fts2ascii(filename,tsobj,exttext)

stat = fts2ascii(filename,dates,data,colheads,desc,exttext)

Arguments
filename Name of an ASCII file
tsobj Financial time series object
exttext (Optional) Extra text written after the description line (line 2 in the file).
dates Column vector containing dates. Dates must be in serial date number format

and can specify time of day.
data Column-oriented matrix. Each column is a series.
colheads (Optional) Cell array of column headers (names); first cell must always be the

one for the dates column. colheads is written to the file just before the
data.

desc (Optional) Description text, which is the first line in the file.

Description
stat = fts2ascii(filename,tsobj,exttext) writes the financial time series object tsobj
into an ASCII file filename. The data in the file is tab delimited.

stat = fts2ascii(filename,dates,data,colheads,desc,exttext) writes into an ASCII file
filename the dates, times, and data contained in the column vector dates and the column-oriented
matrix data. The first column in filename contains the dates, followed by times (if specified).
Subsequent columns contain the data. The data in the file is tab delimited.

stat indicates whether file creation is successful (1) or not (0).

Examples

Use fts2ascii to Write a Time Series to an ASCII File

Create a data file with time information.

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ... 
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
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times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
serial_dates_times = [datenum(dates), datenum(times)];
data = round(10*rand(6,2));

Use fts2ascii to write the time series to an ascii file.

stat = fts2ascii('myfts_file2.txt',serial_dates_times,data, ... 
{'dates';'times';'Data1';'Data2'},'My FTS with Time')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

stat = 1

Read the data file back and create a financial time series object using ascii2fts.

MyFts = ascii2fts('myfts_file2.txt','t',1,2,1)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
MyFts = 
 
    desc:  My FTS with Time
    freq:  Unknown (0)

    {'dates:  (6)'}    {'times:  (6)'}    {'Data1:  (6)'}    {'Data2:  (6)'}
    {'01-Jan-2001'}    {'11:00'      }    {[          8]}    {[          3]}
    {'     "     '}    {'12:00'      }    {[          9]}    {[          5]}
    {'02-Jan-2001'}    {'11:00'      }    {[          1]}    {[         10]}
    {'     "     '}    {'12:00'      }    {[          9]}    {[         10]}
    {'03-Jan-2001'}    {'11:00'      }    {[          6]}    {[          2]}
    {'     "     '}    {'12:00'      }    {[          1]}    {[         10]}

See Also
ascii2fts

Topics
“Working with Financial Time Series Objects” on page 13-2
“Creating a Financial Time Series Object” on page 14-9
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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fts2timetable
Convert financial time series objects (fints) to timetable object

Syntax
TT = fts2timetable(FTS)

Description
TT = fts2timetable(FTS) converts a M-by-N fints object to a M-by-N MATLAB timetable object
(TT). The date and time information in the fints object becomes the TT time vector, while the
remaining variables in the fints object become variables in TT. The fints description property
(DESC) is mapped to TT.Properties.Description. The fints frequency indicator property
(FREQ) is unused and removed from the output TT. For more information, see “Convert Financial
Time Series Objects fints to Timetables” on page 12-2.

Examples

Convert fints Object to a timetable Object and Plot the Financial Data

Load the financial data.

load SimulatedStockValues

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Convert a fints object to a timetable object.

TMW = fts2timetable(TMW_fts); 
TMW.Properties

ans = 
  TimetableProperties with properties:

             Description: 'Simulated stock OHLCV data.'
                UserData: []
          DimensionNames: {'Time'  'Variables'}
           VariableNames: {'Open'  'High'  'Low'  'Close'  'Volume'}
    VariableDescriptions: {}
           VariableUnits: {}
      VariableContinuity: []
                RowTimes: [1000×1 datetime]
               StartTime: 31-Aug-2012
              SampleRate: NaN
                TimeStep: NaN
        CustomProperties: No custom properties are set.
      Use addprop and rmprop to modify CustomProperties.

Visualize the financial data.
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ma1 = movavg(TMW,'exponential',14);
ma2 = movavg(TMW,'exponential',26);
selctRange = 70:120;
figure;
plot(ma1.Time(selctRange), ma1.Close(selctRange), ...
     ma2.Time(selctRange), ma2.Close(selctRange));
ax = gca;
hold on

% Plot on a target axis
candle(ax, TMW(selctRange,:));
legend(ax, '14-day MA', '26-day MA', 'Price')
ylabel(ax, 'Price')
xlabel(ax, 'Date')
title(ax, 'TMW Simulated Stock Prices')
hold off

Input Arguments
FTS — Financial time series object
object

Financial time series object, specified by using a M-by-N fints object.
Data Types: object
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Output Arguments
TT — Timetable
object

Timetable, returned as a M-by-N object.

See Also
timetable

Topics
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced in R2018a
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fts2mat
Convert to matrix

Note fts2mat is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tsmat = fts2mat(tsobj)

tsmat = fts2mat(tsobj,datesflag)

tsmat = fts2mat(tsobj,seriesnames)

tsmat = fts2mat(tsobj,datesflag,seriesnames)

Arguments
tsobj Financial time series object
datesflag (Optional) Specifies inclusion of dates vector:

datesflag = 0 (default) excludes dates.

datesflag = 1 includes dates vector.
seriesnames (Optional) Specifies the data series to be included in the matrix. Can be a cell

array of character vectors.

Description
tsmat = fts2mat(tsobj) takes the data series in the financial time series object tsobj and puts
them into the matrix tsmat as columns. The order of the columns is the same as the order of the data
series in the object tsobj.

tsmat = fts2mat(tsobj,datesflag) specifies whether you want the dates vector included. The
dates vector is the first column. The dates are represented as serial date numbers. Dates can include
time-of-day information.

tsmat = fts2mat(tsobj,seriesnames) extracts the data series named in seriesnames and
puts its values into tsmat. The seriesnames argument can be a cell array of character vectors.

tsmat = fts2mat(tsobj,datesflag,seriesnames) puts into tsmat the specific data series
named in seriesnames. The datesflag argument must be specified. If datesflag is set to 1, the
dates vector is included. If you specify an empty matrix ([]) for datesflag, the default behavior is
adopted.

See Also
subsref
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Topics
“Working with Financial Time Series Objects” on page 13-2
“Creating a Financial Time Series Object” on page 14-9
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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ftsbound
Start and end dates

Note ftsbound is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
datesbound = ftsbound(tsobj)

datesbound = ftsbound(tsobj,dateform)

Arguments
tsobj Financial time series object
dateform dateform is an integer representing the format of a date character vector.

See datestr for a description of these formats.

Description
ftsbound returns the start and end dates of a financial time series object. If the object contains time-
of-day data, ftsbound also returns the starting time on the first date and the ending time on the last
date.

datesbound = ftsbound(tsobj) returns the start and end dates contained in tsobj as serial
dates in the column matrix datesbound. The first row in datesbound corresponds to the start date,
and the second corresponds to the end date.

datesbound = ftsbound(tsobj,dateform) returns the starting and ending dates contained in
the object, tsobj, as date character vectors in the column matrix, datesbound. The first row in
datesbound corresponds to the start date, and the second corresponds to the end date. The
dateform argument controls the format of the output dates.

See Also
datestr

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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ftsgui
Financial time series GUI

Note ftsgui will be removed in a future release and will no longer accept a fints object.

Use fts2timetable to convert a fints object to a timetable object. For more information, see
“Convert Financial Time Series Objects fints to Timetables”.

Syntax
ftsgui

Description
ftsgui displays the financial time series graphical user interface (GUI) main window.

The use of the financial time series GUI is described in “Using the Financial Time Series GUI” on
page 15-6.

Note Help menu item is not available for ftsgui in MATLAB Online.

Examples
ftsgui

See Also
ftstool

Topics
“Using the Financial Time Series App” on page 14-9
“Using the Financial Time Series App with GUIs” on page 14-15
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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ftsinfo
Financial time series object information

Note ftsinfo is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
ftsinfo(tsobj)

infofts = ftsinfo(tsobj)

Arguments
tsobj Financial time series object.

Description
ftsinfo(tsobj) displays information about the financial time series object tsobj.

infofts = ftsinfo(tsobj) stores information about the financial time series object tsobj in the
structure infofts.

infofts has these fields.

Field Contents
version Financial time series object version.
desc Description of the time series object (tsobj.desc).
freq Numeric representation of the time series data frequency (tsobj.freq).

See freqstr for list of numeric frequencies and what they represent.
startdate Earliest date in the time series.
enddate Latest date in the time series.
seriesnames Cell array containing the time series data column names.
ndata Number of data points in the time series.
nseries Number of columns of time series data.

Examples
Convert the supplied file disney.dat into a financial time series object named dis:

dis = ascii2fts('disney.dat', 1, 3);

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In ascii2fts (line 64)  

Now use ftsinfo to obtain information about dis:
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ftsinfo(dis)

 Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/ftsinfo (line 64) 

  FINTS version: 2.0 or higher
    Description: Walt Disney Company (DIS)                    
      Frequency: Unknown
     Start date: 29-Mar-1996
       End date: 29-Mar-1999
   Series names: OPEN
                 HIGH
                 LOW
                 CLOSE
                 VOLUME
      # of data: 782
    # of series: 5

Then, executing

infodis = ftsinfo(dis) 

creates the structure infodis containing the values

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/ftsinfo (line 64) 

infodis = 

  struct with fields:

            ver: '2.0 or higher'
           desc: 'Walt Disney Company (DIS)                    '
           freq: 0
      startdate: '29-Mar-1996'
        enddate: '29-Mar-1999'
    seriesnames: {5×1 cell}
          ndata: 782
        nseries: 5

See Also
fints | freqnum | freqstr | ftsbound

Topics
“Using the Financial Time Series App” on page 14-9
“Using the Financial Time Series App with GUIs” on page 14-15
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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ftstool
Financial Time Series app

Note ftstool will be removed in a future release and will no longer accept a fints object.

Use fts2timetable to convert a fints object to a timetable object. For more information, see
“Convert Financial Time Series Objects fints to Timetables”.

Syntax
ftstool

Description
ftstool creates and manages Financial Time Series objects. ftstool allows the creation and
management of Financial Time Series objects via the Financial Time Series app. ftstool can
interface with ftsgui, meaning Line Plots generated with ftstool can be analyzed with ftsgui.
However, ftsgui must be running prior to the generation of any Line Plots.

The use of the Financial Time Series app is described in “Getting Started with the Financial Time
Series App” on page 14-4.

Note Help menu item is not available for ftstool in MATLAB Online.

Examples
ftstool
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Alternatively, on the MATLAB desktop toolstrip, click the Apps tab and in the apps gallery, under
Computational Finance, click Financial Time Series. The Financial Time Series app opens. For an
overview of the Financial Time Series app, see “What Is the Financial Time Series App?” on page 14-
2.

See Also
ftsgui

Topics
“Using the Financial Time Series App” on page 14-9
“Using the Financial Time Series App with GUIs” on page 14-15
“What Is the Financial Time Series App?” on page 14-2

Introduced in R2006b
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ftsuniq
Determine uniqueness

Note ftsuniq is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
uniq = ftsuniq(dates_and_times)

[uniq,dup] = ftsuniq(dates_and_times)

Arguments
dates_and_times A single column vector of serial date numbers. The serial date

numbers can include time-of-day information.

Description
uniq = ftsuniq(dates_and_times) returns 1 if the dates and times within the financial time
series object are unique and 0 if duplicates exist.

[uniq,dup] = ftsuniq(dates_and_times) additionally returns a structure dup. In the
structure

• dup.DT contains the character vectors of the duplicate dates and times and their locations in the
object.

• dup.intIdx contains the integer indices of duplicate dates and times in the object.

See Also
fints

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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fvdisc
Future value of discounted security

Syntax
FutureVal = fvdisc(Settle,Maturity,Price,Discount)
FutureVal = fvdisc( ___ ,Basis)

Description
FutureVal = fvdisc(Settle,Maturity,Price,Discount) finds the amount received at
maturity for a fully vested security.

FutureVal = fvdisc( ___ ,Basis) specifies options using an optional argument in addition to the
input arguments in the previous syntax.

Examples

Find the Amount Received at Maturity for a Fully-Vested Security

This example shows how to find the amount received at maturity for a fully-vested security, using the
following data.

Settle = '02/15/2001';
Maturity = '05/15/2001';
Price = 100;
Discount = 0.0575;
Basis = 2;

FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

FutureVal = 101.4420

Find the Amount Received at Maturity for a Fully-Vested Security Using datetime Inputs

This example shows how to use datetime inputs to find the amount received at maturity for a fully-
vested security, using the following data.

Settle = datetime('02/15/2001','Locale','en_US');
Maturity = datetime('05/15/2001','Locale','en_US');
Price = 100;
Discount = 0.0575;
Basis = 2;

FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

FutureVal = 101.4420
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Input Arguments
Settle — Settlement date
serial date number | date character vector | datetime

Settlement date, specified as a scalar serial date number, date character vector, or datetime.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime

Maturity date, specified as a scalar serial date number, date character vector, or datetime.
Data Types: double | char | datetime

Price — Price (present value) of security
scalar numeric

Price (present value) of the security, specified as a scalar numeric.
Data Types: double

Discount — Bank discount rate of security
scalar decimal

Bank discount rate of security, specified as a scalar decimal.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as a scalar integer using one of the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

19 Functions

19-898



Data Types: double

Output Arguments
FutureVal — Amount received at maturity for fully vested security
scalar numeric

Amount received at maturity for a fully vested security, returned as a scalar numeric.
Data Types: double

References
[1] Jan Mayle. Standard Securities Calculation Methods. Securities Industry Assn, Volumes I-II, 3rd

edition, 1994

See Also
acrudisc | discrate | prdisc | ylddisc | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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fvfix
Future value with fixed periodic payments

Syntax
FutureVal = fvfix(Rate,NumPeriods,Payment)
FutureVal = fvfix( ___ ,PresentVal,Due)

Description
FutureVal = fvfix(Rate,NumPeriods,Payment) returns the future value of a series of equal
payments.

FutureVal = fvfix( ___ ,PresentVal,Due) specifies options using one or more optional
argument in addition to the input arguments in the previous syntax.

Examples

Return the Future Value of a Series of Equal Payments

This example shows how to compute the future value of a series of equal payments using a savings
account that has a starting balance of $1500. $200 is added at the end of each month for 10 years
and the account pays 9% interest compounded monthly.

FutureVal = fvfix(0.09/12, 12*10, 200, 1500, 0)

FutureVal = 4.2380e+04

Input Arguments
Rate — Interest-rate per period
scalar numeric decimal

Interest-rate per period, specified as a scalar numeric decimal.
Data Types: double

NumPeriods — Number of payment periods
scalar numeric

Number of payment periods, specified as a scalar numeric.
Data Types: double

Payment — Payment per period
scalar numeric

Payment per period, specified as a scalar numeric.
Data Types: double

19 Functions

19-900



PresentVal — Present value
0 (default) | scalar numeric

(Optional) Present value, specified as a scalar numeric.
Data Types: double

Due — When payments are due
0 (end of period) (default) | scalar integer with value of 0 or 1

(Optional) When payments are due, specified as a scalar integer with value of 0 (end of period) or 1
(beginning of period).
Data Types: double

Output Arguments
FutureVal — Future value of series of equal payments
scalar numeric

Future value of a series of equal payments, returned as a scalar numeric.

References
[1] Jan Mayle. Standard Securities Calculation Methods. Securities Industry Assn, Volumes I-II, 3rd

edition, 1994

See Also
fvvar | pvfix | pvvar

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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fvvar
Future value of varying cash flow

Syntax
FutureVal = fvvar(CashFlow,Rate)
FutureVal = fvvar( ___ ,CFDates)

Description
FutureVal = fvvar(CashFlow,Rate) returns the future value of a varying cash flow.

FutureVal = fvvar( ___ ,CFDates) specifies options using an optional argument in addition to
the input arguments in the previous syntax.

Examples

Calculate Future Value of Varying Cash Flows

This cash flow represents the yearly income from an initial investment of $10,000. The annual
interest rate is 2%.

• Year 1 — $2000
• Year 2 — $1500
• Year 3 — $3000
• Year 4 — $3800
• Year 5 — $5000

For the future value of this regular (periodic) cash flow:

FutureVal = fvvar([-10000 2000 1500 3000 3800 5000], 0.02)

FutureVal = 4.7131e+03

An investment of $10,000 returns this irregular cash flow. The original investment and its date are
included. The periodic interest rate is 3%.

• -$1000 — January 12, 2000
• $2500 — February 14, 2001
• $2000 — March 3, 2001
• $3000 — June 14, 2001
• $4000 — December 1, 2001

To calculate the future value of this irregular (nonperiodic) cash flow:

CashFlow = [-10000, 2500, 2000, 3000, 4000];
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CFDates = ['01/12/2000'
            '02/14/2001'
            '03/03/2001'
            '06/14/2001'
            '12/01/2001'];

FutureVal = fvvar(CashFlow, 0.03, CFDates)

FutureVal = 1.0731e+03

Input Arguments
CashFlow — Varying cash flows
vector

Varying cash flows, specified as a vector.

Note You must include the initial investment as the initial cash flow value (a negative number).

.
Data Types: double

Rate — Periodic Interest rate
scalar numeric decimal

Periodic interest rate, specified as a scalar numeric decimal.
Data Types: double

CFDates — Dates on which the cash flows occur
assumes CashFlow contains regular (periodic) cash flows (default) | serial date number | date
character vector | datetime

(Optional) Dates on which the cash flows occur, specified as a cell array of date character vectors, a
vector of serial date numbers, or a datetime array.

Note Use CFDates for irregular (nonperiodic) cash flows.

Data Types: double | char | datetime

Output Arguments
FutureVal — Future value of a varying cash flow
scalar numeric

Future value of a varying cash flow, returned as a scalar numeric.
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References
[1] Jan Mayle. Standard Securities Calculation Methods. Securities Industry Assn, Volumes I-II, 3rd

edition, 1994

See Also
irr | fvfix | pvfix | pvvar | payuni | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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fwd2zero
Zero curve given forward curve

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
new optional name-value pair inputs: InputCompounding, InputBasis, OutputCompounding, and
OutputBasis.

Syntax
[ZeroRates,CurveDates] = fwd2zero(ForwardRates,CurveDates,Settle)
[ZeroRates,CurveDates] = fwd2zero( ___ ,Name,Value)

Description
[ZeroRates,CurveDates] = fwd2zero(ForwardRates,CurveDates,Settle) returns a zero
curve given an implied forward rate curve and its maturity dates. If both inputs for CurveDates and
Settle are serial date numbers or date character vectors, CurveDates is returned as serial date
numbers. However, if either of the inputs for CurveDates and Settle are a datetime array,
CurveDates is returned as a datetime array.

[ZeroRates,CurveDates] = fwd2zero( ___ ,Name,Value) adds optional name-value pair
arguments

Examples

Compute the Zero Curve Given the Forward Curve

This example shows how to compute the zero curve, given an implied forward rate curve over a set of
maturity dates, a settlement date, and a compounding rate.

ForwardRates = [0.0469
                0.0519
                0.0549
                0.0535
                0.0558
                0.0508
                0.0560
                0.0545
                0.0615
                0.0486];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
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              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 1;
InputBasis = 2;
OutputCompounding = 1;
OutputBasis = 2;

Execute the function fwd2zero to return the zero-rate curve ZeroRates at the maturity dates
CurveDates.

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,...
Settle,'InputCompounding',1,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ZeroRates = 10×1

    0.0469
    0.0515
    0.0531
    0.0532
    0.0538
    0.0532
    0.0536
    0.0539
    0.0556
    0.0543

CurveDates = 10×1

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

Compute the Zero Curve Given the Forward Curve Using datetime Inputs

This example shows how to use datetime inputs compute the zero curve, given an implied forward
rate curve over a set of maturity dates, a settlement date, and a compounding rate.

ForwardRates = [0.0469
                0.0519
                0.0549
                0.0535
                0.0558
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                0.0508
                0.0560
                0.0545
                0.0615
                0.0486];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 1;
InputBasis = 2;
OutputCompounding = 1;
OutputBasis = 2;CurveDates = datetime(CurveDates,'ConvertFrom','datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,...
Settle,'InputCompounding',1,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ZeroRates = 10×1

    0.0469
    0.0515
    0.0531
    0.0532
    0.0538
    0.0532
    0.0536
    0.0539
    0.0556
    0.0543

CurveDates = 10x1 datetime
   06-Nov-2000
   11-Dec-2000
   15-Jan-2001
   05-Feb-2001
   04-Mar-2001
   02-Apr-2001
   30-Apr-2001
   25-Jun-2001
   04-Sep-2001
   12-Nov-2001
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Input Arguments
ForwardRates — Annualized implied forward rates
decimal fraction

Annualized implied forward rates, specified as a (NUMBONDS)-by-1 vector using decimal fractions. In
aggregate, the rates in ForwardRates constitute an implied forward curve for the investment
horizon represented by CurveDates. The first element pertains to forward rates from the settlement
date to the first curve date.
Data Types: double

CurveDates — Maturity dates
serial date number | date character vector | datetime

Maturity dates, specified as a NUMBONDS-by-1 vector using serial date numbers, date character
vectors, or datetime arrays, that correspond to the ForwardRates.
Data Types: double | datetime | char

Settle — Common settlement date for ForwardRates
serial date number | date character vector | datetime

Common settlement date for ForwardRates, specified as serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | datetime | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [ZeroRates,CurveDates] =
fwd2zero(ForwardRates,CurveDates,Settle,'InputCompounding',3,'InputBasis',5,'
OutputCompounding',4,'OutputBasis',5)

InputCompounding — Compounding frequency of input forward rates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Compounding frequency of input forward rates, specified with allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding
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Note If InputCompounding is not specified, then InputCompounding is assigned the value
specified for OutputCompounding. If either InputCompounding or OutputCompounding are not
specified, the default is 2

Data Types: double

InputBasis — Day-count basis of input forward rates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day count basis of input forward rates, specified as a numeric value. Allowed values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If InputBasis is not specified, then InputBasis is assigned the value specified for
OutputBasis. If either InputBasis or Outputbasis are not specified, the default is 0 (actual/
actual) for both.

Data Types: double

OutputCompounding — Compounding frequency of output zero rates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Compounding frequency of output zero rates, specified with the allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
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• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Note If OutputCompounding is not specified, then OutputCompounding is assigned the value
specified for InputCompounding. If either InputCompounding or OutputCompounding are not
specified, the default is 2 (semiannual) for both.

Data Types: double

OutputBasis — Day-count basis of output zero rates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day count basis of output zero rates, specified as a numeric value. Allowed values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If OutputBasis is not specified, then OutputBasis is assigned the value specified for
InputBasis. If either InputBasis or OutputBasis are not specified, the default is 0 (actual/
actual) for both.

Data Types: double

Output Arguments
ZeroRates — Zero curve for investment horizon represented by CurveDates
numeric
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Zero curve for the investment horizon represented by CurveDates, returned as a NUMBONDS-by-1
vector of decimal fractions. In aggregate, the rates in ZeroRates constitute a zero curve for the
investment horizon represented by CurveDates.

CurveDates — Maturity dates that correspond to ZeroRates
serial date number | date character vector | datetime

Maturity dates that correspond to the ZeroRates, returned as a NUMBONDS-by-1 vector of maturity
dates that correspond to the zero rates in ZeroRates. This vector is the same as the input vector
CurveDates, but is sorted by ascending maturity.

If both inputs for CurveDates and Settle are serial date numbers or date character vectors,
CurveDates is returned as serial date numbers. However, if either of the inputs for CurveDates and
Settle are a datetime array, CurveDates is returned as a datetime array.

See Also
zero2fwd | prbyzero | pyld2zero | zbtprice | zbtyield | zero2disc | zero2fwd | zero2pyld

Topics
“Term Structure of Interest Rates” on page 2-32
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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geom2arith
Geometric to arithmetic moments of asset returns

Syntax
[ma,Ca = geom2arith(mg,Cg)
[ma,Ca = geom2arith( ___ ,t)

Description
[ma,Ca = geom2arith(mg,Cg) transforms moments associated with a continuously compounded
geometric Brownian motion into equivalent moments associated with a simple Brownian motion with
a possible change in periodicity.

[ma,Ca = geom2arith( ___ ,t) adds an optional argument t.

Examples

Obtain Geometric to Arithmetic Moments of Asset Returns

This example shows several variations of using geom2arith.

Given geometric mean m and covariance C of monthly total returns, obtain annual arithmetic mean ma
and covariance Ca. In this case, the output period (1 year) is 12 times the input period (1 month) so
that the optional input t = 12.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
[ma, Ca] = geom2arith(m, C, 12)

ma = 4×1

    0.5508
    1.0021
    1.0906
    1.4802

Ca = 4×4

    0.0695    0.0423    0.0196         0
    0.0423    0.2832    0.1971    0.1095
    0.0196    0.1971    0.5387    0.3013
         0    0.1095    0.3013    1.0118
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Given annual geometric mean m and covariance C of asset returns, obtain monthly arithmetic mean
ma and covariance Ca. In this case, the output period (1 month) is 1/12 times the input period (1 year)
so that the optional input t = 1/12.

[ma, Ca] = geom2arith(m, C, 1/12)

ma = 4×1

    0.0038
    0.0070
    0.0076
    0.0103

Ca = 4×4

    0.0005    0.0003    0.0001         0
    0.0003    0.0020    0.0014    0.0008
    0.0001    0.0014    0.0037    0.0021
         0    0.0008    0.0021    0.0070

Given geometric mean m and covariance C of monthly total returns, obtain quarterly arithmetic return
moments. In this case, the output is 3 of the input periods so that the optional input t = 3.

[ma, Ca] = geom2arith(m, C, 3)

ma = 4×1

    0.1377
    0.2505
    0.2726
    0.3701

Ca = 4×4

    0.0174    0.0106    0.0049         0
    0.0106    0.0708    0.0493    0.0274
    0.0049    0.0493    0.1347    0.0753
         0    0.0274    0.0753    0.2530

Input Arguments
mg — Continuously compounded or geometric mean of asset returns
vector

Continuously compounded or geometric mean of asset returns, specified as an n-vector.
Data Types: double

Cg — Continuously compounded or geometric covariance of asset returns
matrix
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Continuously compounded or geometric covariance of asset returns, specified as an n-by-n
symmetric, positive semidefinite matrix. If Cg is not a symmetric positive semidefinite matrix, use
nearcorr to create a positive semidefinite matrix for a correlation matrix.
Data Types: double

t — Target period of arithmetic moments in terms of periodicity of geometric moments
1 (default) | scalar positive numeric

(Optional) Target period of geometric moments in terms of periodicity of arithmetic moments,
specified as a scalar positive numeric.
Data Types: double

Output Arguments
ma — Arithmetic mean of asset returns over the target period
vector

Arithmetic mean of asset returns over the target period (t), returned as an n-vector.

Ca — Arithmetic covariance of asset returns over the target period
matrix

Arithmetic covariance of asset returns over the target period (t), returned as an n-by-n matrix.

Algorithms
Geometric returns over period tG are modeled as multivariate lognormal random variables with
moments

E[Y] = 1 + mG

and

cov(Y) = CG

Arithmetic returns over period tA are modeled as multivariate normal random variables with moments

E[X] = mA

cov(X) = CA

Given t = tA / tG, the transformation from geometric to arithmetic moments is

CAi j = tlog 1 +
CGi j

(1 + mGi)(1 + mGj)

mAi = tlog(1 + mGi)−
1
2CAii

For i,j = 1,..., n.

Note If t = 1, then X = log(Y).
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This function requires that the input mean must satisfy 1 + mg > 0 and that the input covariance Cg
must be a symmetric, positive, semidefinite matrix.

The functions geom2arith and arith2geom are complementary so that, given m, C, and t, the
sequence

[ma,Ca] = geom2arith(m,C,t);
[mg,Cg] = arith2geom(ma,Ca,1/t);

yields mg = m and Cg = C.

See Also
arith2geom | nearcorr

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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getAssetMoments
Obtain mean and covariance of asset returns from Portfolio object

Syntax
[AssetMean,AssetCovar] = getAssetMoments(obj)

Description
Use the getAssetMoments function with a Portfolio object to obtain mean and covariance of
asset returns.

For details on the workflow, see “Portfolio Object Workflow” on page 4-17.

[AssetMean,AssetCovar] = getAssetMoments(obj) obtains mean and covariance of asset
returns for a Portfolio object.

Examples

Obtain Asset Moment Properties for a Portfolio Object

Given the mean and covariance of asset returns in the variables m and C, the asset moment properties
can be set and then obtained using the getAssetMoments function:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
p = Portfolio;
p = setAssetMoments(p, m, C);
[assetmean, assetcovar] = getAssetMoments(p)

assetmean = 4×1

    0.0042
    0.0083
    0.0100
    0.0150

assetcovar = 4×4

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102
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Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on creating a portfolio
object, see

• Portfolio

Data Types: object

Output Arguments
AssetMean — Mean of asset returns
vector

Mean of asset returns, returned as a vector.

AssetCovar — Covariance of asset returns
matrix

Covariance of asset returns, returned as a matrix.

Tips
You can also use dot notation to obtain the mean and covariance of asset returns from a Portfolio
object:

[AssetMean, AssetCovar] = obj.getAssetMoments;

See Also
setAssetMoments

Topics
“Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-41
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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getBounds
Obtain bounds for portfolio weights from portfolio object

Syntax
[LowerBound,UpperBound] = getBounds(obj)

Description
Use the getBounds function with a Portfolio, PortfolioCVaR, or PortfolioMAD object to
obtain bounds for portfolio weights from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[LowerBound,UpperBound] = getBounds(obj) obtains bounds for portfolio weights from
portfolio objects.

Examples

Obtain Values for Lower and Upper Bounds for a Portfolio Object

Given portfolio p with the default constraints set, obtain the values for LowerBound and
UpperBound.

p = Portfolio;
p = setDefaultConstraints(p, 5);
[LowerBound, UpperBound] = getBounds(p)

LowerBound = 5×1

     0
     0
     0
     0
     0

UpperBound =

     []

Obtain Values for Lower and Upper Bounds for a PortfolioCVaR Object

Given a PortfolioCVaR object p with the default constraints set, obtain the values for LowerBound
and UpperBound.
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p = PortfolioCVaR;
p = setDefaultConstraints(p, 5);
[LowerBound, UpperBound] = getBounds(p)

LowerBound = 5×1

     0
     0
     0
     0
     0

UpperBound =

     []

Obtain Values for Lower and Upper Bounds for a PortfolioMAD Object

Given a PortfolioMAD object p with the default constraints set, obtain the values for LowerBound and
UpperBound.

p = PortfolioMAD;
p = setDefaultConstraints(p, 5);
[LowerBound, UpperBound] = getBounds(p)

LowerBound = 5×1

     0
     0
     0
     0
     0

UpperBound =

     []

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object
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Output Arguments
LowerBound — Lower-bound weight for each asset
vector

Lower-bound weight for each asset, returned as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj). For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

UpperBound — Upper-bound weight for each asset
vector

Upper-bound weight for each asset, returned as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj). For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
You can also use dot notation to obtain bounds for portfolio weights from portfolio objects.

[LowerBound, UpperBound] = obj.getBounds;

See Also
setBounds

Topics
“Working with 'Simple' Bound Constraints Using Portfolio Object” on page 4-61
“Working with 'Simple' Bound Constraints Using PortfolioCVaR Object” on page 5-53
“Working with 'Simple' Bound Constraints Using PortfolioMAD Object” on page 6-52
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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getBudget
Obtain budget constraint bounds from portfolio object

Syntax
[LowerBudget,UpperBudget] = getBudget(obj)

Description
Use the getBudget function with a Portfolio, PortfolioCVaR, or PortfolioMAD object to
obtain budget constraint bounds from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[LowerBudget,UpperBudget] = getBudget(obj) obtains budget constraint bounds from
portfolio objects.

Examples

Obtain Values for Lower and Upper Budgets for a Portfolio Object

Given portfolio p with the default constraints set, obtain the values for LowerBudget and
UpperBudget.

p = Portfolio;
p = setDefaultConstraints(p, 5);
[LowerBudget, UpperBudget] = getBudget(p)

LowerBudget = 1

UpperBudget = 1

Obtain Values for Lower and Upper Budgets for a PortfolioCVaR Object

Given a PortfolioCVaR object p with the default constraints set, obtain the values for LowerBudget
and UpperBudget.

p = PortfolioCVaR;
p = setDefaultConstraints(p, 5);
[LowerBudget, UpperBudget] = getBudget(p)

LowerBudget = 1

UpperBudget = 1
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Obtain Values for Lower and Upper Budgets for a PortfolioMAD Object

Given a PortfolioMAD object p with the default constraints set, obtain the values for LowerBudget
and UpperBudget.

p = PortfolioMAD;
p = setDefaultConstraints(p, 5);
[LowerBudget, UpperBudget] = getBudget(p)

LowerBudget = 1

UpperBudget = 1

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

Output Arguments
LowerBudget — Lower-bound weight for each asset
scalar

Lower bound for budget constraint, returned as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

UpperBudget — Upper bound for budget constraint
scalar

Upper bound for budget constraint, returned as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Tips
You can also use dot notation to obtain the budget constraint bounds from portfolio objects.

[LowerBudget, UpperBudget] = obj.getBudget;

See Also
setBudget

Topics
“Working with Budget Constraints Using Portfolio Object” on page 4-64
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“Working with Budget Constraints Using PortfolioCVaR Object” on page 5-56
“Working with Budget Constraints Using PortfolioMAD Object” on page 6-55
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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getCosts
Obtain buy and sell transaction costs from portfolio object

Syntax
[BuyCost,SellCost] = getCosts(obj)

Description
Use the getCosts function with a Portfolio, PortfolioCVaR, or PortfolioMAD object to obtain
buy and sell transaction costs from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[BuyCost,SellCost] = getCosts(obj) obtains buy and sell transaction costs from portfolio
objects.

Examples

Obtain Buy and Sell Costs for a Portfolio Object

Given portfolio p with the costs set, obtain the values for BuyCost and SellCost.

p = Portfolio;
p = setCosts(p, 0.001, 0.001, 5);
[BuyCost, SellCost] = getCosts(p)

BuyCost = 1.0000e-03

SellCost = 1.0000e-03

Obtain Buy and Sell Costs for a PortfolioCVaR Object

Given a PortfolioCVaR object p with the costs set, obtain the values for BuyCost and SellCost.

p = PortfolioCVaR;
p = setCosts(p, 0.001, 0.001, 5);
[BuyCost, SellCost] = getCosts(p)

BuyCost = 1.0000e-03

SellCost = 1.0000e-03
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Obtain Buy and Sell Costs for a PortfolioMAD Object

Given a PortfolioMAD object p with the costs set, obtain the values for BuyCost and SellCost.

p = PortfolioMAD;
p = setCosts(p, 0.001, 0.001, 5);
[BuyCost, SellCost] = getCosts(p)

BuyCost = 1.0000e-03

SellCost = 1.0000e-03

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

Output Arguments
BuyCost — Proportional transaction cost to purchase each asset
vector

Proportional transaction cost to purchase each asset, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

SellCost — Proportional transaction cost to sell each asset
vector

Proportional transaction cost to sell each asset, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Tips
You can also use dot notation to obtain the buy and sell transaction costs from portfolio objects.

[BuyCost, SellCost] = obj.getCosts;

See Also
setCosts

Topics
“Working with Transaction Costs” on page 4-53
“Working with Transaction Costs” on page 5-45
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“Working with Transaction Costs” on page 6-44
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a

19 Functions

19-926



getEquality
Obtain equality constraint arrays from portfolio object

Syntax
[AEquality,bEquality] = getEquality(obj)

Description
Use the getEquality function with a Portfolio, PortfolioCVaR, or PortfolioMAD object to
obtain equality constraint arrays from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[AEquality,bEquality] = getEquality(obj) obtains equality constraint arrays from portfolio
objects.

Examples

Obtain Equality Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are
exactly 50% of your portfolio. Given a Portfolio object p, set the linear equality constraints and obtain
the values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = Portfolio;
p = setEquality(p, A, b);
[AEquality, bEquality] = getEquality(p)

AEquality = 1×5

     1     1     1     0     0

bEquality = 0.5000

Obtain Equality Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are 50%
of your portfolio. Given a PortfolioCVaR object p, set the linear equality constraints and obtain the
values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];
b = 0.5;
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p = PortfolioCVaR;
p = setEquality(p, A, b);
[AEquality, bEquality] = getEquality(p)

AEquality = 1×5

     1     1     1     0     0

bEquality = 0.5000

Obtain Equality Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are 50%
of your portfolio. Given a PortfolioMAD object p, set the linear equality constraints and obtain the
values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD;
p = setEquality(p, A, b);
[AEquality, bEquality] = getEquality(p)

AEquality = 1×5

     1     1     1     0     0

bEquality = 0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

Output Arguments
AEquality — Matrix to form linear equality constraints
matrix

Matrix to form linear equality constraints, returned as a matrix for a Portfolio, PortfolioCVaR,
or PortfolioMAD input object (obj).
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bEquality — Vector to form linear equality constraints
vector

Vector to form linear equality constraints, returned as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Tips
You can also use dot notation to obtain the equality constraint arrays from portfolio objects.

[AEquality, bEquality] = obj.getEquality;

See Also
setEquality

Topics
“Working with Linear Equality Constraints Using Portfolio Object” on page 4-72
“Working with Linear Equality Constraints Using PortfolioCVaR Object” on page 5-64
“Working with Linear Equality Constraints Using PortfolioMAD Object” on page 6-63
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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getGroupRatio
Obtain group ratio constraint arrays from portfolio object

Syntax
[GroupA,GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj)

Description
Use the getGroupRatio function with a Portfolio, PortfolioCVaR, or PortfolioMAD object to
obtain group ratio constraint arrays from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[GroupA,GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj) obtains equality
constraint arrays from portfolio objects.

Examples

Obtain Group Ratio Constraints for a Portfolio Object

Suppose you want to make sure that the ratio of financial to nonfinancial companies in your portfolios
never goes above 50%. Assume you have 6 assets with 3 financial companies (assets 1-3) and 3
nonfinancial companies (assets 4-6). After setting group ratio constraints, obtain the values for
GroupA, GroupB, LowerRatio, and UpperRatio.

GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = Portfolio;
p = setGroupRatio(p, GA, GB, [], 0.5);
[GroupA, GroupB, LowerRatio, UpperRatio] = getGroupRatio(p)

GroupA = 1×6

     1     1     1     0     0     0

GroupB = 1×6

     0     0     0     1     1     1

LowerRatio =

     []

UpperRatio = 0.5000
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Obtain Group Ratio Constraints for a PortfolioCVaR Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolios
never exceeds 50%. Assume you have six assets with three financial companies (assets 1-3) and three
nonfinancial companies (assets 4-6). After setting group ratio constraints, obtain the values for
GroupA, GroupB, LowerRatio, and UpperRatio.

GA = [ true true true false false false ];   % financial companies
GB = [ false false false true true true ];   % nonfinancial companies
p = PortfolioCVaR;
p = setGroupRatio(p, GA, GB, [], 0.5);
[GroupA, GroupB, LowerRatio, UpperRatio] = getGroupRatio(p)

GroupA = 1×6

     1     1     1     0     0     0

GroupB = 1×6

     0     0     0     1     1     1

LowerRatio =

     []

UpperRatio = 0.5000

Obtain Group Ratio Constraints for a PortfolioMAD Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolios
never exceeds 50%. Assume you have six assets with three financial companies (assets 1-3) and three
nonfinancial companies (assets 4-6). After setting group ratio constraints, obtain the values for
GroupA, GroupB, LowerRatio, and UpperRatio.

GA = [ true true true false false false ];   % financial companies
GB = [ false false false true true true ];   % nonfinancial companies
p = PortfolioMAD;
p = setGroupRatio(p, GA, GB, [], 0.5);
[GroupA, GroupB, LowerRatio, UpperRatio] = getGroupRatio(p)

GroupA = 1×6

     1     1     1     0     0     0

GroupB = 1×6

     0     0     0     1     1     1

LowerRatio =

     []

 getGroupRatio

19-931



UpperRatio = 0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

Output Arguments
GroupA — Matrix that forms base groups for comparison
matrix

Matrix that forms base groups for comparison, returned as a matrix for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

GroupB — Matrix that forms comparison groups
matrix

Matrix that forms comparison groups, returned as a matrix Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

LowerRatio — Lower bound for ratio of GroupB groups to GroupA groups
vector

Lower bound for ratio of GroupB groups to GroupA groups, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

UpperRatio — Upper bound for ratio of GroupB groups to GroupA groups
vector

Upper bound for ratio of GroupB groups to GroupA groups, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Tips
You can also use dot notation to obtain group ratio constraint arrays from portfolio objects.

[GroupA, GroupB, LowerRatio, UpperRatio] = obj.getGroupRatio;

See Also
setGroupRatio
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Topics
“Working with Group Ratio Constraints Using Portfolio Object” on page 4-69
“Working with Group Constraints Using PortfolioCVaR Object” on page 5-58
“Working with Group Constraints Using PortfolioMAD Object” on page 6-57
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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getGroups
Obtain group constraint arrays from portfolio object

Syntax
[GroupMatrix,LowerGroup,UpperGroup] = getGroups(obj)

Description
Use the getGroups function with a Portfolio, PortfolioCVaR, or PortfolioMAD object to
obtain group constraint arrays from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[GroupMatrix,LowerGroup,UpperGroup] = getGroups(obj) obtains group constraint arrays
from portfolio objects.

Examples

Obtain Group Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets
constitute no more than 30% of your portfolio. Given a Portfolio object p with the group constraints
set, obtain the values for GroupMatrix, LowerGroup, and UpperGroup.

G = [ true true true false false ];
p = Portfolio;
p = setGroups(p, G, [], 0.3);
[GroupMatrix, LowerGroup, UpperGroup] = getGroups(p)

GroupMatrix = 1×5

     1     1     1     0     0

LowerGroup =

     []

UpperGroup = 0.3000

Obtain Group Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets
constitute at most 30% of your portfolio. Given a PortfolioCVaR object p with the group constraints
set, obtain the values for GroupMatrix, LowerGroup, and UpperGroup.
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G = [ true true true false false ];
p = PortfolioCVaR;
p = setGroups(p, G, [], 0.3);
[GroupMatrix, LowerGroup, UpperGroup] = getGroups(p)

GroupMatrix = 1×5

     1     1     1     0     0

LowerGroup =

     []

UpperGroup = 0.3000

Obtain Group Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets
constitute at most 30% of your portfolio. Given a PortfolioMAD object p with the group constraints
set, obtain the values for GroupMatrix, LowerGroup, and UpperGroup.

G = [ true true true false false ];
p = PortfolioMAD;
p = setGroups(p, G, [], 0.3);
[GroupMatrix, LowerGroup, UpperGroup] = getGroups(p)

GroupMatrix = 1×5

     1     1     1     0     0

LowerGroup =

     []

UpperGroup = 0.3000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object
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Output Arguments
GroupMatrix — Group constraint matrix
matrix

Group constraint matrix, returned as a matrix for a Portfolio, PortfolioCVaR, or PortfolioMAD
input object (obj).

LowerGroup — Lower bound for group constraints
vector

Lower bound for group constraints, returned as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

UpperGroup — Upper bound for group constraints
vector

Upper bound for group constraints, returned as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Tips
You can also use dot notation to obtain the group constraint arrays from portfolio objects.

[GroupMatrix, LowerGroup, UpperGroup] = obj.getGroups;

See Also
setGroups

Topics
“Working with Group Constraints Using Portfolio Object” on page 4-66
“Working with Group Constraints Using PortfolioCVaR Object” on page 5-58
“Working with Group Constraints Using PortfolioMAD Object” on page 6-57
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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getScenarios
Obtain scenarios from portfolio object

Syntax
Y = getScenarios(obj)

Description
Use the getScenarios function with a PortfolioCVaR or PortfolioMAD objects to obtain
scenarios.

For details on the workflows, see “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD
Object Workflow” on page 6-15.

Y = getScenarios(obj) obtains scenarios for PortfolioCVaR or PortfolioMAD objects.

Examples

Obtain Scenarios for a CVaR Portfolio Object

For a given PortfolioCVaR object p, display the defined scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 10);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

Y = getScenarios(p)

Y = 10×4

   -0.0056    0.0440    0.1186    0.0488
   -0.0368   -0.0753    0.0087    0.1124
    0.0025    0.0856    0.0484    0.1404
    0.0318    0.0826    0.0377    0.0404
    0.0013   -0.0561   -0.1466   -0.0621
    0.0035    0.0310   -0.0183    0.1225
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   -0.0519   -0.1634   -0.0526    0.1528
    0.0029   -0.1163   -0.0627   -0.0760
    0.0192   -0.0182   -0.1243   -0.1346
    0.0440    0.0189    0.0098    0.0821

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Obtain Scenarios for a MAD Portfolio Object

For a given PortfolioMAD object p, display the defined scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 10);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

Y = getScenarios(p)

Y = 10×4

   -0.0056    0.0440    0.1186    0.0488
   -0.0368   -0.0753    0.0087    0.1124
    0.0025    0.0856    0.0484    0.1404
    0.0318    0.0826    0.0377    0.0404
    0.0013   -0.0561   -0.1466   -0.0621
    0.0035    0.0310   -0.0183    0.1225
   -0.0519   -0.1634   -0.0526    0.1528
    0.0029   -0.1163   -0.0627   -0.0760
    0.0192   -0.0182   -0.1243   -0.1346
    0.0440    0.0189    0.0098    0.0821

The function rng(seed) resets the random number generator to produce the documented results. It is
not necessary to reset the random number generator to simulate scenarios.

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.
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For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

Data Types: object

Output Arguments
Y — Scenarios matrix
matrix

Scenarios matrix, returned as a NumScenarios-by-NumAssets matrix for a PortfolioCVaR or
PortfolioMAD object.

Tips
You can also use dot notation to obtain scenarios from a PortfolioCVaR or PortfolioMAD object.

Y = obj.getScenarios;

See Also
setScenarios | rng

Topics
“Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
“Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

External Websites
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b
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getfield
Content of specific field

Note getfield is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
fieldval = getfield(tsobj,field)

fieldval = getfield(tsobj,field,{dates})

Arguments
tsobj Financial time series object.
field Field name within tsobj.
dates Date range. Dates can be expanded to include time-of-day information.

Description
getfield treats the contents of a financial time series object tsobj as fields in a structure.

fieldval = getfield(tsobj,field) returns the contents of the specified field. This is
equivalent to the syntax fieldval = tsobj field.

fieldval = getfield(tsobj,field,{dates}) returns the contents of the specified field for the
specified dates. dates can be individual cells of date character vectors or a cell of a date character
vector range using the :: operator, such as '03/01/99::03/31/99'.

Examples
Create a financial time series object containing both date and time-of-day information:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ... 
         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 
times]);
AnFts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...     
              'Yet Another Financial Time Series')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
AnFts = 
 
    desc:  Yet Another Financial Time Series
    freq:  Daily (1)
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    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [        NaN]
    '     "     '    '12:00'          [          6]

Example 1. Get the contents of the times field in AnFts:

F = datestr(getfield(AnFts, 'times'))

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/getfield (line 67) 

F =

  6×8 char array

    '11:00 AM'
    '12:00 PM'
    '11:00 AM'
    '12:00 PM'
    '11:00 AM'
    '12:00 PM'

Example 2. Extract the contents of specific data fields within AnFts:

FF = getfield(AnFts,'Data1',...
             '01-Jan-2001 12:00::02-Jan-2001 12:00')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/getfield (line 67) 

FF =

     2
     3
     4

See Also
chfield | fieldnames | isfield | rmfield | setfield

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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getInequality
Obtain inequality constraint arrays from portfolio object

Syntax
[AInequality,bInequality] = getInequality(obj)

Description
Use the getInequality function with a Portfolio, PortfolioCVaR, or PortfolioMAD object to
obtain inequality constraint arrays from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[AInequality,bInequality] = getInequality(obj) obtains equality constraint arrays from
portfolio objects.

Examples

Obtain Inequality Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no
more than 50% of your portfolio. Given a Portfolio object p, set the linear inequality constraints and
then obtain values for AInequality and bInequality.

A = [ 1 1 1 0 0 ];
b = 0.5;
p = Portfolio;
p = setInequality(p, A, b);
[AInequality, bInequality] = getInequality(p)

AInequality = 1×5

     1     1     1     0     0

bInequality = 0.5000

Obtain Inequality Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets
constitute at most 50% of your portfolio. Given a PortfolioCVaR object p, set the linear inequality
constraints and then obtain values for AInequality and bInequality.

A = [ 1 1 1 0 0 ];
b = 0.5;

19 Functions

19-942



p = PortfolioCVaR;
p = setInequality(p, A, b);
[AInequality, bInequality] = getInequality(p)

AInequality = 1×5

     1     1     1     0     0

bInequality = 0.5000

Obtain Inequality Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets
constitute at most 50% of your portfolio. Given a PortfolioMAD object p, set the linear inequality
constraints and then obtain values for AInequality and bInequality.

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD;
p = setInequality(p, A, b);
[AInequality, bInequality] = getInequality(p)

AInequality = 1×5

     1     1     1     0     0

bInequality = 0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

Output Arguments
AInequality — Matrix to form linear inequality constraints
matrix

Matrix to form linear inequality constraints, returned as a matrix for a Portfolio, PortfolioCVaR,
or PortfolioMAD input object (obj).
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bInequality — Vector to form linear inequality constraints
vector

Vector to form linear inequality constraints, returned as a vector for a Portfolio, PortfolioCVaR,
or PortfolioMAD input object (obj).

Tips
You can also use dot notation to obtain the inequality constraint arrays from portfolio objects.

[AInequality, bInequality] = obj.getInequality;

See Also
setInequality

Topics
“Working with Linear Inequality Constraints Using Portfolio Object” on page 4-75
“Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page 5-66
“Working with Linear Inequality Constraints Using PortfolioMAD Object” on page 6-65
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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getOneWayTurnover
Obtain one-way turnover constraints from portfolio object

Syntax
[BuyTurnover,SellTurnover] = getOneWayTurnover(obj)

Description
Use the getOneWayTirnover function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to obtain one-way turnover constraints from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio Object
Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object
Workflow” on page 6-15.

[BuyTurnover,SellTurnover] = getOneWayTurnover(obj) obtain one-way turnover
constraints from portfolio objects.

Examples

Obtain One-Way Turnover Costs for a Portfolio Object

Set one-way turnover costs.

p = Portfolio('AssetMean',[0.1, 0.2, 0.15], 'AssetCovar',...
[ 0.005, -0.010,  0.004; -0.010,  0.040, -0.002;  0.004, -0.002,  0.023]);
p = setBudget(p, 1, 1);
p = setOneWayTurnover(p, 1.3, 0.3, 0);    %130-30 portfolio
plotFrontier(p);
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Obtain one-way turnover costs.

[BuyTurnover,SellTurnover] = getOneWayTurnover(p)

BuyTurnover = 1.3000

SellTurnover = 0.3000

Obtain One-Way Turnover Costs for a PortfolioCVaR Object

Set one-way turnover costs and obtain the buy and sell turnover values.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
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p = setProbabilityLevel(p, 0.95);

p = setBudget(p, 1, 1);
p = setOneWayTurnover(p, 1.3, 0.3, 0); %130-30 portfolio

[BuyTurnover,SellTurnover] = getOneWayTurnover(p)

BuyTurnover = 1.3000

SellTurnover = 0.3000

Obtain One-Way Turnover Costs for a PortfolioMAD Object

Set one-way turnover costs and obtain the buy and sell turnover values.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

p = setBudget(p, 1, 1);
p = setOneWayTurnover(p, 1.3, 0.3, 0); %130-30 portfolio

[BuyTurnover,SellTurnover] = getOneWayTurnover(p)

BuyTurnover = 1.3000

SellTurnover = 0.3000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object
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Output Arguments
BuyTurnover — Turnover constraint on purchases
scalar

Turnover constraint on purchases, returned as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

SellTurnover — Turnover constraint on sales
scalar

Turnover constraint on sales, returned as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

More About
One-way Turnover Constraint

One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio
by no more than specified amounts according to whether the differences are purchases or sales.

The constraints take the form

1Tmax 0, x− x0 ≤ τB

1Tmax 0, x0− x ≤ τS

with

• x — The portfolio (NumAssets vector)
• x0 — Initial portfolio (NumAssets vector)
• τB — Upper-bound for turnover constraint on purchases (scalar)
• τS — Upper-bound for turnover constraint on sales (scalar)

Specify one-way turnover constraints using the following properties in a supported portfolio object:
BuyTurnover for τB, SellTurnover for τS, and InitPort for x0.

Note The average turnover constraint (which is set using setTurnover) is not just the combination
of the one-way turnover constraints with the same value for the constraint.

Tips
You can also use dot notation to get the one-way turnover constraint for portfolio objects.

[BuyTurnover,SellTurnover] = obj.getOneWayTurnover

See Also
setOneWayTurnover | setTurnover

Topics
“Working with One-Way Turnover Constraints Using Portfolio Object” on page 4-84
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“Working with One-Way Turnover Constraints Using PortfolioCVaR Object” on page 5-74
“Working with One-Way Turnover Constraints Using PortfolioMAD Object” on page 6-73
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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getnameidx
Find name in list

Note getnameidx is not recommended. Use contains instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
nameidx = getnameidx(list,name)

Arguments
list Cell array of name character vectors.
name Character vector or cell array of name character vectors.

Description
nameidx = getnameidx(list,name) finds the occurrence of a name or set of names in a list. It
returns an index (order number) indicating where the specified names are located within the list. If
name is not found, nameidx returns 0.

If name is a cell array of names, getnameidx returns a vector containing the indices (order number)
of the name character vectors within list. If none of the names in the name cell array is in list, it
returns zero. If some of the names in name are not found, the indices for these names are zeros.

getnameidx finds only the first occurrence of the name in the list of names. This function is meant to
be used on a list of unique names (character vectors) only. It does not find multiple occurrences of a
name or a list of names within list.

Examples
Given

poultry = {'duck', 'chicken'}
animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}
nameidx = getnameidx(animals, poultry)

ans =
    1   5

Given

poultry = {'duck', 'goose', 'chicken'}
animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}
nameidx = getnameidx(animals, poultry)

ans =
    1  0  5
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See Also
strcmp | strfind

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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hhigh
Highest high

Note Using a fints object for the Data argument of hhigh is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
values = hhigh(Data)
values = hhigh( ___ ,Name,Value)

Description
values = hhigh(Data) generates a vector of highest high values from the series of high prices for
the past n periods.

values = hhigh( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Highest High for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
values = hhigh(TMW);
plot(values.Time,values.HighestHigh)
title('Highest High for TMW')
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Input Arguments
Data — Data for high prices
matrix | table | timetable

Data for high prices, specified as a matrix, table, or timetable. Timetables and tables with M rows
must contain a variable named 'High' (case insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: values = hhigh(TMW_HIGH,'NumPeriods',10)

NumPeriods — Moving window for the highest high calculation
14 (default) | positive integer

Moving window for the highest high calculation, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar positive integer.
Data Types: double
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Output Arguments
values — Highest high series
matrix | table | timetable

Highest high series, returned with the same number of rows (M) and the same type (matrix, table, or
timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995.

See Also
timetable | table | llow

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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highlow (fts)
Time series High-Low plot

Note highlow (fts) is not recommended. Use highlow instead.

Syntax
highlow(tsobj)

highlow(tsobj,color)

highlow(tsobj,color,dateform)

highlow(tsobj,color,dateform,'ParameterName',ParameterValue, ...)

hll = highlow(tsobj,color,dateform,'ParameterName',ParameterValue, ...)

Arguments

tsobj Financial time series object.
color (Optional) A three-element row vector representing RGB or a color

identifier. (See plot.)
dateform (Optional) Date format used as the x-axis tick labels. (See datetick.)

You can specify a dateform only when tsobj does not contain time-
of-day data. If tsobj contains time-of-day data, dateform is
restricted to 'dd-mmm-yyyy HH:MM'.

'ParameterName' 'ParameterName' can be:

• HighName: high prices series name
• LowName: low prices series name
• OpenName: open prices series name
• CloseName: closing prices series name

ParameterValue The parameter value is a character vector that represents the valid
parameter name.

Description
highlow(tsobj) generates a High-Low plot of the data in the financial time series object tsobj.
tsobj must contain at least four data series representing the high, low, open, and closing prices.
These series must have the names High, Low, Open, and Close (case-insensitive).

highlow(tsobj,color) additionally specifies the color of the plot.

highlow(tsobj,color,dateform) additionally specifies the date format used as the x-axis tick
labels. See datestr for a list of date formats.
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highlow(tsobj,color,dateform,'ParameterName',ParameterValue, ...) indicates the
actual names of the required data series if the data series do not have the default names.

You can specify open prices as optional by providing the parameter name 'OpenName' and the
parameter value ''.

highlow(tsobj, color, dateform, 'OpenName', '')

hhll = highlow(tsobj,color,dateform,'ParameterName',ParameterValue, ...)
returns the handle to the line object that makes up the High-Low plot.

Examples

Generate a High-Low Plot

This example shows how to generate a High-Low plot for Disney stock for the dates May 28 to June
18, 1998.

load disney.mat

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

highlow(dis('28-May-1998::18-Jun-1998'))

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('High-Low Plot for Disney')
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See Also
candle

Introduced before R2006a
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highlow
High, low, open, close chart

Note highlow is updated to accept data input as a matrix, timetable, or table.

Syntax
highlow(Data)
highlow(Data,Color)
h = highlow(ax, ___ )

Description
highlow(Data) displays a highlow chart from a series of opening, high, low, and closing prices of a
security. The plots are vertical lines whose top is the high, bottom is the low, open is a left tick, and
close is a right tick.

highlow(Data,Color) adds an optional argument for Color.

h = highlow(ax, ___ ) adds an optional argument for ax.

Examples

Generate a Highlow Chart for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. The highlow chart plots the price data using blue lines.

load SimulatedStock.mat
range = 1:25;
highlow(TMW(range,:),'b');
title('High, Low, Open, Close Chart for TMW')
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Input Arguments
Data — Data for opening, high, low, and closing prices
matrix | table | timetable

Data for opening, high, low, and closing prices, specified as a matrix, table, or timetable. For matrix
input, Data is an M-by-4 matrix of opening, high, low, and closing prices stored in the corresponding
columns. Timetables and tables with M rows must contain variables named 'Open', 'High', 'Low',
and 'Close' (case insensitive).
Data Types: double | table | timetable

Color — Three element color vector
background color of figure window (default) | color vector [R G B] | string

(Optional) Three element color vector, specified as a [R G B] color vector or a string specifying the
color name. The default color differs depending on the background color of the figure window.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].
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• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | string

ax — Valid axis object
current axes (ax = gca) (default) | axes object

(Optional) Valid axis object, specified as an axes object. The highlow plot is created in the axes
specified by ax instead of in the current axes (ax = gca). The option ax can precede any of the input
argument combinations.
Data Types: object

Output Arguments
h — Graphic handle of the figure
handle object

Graphic handle of the figure, returned as a handle object.

19 Functions

19-960



See Also
timetable | table | movavg | pointfig | kagi | linebreak | priceandvol | renko | volarea |
candle

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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hist
Histogram for financial time series object

Note hist is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
hist(tsobj, numbins)

ftshist = hist(tsobj,numbins)

[ftshist,binpos] = hist(tsobj,numbins)

Arguments

tsobj Financial time series object.
numbins (Optional) Number of histogram bins. Default = 10.

Description
hist(tsobj,numbins) calculates and displays the histogram of the data series contained in the
financial time series object tsobj.

ftshist = hist(tsobj,numbins) calculates, but does not display, the histogram of the data
series contained in the financial time series object tsobj. The output ftshist is a structure with
field names similar to the data series names of tsobj.

[ftshist,binpos] = hist(tsobj,numbins) additionally returns the bin positions binpos. The
positions are the centers of each bin. binpos is a column vector.

Examples

Create a Histogram

This example shows how to generate a histogram of Disney open, high, low, and close prices.

load disney.mat
dis = rmfield(dis,'VOLUME'); % Remove VOLUME field
hist(dis)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Disney Histogram')
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See Also
mean | std | histogram

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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holdings2weights
Portfolio holdings into weights

Syntax
Weights = holdings2weights(Holdings,Prices,Budget)

Arguments
Holdings Number of portfolios (NPORTS) by number of assets (NASSETS) matrix with

the holdings of NPORTS portfolios containing NASSETS assets.
Prices NASSETS vector of asset prices.
Budget (Optional) Scalar or NPORTS vector of nonzero budget constraints. Default =

1.

Description
Weights = holdings2weights(Holdings,Prices,Budget) converts portfolio holdings into
portfolio weights. The weights must satisfy a budget constraint such that the weights sum to Budget
for each portfolio.

Weights is a NPORTS by NASSETS matrix containing the normalized weights of NPORTS portfolios
containing NASSETS assets.

Notes

• Holdings may be negative to indicate a short position, but the overall portfolio weights must
satisfy a nonzero budget constraint.

• The weights in each portfolio sum to the Budget value (which is 1 if Budget is unspecified.)

See Also
weights2holdings

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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holidays
Holidays and nontrading days

Syntax
H = holidays
H = holidays(StartDate,EndDate)
H = holidays( ___ ,AltHolidays)

Description
H = holidays returns a vector or datetime array corresponding to all holidays and nontrading days.

H = holidays(StartDate,EndDate) returns a vector or datetime array corresponding to the
holidays and nontrading days between StartDate and EndDate, inclusive.

H = holidays( ___ ,AltHolidays) returns a vector or datetime array corresponding to the
alternate list of holidays and nontrading days.

Examples

Determine Holidays for a Given StartDate and EndDate

Create a vector of serial date numbers corresponding to all holidays and nontrading dates between a
specified StartDate and EndDate:

H = holidays('jan 1 2001', 'jun 23 2001') 

H = 5×1

      730852
      730866
      730901
      730954
      730999

datestr(H)

ans = 5x11 char array
    '01-Jan-2001'
    '15-Jan-2001'
    '19-Feb-2001'
    '13-Apr-2001'
    '28-May-2001'

Alternatively, using a datetime array for StartDate and EndDate returns a datetime array for H.

H = holidays(datetime('1-Jan-2001','Locale','en_US'),...
datetime('23-Jun-2001','Locale','en_US'))
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H = 5x1 datetime
   01-Jan-2001
   15-Jan-2001
   19-Feb-2001
   13-Apr-2001
   28-May-2001

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified using a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified using a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

AltHolidays — Alternate list of holidays and nontrading days
serial date number | date character vector | datetime object

Alternate list of holidays and nontrading days, specified using a serial date number, date character
vector, or datetime array.
Data Types: double | char | datetime

Output Arguments
H — Dates corresponding to all holidays and nontrading days
vector | datetime

Dates corresponding to all holidays and nontrading days, returned as a vector or a datetime array of
dates.

Note If StartDate, EndDate, and AltHolidays are all either serial date numbers or date
character vectors, H is returned as serial date numbers. If either StartDate, EndDate, or
AltHolidays are datetime arrays, H is returned as a datetime array.

More About
holidays

The holidays function is based on a modern five-day workweek.

This function contains all holidays and special nontrading days for the New York Stock Exchange
from January 1, 1885 to December 31, 2070.
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Since the New York Stock Exchange was open on Saturdays before September 29, 1952, exact
closures from 1885 to 2070 include Saturday trading days. To capture these dates, use the function
nyseclosures. The results from holidays and nyseclosures are identical if the
WorkWeekFormat in nyseclosures is 'Modern'.

See Also
busdate | createholidays | isbusday | lbusdate | nyseclosures | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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horzcat
Concatenate financial time series objects horizontally

Note horzcat is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
horzcat

Description
horzcat implements horizontal concatenation of financial time series objects. horzcat essentially
merges the data columns of the financial time series objects. The time series objects must contain the
exact same dates and times.

When multiple instances of a data series name occur, concatenation adds a suffix to the current
names of the data series. The suffix has the format _objectname<n>, where n is a number indicating
the position of the time series, from left to right, in the concatenation command. The n part of the
suffix appears only when there is more than one instance of a particular data series name.

The description fields are concatenated as well. They are separated by two forward slashes (//).

Examples
Construct three financial time series, each containing a data series named DataSeries:
firstfts  = fints((today:today+4)', (1:5)','DataSeries','d')
secondfts = fints((today:today+4)', (11:15)','DataSeries','d')
thirdfts  = fints((today:today+4)', (21:25)','DataSeries','d')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
firstfts = 
 
    desc:  (none)
    freq:  Daily (1)

    'dates:  (5)'    'DataSeries:  (5)'
    '02-Oct-2017'    [               1]
    '03-Oct-2017'    [               2]
    '04-Oct-2017'    [               3]
    '05-Oct-2017'    [               4]
    '06-Oct-2017'    [               5]

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
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> In fints/display (line 66) 
 
secondfts = 
 
    desc:  (none)
    freq:  Daily (1)

    'dates:  (5)'    'DataSeries:  (5)'
    '02-Oct-2017'    [              11]
    '03-Oct-2017'    [              12]
    '04-Oct-2017'    [              13]
    '05-Oct-2017'    [              14]
    '06-Oct-2017'    [              15]

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
thirdfts = 
 
    desc:  (none)
    freq:  Daily (1)

    'dates:  (5)'    'DataSeries:  (5)'
    '02-Oct-2017'    [              21]
    '03-Oct-2017'    [              22]
    '04-Oct-2017'    [              23]
    '05-Oct-2017'    [              24]
    '06-Oct-2017'    [              25]

Concatenate the time series horizontally into a new financial time series newfts:

newfts  = [firstfts secondfts thirdfts secondfts]

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/horzcat (line 56) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
newfts = 
 
    desc:   //  //  // 
    freq:  Daily (1)

    'dates:  (5)        '    'DataSeries_firstfts'    'DataSeries_secondft'    'DataSeries_thirdfts'    'DataSeries_secondft'
    '                   '    ':  (5)             '    's2:  (5)           '    ':  (5)             '    's4:  (5)           '
    '02-Oct-2017'            [                  1]    [                 11]    [                 21]    [                 11]
    '03-Oct-2017'            [                  2]    [                 12]    [                 22]    [                 12]
    '04-Oct-2017'            [                  3]    [                 13]    [                 23]    [                 13]
    '05-Oct-2017'            [                  4]    [                 14]    [                 24]    [                 14]
    '06-Oct-2017'            [                  5]    [                 15]    [                 25]    [                 15]

The resulting object newfts has data series names DataSeries_firstfts,
DataSeries_secondfts2, DataSeries_thirdfts, and DataSeries_secondfts4.

Verify this with the command

fieldnames(newfts)
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/fieldnames (line 21) 

ans = 
 
     'desc'
     'freq'
     'dates'
     'DataSeries_firstfts'
     'DataSeries_secondfts2'
     'DataSeries_thirdfts'
     'DataSeries_secondfts4'
     'times'

Use chfield to change the data series names.

Note If all input objects have the same frequency, the new object has that frequency as well.
However, if one of the objects concatenated has a different frequency from the others, the frequency
indicator of the resulting object is set to Unknown (0).

See Also
busdate | createholidays | isbusday | lbusdate | nyseclosures

Topics
“Merge Financial Time Series Objects” on page 14-9

Introduced before R2006a
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hour
Hour of date or time

Syntax
Hour = hour(Date)
Hour = hour( ___ ,F)

Description
Hour = hour(Date) returns the hour of the day given a serial date number or a character vector
representing a date and time.

Hour = hour( ___ ,F) returns the hour of one or more character vectors representing a date and
time using a format defined by the optional input F. Date can be an array of character vectors, where
each row corresponds to one character vector, or a one-dimensional cell array of character vectors.
All the character vectors in Date must have the same format F. F must designate a supported date
format symbol. For more information on supported date formats, see datestr.

Examples

Determine the Hour of the Day for Various Dates

Find the hour of the day for Date using a serial date number.

Hour = hour(730473.5584278936)

Hour = 13

Find the hour of the day for Date using a character vector representing a date and time.

Hour = hour('19-dec-1999 13:24:08.17','dd-mmm-yyyy HH:MM:SS')

Hour = 13

Input Arguments
Date — Date to determine hour
serial date number | character vector | cell array of character vectors

Date to determine hour, specified as a serial date number or a character vector representing a date
and time.

Date can be an array of character vectors representing a date and time, where each row corresponds
to one character vector, or a one-dimensional cell array of character vectors. All of the character
vectors in Date must have the same format F. F must designate a supported date format symbol. For
more information on supported date formats, see datestr
Data Types: single | double | char | cell
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F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol for input
argument Date. For more information on supported character vector formats, see datestr. Note,
formats with 'Q' are not accepted.
Data Types: char

Output Arguments
Hour — Hour of day
nonnegative number

Hour of the day, returned as a nonnegative number.

See Also
datevec | minute | second

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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inforatio
Calculate information ratio for one or more assets

Syntax
inforatio(Asset,Benchmark)
[Ratio,TE] = inforatio(Asset,Benchmark)

Description
inforatio(Asset,Benchmark) computes the information ratio for each asset relative to the
Benchmark.

[Ratio,TE] = inforatio(Asset,Benchmark) computes the information ratio and tracking error
for each asset relative to the Benchmark.

Examples

Compute Information Ratio

This example show how to calculate the information ratio using inforatio with example data,
where the mean return of the market series is used as the return of the benchmark.

You can use inforatio to compute the information ratio for the given asset return data and the riskless
asset return.

load FundMarketCash 
Returns = tick2ret(TestData);
Benchmark = Returns(:,2);
InfoRatio = inforatio(Returns, Benchmark)

InfoRatio = 1×3

    0.0432       NaN   -0.0315

Since the market series has no risk relative to itself, the information ratio for the second series is
undefined (which is represented as NaN in MATLAB®.

Use Information Ratio to Compute Tracking Error

This example show how to calculate the tracking error using inforatio with example data, where
the mean return of the market series is used as the return of the benchmark.

Given an asset or portfolio of assets and a benchmark, the relative standard deviation of returns
between the asset or portfolio of assets and the benchmark is called tracking error.
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load FundMarketCash 
Returns = tick2ret(TestData);
Benchmark = Returns(:,2);
[InfoRatio, TrackingError] = inforatio(Returns, Benchmark)

InfoRatio = 1×3

    0.0432       NaN   -0.0315

TrackingError = 1×3

    0.0187         0    0.0390

Tracking error, also know as active risk, measures the volatility of active returns. Tracking error is a
useful measure of performance relative to a benchmark since it is in units of asset returns. For
example, the tracking error of 1.87% for the fund relative to the market in this example is reasonable
for an actively managed, large-cap value fund.

Input Arguments
Asset — Asset returns
matrix

Asset returns, specified as a NUMSAMPLES x NUMSERIES matrix with NUMSAMPLES observations of
asset returns for NUMSERIES asset return series.
Data Types: double

Benchmark — Returns for a benchmark asset
vector

Returns for a benchmark asset, specified as a NUMSAMPLES vector of returns for a benchmark asset.
The periodicity must be the same as the periodicity of Asset. For example, if Asset is monthly data,
then Benchmark should be monthly returns.
Data Types: double

Output Arguments
Ratio — Information ratios
vector

Information ratios, returned as a 1 x NUMSERIES row vector of information ratios for each series in
Asset. Any series in Asset with a tracking error of 0 has a NaN value for its information ratio.

TE — Tracking errors
vector

Tracking errors, returned as a 1 x NUMSERIES row vector of tracking errors, that is, the standard
deviation of Asset relative to Benchmark returns, for each series.

Note NaN values in the data are ignored. If the Asset and Benchmark series are identical, the
information ratio is NaN since the tracking error is 0. The information ratio and the Sharpe ratio of an
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Asset versus a riskless Benchmark (a Benchmark with standard deviation of returns equal to 0) are
equivalent. This equivalence is not necessarily true if the Benchmark is risky.

References
[1] Grinold, R. C. and Ronald N. Kahn. Active Portfolio Management. 2nd. Edition. McGraw-Hill, 2000.

[2] Treynor, J. and Fischer Black. "How to Use Security Analysis to Improve Portfolio Selection."
Journal of Business. Vol. 46, No. 1, January 1973, pp. 66–86.

See Also
portalpha | sharpe

Topics
“Performance Metrics Overview” on page 7-2

Introduced in R2006b
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irr
Internal rate of return

Syntax
Return = irr(CashFlow)
[Return,AllRates] = irr( ___ )

Description
Return = irr(CashFlow) calculates the internal rate of return for a series of periodic cash flows.

irr uses the following conventions:

• If one or more internal rates of returns (warning if multiple) are strictly positive rates, Return
sets to the minimum.

• If there is no strictly positive rate of returns, but one or multiple (warning if multiple) returns are
nonpositive rates, Return sets to the maximum.

• If no real-valued rates exist, Return sets to NaN (no warnings).

[Return,AllRates] = irr( ___ ) calculates the internal rate of return and a vector of all internal
rates for a series of periodic cash flows.

Examples

Find a Single and Multiple Internal Rates of Return

Find the internal rate of return for a simple investment with a unique positive rate of return. The
initial investment is $100,000 and the following cash flows represent the yearly income from the
investment

Year 1 $10,000

Year 2 $20,000

Year 3 $30,000

Year 4 $40,000

Year 5 $50,000

Calculate the internal rate of return on the investment:

Return = irr([-100000 10000 20000 30000 40000 50000])

Return = 0.1201

If the cash flow payments were monthly, then the resulting rate of return is multiplied by 12 for the
annual rate of return.
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Find Multiple Internal Rates of Return

Find the internal rate of return for multiple rates of return. The project has the following cash flows
and a market rate of 10%.

CashFlow = [-1000 6000 -10900 5800]

CashFlow = 1×4

       -1000        6000      -10900        5800

[Return, AllRates] = irr(CashFlow)

Return = 1.0000

AllRates = 3×1

   -0.0488
    1.0000
    2.0488

The rates of return in AllRates are -4.88%, 100%, and 204.88%. Though some rates are lower and
some higher than the market rate, based on the work of Hazen, any rate gives a consistent
recommendation on the project. However, you can use a present value analysis in these kinds of
situations. To check the present value of the project, use pvvar:

PV = pvvar(CashFlow,0.10)

PV = -196.0932

The second argument is the 10% market rate. The present value is -196.0932, negative, so the project
is undesirable.

Input Arguments
CashFlow — Stream of periodic cash flows
vector | matrix

Stream of periodic cash flows, specified as a vector or matrix. The first entry in CashFlow is the
initial investment. If CashFlow is a matrix, irr handles each column of CashFlow as a separate
cash-flow stream.
Data Types: double

Output Arguments
Return — Internal rate of return
vector

Internal rate of return associated to CashFlow, returned as a vector whose entry j is an internal rate
of return for column j in CashFlow

AllRates — All the internal rates of return
serial date number | matrix
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All the internal rates of return associated with CashFlow, returned as a matrix with the same
number of columns as CashFlow and one less row. Also, column j in AllRates contains all the rates
of return associated to column j in CashFlow (including complex-valued rates).

References
[1] Brealey and Myers. Principles of Corporate Finance. McGraw-Hill Higher Education, Chapter 5,

2003.

[2] Hazen G. “A New Perspective on Multiple Internal Rates of Return.” The Engineering Economist.
Vol. 48-1, 2003, pp. 31–51.

See Also
effrr | mirr | nomrr | xirr | pvvar

Topics
“Interest Rates/Rates of Return” on page 2-14
“Analyzing and Computing Cash Flows” on page 2-14
“Performance Metrics Overview” on page 7-2

Introduced before R2006a
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isbusday
True for dates that are business days

Syntax
Busday = isbusday(Date)
Busday = isbusday( ___ ,Holiday,Weekend)

Description
Busday = isbusday(Date) returns logical true (1) if Date is a business day and logical false (0)
otherwise.

Busday = isbusday( ___ ,Holiday,Weekend), using optional input arguments, returns logical
true (1) if Date is a business day, and logical false (0) otherwise.

Examples

Determine If a Given Date Is a Business Day

Determine if Date is a business day.

Busday = isbusday('16 jun 2001')

Busday = logical
   0

Determine if a Date vector are business days.

Date = ['15 feb 2001'; '16 feb 2001'; '17 feb 2001'];
Busday = isbusday(Date)

Busday = 3x1 logical array

   1
   1
   0

Determine if a Date vector are business days using a datetime array.

Date = ['15-feb-2001'; '16-feb-2001'; '17-feb-2001'];
Busday = isbusday(datetime(Date,'Locale','en_US'))

Busday = 3x1 logical array

   1
   1
   0
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Set June 21, 2003 (a Saturday) as a business day.

Weekend = [1 0 0 0 0 0 0];
isbusday('June 21, 2003', [], Weekend)

ans = logical
   1

If the second argument, Holiday, is empty ([ ]), the default Holidays vector (generated with 
holidays and then associated to the NYSE calendar) is used.

Input Arguments
Date — Date being checked
serial date number | date character vector | datetime array

Date being checked, specified as a serial date number, date character vector, or datetime array. Date
can contain multiple dates, but they must all be in the same format. Dates are assumed to be whole
date numbers or date stamps with no fractional or time values.
Data Types: double | char | datetime

Holiday — Holidays and nontrading-day dates
non-trading day vector is determined by the routine holidays (default) | serial date number | date
character vector | datetime array

Holidays and nontrading-day dates, specified as vector.

All dates in Holiday must be the same format: either serial date numbers, or date character vectors,
or datetime arrays. (Using serial date numbers improves performance.) The holidays function
supplies the default vector.
Data Types: double | char | datetime

Weekend — Weekend days
[1 0 0 0 0 0 1] (Saturday and Sunday form the weekend) (default) | vector of length 7,
containing 0 and 1, where 1 indicates weekend days

Weekend days, specified as a vector of length 7, containing 0 and 1, where 1 indicates weekend days
and the first element of this vector corresponds to Sunday.
Data Types: double

Output Arguments
Busday — Logical true if a business day
logical 0 or 1

Logical true if a business day, returned as a logical true (1) if Date is a business day and logical false
(0) otherwise.

See Also
busdate | fbusdate | holidays | lbusdate | datetime
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Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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iscompatible
Structural equality

Note iscompatible is not recommended. Use timetable instead. For more information, see
“Convert Financial Time Series Objects fints to Timetables”.

Syntax
iscomp = iscompatible(tsobj_1,tsobj_2)

Arguments
tsobj_1, tsobj_2 A pair of financial time series objects.

Description
iscomp = iscompatible(tsobj_1,tsobj_2) returns 1 if both financial time series objects
tsobj_1 and tsobj_2 have the same dates and data series names. It returns 0 if any component is
different.

iscomp = 1 indicates that the two objects contain the same number of data points and equal
number of data series. However, the values contained in the data series can be different.

Note Data series names are case-sensitive.

See Also
isequal

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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isequal
Multiple object equality

Note isequal is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
iseq = isequal(tsobj_1,tsobj_2, ...)

Arguments
tsobj_1 ... A list of financial time series objects.

Description
iseq = isequal(tsobj_1,tsobj_2, ...) returns 1 if all listed financial time series objects
have the same dates, data series names, and values contained in the data series. It returns 0 if any of
those components is different.

Note Data series names are case-sensitive.

iseq = 1 implies that each object contains the same number of dates and the same data. Only the
descriptions can differ.

See Also
eq | iscompatible

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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isempty
True for empty financial time series objects

Note isempty is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tf = isempty(fts)

Arguments
fts Financial time series object.

Description
isempty for financial time series objects is based on the MATLAB isempty function. See isempty.

tf = isempty(fts) returns true (1) if fts is an empty financial time series object and false (0)
otherwise. An empty financial time series object has no elements, that is, length(fts) = 0.

See Also
nanmax | nanmean | nanmedian | nanmin | nanstd | nanvar

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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isfield
Check whether character vector is field name

Note isfield is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
F = isfield(tsobj,name)

Description
F = isfield(tsobj,name) returns true (1) if name is the name of a data series in tsobj.
Otherwise, isfield returns false (0).

See Also
fieldnames | getfield | setfield

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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issorted
Check whether dates and times are monotonically increasing

Note issorted is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
monod = issorted(tsobj)

Arguments
tsobj Financial time series object

Description
monod = issorted(tsobj) returns 1 if the dates and times in tsobj are monotonically increasing
or 0 if they are not.

See Also
sortfts

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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kagi
Kagi chart

Note kagi is updated to accept data input as a matrix, timetable, or table.

The syntax for kagi has changed. Previously, when using table input, the first column of dates could
be serial date numbers, date character vectors, or datetime arrays, and you were required to have
specific number of columns.

When using table input, the new syntax for kagi supports:

• No need for time information. If you want to pass in date information, use timetable input.
• No requirement of specific number of columns. However, you must provide valid column names.

kagi must contain a column named ‘price’ (case insensitive).

Syntax
kagi(Data)
h = kagi(ax,Data)

Description
kagi(Data) plots a Kagi chart from a series of prices.

h = kagi(ax,Data) adds an optional argument for ax.

Examples

Generate a Kagi Chart for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. This Kagi chart is for closing prices of the stock TMW for the most recent 21 days. Note that
the variable name of asset price is be renamed to 'Price' (case insensitive).

load SimulatedStock.mat
TMW.Properties.VariableNames{'Close'} = 'Price';
kagi(TMW(end-20:end,:))
title('Kagi Chart for TMW')
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Input Arguments
Data — Data for a series of prices
matrix | table | timetable

Data for a series of prices, specified as a matrix, table, or timetable. Timetables and tables with M
rows must contain a variable named 'Price' (case insensitive).
Data Types: double | table | timetable

ax — Valid axis object
current axes (ax = gca) (default) | axes object

(Optional) Valid axis object, specified as an axes object. The kagi plot is created in the axes specified
by ax instead of in the current axes (ax = gca). The option ax can precede any of the input
argument combinations.
Data Types: object

Output Arguments
h — Graphic handle of the figure
handle object

Graphic handle of the figure, returned as a handle object.
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See Also
timetable | table | movavg | pointfig | highlow | linebreak | priceandvol | renko |
volarea | candle

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced in R2008a
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lagts
Lag time series object

Note lagts is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = lagts(oldfts)

newfts = lagts(oldfts,lagperiod)

newfts = lagts(oldfts,lagperiod,padmode)

Arguments

oldfts Financial time series object
lagperiod Number of lag periods expressed in the frequency of the time series object
padmode Data padding value

Description
lagts delays a financial time series object by a specified time step.

newfts = lagts(oldfts) delays the data series in oldfts by one time series date entry and
returns the result in the object newfts. The end is padded with zeros, by default.

newfts = lagts(oldfts,lagperiod) shifts time series values to the right on an increasing time
scale. lagts delays the data series to happen later. lagperiod is the number of lag periods
expressed in the frequency of the time series object oldfts. For example, if oldfts is a daily time
series, lagperiod is specified in days. lagts pads the data with zeros (default).

newfts = lagts(oldfts,lagperiod,padmode) lets you pad the data with an arbitrary value,
NaN, or Inf rather than zeros by setting padmode to the desired value.

See Also
leadts

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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lbusdate
Last business date of month

Syntax
Date = lbusdate(Year,Month)
Date = lbusdate( ___ ,Holiday,Weekend,outputType)

Description
Date = lbusdate(Year,Month) returns the serial date number for the last business date of the
given year and month.

Year and Month can contain multiple values. If one contains multiple values, the other must contain
the same number of values or a single value that applies to all. For example, if Year is a 1-by-N vector
of integers, then Month must be a 1-by-N vector of integers or a single integer. Date is then a 1-by-N
vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date character vectors.

Date = lbusdate( ___ ,Holiday,Weekend,outputType) returns the serial date number for the
last business date of the given year and month using optional input arguments. The optional
argument Holiday specifies nontrading days.

If neither Holiday nor outputType are specified, Date is returned as a serial date number. If
Holiday is specified, but not outputType, then the type of the holiday variable controls the type of
date. If Holiday is a serial date number or date character vector, then Date is returned as a serial
date number.

Examples

Determine the Last Business Date of a Given Year and Month

Determine the Date using an input argument for Year and Month.

Date = lbusdate(2001, 5)

Date = 731002

datestr(Date)

ans = 
'31-May-2001'

Determine the Date using the optional input argument for outputType.

Date = lbusdate(2001, 11,[],[],'datetime')

Date = datetime
   30-Nov-2001
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Indicate that Saturday is a business day by appropriately setting the Weekend argument. May 31,
2003, is a Saturday. Use lbusdate to check that this Saturday is actually the last business day of the
month.

Weekend = [1 0 0 0 0 0 0];
Date = datestr(lbusdate(2003, 5, [], Weekend))

Date = 
'31-May-2003'

Input Arguments
Year — Year to determine occurrence of weekday
4-digit integer | vector of 4-digit integers

Year to determine occurrence of weekday, specified as a 4-digit integer or vector of 4-digit integers.
Data Types: single | double

Month — Month to determine occurrence of weekday
integer with value 1 through 12 | vector of integers with values 1 through 12

Month to determine occurrence of weekday, specified as an integer or vector of integers with values 1
through 12.
Data Types: single | double

Holiday — Holidays and nontrading-day dates
non-trading day vector is determined by the routine holidays (default) | serial date number | date
character vector | datetime array

Holidays and nontrading-day dates, specified as vector.

All dates in Holiday must be the same format: either serial date numbers, or date character vectors,
or datetime arrays. (Using serial date numbers improves performance.) The holidays function
supplies the default vector.

If Holiday is a datetime array, then Date is returned as a datetime array. If outputType is
specified, then its value determines the output type of Date. This overrides any influence of
Holiday.
Data Types: double | char | datetime

Weekend — Weekend days
[1 0 0 0 0 0 1] (Saturday and Sunday form the weekend) (default) | vector of length 7,
containing 0 and 1, where 1 indicates weekend days

Weekend days, specified as a vector of length 7, containing 0 and 1, where 1 indicates weekend days
and the first element of this vector corresponds to Sunday.
Data Types: double

outputType — Year to determine days
'datenum' (default) | character vector with values 'datenum' or 'datetime'
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A character vector specified as either 'datenum' or 'datetime'. The output Date is in serial date
format if 'datenum' is specified, or datetime format if 'datetime' is specified. By default the
output Date is in serial date format, or match the format of Holiday, if specified.
Data Types: char

Output Arguments
Date — Date for the last business date of given year and month
serial date number | date character vector | datetime array

Date for the last business date of a given year and month, returned as a serial date number, date
character vector, or datetime array.

If neither Holiday nor outputType are specified, Date is returned as a serial date number. If
Holiday is specified, but not outputType, then the type of the holiday variable controls the type of
date:

• If Holiday is a serial date number or date character vector, then Date is returned as a serial date
number

• If Holiday is a datetime array, then Date is returned as a datetime array.

.

See Also
busdate | eomdate | fbusdate | holidays | isbusday | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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leadts
Lead time series object

Note leadts is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = leadts(oldfts)

newfts = leadts(oldfts,leadperiod)

newfts = leadts(oldfts,leadperiod,padmode)

Arguments

oldfts Financial time series object.
leadperiod Number of lead periods expressed in the frequency of the time series object.
padmode Data padding value.

Description
leadts advances a financial time series object by a specified time step.

newfts = leadts(oldfts) advances the data series in oldfts by one time series date entry and
returns the result in the object newfts. The end will be padded with zeros, by default.

newfts = leadts(oldfts,leadperiod) shifts time series values to the left on an increasing time
scale. leadts advances the data series to happen at an earlier time. leadperiod is the number of
lead periods expressed in the frequency of the time series object oldfts. For example, if oldfts is a
daily time series, leadperiod is specified in days. leadts pads the data with zeros (default).

newfts = leadts(oldfts,leadperiod,padmode) lets you pad the data with an arbitrary value,
NaN, or Inf rather than zeros by setting padmode to the desired value.

See Also
lagts

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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length
Get number of dates (rows)

Note length is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
lenfts = length(tsobj)

Description
lenfts = length(tsobj) returns the number of dates (rows) in the financial time series object
tsobj. This is the same as issuing lenfts = size(tsobj, 1).

See Also
size | length

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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lifetableconv
Convert life table series into life tables with forced termination

Syntax
[qx,lx,dx] = lifetableconv(x0,lx0)

[qx,lx,dx] = lifetableconv(x0,y0,y0type)

Description
[qx,lx,dx] = lifetableconv(x0,lx0) converts life table with ages x0 and survival counts lx0
into life tables with termination.

[qx,lx,dx] = lifetableconv(x0,y0,y0type) converts life table with ages x0 and series y0,
specified by the optional argument y0type, into life tables with termination.

Examples

Convert Life Table Series into Life Tables with Forced Termination

Load the life table data file.

load us_lifetable_2009

Convert life table series into life tables with forced termination.

[qx,lx,dx] = lifetableconv(x,lx);
display(qx(1:20,:))

    0.0064    0.0070    0.0057
    0.0004    0.0004    0.0004
    0.0003    0.0003    0.0002
    0.0002    0.0002    0.0002
    0.0002    0.0002    0.0001
    0.0001    0.0002    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0002    0.0002    0.0002
    0.0003    0.0004    0.0002
    0.0004    0.0005    0.0002
    0.0005    0.0006    0.0003
    0.0005    0.0007    0.0003
    0.0006    0.0009    0.0004
    0.0007    0.0010    0.0004

display(lx(1:20,:))
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   1.0e+05 *

    1.0000    1.0000    1.0000
    0.9936    0.9930    0.9943
    0.9932    0.9926    0.9939
    0.9930    0.9923    0.9937
    0.9927    0.9920    0.9935
    0.9926    0.9919    0.9933
    0.9924    0.9917    0.9932
    0.9923    0.9916    0.9931
    0.9922    0.9914    0.9930
    0.9921    0.9913    0.9929
    0.9920    0.9912    0.9928
    0.9919    0.9911    0.9927
    0.9918    0.9910    0.9926
    0.9917    0.9909    0.9925
    0.9915    0.9907    0.9923
    0.9912    0.9903    0.9921
    0.9908    0.9898    0.9919
    0.9904    0.9892    0.9916
    0.9899    0.9885    0.9913
    0.9892    0.9876    0.9909

display(dx(1:20,:))

  637.2266  698.8750  572.6328
   40.4062   43.9297   36.7188
   27.1875   30.0938   24.1406
   20.7656   23.0781   18.3359
   15.9141   17.2109   14.5625
   14.8672   16.3125   13.3516
   13.3672   14.7891   11.8750
   12.1328   13.3828   10.8203
   10.8125   11.6094    9.9844
    9.4609    9.5781    9.3438
    8.6172    8.1328    9.1172
    9.2656    8.8359    9.7188
   12.5938   13.5078   11.6328
   19.1016   22.9844   15.0234
   27.6719   35.5938   19.3516
   36.6328   48.5703   24.0547
   45.0156   60.7109   28.4844
   53.1406   72.8906   32.2812
   60.8984   85.1172   35.2578
   68.3438   97.2266   37.6875

Plot the qx series and display the legend. The series qx is the conditional probability that a person at
age x will die between age x and the next age in the series.

plot(x,log(qx))
legend(series)
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Convert the Life Table dx Series After Fitting and Generating the Life Table Series

Load the life table data file.

load us_lifetable_2009

Calibrate life table from survival data with the default Heligman-Pollard parametric model.

a = lifetablefit(x,lx)

a = 8×3

    0.0005    0.0006    0.0004
    0.0592    0.0819    0.0192
    0.1452    0.1626    0.1048
    0.0007    0.0011    0.0007
    6.2853    6.7641    1.1037
   24.1386   24.2894   53.1848
    0.0000    0.0000    0.0000
    1.0971    1.0987    1.1100

Generate life table series from the calibrated mortality model.

qx = lifetablegen((0:120),a);
display(qx(1:20,:))
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    0.0063    0.0069    0.0057
    0.0005    0.0006    0.0004
    0.0002    0.0003    0.0002
    0.0002    0.0002    0.0002
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0002    0.0002    0.0001
    0.0002    0.0002    0.0002
    0.0002    0.0003    0.0002
    0.0003    0.0004    0.0002
    0.0004    0.0005    0.0002
    0.0005    0.0006    0.0003
    0.0006    0.0008    0.0003
    0.0007    0.0009    0.0003

Convert life table series into life tables with forced termination.

[~,~,dx] = lifetableconv((0:120),qx,'qx');
display(dx(1:20,:))

  630.9935  686.9471  571.6100
   48.7919   55.1033   40.9870
   24.8017   26.3778   23.6166
   17.0833   17.5877   17.0317
   13.6183   13.8188   13.6142
   11.8664   12.0076   11.6314
   10.9785   11.1573   10.4905
   10.5999   10.8605    9.9488
   10.5760   10.9396    9.8952
   10.8792   11.3613   10.2718
   11.6084   12.2508   11.0419
   12.9918   13.9270   12.1764
   15.3470   16.8833   13.6482
   18.9922   21.6788   15.4301
   24.1370   28.7659   17.4943
   30.7981   38.3208   19.8133
   38.7691   50.1484   22.3602
   47.6516   63.6906   25.1097
   56.9291   78.1271   28.0384
   66.0577   92.5264   31.1256

Plot the dx series and display the legend. The series dx is the number of people who die out of
100,000 alive at birth between age x and the next age in the series.

plot((0:119),dx(1:end-1,:));
legend(series, 'location', 'northwest');
title('\bfLife Table Yearly Decrements');
xlabel('Age');
ylabel('Number Dying within a Given Year');
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Input Arguments
x0 — Increasing ages for raw data
vector of nonnegative integer values

Increasing ages for raw data, specified as nonnegative integer values in an N0 vector.

The vector of ages x must contain nonnegative integer values. If the input series is the discrete
survival function lx, then the starting age need only be nonnegative. Otherwise, the starting age
must be 0.
Data Types: double

lx0 — Collection of num standardized survivor series
matrix

Collection of num standardized survivor series, specified as an N0-by-num matrix. The input lx0 series
is the number of people alive at age x, given 100,000 alive at birth. Values of 0 or NaN in the input
table lx0 are ignored.
Data Types: double

y0 — Collection of num life table series to be converted
matrix

19 Functions

19-1000



Collection of num life table series to be converted, specified as an N0-by-num matrix. The default y0
series is lx0.
Data Types: double

y0type — Type of mortality series for input y0 with default 'lx'
'lx' (default) | character vector with values 'qx', 'lx', 'dx'

(Optional) Type of mortality series for input y0, specified as a character vector with one of the
following values:

• 'qx' — Input is a table of discrete hazards (qx).
• 'lx' — Input is a table of discrete survival counts (lx).
• 'dx' — Input is a table of discrete decrements (dx).

Whereas the output series have forced termination, the input series (y0) can have one of several
types of termination:

• Natural termination runs out to the last person so that lx goes to 0, qx goes to 1, and dx goes to
0. For more information, see “Natural Termination” on page 19-1002.

• Truncated termination stops at a terminal age so that lx is positive, qx is less than 1, and dx is
positive. Any ages after the terminal age are NaN values. For more information, see “Truncated
Termination” on page 19-1003.

Data Types: char

Output Arguments
qx — Discrete hazard function
matrix

Discrete hazard function, returned as an N0-by-num matrix with forced termination. For more
information, see “Forced Termination” on page 19-1002.

The series qx is the conditional probability that a person at age x will die between age x and the next
age in the series.

lx — Discrete survival function
matrix

Discrete survival function, returned as an N0-by-num matrix with forced termination. For more
information, see “Forced Termination” on page 19-1002.

The series lx is the number of people alive at age x, given 100,000 alive at birth.

dx — Discrete decrements function
matrix

Discrete decrements function, returned as an N0-by-num matrix with forced termination. For more
information, see “Forced Termination” on page 19-1002.

The series dx is the number of people who die out of 100,000 alive at birth, between age x and the
next age in the series.
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More About
Forced Termination

Most modern life tables have “forced” termination. Forced termination means that the last row of the
life table applies for all persons with ages on or after the last age in the life table.

This sample illustrates forced termination.

In this case, the last row of the life table applies for all persons aged 100 or older. Specifically, qx
probabilities are 1qx for ages less than 100 and, technically, ∞qx for age 100.

Forced termination has terminal age values that apply to all ages after the terminal age so that lx is
positive, qx is 1, and dx is positive. Ages after the terminal age are NaN values, although lx and dx
can be 0 and qx can be 1 for input series. Forced termination is triggered by a naturally terminating
series, the last age in a truncated series, or the first NaN value in a series.

Natural Termination

Before 1970, life tables were often published with data that included all ages for which persons
associated with a given series were still alive. Tables in this form have "natural" termination. In
natural termination, the last row of the life table for each series counts the deaths or probabilities of
deaths of the last remaining person at the corresponding age. Tables in this form can be problematic
due to the granularity of the data and the fact that groups of series can terminate at distinct ages.
Natural termination is illustrated in the following sample of the last few years of a life table.
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This form for life tables poses a number of issues that go beyond the obvious statistical issues. First,
the lx table on the left terminates at ages 108, 109, 109, and 113 for the four series in the table.
Technically, the numbers after these ages are 0, but can also be NaN values because no person is alive
after these terminating ages. Second, the probabilities qx on the right terminate with fluctuating
probabilities that go from 0 to 1 in some cases. In this case, however, all probabilities are 1qx
probabilities (unlike the forced termination probabilities). You can argue that the probabilities after
the ages of termination can be 1 (anyone alive at this age is expected to die in the next year), 0 (the
age lies outside the support of the probability distribution), or NaN values.

Truncated Termination

Truncated termination occurs with truncation of life tables at an arbitrary age. For example, from
1970–1990, United States life tables truncated at age 85. This format is problematic because life
table probabilities must either terminate with probability 1 (forced termination) or discard data that
exceeds the terminating age. This sample of the last few years of a life table illustrates truncated
termination. The raw data for this table is the lx series. The qx series is derived from this series.

This life table format poses problems for termination because, for example, over 27% of the
population for the fourth lx series is still alive at age 85. To claim that the probability of dying for all
ages after age 85 is 100% might be true but is uninformative. Notwithstanding the statistical issues,
however, tables in this form are completed by forced termination.

References
[1] Arias, E. “United States Life Tables.” National Vital Statistics Reports, U.S. Department of Health

and Human Services. Vol. 62, No. 7, 2009.
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lifetablefit
Calibrate life table from survival data with parametric models

Syntax
[a,elx] = lifetablefit(x,lx)
[a,elx] = lifetablefit( ___ ,lifemodel,objtype,interpmethod,a0)

Description
[a,elx] = lifetablefit(x,lx) calibrates a life table, x, from survival data, lx, using
parametric models.

[a,elx] = lifetablefit( ___ ,lifemodel,objtype,interpmethod,a0) calibrates a life
table, x, from survival data, lx, using parametric models using optional arguments for lifemodel,
objtype, interpmethod, and a0.

Examples

Calibrate Life Table from Survival Data Using a Heligman-Pollard Parametric Model

Load the life table data file.

load us_lifetable_2009

Calibrate the life table from survival data using the default heligman-pollard parametric model.

[a,elx] = lifetablefit(x,lx);
display(a)

a = 8×3

    0.0005    0.0006    0.0004
    0.0592    0.0819    0.0192
    0.1452    0.1626    0.1048
    0.0007    0.0011    0.0007
    6.2853    6.7641    1.1037
   24.1386   24.2894   53.1848
    0.0000    0.0000    0.0000
    1.0971    1.0987    1.1100

display(elx(1:20,:))

   1.0e+05 *

    1.0000    1.0000    1.0000
    0.9937    0.9931    0.9943
    0.9932    0.9926    0.9939
    0.9930    0.9923    0.9936
    0.9928    0.9921    0.9935
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    0.9926    0.9920    0.9933
    0.9925    0.9919    0.9932
    0.9924    0.9918    0.9931
    0.9923    0.9917    0.9930
    0.9922    0.9916    0.9929
    0.9921    0.9914    0.9928
    0.9920    0.9913    0.9927
    0.9919    0.9912    0.9926
    0.9917    0.9910    0.9924
    0.9915    0.9908    0.9923
    0.9913    0.9905    0.9921
    0.9910    0.9901    0.9919
    0.9906    0.9896    0.9917
    0.9901    0.9890    0.9914
    0.9895    0.9882    0.9912

Plot the qx series and display the legend. The series qx is the conditional probability that a person at
age x will die between age x and the next age in the series

plot(x,log(qx))
legend(series)

Input Arguments
x — Increasing ages for raw data
vector of nonnegative integers
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Increasing ages for raw data, specified as a N vector for nonnegative integers.
Data Types: double

lx — Collection of num discrete survival counts
matrix

Collection of num discrete survival counts, specified as an N-by-num matrix. The input lx series is the
number of people alive at age x, given 100,000 alive at birth. Values of 0 or NaN in the input table lx
are ignored.
Data Types: double

lifemodel — Parametric mortality model type
'heligman-pollard' (default) | character vector with values 'heligman-pollard', 'heligman-
pollard-2''heligman-pollard-3', 'gompertz', 'makeham', 'siler'

(Optional) Parametric mortality model type, specified as a character vector with one of the following
values:

• 'heligman-pollard' — Eight-parameter Heligman-Pollard model (version 1), specified in terms
of the discrete hazard function:

q(x)
1− q(x) = A(x + B)C + Dexp(− E(log x

F )
2
) + GHX

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'heligman-pollard-2' — Eight-parameter Heligman-Pollard model (version 2), specified in

terms of the discrete hazard function:

q(x)
1− q(x) = A(x + B)C + Dexp(− E(log x

F )
2
) + GHX

1 + GHX

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'heligman-pollard-3' — Eight-parameter Heligman-Pollard model (version 3), specified in

terms of the discrete hazard function:

q(x) = A(x + B)C + Dexp(− E(log x
F )

2
) + GHX

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'gompertz' — Two-parameter Gompertz model, specified in terms of the continuous hazard

function:

h(x) = A exp(Bx)

for ages x ≥ 0, with parameters A, B ≥ 0.
• 'makeham' — Three-parameter Gompertz-Makeham model, specified in terms of the continuous

hazard function:

h(x) = A exp(Bx) + C

for ages x ≥ 0, with parametersA, B, C ≥ 0.
• 'siler' — Five-parameter Siler model, specified in terms of the continuous hazard function:
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h(x) = A exp(Bx) + C + D exp(-Ex)

for ages x ≥ 0, with parameters A, B, C, D, E ≥ 0.

Data Types: char

objtype — Objective for nonlinear least-squares estimation
'ratio' (default) | character vector with values 'ratio' 'logratio'

(Optional) Objective for nonlinear least-squares estimation, specified as a character vector with the
following values:

• 'ratio' — Given raw data qx and model estimates q x for x = 1, ... , N, the first objective (which
is the preferred objective) has the form

Φ = ∑
x = 1

N
1−

q x
qx

2

• 'logratio' — Given raw data qx and model estimates q x for x = 1, ... , N, the second objective
has the form

Φ = ∑
x = 1

N
log(q x)− log(qx)

2

Data Types: char

interpmethod — Interpolation method to use for abridged life table inputs
'cubic' (default) | character vector with values 'cubic', 'linear', 'none'

(Optional) Interpolation method to use for abridged life table inputs, specified as a character vector
with the following values:

• 'cubic' — Cubic interpolation that uses 'pchip' method in interp1.
• 'linear' — Linear interpolation.
• 'none' — No interpolation.

Note If the ages in x are not consecutive years and interpolation is set to 'none', then the estimates
for the parameters are suitable only for the age vector x.

If you use the parameter estimates to compute life table values for arbitrary years, interpolate using
the default 'cubic' method.

Interpolation with abridged life tables forms internal interpolated full life tables, which usually
improves model fits.

Data Types: char

a0 — Initial parameter estimate to be applied to all series
vector

(Optional) Initial parameter estimate to be applied to all series, specified as a numparam vector. This
vector must conform to the number of parameters in the model specified using the lifemodel
argument.
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Data Types: double

Output Arguments
a — Parameter estimates for each num series
matrix

Parameter estimates for each num series, returned as a numparam-by-num matrix.

elx — Estimated collection of num standardized survivor series
matrix

Estimated collection of num standardized survivor series, returned as an N-by-num matrix. The elx
output series is the number of people alive at age x, given 100,000 alive at birth. Values of 0 or NaN in
the input table lx are ignored.
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[1] Arias, E. “United States Life Tables.” National Vital Statistics Reports, U.S. Department of Health

and Human Services. Vol. 62, No. 7, 2009.
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1992, pp. 77–99.
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New Mode of Determining the Value of Life Contingencies.” Philosophical Transactions of the
Royal Society. Vol. 115, 1825, pp. 513–582.

[4] Heligman, L. M. A., and J. H. Pollard. “The Age Pattern of Mortality.” Journal of the Institute of
Actuaries Vol. 107, Pt. 1, 1980, pp. 49–80.

[5] Makeham, W. M. “On the Law of Mortality and the Construction of Annuity Tables.” Journal of the
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lifetablegen
Generate life table series from calibrated mortality model

Syntax
[qx,lx,dx] = lifetablegen(x,a)
[qx,lx,dx] = lifetablegen(x,a,lifemodel)

Description
[qx,lx,dx] = lifetablegen(x,a) generates a life table series from a calibrated mortality
model.

[qx,lx,dx] = lifetablegen(x,a,lifemodel) generates a life table series from a calibrated
mortality model using the optional argument for lifemodel.

Examples

Generate Life Table Series from a Calibrated Mortality Model for Heligman-Pollard

Load the life table data file.

load us_lifetable_2009

Calibrate the life table from survival data using the default heligman-pollard parametric model.

a = lifetablefit(x, lx)

a = 8×3

    0.0005    0.0006    0.0004
    0.0592    0.0819    0.0192
    0.1452    0.1626    0.1048
    0.0007    0.0011    0.0007
    6.2853    6.7641    1.1037
   24.1386   24.2894   53.1848
    0.0000    0.0000    0.0000
    1.0971    1.0987    1.1100

Generate a life table series from the calibrated mortality model.

qx = lifetablegen(x,a);
display(qx(1:20,:))

    0.0063    0.0069    0.0057
    0.0005    0.0006    0.0004
    0.0002    0.0003    0.0002
    0.0002    0.0002    0.0002
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
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    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0002    0.0002    0.0001
    0.0002    0.0002    0.0002
    0.0002    0.0003    0.0002
    0.0003    0.0004    0.0002
    0.0004    0.0005    0.0002
    0.0005    0.0006    0.0003
    0.0006    0.0008    0.0003
    0.0007    0.0009    0.0003

Plot the qx series and display the legend. The series qx is the conditional probability that a person at
age x will die between age x and the next age in the series.

plot(x,log(qx))
legend(series)

Prepare Life Table Data Using the qx Series and Generate the qx Life Table

Load the life table data file.
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load us_lifetable_2009

Convert the life table series into life tables with forced termination.

[~, lx] = lifetableconv(x, qx, 'qx');

Calibrate the life table from survival data using the default heligman-pollard parametric model.

a = lifetablefit(x, lx)

a = 8×3

    0.0005    0.0006    0.0004
    0.0592    0.0819    0.0192
    0.1452    0.1626    0.1048
    0.0007    0.0011    0.0007
    6.2855    6.7638    1.1158
   24.1384   24.2895   52.6087
    0.0000    0.0000    0.0000
    1.0971    1.0987    1.1099

Generate a life table series from the calibrated mortality model.

qx = lifetablegen((0:100), a)

qx = 101×3

    0.0063    0.0069    0.0057
    0.0005    0.0006    0.0004
    0.0002    0.0003    0.0002
    0.0002    0.0002    0.0002
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
    0.0001    0.0001    0.0001
      ⋮

Plot the qx series and display the legend. The series qx is the conditional probability that a person at
age x will die between age x and the next age in the series.

plot((0:100), log(qx));
legend(series, 'location', 'southeast');
title('Conditional Probability of Dying within One Year of Current Age');
xlabel('Age');
ylabel('Log Probability');
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Input Arguments
x — Increasing ages for raw data
vector of nonnegative integers

Increasing ages for raw data, specified as a N vector of nonnegative integer values. The ages must
start at 0 (birth).
Data Types: double

a — Model parameters for num models
matrix

Model parameters for num models, specified as a numparam-by-num matrix, where the number of
parameters (numparam) depends on the model specified using the lifemodel argument.
Data Types: double

lifemodel — Parametric mortality model type
'heligman-pollard' (default) | character vector with values 'heligman-pollard', 'heligman-
pollard-2''heligman-pollard-3', 'gompertz', 'makeham', 'siler'

(Optional) Parametric mortality model type, specified as a character vector with one of the following
values:
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• 'heligman-pollard' — Eight-parameter Heligman-Pollard model (version 1), specified in terms
of the discrete hazard function:

q(x)
1− q(x) = A(x + B)C + Dexp(− E(log x

F )
2
) + GHX

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'heligman-pollard-2' — Eight-parameter Heligman-Pollard model (version 2), specified in

terms of the discrete hazard function:

q(x)
1− q(x) = A(x + B)C + Dexp(− E(log x

F )
2
) + GHX

1 + GHX

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'heligman-pollard-3' — Eight-parameter Heligman-Pollard model (version 3), specified in

terms of the discrete hazard function:

q(x) = A(x + B)C + Dexp(− E(log x
F )

2
) + GHX

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'gompertz' — Two-parameter Gompertz model, specified in terms of the continuous hazard

function:

h(x) = A exp(Bx)

for ages x ≥ 0, with parameters A, B ≥ 0.
• 'makeham' — Three-parameter Gompertz-Makeham model, specified in terms of the continuous

hazard function:

h(x) = A exp(Bx) + C

for ages x ≥ 0, with parametersA, B, C ≥ 0.
• 'siler' — Five-parameter Siler model, specified in terms of the continuous hazard function:

h(x) = A exp(Bx) + C + D exp(-Ex)

for ages x ≥ 0, with parameters A, B, C, D, E ≥ 0.

Data Types: char

Output Arguments
qx — Conditional probabilities of dying for N ages and num series
matrix

Conditional probabilities of dying for N ages and num series, returned as an N-by-num matrix. The
series qx is the conditional probability that a person at age x will die between age x and the next age
in the series. For the last age, qx represents probabilities or counts for all ages after the last age.

The last row of the N-by-num output for qx is the values for all ages on or after the last age in x (due
to “Forced Termination” on page 19-1014). Therefore, the last row of qx contains 1 (100% probability
of dying on or after the last age).
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lx — Survival counts for N ages and num series
matrix

Survival counts for N ages and num series, returned as an N-by-num matrix. The series lx is the
number of people alive at age x, given 100,000 alive at birth.

dx — Decrement counts for N ages and num series
matrix

Decrement counts for N ages and num series, returned as an N-by-num matrix. The series dx is the
number of people out of 100,000 alive at birth who die between age x and the next age in the series.
For the last age, dx represent probabilities or counts for all ages after the last age.

The last row of the N-by-num output for dx are values for all ages on or after the last age in x (due to
“Forced Termination” on page 19-1014). Therefore, the last row of dx contains the remaining count of
100,000 people alive at birth who have not died by the last age.

More About
Forced Termination

Most modern life tables have “forced” termination. Forced termination means that the last row of the
life table applies for all persons with ages on or after the last age in the life table.

This sample illustrates forced termination.

In this case, the last row of the life table applies for all persons aged 100 or older. Specifically, qx
probabilities are 1qx for ages less than 100 and, technically, ∞qx for age 100.

Forced termination has terminal age values that apply to all ages after the terminal age so that lx is
positive, qx is 1, and dx is positive. Ages after the terminal age are NaN values, although lx and dx
can be 0 and qx can be 1 for input series. Forced termination is triggered by a naturally terminating
series, the last age in a truncated series, or the first NaN value in a series.
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[5] Makeham, W. M. “On the Law of Mortality and the Construction of Annuity Tables.” Journal of the
Institute of Actuaries Vol. 8, 1860, pp. 301–310.

[6] Siler, W. “A Competing-Risk Model for Animal Mortality.” Ecology Vol. 60, pp. 750–757, 1979.

[7] Siler, W. “Parameters of Mortality in Human Populations with Widely Varying Life Spans.”
Statistics in Medicine Vol. 2, 1983, pp. 373–380.

See Also
lifetablefit | lifetableconv

Topics
“Case Study for Life Tables Analysis” on page 2-42
“About Life Tables” on page 2-40

Introduced in R2015a
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linebreak
Line break chart

Note linebreak is updated to accept data input as a matrix, timetable, or table.

The syntax for linebreak has changed. Previously, when using table input, the first column of dates
could be serial date numbers, date character vectors, or datetime arrays, and you were required to
have specific number of columns.

When using table input, the new syntax for linebreak supports:

• No need for time information. If you want to pass in date information, use timetable input.
• No requirement of specific number of columns. However, you must provide valid column names.

linebreak must contain a column named ‘price’ (case insensitive).

Syntax
linebreak(Data)
h = linebreak(ax,Data)

Description
linebreak(Data) plots the asset data, in a line break chart.

h = linebreak(ax,Data) adds an optional argument for ax.

Examples

Generate a Line Break Chart for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. This Linebreak chart is for closing prices of the stock TMW for the most recent 21 days. Note
that the variable name of asset price is be renamed to 'Price' (case insensitive).

load SimulatedStock.mat
TMW.Properties.VariableNames{'Close'} = 'Price';
linebreak(TMW(end-20:end,:))
title('Line Break Chart for TMW')
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Input Arguments
Data — Data for a series of prices
matrix | table | timetable

Data for a series of prices, specified as a matrix, table, or timetable. Timetables and tables with M
rows must contain a variable named 'Price' (case insensitive).
Data Types: double | table | timetable

ax — Valid axis object
current axes (ax = gca) (default) | axes object

(Optional) Valid axis object, specified as an axes object. The linebreak plot is created in the axes
specified by ax instead of in the current axes (ax = gca). The option ax can precede any of the input
argument combinations.
Data Types: object

Output Arguments
h — Graphic handle of the figure
handle object

Graphic handle of the figure, returned as a handle object.
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See Also
timetable | table | movavg | pointfig | highlow | kagi | priceandvol | renko | volarea |
candle

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced in R2008a
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llow
Lowest low

Note Using a fints object for the Data argument of llow is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
values = llow(Data)
values = llow( ___ ,Name,Value)

Description
values = llow(Data) generates a vector of lowest low values from the series of low prices for the
past n periods.

values = llow( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Lowest Low for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
values = llow(TMW);
plot(values.Time,values.LowestLow)
title('Lowest Low for TMW')
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Input Arguments
Data — Data for low prices
matrix | table | timetable

Data for low prices, specified as a matrix, table, or timetable. Timetables and tables with M rows must
contain a variable named 'Low' (case insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: values = llow(TMW_LOW,'NumPeriods',10)

NumPeriods — Moving window for the lowest low calculation
14 (default) | positive integer

Moving window for the lowest low calculation, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar positive integer.
Data Types: double

19 Functions

19-1020



Output Arguments
values — Lowest low series
matrix | table | timetable

Lowest low series, returned with the same number of rows (M) and the same type (matrix, table, or
timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995.

See Also
timetable | table | hhigh

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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log
Natural logarithm for financial time series object

Note log is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = log(tsobj)

Description
newfts = log(tsobj) calculates the natural logarithm (log base e) of the data series in a financial
time series object tsobj. It returns another time series object, newfts, containing the natural
logarithms.

See Also
exp | log2 | log10

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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log10
Common logarithm for financial time series object

Note log10 is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = log10(tsobj)

Description
newfts = log10(tsobj) calculates the common logarithm (base 10) of all the data in the data
series of the financial time series object tsobj and returns the result in the object newfts.

See Also
exp | log2 | log

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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log2
Base 2 logarithm for financial time series object

Note log2 is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = log2(tsobj)

Description
newfts = log2(tsobj) calculates the base 2 logarithm of the data series in a financial time series
object tsobj. It returns another time series object newfts containing the logarithms.

See Also
exp | log10 | log

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a

19 Functions

19-1024



lpm
Compute sample lower partial moments of data

Syntax
lpm(Data)
lpm(Data,MAR,Order)
Moment = lpm(Data,MAR,Order)

Description
lpm(Data) computes lower partial moments for asset returns Data relative to a default value for
MAR for each asset in a NUMORDERS x NUMSERIES matrix and a default value for Order.

lpm(Data,MAR,Order) computes lower partial moments for asset returns Data relative to MAR for
each asset in a NUMORDERS x NUMSERIES matrix.

Moment = lpm(Data,MAR,Order) computes lower partial moments for asset returns Data relative
to MAR for each asset in a NUMORDERS x NUMSERIES matrix Moment.

Examples

Compute Lower Partial Moments

This example shows how to compute the zero-order, first-order, and second-order lower partial
moments for the three time series, where the mean of the third time series is used to compute MAR
(minimum acceptable return) with the so-called risk-free rate.

load FundMarketCash 
Returns = tick2ret(TestData);
Assets

Assets = 1x3 cell
    {'Fund'}    {'Market'}    {'Cash'}

MAR = mean(Returns(:,3))

MAR = 0.0017

LPM = lpm(Returns, MAR, [0 1 2])

LPM = 3×3

    0.4333    0.4167    0.6167
    0.0075    0.0140    0.0004
    0.0003    0.0008    0.0000
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The first row of LPM contains zero-order lower partial moments of the three series. The fund and
market index fall below MAR about 40% of the time and cash returns fall below its own mean about
60% of the time.

The second row contains first-order lower partial moments of the three series. The fund and market
have large average shortfall returns relative to MAR by 75 and 140 basis points per month. On the
other hand, cash underperforms MAR by about only four basis points per month on the downside.

The third row contains second-order lower partial moments of the three series. The square root of
these quantities provides an idea of the dispersion of returns that fall below the MAR. The market
index has a much larger variation on the downside when compared to the fund.

Input Arguments
Data — Asset returns
matrix

Asset returns, specified as a NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES observations of
NUMSERIES asset returns.
Data Types: double

MAR — Minimum acceptable return
0 (default) | numeric

(Optional) Minimum acceptable return, specified as a scalar numeric. MAR is a cutoff level of return
such that all returns above MAR contribute nothing to the lower partial moment.
Data Types: double

Order — Moment orders
0 (default) | scalar numeric | vector

(Optional) Moment orders, specified as a either a scalar or a NUMORDERS vector of nonnegative
integer moment orders. If no order specified, the default Order = 0, which is the shortfall probability.
Although the lpm function works for noninteger orders and, in some cases, for negative orders, this
falls outside customary usage.
Data Types: double

Output Arguments
Moment — Lower partial moments
matrix

Lower partial moments, returned as a NUMORDERS x NUMSERIES matrix of lower partial moments
with NUMORDERS Orders and NUMSERIES series, that is, each row contains lower partial moments for
a given order.

Note To compute upper partial moments, reverse the signs of both Data and MAR (do not reverse
the sign of the output). The lpm function computes sample lower partial moments from data. To
compute expected lower partial moments for multivariate normal asset returns with a specified mean
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and covariance, use elpm. With lpm, you can compute various investment ratios such as Omega ratio,
Sortino ratio, and Upside Potential ratio, where:

• Omega = lpm(-Data, -MAR, 1) / lpm(Data, MAR, 1)
• Sortino = (mean(Data) - MAR) / sqrt(lpm(Data, MAR, 2))
• Upside = lpm(-Data, -MAR, 1) / sqrt(lpm(Data, MAR, 2))

More About
Lower Partial Moments

Use lower partial moments to examine what is colloquially known as “downside risk.”

The main idea of the lower partial moment framework is to model moments of asset returns that fall
below a minimum acceptable level of return. To compute lower partial moments from data, use lpm to
calculate lower partial moments for multiple asset return series and for multiple moment orders. To
compute expected values for lower partial moments under several assumptions about the distribution
of asset returns, use elpm to calculate lower partial moments for multiple assets and for multiple
orders.

References
[1] Bawa, V.S. "Safety-First, Stochastic Dominance, and Optimal Portfolio Choice." Journal of

Financial and Quantitative Analysis. Vol. 13, No. 2, June 1978, pp. 255–271.

[2] Harlow, W.V. "Asset Allocation in a Downside-Risk Framework." Financial Analysts Journal. Vol. 47,
No. 5, September/October 1991, pp. 28–40.

[3] Harlow, W.V. and K. S. Rao. "Asset Pricing in a Generalized Mean-Lower Partial Moment
Framework: Theory and Evidence." Journal of Financial and Quantitative Analysis. Vol. 24,
No. 3, September 1989, pp. 285–311.

[4] Sortino, F.A. and Robert van der Meer. "Downside Risk." Journal of Portfolio Management. Vol. 17,
No. 5, Spring 1991, pp. 27–31.

See Also
elpm

Topics
“Performance Metrics Overview” on page 7-2

Introduced in R2006b
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lweekdate
Date of last occurrence of weekday in month

Syntax
LastDate = lweekdate(Weekday,Year,Month)
LastDate = lweekdate( ___ ,NextDay,outputType)

Description
LastDate = lweekdate(Weekday,Year,Month) returns the date number for the last occurrence
of Weekday in the given year and month.

Any input can contain multiple values, but if so, all other inputs must contain the same number of
values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then
Month must be a 1-by-n vector of integers or a single integer. LastDate is then a 1-by-n vector of
date numbers.

LastDate = lweekdate( ___ ,NextDay,outputType) returns the date of last occurrence of
weekday in month using the optional arguments for NextDay and outputType.

The type of the output for LastDate depends on the input outputType. If this variable is
'datenum', LastDate is a serial date number. If outputType is 'datetime', then LastDate is a
datetime array. By default, outputType is set to 'datenum'.

Use the function datestr to convert serial date numbers to formatted date character vectors.

Examples

Determine the Date of Last Occurrence of Weekday in a Month

Determine the last Monday in June 2001.

LastDate = lweekdate(2, 2001, 6); datestr(LastDate)

ans = 
'25-Jun-2001'

Determine the last Monday in a week that also contains a Friday in June 2001 returned as a datetime
array.

LastDate = lweekdate(2, 2001, 6,[],'datetime')

LastDate = datetime
   25-Jun-2001

Determine the last Monday in a week that also contains a Friday in June 2001:

LastDate = lweekdate(2, 2001, 6, 6); datestr(LastDate)
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ans = 
'25-Jun-2001'

Determine the last Monday in May for 2001, 2002, and 2003:

Year = [2001:2003];
LastDate = lweekdate(2, Year, 5);
datestr(LastDate)

ans = 3x11 char array
    '28-May-2001'
    '27-May-2002'
    '26-May-2003'

Input Arguments
Weekday — Weekday whose date you seek
integer with value 1 through 7 | vector of integers with values 1 through 7

Weekday whose date you seek, specified as an integer or a vector of integers from 1 through 7.

• 1 — Sunday
• 2 — Monday
• 3 — Tuesday
• 4 — Wednesday
• 5 — Thursday
• 6 — Friday
• 7 — Saturday

Data Types: single | double

Year — Year to determine occurrence of weekday
4-digit integer | vector of 4-digit integers

Year to determine occurrence of weekday, specified as a 4-digit integer or vector of 4-digit integers.
Data Types: single | double

Month — Month to determine occurrence of weekday
integer with value 1 through 12 | vector of integers with values 1 through 12

Month to determine occurrence of weekday, specified as an integer or vector of integers with values 1
through 12.
Data Types: single | double

NextDay — Weekday that must occur after Weekday in same week
0 = ignore (default) | integer with value 0 through 7 | vector of integers with values 0 through 7

Weekday that must occur after Weekday in same week, specified as an integer or a vector of integers
from 0 through 7, where 0 = ignore (default) and 1 through 7 are the same as for Weekday.
Data Types: single | double
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outputType — Year to determine days
'datenum' (default) | character vector with values 'datenum' or 'datetime'

A character vector specified as either 'datenum' or 'datetime'. The output LastDate is in serial
date format if 'datenum' is specified, or datetime format if 'datetime' is specified. By default the
output LastDate is in serial date format.
Data Types: char

Output Arguments
LastDate — Date for last occurrence of Weekday in given year and month
serial date number | date character vector

Date for last occurrence of Weekday in given year and month, returned as a serial date number or
date character vector.

The type of the output for LastDate depends on the optional input argument outputType. If this
variable is 'datenum', LastDate is a serial date number. If outputType is 'datetime', then
LastDate is a datetime array. By default, outputType is set to 'datenum'.

See Also
eomdate | lbusdate | nweekdate | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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m2xdate
MATLAB date to Excel serial date number

Syntax
DateNum = m2xdate(MATLABDateNumber,Convention)

Description
DateNum = m2xdate(MATLABDateNumber,Convention) converts MATLAB serial date numbers,
date character vectors, or datetime arrays to Excel serial date numbers. MATLAB date numbers start
with 1 = January 1, 0000 A.D., hence there is a difference of 693960 relative to the 1900 date system,
or 695422 relative to the 1904 date system. This function is useful with Spreadsheet Link™ software.

Examples

Convert MATLAB Serial Date Numbers Using 1900 Date System

This example shows how to convert MATLAB serial date numbers using the 1900 date system. Given
MATLAB date numbers for Christmas 2001 through 2004, convert them to Excel date numbers in the
1900 system.

DateNum = datenum(2001:2004, 12, 25);
ExDate = m2xdate(DateNum)

ExDate = 1×4

       37250       37615       37980       38346

Convert MATLAB Serial Date Numbers Using 1900 Date System With a datetime Array

This example shows how to convert MATLAB® date numbers using a datetime array with the 1900
date system. Given MATLAB date numbers for Christmas 2001 through 2004, convert them to Excel
date numbers in the 1904 system.

DateNum = datetime(2001:2004, 12, 25,'Locale','en_US');
ExDate = m2xdate(DateNum)

ExDate = 1×4

       37250       37615       37980       38346
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Convert MATLAB Serial Date Numbers Using 1904 Date System

This example shows how to convert MATLAB serial date numbers using the 1904 date system. Given
MATLAB date numbers for Christmas 2001 through 2004, convert them to Excel date numbers in the
1904 system.

DateNum = datenum(2001:2004, 12, 25);
ExDate = m2xdate(DateNum, 1)

ExDate = 1×4

       35788       36153       36518       36884

Input Arguments
MATLABDateNumber — MATLAB dates
serial date number | date character vector | datetime array

MATLAB dates, specified as a scalar or vector of MATLAB serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | char | datetime

Convention — Flag for Excel date system
0 (Excel 1900 date system is in effect) (default) | numeric with value 0 or 1

Flag for Excel date system, specified as a scalar or vector as a numeric with a value 0 or 1.

When Convention = 0 (default), the Excel 1900 date system is in effect. When Convention = 1,
the Excel 1904 date system in used.

In the Excel 1900 date system, the Excel serial date number 1 corresponds to January 1, 1900 A.D. In
the Excel 1904 date system, date number 0 is January 1, 1904 A.D.

Due to a software limitation in Excel software, the year 1900 is considered a leap year. As a result, all
DATEVALUE's reported by Excel software between Jan. 1, 1900 and Feb. 28, 1900 (inclusive) differs
from the values reported by 1. For example:

• In Excel software, Jan. 1, 1900 = 1
• In MATLAB, Jan. 1, 1900 – 693960 (for 1900 date system) = 2

datenum('Jan 1, 1900') - 693960

ans =

     2

Data Types: logical

Output Arguments
DateNum — Excel serial date number
array of serial date numbers
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Excel serial date number, returned as an array of serial date numbers in Excel serial date number
form.

See Also
datenum | datestr | x2mdate | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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macd
Moving Average Convergence/Divergence (MACD)

Note Using a fints object for the Data argument of macd is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
[MACDLine,SignalLine] = macd(Data)

Description
[MACDLine,SignalLine] = macd(Data) calculates the Moving Average Convergence/Divergence
(MACD) line from the series of data and the nine-period exponential moving average from the
MACDLine.

Examples

Calculate the Moving Average Convergence/Divergence for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
[MACDLine, signalLine]= macd(TMW);
plot(MACDLine.Time,MACDLine.Close,signalLine.Time,signalLine.Close);
legend('MACDLine','NinePerMA')
title('MACD for TMW')
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Input Arguments
Data — Data with high, low, open, close information
matrix | table | timetable

Data with high, low, open, close information, specified as a matrix, table, or timetable. For matrix
input, Data is an M-by-4 matrix of high, low, opening, and closing prices. Timetables and tables with M
rows must contain variables named 'High', 'Low', 'Open', and 'Close' (case insensitive).
Data Types: double | table | timetable

Output Arguments
MACDLine — MACD series
matrix | table | timetable

MACD series, returned with the same number of rows (M) and type (matrix, table, or timetable) as the
input Data. The MACDLine is calculated by subtracting the 26-period (7.5%) exponential.

SignalLine — Nine-period exponential series
matrix | table | timetable

Nine-period exponential series, returned with the same number of rows (M) and type (matrix, table, or
timetable) as the input Data. The nine-period (20%) exponential moving average of the MACDLine is
used as the SignalLine.
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More About
MACD

The MACD is calculated by subtracting the 26-period (7.5%) exponential moving average from the 12-
period (15%) moving average.

The nine-period (20%) exponential moving average of the MACD line is used as the "signal" line.
When the two lines are plotted, they can give you indications on when to buy or sell a stock, when
overbought or oversold is occurring, and when the end of trend may occur. For example, when the
MACD and the 20-day moving average line have crossed and the MACD line becomes below the other
line, it is time to sell.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 166–168.

See Also
adline | timetable | table | willad

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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max
Maximum value

Note max is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tsmax = max(tsobj)

Description
tsmax = max(tsobj) finds the maximum value in each data series in the financial time series
object (tsobj) and returns it in a structure tsmax. The tsmax structure contains field name(s)
identical to the data series name(s).

Note tsmax returns only the values and does not return the dates associated with the values. The
maximum values are not necessarily from the same date.

See Also
min

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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maxdrawdown
Compute maximum drawdown for one or more price series

Syntax
MaxDD = maxdrawdown(Data)
MaxDD = maxdrawdown( ___ ,Format)
[MaxDD,MaxDDIndex] = maxdrawdown( ___ )

Description
MaxDD = maxdrawdown(Data) computes maximum drawdown for each series in an N-vector MaxDD
and identifies start and end indexes of maximum drawdown periods for each series in a 2-by-N matrix
MaxDDIndex.

MaxDD = maxdrawdown( ___ ,Format) adds an optional argument for Format.

[MaxDD,MaxDDIndex] = maxdrawdown( ___ ) adds an optional output for MaxDDIndex.

Examples

Calculate Maximum Drawdown

Calculate the maximum drawdown (MaxDD) using example data with a fund, market, and cash series:

load FundMarketCash
MaxDD = maxdrawdown(TestData)

MaxDD = 1×3

    0.1658    0.3381         0

The maximum drop in the given time period was 16.58% for the fund series, and 33.81% for the
market series. There was no decline in the cash series, as expected, because the cash account never
loses value.

Input Arguments
Data — Total return price series
matrix

Total return price series, specified as a T-by-N matrix with T samples of N total return price series.
Data Types: double

Format — (Optional) Format of Data
character vector with value of 'return', 'arithmetic', or 'geometric'
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Format of Data, specified as character vector with the following possible values:

• 'return' (default) — Maximum drawdown in terms of maximum percentage drop from a peak.
• 'arithmetic'

— Maximum drawdown of an arithmetic Brownian motion with drift (differences of data from peak
to trough) using the equation

dX t = μdt + σdW t .
• 'geometric'

— Maximum drawdown of a geometric Brownian motion with drift (differences of log of data from
peak to trough) using the equation

dS t = μ0S t dt + σ0S t dW t

Data Types: char

Output Arguments
MaxDD — Maximum drawdown
vector

Maximum drawdown, returned as a 1-by-N vector with maximum drawdown for each of N time series.

Note

• Drawdown is the percentage drop in total returns from the start to the end of a period. If the total
equity time series is increasing over an entire period, drawdown is 0. Otherwise, it is a positive
number. Maximum drawdown is an ex-ante proxy for downside risk that computes the largest
drawdown over all intervals of time that can be formed within a specified interval of time.

• Maximum drawdown is sensitive to quantization error.

MaxDDIndex — Start and end indexes for each maximum drawdown period for each total
equity time series
vector

Start and end indexes for each maximum drawdown period for each total equity time series, returned
as a 2-by-N vector of start and end indexes. The first row of the vector contains the start indexes and
the second row contains the end indexes of each maximum drawdown period.

References
[1] Christian S. Pederson and Ted Rudholm-Alfvin. "Selecting a Risk-Adjusted Shareholder

Performance Measure." Journal of Asset Management. Vol. 4, No. 3, 2003, pp. 152–172.

See Also
emaxdrawdown
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Topics
“Performance Metrics Overview” on page 7-2

Introduced in R2006b
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mean
Arithmetic average

Note mean is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tsmean = mean(tsobj)

Description
tsmean = mean(tsobj) computes the arithmetic mean of all data in all series in the financial time
series object (tsobj) and returns it in a structure tsmean. The tsmean structure contains field
name(s) identical to the data series name(s).

See Also
peravg | tsmovavg

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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medprice
Median price from the series of high and low prices

Note Using a fints object for the Data argument of medprice is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
MedianPrice = medprice(Data)

Description
MedianPrice = medprice(Data) calculates the median prices from the series of high and low
prices. The median price is the average of the high and low prices for each period.

Examples

Calculate the Median Prices for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
MedianPrice = medprice(TMW);
plot(MedianPrice.Time,MedianPrice.MedianPrice) 
title('Median Price for TMW')
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Input Arguments
Data — Data for high and low prices
matrix | table | timetable

Data for high and low prices, specified as a matrix, table, or timetable. For matrix input, Data is an M-
by-2 matrix of high and low prices stored in the corresponding columns. The columns can be in either
order because the median price is the average of the high and low prices for each period. Timetables
and tables with M rows must contain a variable named 'High' and 'Low' (case insensitive).
Data Types: double | table | timetable

Output Arguments
MedianPrice — Median price series
matrix | table | timetable

Median price series, returned with the same number of rows (M) and the same type (matrix, table, or
timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 177–178.
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See Also
timetable | table | wclose | typprice

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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merge
Merge multiple financial time series objects

Note merge is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = merge(fts1,fts2)

newfts = merge(fts1,fts2, ..., ftsx)

newfts = merge(fts1,fts2, ..., ftsx,'PARAM1',VALUE1,'PARAM2',VALUE2, ...)

Arguments
fts1, fts2, ... Comma-separated list of financial time series objects to merge.

Note Multiple Financial Time Series objects can be merged at once. The
merged objects must appear in a comma separated list before the
optional inputs. The order of the inputs is significant.

'DateSetMethod' (Optional) Merge method. Valid merge values are:

'union' — (Default) Returns the combined values of all merged objects.

'intersection' — Returns the values common to all merged objects.

RefObj — Maps all values to a reference time contained in a Financial
Time Series object (RefObj) or vector of date numbers.

'DataSetMethod' (Optional) Merge method. Valid merge values are:

'closest' — (Default) Returns data based on the order of the inputs.
However, the first missing data point (NaN value) of a date will be
replaced by the closest non-NaN data point that appears on the same
date of subsequent merged objects.

'order' — Returns data based strictly on the order of the inputs.
'SortColumns' (Optional) Sorts columns. Valid merge values are:

True/1 — (Default) Sorts the columns based on the headers (series
names). The headers are sorted in alphabetical order.

False/0 — Columns are not sorted.
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Description
newfts = merge(fts1,fts2, ..., ftsx,'PARAM1',VALUE1,'PARAM2',VALUE2', ...)
merges multiple financial time series objects. The optional parameter and value pair argument
specifies the values contained in the output financial time series object ftsout.

Examples

Create Three Financial Time Series Objects and Merge into a Single Object

Create three financial time series objects and merged into a new time series object t123.

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; ...
         'jan-04-2001'; 'jan-06-2001'};
data = [1; 1; 1; 1; 1];
t1 = fints(dates, data);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001';
         'jan-05-2001'};
data = [2; 2; 2; 2];
t2 = fints(dates, data);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

dates = {'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001'; 
         'jan-06-2001'};
data = [3; 3; 3; 3];
t3 = fints(dates, data);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

t123 = merge(t1, t2, t3)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
t123 = 
 
    desc:   ||  || 
    freq:  Unknown (0)

    {'dates:  (6)'}    {'series1:  (6)'}
    {'01-Jan-2001'}    {[            1]}
    {'02-Jan-2001'}    {[            1]}
    {'03-Jan-2001'}    {[            1]}
    {'04-Jan-2001'}    {[            1]}
    {'05-Jan-2001'}    {[            2]}
    {'06-Jan-2001'}    {[            1]}

If you change the order of input time series, the output may contain different data when duplicate
dates exist. Here, for example, is the result of using the same three time series defined above but
with the order changed.
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merge(t3, t2, t1)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
ans = 
 
    desc:   ||  || 
    freq:  Unknown (0)

    {'dates:  (6)'}    {'series1:  (6)'}
    {'01-Jan-2001'}    {[            1]}
    {'02-Jan-2001'}    {[            2]}
    {'03-Jan-2001'}    {[            3]}
    {'04-Jan-2001'}    {[            3]}
    {'05-Jan-2001'}    {[            3]}
    {'06-Jan-2001'}    {[            3]}

t123 contains all 1's except on '05-Jan-2001' because t1 appears first in the list of inputs and
takes precedence. The same logic can be applied to t321. By changing the order of inputs, you can
overwrite old financial time series data with new data by placing the new time series ahead of the old
one in the list of inputs to the merge function.

Merge Financial Time Series Objects with Different Headers (Series Names)

Merge time series objects with different headers into a new time series object t45.

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; ...
'jan-04-2001'; 'jan-06-2001'}; 
data = [1; 1; 1; 1; 1]; 
t4 = fints(dates, data, 'ts4'); 

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001'};
data = [2; 2; 2; 2]; 
t5 = fints(dates, data, 'ts5'); 

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

t45 = merge(t4, t5)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
t45 = 
 
    desc:   || 
    freq:  Unknown (0)

    {'dates:  (6)'}    {'ts4:  (6)'}    {'ts5:  (6)'}
    {'01-Jan-2001'}    {[        1]}    {[      NaN]}
    {'02-Jan-2001'}    {[        1]}    {[        2]}
    {'03-Jan-2001'}    {[        1]}    {[        2]}
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    {'04-Jan-2001'}    {[        1]}    {[        2]}
    {'05-Jan-2001'}    {[      NaN]}    {[        2]}
    {'06-Jan-2001'}    {[        1]}    {[      NaN]}

Merge Two Financial Index Series and Keep Intersecting Dates

Merge two index series into the final merged object (t12) and keep the intersecting dates.

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-06-2001'};
data = [1; 1; 1; 1; 1]; 
t1 = fints(dates, data,'A') 

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
t1 = 
 
    desc:  (none)
    freq:  Unknown (0)

    {'dates:  (5)'}    {'A:  (5)'}
    {'01-Jan-2001'}    {[      1]}
    {'02-Jan-2001'}    {[      1]}
    {'03-Jan-2001'}    {[      1]}
    {'04-Jan-2001'}    {[      1]}
    {'06-Jan-2001'}    {[      1]}

dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001'}; 
data = [2; 2; 2; 2]; 
t2 = fints(dates, data,'B') 

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
t2 = 
 
    desc:  (none)
    freq:  Unknown (0)

    {'dates:  (4)'}    {'B:  (4)'}
    {'02-Jan-2001'}    {[      2]}
    {'03-Jan-2001'}    {[      2]}
    {'04-Jan-2001'}    {[      2]}
    {'05-Jan-2001'}    {[      2]}

t12 = merge(t1, t2,'DateSetMethod','Intersection')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
t12 = 
 
    desc:   || 
    freq:  Unknown (0)
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    {'dates:  (3)'}    {'A:  (3)'}    {'B:  (3)'}
    {'02-Jan-2001'}    {[      1]}    {[      2]}
    {'03-Jan-2001'}    {[      1]}    {[      2]}
    {'04-Jan-2001'}    {[      1]}    {[      2]}

See Also
horzcat | vertcat

Topics
“Merge Financial Time Series Objects” on page 14-9

Introduced before R2006a
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min
Minimum value

Note MIN is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tsmin = min(tsobj)

Description
tsmin = min(tsobj) finds the minimum value in each data series in the financial time series object
(tsobj) and returns it in the structure tsmin. The tsmin structure contains field name(s) identical
to the data series name(s).

Note tsmin returns only the values and does not return the dates associated with the values. The
minimum values are not necessarily from the same date.

See Also
max

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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minus
Financial time series subtraction

Note minus is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = tsobj_1 - tsobj_2

newfts = tsobj - array

newfts = array - tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects .
array A scalar value or array with the number of rows equal to the number

of dates in tsobj and the number of columns equal to the number of
data series in tsobj.

Description
minus is an element-by-element subtraction of the components.

newfts = tsobj_1 - tsobj_2 subtracts financial time series objects. If an object is to be
subtracted from another object, both objects must have the same dates and data series names,
although the order need not be the same. The order of the data series, when one financial time series
object is subtracted from another, follows the order of the first object.

newfts = tsobj - array subtracts an array element by element from a financial time series
object.

newfts = array - tsobj subtracts a financial time series object element by element from an
array.

See Also
rdivide | plus | times

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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minute
Minute of date or time

Syntax
Minute = minute(Date)
Minute = minute( ___ ,F)

Description
Minute = minute(Date) returns the minute of date or time given a serial date number or a
character vector representing a date and time.

Minute = minute( ___ ,F) returns the minute of date or time given a serial date number or a date
character vector, Date, using format defined by the optional input F. Date can be a character array
where each row corresponds to one date character vector, or a one-dimensional cell array of
character vectors. All the character vectors in Date must have the same format F. F must designate a
supported date format symbol. For more information on supported date formats, see datestr.

Examples

Determine the Minutes of the Date for Various Dates

Find the minutes of the day for Date using a serial date number.

Minute = minute(731204.5591223380)

Minute = 25

Find the minutes of the day for Date using a character vector representing a date and time.

Minute = minute('19-dec-2001, 13:25:08.17')

Minute = 25

Input Arguments
Date — Date to determine minute
serial date number | character vector | cell array of character vectors

Date to determine minute, specified as a serial date number or a character vector representing a date
and time.

Date can be an array of date character vectors, where each row corresponds to one date character
vector, or a one-dimensional cell array of character vectors. All the character vectors in Date must
have the same format F. F must designate a supported date format symbol. For more information on
supported date formats, see datestr
Data Types: single | double | char | cell
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F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol for input
argument Date. For more information on supported character vector formats, see datestr. Note,
formats with 'Q' are not accepted.
Data Types: char

Output Arguments
Minute — Minute of date or time
nonnegative number

Minute of date or time, returned as a nonnegative number.

See Also
datevec | hour | second

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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mirr
Modified internal rate of return

Syntax
Return = mirr(CashFlow,FinRate,Reinvest)

Description
Return = mirr(CashFlow,FinRate,Reinvest) calculates the modified internal rate of return
for a series of periodic cash flows. This function calculates only positive rates of return; for
nonpositive rates of return, Return = 0.

Examples

Compute Modified Internal Rate of Return

This cash flow represents the yearly income from an initial investment of $100,000. The finance rate
is 9% and the reinvestment rate is 12%.

Year 1 $20,000

Year 2 ($10,000)

Year 3 $30,000

Year 4 $38,000

Year 5 $50,000

To calculate the modified internal rate of return on the investment:

Return = mirr([-100000 20000 -10000 30000 38000 50000], 0.09,0.12)

Return = 0.0832

Input Arguments
CashFlow — Cash flow
vector | matrix

Cash flow, specified as a vector or matrix. The first entry is the initial investment. If CashFlow is
entered as a matrix, each column is treated as a separate cash flow.
Data Types: double

FinRate — Finance rate for negative cash flow values
decimal
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Finance rate for negative cash flow values, specified as a decimal.
Data Types: double

Reinvest — Reinvestment rate for positive cash flow values
decimal

Reinvestment rate for positive cash flow values, specified as a decimal.
Data Types: double

Output Arguments
Return — Modified internal rate of return
numeric

Modified internal rate of return, returned as a scalar or vector.

References
[1] Brealey and Myers. Principles of Corporate Finance. McGraw-Hill Higher Education, Chapter 5,

2003.

[2] Hazen G. “A New Perspective on Multiple Internal Rates of Return.” The Engineering Economist.
Vol. 48-1, 2003, pp. 31–51.

See Also
annurate | effrr | irr | nomrr | pvvar | xirr

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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month
Month of date

Syntax
[MonthNum,MonthString] = month(Date)
[MonthNum,MonthString] = month( ___ ,F)

Description
[MonthNum,MonthString] = month(Date) returns the month of date given a serial date number
or a date character vector.

[MonthNum,MonthString] = month( ___ ,F) returns the month of date given a serial date
number or a date character vector, Date, using format defined by the optional input F. Date can be a
character array where each row corresponds to one date character vector, or a one-dimensional cell
array of character vectors. All the character vectors in Date must have the same format F. F must
designate a supported date format symbol. For more information on supported date formats, see
datestr.

Examples

Determine the Month for Various Dates

Find the month for Date using a serial date number.

[MonthNum, MonthString] = month(730368)

MonthNum = 9

MonthString = 
'Sep'

Find the month for Date using a date character vector format.

[MonthNum, MonthString] = month('05-Sep-1999')

MonthNum = 9

MonthString = 
'Sep'

Use the optional F argument to designate a country-specific date format for a given Date.

[MonthNum, MonthString] = month('1999/05/09','yyyy/dd/mm')

MonthNum = 9

MonthString = 
'Sep'
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Input Arguments
Date — Date to determine month
serial date number | date character vector | cell array of date character vectors

Date to determine month, specified as a serial date number or date character vector.

Date can be an array of date character vectors, where each row corresponds to one date character
vector, or a one-dimensional cell array of character vectors. All the character vectors in Date must
have the same format F. F must designate a supported date format symbol. For more information on
supported date formats, see datestr
Data Types: single | double | char | cell

F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol for input
argument Date. For more information on supported date character vector formats, see datestr.
Note, formats with 'Q' are not accepted.
Data Types: char

Output Arguments
MonthNum — Numeric representation of the month
nonnegative integer

Month of date, returned as a nonnegative integer.

MonthString — Three letter abbreviation for month
character vector

Three letter abbreviation for month, returned as a character vector.

See Also
datevec | day | year

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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months
Number of whole months between dates

Syntax
MyMonths = months(StartDate,EndDate)
MyMonths = months( ___ ,EndMonthFlag)

Description
MyMonths = months(StartDate,EndDate) returns the number of whole months between
StartDate and EndDate. If EndDate is earlier than StartDate, MyMonths is negative.

Any input argument can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, if StartDate is an n-row
character array of character vector dates, then EndDate must be an n-row character array of
character vector dates or a single date. MyMonths is then an N-by-1 vector of numbers.

MyMonths = months( ___ ,EndMonthFlag) returns the number of whole months between
StartDate and EndDate using an optional argument for EndMonthFlag. If EndDate is earlier than
StartDate, MyMonths is negative.

Examples

Determine the Number of Whole Months Between Dates

Find the number of whole months using date character vectors.

MyMonths = months('may 31 2000', 'jun 30 2000', 1)

MyMonths = 1

Find the number of whole months using date character vectors when the optional EndMonthFlag =
0.

MyMonths = months('may 31 2000','jun 30 2000', 0)

MyMonths = 0

Find the number of whole months using a cell array of date character vectors.

Dates = ['mar 31 2002'; 'apr 30 2002'; 'may 31 2002'];
MyMonths = months(Dates, 'jun 30 2002')

MyMonths = 3×1

     3
     2
     1
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Input Arguments
StartDate — Starting date for number of whole months between dates
serial date number | date character vector | cell array of date character vectors

Starting date for number of whole months between dates, specified as a serial date number or date
character vector.

Any input argument can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, if StartDate is an n-row
character array of character vector dates, then EndDate must be an n-row character array of
character vector dates or a single date. MyMonths is then an n-by-1 vector of numbers.
Data Types: single | double | char | cell

EndDate — Ending date for number of whole months between dates
serial date number | date character vector | cell array of date character vectors

Ending date for number of whole months between dates, specified as a serial date number or date
character vector.

Any input argument can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, if StartDate is an n-row
character array of character vector dates, then EndDate must be an n-row character array of
character vector dates or a single date. MyMonths is then an n-by-1 vector of numbers.
Data Types: single | double | char | cell

EndMonthFlag — Flag for end-of-month rule
1 (default) | nonnegative integer with values 0 or 1

Flag for end-of-month rule, specified as a nonnegative integer with values 0 or 1.

If StartDate and EndDate are end-of-month dates and EndDate has fewer days than StartDate,
EndMonthFlag = 1. In this case, EndDate is treated as the end of a whole month, while
EndMonthFlag = 0 does not.
Data Types: logical

Output Arguments
MyMonths — Number of whole months between dates
nonnegative integer

Number of whole months between dates, returned as a nonnegative integer.

See Also
yearfrac

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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movavg
Moving average of a financial time series

Note movavg is updated to accept data input as a matrix, table, or timetable.

The syntax for movavg has changed. There is no longer support for the input arguments Lead and
Lag, only a single windowSize is supported, and there is only one output argument (ma). If you want
to compute the leading and lagging moving averages, you need to run movavg twice and adjust the
windowSize.

Syntax
ma = movavg(Data,type,windowSize)
ma = movavg( ___ ,Initialpoints)

ma = movavg(Data,type,weights)
ma = movavg( ___ ,Initialpoints)

Description
ma = movavg(Data,type,windowSize) computes the moving average (MA) of a financial time
series.

ma = movavg( ___ ,Initialpoints) adds an optional argument for Initialpoints.

ma = movavg(Data,type,weights) computes the moving average (MA) of a financial time series
using a 'custom' type and weights.

ma = movavg( ___ ,Initialpoints) adds an optional argument for Initialpoints.

Examples

Calculate the Moving Average for a Data Series

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data.

load SimulatedStock.mat
type = 'linear';
windowSize = 14;
ma = movavg(TMW_CLOSE,type,windowSize)

ma = 1000×1

  100.2500
  100.3433
  100.8700
  100.4916
   99.9937
   99.3603
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   98.8769
   98.6364
   98.4348
   97.8491
      ⋮

Calculate the Leading and Lagging Moving Averages for a Data Series

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data.

load SimulatedStock.mat 
type = 'linear';
malag=movavg(TMW_CLOSE,type,20) % Lagging moving average

malag = 1000×1

  100.2500
  100.3423
  100.8574
  100.4943
  100.0198
   99.4230
   98.9728
   98.7509
   98.5688
   98.0554
      ⋮

malead=movavg(TMW_CLOSE,type,3) % Leading moving average

malead = 1000×1

  100.2500
  100.3580
  101.0900
  100.4300
   99.3183
   97.8217
   97.0833
   97.1950
   97.4133
   96.1133
      ⋮

Plot the leading and lagging moving averages.

plot(TMW_CLOSE(1:100))
hold on
plot(malead(1:100))
plot(malag(1:100))
hold off
legend('Actual','Lead','Lag')
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Input Arguments
Data — Data for a financial series
matrix | table | timetable

Data for a financial series, specified as a column-oriented matrix, table, or timetable. Timetables and
tables must contain variables with only a numeric type.
Data Types: double | table | timetable

type — Type of moving average to compute
character vector with value of 'simple', 'square-root', 'linear', 'square', 'exponential',
'triangular', 'modified', or 'custom' | string with value of "simple", "square-root",
"linear", "square", "exponential", "triangular", "modified", or "custom"

Type of moving average to compute, specified as a character vector or string with an associated
value.
Data Types: char | string

windowSize — Number of observations of the input series to include in moving average
positive integer

Number of observations of the input series to include in moving average, specified as a scalar positive
integer. The observations include (windowSize - 1) previous data points and the current data point.
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Note The windowSize argument applies only to moving averages whose type is 'simple',
'square-root', 'linear', 'square', 'exponential', 'triangular', or 'modified'.

Data Types: double

weights — Custom weights used to compute moving average
vector

Custom weights used to compute the moving average, specified as a vector.

Note The length of weights (N) determines the size of the moving average window (windowSize).
The weights argument applies only to a 'custom' type of moving average.

To compute moving average with custom weights, the weights (w) are first normalized such that they
sum to one:

W(i) = w(i)/sum(w), for i = 1,2,...,N

The normalized weights (W) are then used to form the N-point weighted moving average (y) of the
input Data (x):

y(t) = W(1)*x(t) + W(2)*x(t-1) + ... + W(N)*x(t-N)

The initial moving average values within the window size are then adjusted according to the method
specified in the name-value pair argument Initialpoints.
Data Types: double

Initialpoints — Indicates how moving average is calculated at initial points
'shrink' (default) | character vector with values of 'shrink', 'fill', or 'zero' | string with
values of "shrink", "fill", or "zero"

(Optional) Indicates how the moving average is calculated at initial points (before there is enough
data to fill the window), specified as a character vector or string using one of the following values:

• 'shrink' - Initializes the moving average such that the initial points include only observed data
• 'zero' - Initializes the initial points with 0
• 'fill' - Fills initial points with NaNs

Note The Initialpoints argument applies to all type specifications except for the
'exponential' and 'modified' options.

Data Types: char | string

Output Arguments
ma — Moving average series
matrix | table | timetable
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Moving average series, returned with the same number of rows (M) and the same type (matrix, table,
or timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 184–192.

See Also
timetable | table | bolling | candle | dateaxis | highlow | pointfig

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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mrdivide
Financial time series matrix division

Note mrdivide is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = tsobj_1 / tsobj_2

newfts = tsobj / array

newfts = array / tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.
array A scalar value or array with number of rows equal to the number of

dates in tsobj and number of columns equal to the number of data
series in tsobj.

Description
The mrdivide method divides element by element the components of one financial time series object
(tsobj) by the components of the other. You can also divide the whole object by an array or divide a
financial time series object into an array.

If an object is to be divided by another object, both objects must have the same dates and data series
names, although the order need not be the same. The order of the data series, when an object is
divided by another object, follows the order of the first object.

newfts = tsobj_1 / tsobj_2 divides financial time series objects element by element.

newfts = tsobj / array divides a financial time series object element by element by an array.

newfts = array / tsobj divides an array element by element by a financial time series object.

For financial time series objects, the mrdivide operation is identical to the rdivide operation.

See Also
minus | plus | rdivide | times

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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mtimes
Financial time series matrix multiplication

Note mtimes is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = tsobj_1 * tsobj_2

newfts = tsobj * array

newfts = array * tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.
array A scalar value or array with number of rows equal to the number of

dates in tsobj and number of columns equal to the number of data
series in tsobj.

Description
The mtimes method multiplies element by element the components of one financial time series object
(tsobj) by the components of the other. You can also multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have the same dates and data
series names, although the order need not be the same. The order of the data series, when an object
is multiplied by another object, follows the order of the first object.

newfts = tsobj_1 * tsobj_2 multiplies financial time series objects element by element.

newfts = tsobj * array multiplies a financial time series object element by element by an array.

newfts = array * tsobj and newfts = array / tsobj multiplies an array element by
element by a financial time series object.

For financial time series objects, the mtimes operation is identical to the times operation.

See Also
minus | mrdivide | plus | times

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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mvnrfish
Fisher information matrix for multivariate normal or least-squares regression

Syntax
Fisher = mvnrfish(Data,Design,Covariance,MatrixFormat,CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector. If a data sample has missing
values, represented as NaNs, the sample is ignored.

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form for
regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains
either one or NUMSAMPLES cells. Each cell contains a NUMSERIES-
by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of
the residuals of the regression.

MatrixFormat (Optional) Character vector that identifies parameters to be included
in the Fisher information matrix:

• full — Default format. Compute the full Fisher information
matrix for both model and covariance parameter estimates.

• paramonly — Compute only components of the Fisher
information matrix associated with the model parameter
estimates.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full matrix.
• 'diagonal' — The covariance matrix is a diagonal matrix.

Description
Fisher = mvnrfish(Data,Design,Covariance,MatrixFormat,CovarFormat) computes a
Fisher information matrix based on current maximum likelihood or least-squares parameter
estimates.
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Fisher is a TOTALPARAMS-by-TOTALPARAMS Fisher information matrix. The size of TOTALPARAMS
depends on MatrixFormat and on current parameter estimates. If MatrixFormat = 'full',

TOTALPARAMS = NUMPARAMS + NUMSERIES * (NUMSERIES + 1)/2

If MatrixFormat = 'paramonly',

TOTALPARAMS = NUMPARAMS

Note mvnrfish operates slowly if you calculate the full Fisher information matrix.

Examples
See “Multivariate Normal Linear Regression” on page 9-2.

See Also
mvnrstd | mvnrmle

Topics
“Multivariate Normal Regression With Missing Data” on page 9-14
“Multivariate Normal Regression Without Missing Data” on page 9-13
“Least-Squares Regression With Missing Data” on page 9-14
“Least-Squares Regression Without Missing Data” on page 9-14
“Fisher Information” on page 9-4
“Multivariate Normal Linear Regression” on page 9-2
“Least-Squares Regression” on page 9-4

Introduced in R2006a
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mvnrmle
Multivariate normal regression (ignore missing data)

Syntax
[Parameters,Covariance,Resid,Info] = mvnrmle(Data,Design,MaxIterations,TolParam,TolObj,Covar0,CovarFormat)

Arguments
Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a

NUMSERIES-dimensional random vector. If a data sample has missing
values, represented as NaNs, the sample is ignored. (Use mvnrmle to
handle missing data.)

Design Matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form for
regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains
either one or NUMSAMPLES cells. Each cell contains a NUMSERIES-
by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

MaxIterations (Optional) Maximum number of iterations for the estimation
algorithm. Default value is 100.

TolParam (Optional) Convergence tolerance for estimation algorithm based on
changes in model parameter estimates. Default value is sqrt(eps)
which is about 1.0e-8 for double precision. The convergence test for
changes in model parameters is

 Paramk− Paramk− 1 < TolParam × 1 + Paramk

 where Param represents the output Parameters, and iteration k =
2, 3, ... . Convergence is assumed when both the TolParam and
TolObj conditions are satisfied. If both TolParam ≤ 0 and TolObj
≤ 0, do the maximum number of iterations (MaxIterations),
whatever the results of the convergence tests.
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TolObj (Optional) Convergence tolerance for estimation algorithm based on
changes in the objective function. Default value is eps ∧ 3/4 which is
about 1.0e-12 for double precision. The convergence test for changes
in the objective function is

Ob jk− Ob jk− 1 < TolOb j × 1 + Ob jk

for iteration k = 2, 3, ... . Convergence is assumed when both the
TolParam and TolObj conditions are satisfied. If both TolParam ≤
0 and TolObj ≤ 0, do the maximum number of iterations
(MaxIterations), whatever the results of the convergence tests.

Covar0 (Optional) NUMSERIES-by-NUMSERIES matrix that contains a user-
supplied initial or known estimate for the covariance matrix of the
regression residuals.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. Compute the full covariance matrix.
• 'diagonal' — Force the covariance matrix to be a diagonal

matrix.

Description
[Parameters,Covariance,Resid,Info] =
mvnrmle(Data,Design,MaxIterations,TolParam,TolObj,Covar0,CovarFormat) estimates
a multivariate normal regression model without missing data. The model has the form

Datak ∼ N Designk × Parameters, Covariance

for samples k = 1, ... , NUMSAMPLES.

mvnrmle estimates a NUMPARAMS-by-1 column vector of model parameters called Parameters, and a
NUMSERIES-by-NUMSERIES matrix of covariance parameters called Covariance.

mvnrmle(Data, Design) with no output arguments plots the log-likelihood function for each
iteration of the algorithm.

To summarize the outputs of mvnrmle:

• Parameters is a NUMPARAMS-by-1 column vector of estimates for the parameters of the
regression model.

• Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the
regression model's residuals.

• Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the regression. For any row with
missing values in Data, the corresponding row of residuals is represented as all NaN missing
values, since this routine ignores rows with NaN values.

Another output, Info, is a structure that contains additional information from the regression. The
structure has these fields:

• Info.Obj – A variable-extent column vector, with no more than MaxIterations elements, that
contain each value of the objective function at each iteration of the estimation algorithm. The last
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value in this vector, Obj(end), is the terminal estimate of the objective function. If you do
maximum likelihood estimation, the objective function is the log-likelihood function.

• Info.PrevParameters – NUMPARAMS-by-1 column vector of estimates for the model parameters
from the iteration just before the terminal iteration.

• Info.PrevCovariance – NUMSERIES-by-NUMSERIES matrix of estimates for the covariance
parameters from the iteration just before the terminal iteration.

Notes
mvnrmle does not accept an initial parameter vector, because the parameters are estimated directly
from the first iteration onward.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row vector.
• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS

matrix.

These points concern how Design handles missing data:

• Although Design should not have NaN values, ignored samples due to NaN values in Data are also
ignored in the corresponding Design array.

• If Design is a 1-by-1 cell array, which has a single Design matrix for each sample, no NaN values
are permitted in the array. A model with this structure must have NUMSERIES ≥ NUMPARAMS with
rank(Design{1}) = NUMPARAMS.

• Two functions for handling missing data, ecmmvnrmle and ecmlsrmle, are stricter about the
presence of NaN values in Design.

Use the estimates in the optional output structure Info for diagnostic purposes.

Examples
See “Multivariate Normal Regression” on page 9-13, “Least-Squares Regression” on page 9-14,
“Covariance-Weighted Least Squares” on page 9-14, “Feasible Generalized Least Squares” on page 9-
15, and “Seemingly Unrelated Regression” on page 9-16.

References
Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data., 2nd Edition. John
Wiley & Sons, Inc., 2002.

Xiao-Li Meng and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM Algorithm.”
Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

See Also
ecmmvnrmle | mvnrstd | mvnrobj | mvregress

Topics
“Multivariate Normal Regression With Missing Data” on page 9-14
“Multivariate Normal Regression Without Missing Data” on page 9-13
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“Capital Asset Pricing Model with Missing Data” on page 9-33
“Multivariate Normal Linear Regression” on page 9-2

Introduced in R2006a
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mvnrobj
Log-likelihood function for multivariate normal regression without missing data

Syntax
Objective = mvnrobj(Data,Design,Parameters,Covariance,CovarFormat)

Arguments
Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a

NUMSERIES-dimensional random vector. If a data sample has missing values,
represented as NaNs, the sample is ignored. (Use ecmmvnrmle to handle
missing data.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form for regression on a
single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains either
one or NUMSAMPLES cells. Each cell contains a NUMSERIES-by-
NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same Design matrix
for each sample. If Design has more than one cell, each cell contains a
Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the parameters of the
regression model.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the
residuals of the regression.

CovarFormat (Optional) Character vector that specifies the format for the covariance
matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full matrix.
• 'diagonal' — The covariance matrix is a diagonal matrix.

Description
Objective = mvnrobj(Data,Design,Parameters,Covariance,CovarFormat) computes the
log-likelihood function based on current maximum likelihood parameter estimates without missing
data. Objective is a scalar that contains the log-likelihood function.

Notes
You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row vector.
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• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS
matrix.

Although Design should not have NaN values, ignored samples due to NaN values in Data are also
ignored in the corresponding Design array.

Examples
See “Multivariate Normal Regression” on page 9-13, “Least-Squares Regression” on page 9-14,
“Covariance-Weighted Least Squares” on page 9-14, “Feasible Generalized Least Squares” on page 9-
15, and “Seemingly Unrelated Regression” on page 9-16.

See Also
ecmmvnrmle | ecmmvnrobj | mvnrmle

Topics
“Multivariate Normal Regression Without Missing Data” on page 9-13
“Multivariate Normal Linear Regression” on page 9-2

Introduced in R2006a
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mvnrstd
Evaluate standard errors for multivariate normal regression model

Syntax
[StdParameters,StdCovariance] = mvnrstd(Data,Design,Covariance,CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector. If a data sample has missing values,
represented as NaNs, the sample is ignored. (Use ecmmvnrmle to handle
missing data.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS matrix with
known values. This structure is the standard form for regression on a
single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array contains either
one or NUMSAMPLES cells. Each cell contains a NUMSERIES-by-
NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same Design matrix
for each sample. If Design has more than one cell, each cell contains a
Design matrix for each sample.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of the
regression residuals.

CovarFormat (Optional) Character vector that specifies the format for the covariance
matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full matrix.
• 'diagonal' — The covariance matrix is a diagonal matrix.

Description
[StdParameters,StdCovariance] = mvnrstd(Data,Design,Covariance,CovarFormat)
evaluates standard errors for a multivariate normal regression model without missing data. The
model has the form

Datak ∼ N Designk × Parameters, Covariance

for samples k = 1, ... , NUMSAMPLES.

mvnrstd computes two outputs:

• StdParameters is a NUMPARAMS-by-1 column vector of standard errors for each element of
Parameters, the vector of estimated model parameters.
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• StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors for each element of
Covariance, the matrix of estimated covariance parameters.

Note mvnrstd operates slowly when you calculate the standard errors associated with the
covariance matrix Covariance.

Notes
You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row vector.
• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-by-NUMPARAMS

matrix.

Examples
See “Multivariate Normal Regression” on page 9-13, “Least-Squares Regression” on page 9-14,
“Covariance-Weighted Least Squares” on page 9-14, “Feasible Generalized Least Squares” on page 9-
15, and “Seemingly Unrelated Regression” on page 9-16.

References
Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd Edition. John
Wiley & Sons, Inc., 2002.

See Also
ecmmvnrmle | ecmmvnrstd | mvnrmle

Topics
“Multivariate Normal Regression Without Missing Data” on page 9-13
“Multivariate Normal Regression Without Missing Data” on page 9-13
“Multivariate Normal Linear Regression” on page 9-2

Introduced in R2006a
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nancov
Covariance ignoring NaNs

Note nancov is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
c = nancov(X)

c = nancov(...,'pairwise')

Arguments
X Financial time series object.
Y Financial time series object.

Description
nancov for financial time series objects is based on the Statistics and Machine Learning Toolbox
function nancov. See nancov.

c = nancov(X), if X is a financial time series object with one series and returns the sample variance
of the values in X, treating NaNs as missing values. For a financial time series object containing more
than one series, where each row is an observation and each series a variable, nancov(X) is the
covariance matrix computing using rows of X that do not contain any NaN values. nancov(X,Y),
where X and Y are financial time series objects with the same number of elements, is equivalent to
nancov([X(:) Y(:)]).

nancov(X) or nancov(X,Y) normalizes by (N-1) if N >1, where N is the number of observations after
removing missing values. This makes nancov the best unbiased estimate of the covariance matrix if
the observations are from a normal distribution. For N = 1, cov normalizes by N.

nancov(X,1) or nancov(X,Y,1) normalizes by N and produces the second moment matrix of the
observations about their mean. nancov(X,Y,0) is the same as nancov(X,Y), and nancov(X,0) is
the same as nancov(X).

c = nancov(...,'pairwise') computes c(i,j) using rows with no NaN values in columns ior j.
The result may not be a positive definite matrix. c = nancov(..., 'complete') is the default,
and it omits rows with any NaN values, even if they are not in column i or j. The mean is removed
from each column before calculating the result.

Examples
To generate random data having nonzero covariance between column 4 and the other columns:
x = randn(30, 4);                 % uncorrelated data
x(:, 4) = sum(x, 2);              % introduce correlation
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x(2, 3) = NaN;                    % introduce one missing value
f = fints((today:today+29)', x);  % create a fints object using x
c = nancov(f)                     % compute sample covariance

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/nancov (line 43) 

c =

    1.6898   -0.0005    0.3612    1.9143
   -0.0005    1.0833   -0.5513    0.6059
    0.3612   -0.5513    1.0369    0.7570
    1.9143    0.6059    0.7570    4.4895

See Also
cov | nanvar | var

Introduced before R2006a
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nanmax
Maximum ignoring NaNs

Note nanmax is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
m = nanmax(X)

[m,ndx] = nanmax(X)

m = nanmax(X,Y)

[m,ndx] = nanmax(X,[],DIM)

Arguments
X Financial time series object.
Y Financial time series object or scalar.
DIM Dimension of X.

Description
nanmax for financial time series objects is based on the Statistics and Machine Learning Toolbox
function nanmax. See nanmax.

m = nanmax(X) returns the maximum of a financial time series object X with NaNs treated as
missing. m is the largest non-NaN element in X.

[m,ndx] = nanmax(X) returns the indices of the maximum values in X. If the values along the first
nonsingleton dimension contain multiple maximal elements, the index of the first one is returned.

m = nanmax(X,Y) returns an array the same size as X and Y with the largest elements taken from X
or Y. Only Y can be a scalar double.

[m,ndx] = nanmax(X,[],DIM) operates along the dimension DIM.

Examples
To compute nanmax for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;

[nmax, maxidx] = nanmax(f)
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/nanmax (line 20) 

nmax =
     4     5     6

maxidx =
     3     2     1

See Also
max | nanmean | nanmedian | nanmin | nanstd | nanvar

Introduced before R2006a
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nanmean
Mean ignoring NaNs

Note nanmean is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
m = nanmean(X)

m = nanmean(X,DIM)

Arguments
X Financial time series object.
DIM Dimension along which the operation is conducted.

Description
nanmean for financial time series objects is based on the Statistics and Machine Learning Toolbox
function nanmean. See nanmean.

m = nanmean(X) returns the sample mean of a financial time series object X, treating NaNs as
missing values. m is a row vector containing the mean value of the non-NaN elements in each series.

m = nanmean(X,DIM) takes the mean along dimension DIM of X.

Examples
To compute nanmean for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;

nmean = nanmean(f)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/nanmean (line 14) 
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nmean =

    3.5000    3.0000    4.0000

See Also
mean | nanmax | nanmin | nanstd | nansum | nanvar

Introduced before R2006a
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nanmedian
Median ignoring NaNs

Note nanmedian is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
m = nanmedian(X)

m = nanmedian(X,DIM)

Arguments
X Financial time series object.
DIM Dimension along which the operation is conducted.

Description
nanmedian for financial time series objects is based on the Statistics and Machine Learning Toolbox
function nanmedian. See nanmedian.

m = nanmedian(X) returns the sample median of a financial time series object X, treating NaNs as
missing values. m is a row vector containing the median value of non-NaN elements in each column.

m = nanmedian(X,DIM) takes the median along the dimension DIM of X.

Examples
To compute nanmedian for the following dates:
dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007';'04-Jan-2007'};
f = fints(dates, magic(4));
f.series1(1) = nan;
f.series2(2) = nan;
f.series3([1 3]) = nan;

nmedian = nanmedian(f)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/nanmedian (line 14) 
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nmedian =
    5.0000    7.0000   12.5000   10.0000

See Also
mean | nanmax | nanmin | nanstd | nansum | nanvar

Introduced before R2006a
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nanmin
Minimum ignoring NaNs

Note nanmin is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
m = nanmin(X)

[m,ndx] = nanmin(X)

m = nanmin(X,Y)

[m,ndx] = nanmin(X,[],DIM)

Arguments
X Financial time series object.
Y Financial time series object or scalar.
DIM Dimension along which the operation is conducted.

Description
nanmin for financial time series objects is based on the Statistics and Machine Learning Toolbox
function nanmin. See nanmin.

m = nanmin(X) returns the minimum of a financial time series object X with NaNs treated as
missing. m is the smallest non-NaN element in X.

[m,ndx] = nanmin(X) returns the indices of the minimum values in X. If the values along the first
nonsingleton dimension contain multiple elements, the index of the first one is returned.

m = nanmin(X,Y) returns an array the same size as X and Y with the smallest elements taken from
X or Y. Only Y can be a scalar double.

[m,ndx] = nanmin(X, [], DIM) operates along the dimension DIM.

Examples
To compute nanmin for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;

[nmin, minidx] = nanmin(f)
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/nanmin (line 20) 

nmin =
     3     1     2
minidx =
     2     1     3

See Also
mean | nanmax | nanstd | nanvar

Introduced before R2006a
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nanstd
Standard deviation ignoring NaNs

Note nanstd is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
y = nanstd(X)

y = nanstd(X,1)

y = nanstd(X,FLAG,DIM)

Arguments

X Financial time series object.
FLAG Normalization flag.
DIM Dimension along which the operation is conducted.

Description
nanstd for financial time series objects is based on the Statistics and Machine Learning Toolbox
function nanstd. See nanstd.

y = nanstd(X) returns the sample standard deviation of the values in a financial time series object
X, treating NaNs as missing values. y is the standard deviation of the non-NaN elements of X.

nanstd normalizes y by (N – 1), where N is the sample size. This is the square root of an unbiased
estimator of the variance of the population from which X is drawn, as long as X consists of
independent, identically distributed samples and data are missing at random.

y = nanstd(X,1) normalizes by N and produces the square root of the second moment of the
sample about its mean. nanstd(X,0) is the same as nanstd(X).

y = nanstd(X,flag,dim) takes the standard deviation along the dimension dim of X. Set the value
of flag to 0 to normalize the result by n – 1; set the value of flag to 1 to normalize the result by n.

Examples
To compute nanstd for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;
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nstd = nanstd(f)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/nanstd (line 25) 

nstd =

          0.71          2.83          2.83

See Also
nanmax | nanmean | nanmedian | nanmin | nanvar | std

Introduced before R2006a
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nansum
Sum ignoring NaNs

Note nansum is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
y = nansum(X)

y = nansum(X,DIM)

Arguments
X Financial time series object.
DIM Dimension along which the operation is conducted.

Description
nansum for financial time series objects is based on the Statistics and Machine Learning Toolbox
function nansum. See nansum.

y = nansum(X) returns the sum of a financial time series object X, treating NaNs as missing values.
y is the sum of the non-NaN elements in X.

y = nansum(X,DIM) takes the sum along dimension DIM of X.

Examples
To compute nansum for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};
f = fints(dates, magic(3));
f.series1(1) = nan;
f.series2(3) = nan;
f.series3(2) = nan;

nsum = nansum(f)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/nansum (line 13) 
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nsum =
     7     6     8

See Also
nanmax | nanmean | nanmedian | nanmin | nanstd | nanvar

Introduced before R2006a
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nanvar
Variance ignoring NaNs

Note nanvar is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
y = nanvar(X)

y = nanvar(X,1)

y = nanvar(X,W)

y = nanvar(X,W,DIM)

Arguments
X Financial time series object.
W Weight vector.
DIM Dimension along which the operation is conducted.

Description
nanvar for financial time series objects is based on the Statistics and Machine Learning Toolbox
function nanvar. See nanvar.

y = nanvar(X) returns the sample variance of the values in a financial time series object X, treating
NaNs as missing values. y is the variance of the non-NaN elements of each series in X.

nanvar normalizes y by N – 1 if N > 1, where N is the sample size of the non-NaN elements. This is an
unbiased estimator of the variance of the population from which X is drawn, as long as X consists of
independent, identically distributed samples, and data are missing at random. For N = 1, y is
normalized by N.

y = nanvar(X,1) normalizes by N and produces the second moment of the sample about its mean.
nanvar(X, 0) is the same as nanvar(X).

y = nanvar(X,W) computes the variance using the weight vector W. The length of W must equal the
length of the dimension over which nanvar operates, and its non-NaN elements must be nonnegative.
Elements of X corresponding to NaN elements of Ware ignored.

y = nanvar(X,W,DIM) takes the variance along dimension DIM of X.

Examples
To compute nanvar:
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f = fints((today:today+1)', [4 -2 1; 9  5 7])
f.series1(1) = nan;
f.series3(2) = nan;

nvar = nanvar(f)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/nanvar (line 28) 

nvar =
         0   24.5000         0

See Also
nanmax | nanmean | nanmedian | nanmin | nanstd | var

Introduced before R2006a

19 Functions

19-1092



negvolidx
Negative volume index

Note Using a fints object for the Data argument of negvolidx is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
volume = negvolidx(Data)
volume = negvolidx( ___ ,Name,Value)

Description
volume = negvolidx(Data) calculates the negative volume index from the series of closing stock
prices and trade volume.

volume = negvolidx( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Negative Volume Index for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
volume = negvolidx(TMW);
plot(volume.Time,volume.NegativeVolume)
title('Negative Volume Index for TMW')
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Input Arguments
Data — Data with closing prices and trade volume
matrix | table | timetable

Data with closing prices and trade volume, specified as a matrix, table, or timetable. For matrix input,
Data is an M-by-2 with closing prices and trade volume stored in the first and second columns.
Timetables and tables with M rows must contain variables named 'Close' and 'Volume' (case
insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: volume = negvolidx(TMW,'InitialValue',500)

InitialValue — Initial value for negative volume index
100 (default) | positive integer

Initial value for negative volume index, specified as the comma-separated pair consisting of
'InitialValue' and a scalar positive integer.
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Data Types: double

Output Arguments
volume — Negative volume index
matrix | table | timetable

Negative volume index, returned with the same number of rows (M) and the same type (matrix, table,
or timetable) as the input Data.

More About
Negative Volume Index

Negative volume index shows the days when the trading volume of a particular security is
substantially lower than other days.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 193–194.

See Also
timetable | table | onbalvol | posvolidx

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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nomrr
Nominal rate of return

Syntax
Return = nomrr(Rate,NumPeriods)

Description
Return = nomrr(Rate,NumPeriods) calculates the nominal rate of return.

Examples

Calculate the Nominal Rate of Return

This example shows how to calculate the nominal rate of return based on an effective annual
percentage rate of 9.38% compounded monthly.

Return = nomrr(0.0938, 12)

Return = 0.0900

Input Arguments
Rate — Effective annual percentage rate
decimal

Effective annual percentage rate, specified as a decimal.
Data Types: double

NumPeriods — Number of compounding periods per year
scalar numeric

Number of compounding periods per year, specified as a scalar numeric.
Data Types: double

Output Arguments
Return — Nominal rate of return
numeric

Nominal rate of return, returned as a numeric.

See Also
effrr | irr | mirr | taxedrr | xirr
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Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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nweekdate
Date of specific occurrence of weekday in month

Syntax
Date = nweekdate(n,Weekday,Year,Month)
Date = nweekdate( ___ ,Same,outputType)

Description
Date = nweekdate(n,Weekday,Year,Month) returns the date number for the specific
occurrence of the weekday in the given Year and Month.

Any input argument can contain multiple values, but if so, all other input arguments must contain the
same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of
integers, then Month must be a 1-by-n vector of integers or a single integer. Date is then a 1-by-n
vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date character vectors.

Date = nweekdate( ___ ,Same,outputType) returns the date number for the specific occurrence
of the weekday in the given Year and Month and also contains the optional arguments for weekday
Same and outputType.

Examples

Determine the Date of a Specific Occurrence of a Weekday in a Month

Find the first Thursday in May 2001.

Date = nweekdate(1, 5, 2001, 5); 
datestr(Date)

ans = 
'03-May-2001'

Find the first Thursday in May 2001 returned as a datetime array.

Date = nweekdate(1, 5, 2001, 5,[],'datetime')

Date = datetime
   03-May-2001

Find the first Thursday in a week that also contains a Wednesday in May 2001.

Date = nweekdate(2, 5, 2001, 5, 4); 
datestr(Date)

ans = 
'10-May-2001'
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Find the third Monday in February for 2001, 2002, and 2003.

Year = [2001:2003];
Date = nweekdate(3, 2, Year, 2);
datestr(Date)

ans = 3x11 char array
    '19-Feb-2001'
    '18-Feb-2002'
    '17-Feb-2003'

Input Arguments
n — Nth occurrence of weekday in a month
integer with value 1 through 5 | vector of integers with values 1 through 5

Nth occurrence of the weekday in a month, specified as an integer or a vector of integers from 1
through 5.

If n is larger than the last occurrence of Weekday, the output Date = 0.
Data Types: single | double

Weekday — Weekday whose date you seek
integer with value 1 through 7 | vector of integers with values 1 through 7

Weekday whose date you seek, specified as an integer or a vector of integers from 1 through 7.

• 1 — Sunday
• 2 — Monday
• 3 — Tuesday
• 4 — Wednesday
• 5 — Thursday
• 6 — Friday
• 7 — Saturday

Data Types: single | double

Year — Year to determine occurrence of weekday
4-digit integer | vector of 4-digit integers

Year to determine occurrence of weekday, specified as a 4-digit integer or vector of 4-digit integers.
Data Types: single | double

Month — Month to determine occurrence of weekday
integer with value 1 through 12 | vector of integers with values 1 through 12

Month to determine occurrence of weekday, specified as an integer or vector of integers with values 1
through 12.
Data Types: single | double
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Same — Weekday that must occur in same week with Weekday
0 = ignore (default) | integer with value 0 through 7 | vector of integers with values 0 through 7

Weekday that must occur in the same week with Weekday, specified as an integer or a vector of
integers from 0 through 7, where 0 = ignore (default) and 1 through 7 are as for Weekday.
Data Types: single | double

outputType — Year to determine days
'datenum' (default) | character vector with values 'datenum' or 'datetime'

A character vector specified as either 'datenum' or 'datetime'. The output Date is in serial date
format if 'datenum' is specified, or datetime format if 'datetime' is specified. By default the
output Date is in serial date format.
Data Types: single | double

Output Arguments
Date — Date of specific occurrence of weekday in month
serial date number | date character vector

Date of specific occurrence of weekday in month, returned as a serial date number or date character
vector.

The type of the output for Date depends on the input outputType. If this variable is 'datenum',
Date is a serial date number. If outputType is 'datetime', then Date is a datetime array. By
default, outputType is set to 'datenum'.

See Also
fbusdate | lbusdate | lweekdate | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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nyseclosures
New York Stock Exchange closures from 1885 to 2070

Syntax
Closures = nyseclosures
[Closures,SatTransition] = nyseclosures(StartDate,EndDate,WorkWeekFormat)

Description
Closures = nyseclosures returns a vector of serial date numbers for all known or anticipated
closures from January 1, 1885 to December 31, 2070.

Since the New York Stock Exchange was open on Saturdays before September 29, 1952, exact
closures from 1885 to 1952 are based on a 6-day workweek. nyseclosures contains all holiday and
special non-trading days for the New York Stock Exchange from 1885 through 2070 based on a six-
day work week (always closed on Sundays).

[Closures,SatTransition] = nyseclosures(StartDate,EndDate,WorkWeekFormat),
using optional input arguments, returns a vector of serial date numbers corresponding to market
closures between StartDate and EndDate, inclusive.

Since the New York Stock Exchange was open on Saturdays before September 29, 1952, exact
closures from 1885 to 1952 are based on a 6-day workweek. nyseclosures contains all holiday and
special non-trading days for the New York Stock Exchange from 1885 through 2070 based on a six-
day work week (always closed on Sundays). Use WorkWeekFormat to modify the list of dates.

Examples

Find NYSE Closures

Find the NYSE closures for 1899:

datestr(nyseclosures('1-jan-1899','31-dec-1899'),'dd-mmm-yyyy ddd')

ans = 16x15 char array
    '02-Jan-1899 Mon'
    '11-Feb-1899 Sat'
    '13-Feb-1899 Mon'
    '22-Feb-1899 Wed'
    '31-Mar-1899 Fri'
    '29-May-1899 Mon'
    '30-May-1899 Tue'
    '03-Jul-1899 Mon'
    '04-Jul-1899 Tue'
    '04-Sep-1899 Mon'
    '29-Sep-1899 Fri'
    '30-Sep-1899 Sat'
    '07-Nov-1899 Tue'
    '25-Nov-1899 Sat'
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    '30-Nov-1899 Thu'
    '25-Dec-1899 Mon'

Find the NYSE closures for 1899 using a datetime array:

[Closures,SatTransition] = nyseclosures(datetime('1-jan-1899','Locale','en_US'),'30-Jun-1899')

Closures = 7x1 datetime
   02-Jan-1899
   11-Feb-1899
   13-Feb-1899
   22-Feb-1899
   31-Mar-1899
   29-May-1899
   30-May-1899

SatTransition = datetime
   29-Sep-1952

Find the NYSE closure dates using the 'Archaic' value for WorkWeekFormat:

datestr(nyseclosures('1-sep-1952','31-oct-1952','a'),1)

ans = 10x11 char array
    '01-Sep-1952'
    '06-Sep-1952'
    '13-Sep-1952'
    '20-Sep-1952'
    '27-Sep-1952'
    '04-Oct-1952'
    '11-Oct-1952'
    '13-Oct-1952'
    '18-Oct-1952'
    '25-Oct-1952'

The exchange was closed on Saturdays for much of 1952 before the official transition to a 5-day
workweek.

Input Arguments
StartDate — Start date
start of default date range, January 1, 1885 (default) | serial date number | date character vector |
datetime object

Start date, specified using a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

EndDate — End date
end of default date range, December 31, 2070 (default) | serial date number | date character vector |
datetime object

End date, specified using a serial date number, date character vector, or datetime array.
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Data Types: double | char | datetime

WorkWeekFormat — Method to handle the workweek
'Implicit' (default) | date character vector with values 'Modern', 'Implicit', or 'Archaic'

Method to handle the workweek, specified using a date character vector with values 'Modern',
'Implicit', or 'Archaic'. This function accepts the first letter for each method as input and is not
case-sensitive. Acceptable values are:

• 'Modern' — 5-day workweek with all Saturday trading days removed.
• 'Implicit' — 6-day workweek until 1952 and 5-day week afterward (no need to exclude

Saturdays).
• 'Archaic' — 6-day workweek throughout and Saturdays treated as closures after 1952.

Data Types: char

Output Arguments
Closures — Market closures between StartDate and EndDate, inclusive
vector

Market closures between the StartDate and EndDate, inclusive, returned as a vector of dates.

If StartDate or EndDate are all either serial date numbers or date character vectors, both
Closures and SatTransition are returned as serial date numbers. If either StartDate or
EndDate are datetime arrays, both Closures and SatTransition are returned as datetime arrays.

If both StartDate and EndDate are not specified or are empty, Closures contains all known or
anticipated closures from January 1, 1885 to December 31, 2070 based on a WorkWeekFormat of
'implicit'.

SatTransition — Date of transition for New York Stock Exchange from 6-day workweek to
5-day workweek
serial date number | datetime array

Date of transition for the New York Stock Exchange from a 6-day workweek to a 5-day workweek,
returned as the date September 29, 1952 (serial date number 713226).

If StartDate or EndDate are all either serial date numbers or date character vectors, both
Closures and SatTransition are returned as serial date numbers. If either StartDate or
EndDate are datetime arrays, both Closures and SatTransition are returned as datetime arrays.

More About
holidays

The holidays function is based on a modern 5-day workweek.

This function contains all holidays and special nontrading days for the New York Stock Exchange
from January 1, 1885 to December 31, 2070.

Since the New York Stock Exchange was open on Saturdays before September 29, 1952, exact
closures from 1885 to 2070 should include Saturday trading days. To capture these dates, use
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nyseclosures. The results from holidays and nyseclosures are identical if the
WorkWeekFormat in nyseclosures is 'Modern'.

See Also
busdate | createholidays | fbusdate | isbusday | lbusdate | holidays | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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onbalvol
On-Balance Volume (OBV)

Note Using a fints object for the Data argument of onbalvol is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
volume = onbalvol(Data)

Description
volume = onbalvol(Data) calculates the On-Balance Volume from the series of closing stock
prices and trade volume.

Examples

Calculate the On-Balance Volume for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
volume = onbalvol(TMW);
plot(volume.Time,volume.OnBalanceVolume)
title('On-Balance Volume for TMW')
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Input Arguments
Data — Data for closing prices and trade volume
matrix | table | timetable

Data for closing prices and trade volume, specified as a matrix, table, or timetable. For matrix input,
Data is an M-by-2 matrix of closing prices and trade volume stored in the first and second columns.
Timetables and tables with M rows must contain variables named 'Close' and 'Volume' (case
insensitive).
Data Types: double | table | timetable

Output Arguments
volume — On-Balance Volume
matrix | table | timetable

On-Balance Volume, returned with the same number of rows (M) and the same type (matrix, table, or
timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 207–209.
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See Also
timetable | table | negvolidx | posvolidx

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a

 onbalvol

19-1107



opprofit
Option profit

Syntax
Profit = opprofit(AssetPrice,Strike,Cost,PosFlag,OptType)

Description
Profit = opprofit(AssetPrice,Strike,Cost,PosFlag,OptType) returns the profit of an
option.

Examples

Calculate the Profit of an Option

This example shows how to return the profit of an option. For example, consider buying (going long
on) a call option with a strike price of $90 on an underlying asset with a current price of $100 for a
cost of $4.

Profit = opprofit(100, 90, 4, 0, 0)

Profit = 6

Input Arguments
AssetPrice — Asset price
numeric

Asset price, specified as a scalar or a NINST-by-1 vector.
Data Types: double

Strike — Strike or exercise price
numeric

Strike or exercise price, specified as a scalar or a NINST-by-1 vector.
Data Types: double

Cost — Cost of option
numeric

Cost of the option, specified as a scalar or a NINST-by-1 vector.
Data Types: double

PosFlag — Option position
0 = long | 1 = short
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Option position, specified as a scalar or a NINST-by-1 vector using the values 0 (long) or 1 (short).
Data Types: logical

OptType — Option type
0 = call option | 1 = put option

Option type, specified as a scalar or a NINST-by-1 vector using the values 0 (call option) or 1 (put
option).
Data Types: logical

Output Arguments
Profit — Option profit
vector

Option profit, returned as a scalar or a NINST-by-1 vector.

See Also
binprice | blsprice

Topics
“Pricing and Analyzing Equity Derivatives” on page 2-35
“Greek-Neutral Portfolios of European Stock Options” on page 10-14
“Plotting Sensitivities of an Option” on page 10-25
“Plotting Sensitivities of a Portfolio of Options” on page 10-27

Introduced before R2006a
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payadv
Periodic payment given number of advance payments

Syntax
Payment = payadv(Rate,NumPeriods,PresentValue,FutureValue,Advance)

Description
Payment = payadv(Rate,NumPeriods,PresentValue,FutureValue,Advance) computes the
periodic payment given a number of advance payments.

Examples

Compute the Periodic Payment

This example shows how to compute the periodic payment, given a number of advance payments. For
example, the present value of a loan is $1000.00 and it will be paid in full in 12 months. The annual
interest rate is 10% and three payments are made at closing time.

Payment = payadv(0.1/12, 12, 1000, 0, 3)

Payment = 85.9389

Input Arguments
Rate — Lending or borrowing rate per period
decimal

Lending or borrowing rate per period, specified as a decimal. The Rate must be greater than or equal
to 0.
Data Types: double

NumPeriods — Number of periods in the life of the instrument
integer

Number of periods in the life of the instrument, specified as an integer.
Data Types: double

PresentValue — Present value of instrument
numeric

Present value of the instrument, specified as a numeric.
Data Types: double

FutureValue — Future value or target value attained after NumPeriods periods
numeric
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Future value or target value to be attained after NumPeriods periods, specified as a numeric.
Data Types: double

Advance — Number of advance payments
integer

Number of advance payments, specified as an integer. If the payments are made at the beginning of
the period, add 1 to Advance.
Data Types: double

Output Arguments
Payment — Periodic payment
numeric

Periodic payment, returned as the periodic payment given a number of advance payments.

See Also
amortize | payodd | payper

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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payodd
Payment of loan or annuity with odd first period

Syntax
Payment = payodd(Rate,NumPeriods,PresentValue,FutureValue,Days)

Description
Payment = payodd(Rate,NumPeriods,PresentValue,FutureValue,Days) computes the
payment for a loan or annuity with an odd first period.

Examples

Compute the Payment for a Loan or Annuity With an Odd First Period

This example shows how to return the payment for a loan or annuity with an odd first period. For
example, consider a two-year loan for $4000 that has an annual interest rate of 11% and the first
payment will be made in 36 days.

Payment = payodd(0.11/12, 24, 4000, 0, 36)

Payment = 186.7731

Input Arguments
Rate — Interest rate per period
decimal

Interest rate per period, specified as a decimal.
Data Types: double

NumPeriods — Number of periods in the life of the instrument
integer

Number of periods in the life of the instrument, specified as an integer.
Data Types: double

PresentValue — Present value of instrument
numeric

Present value of the instrument, specified as a numeric.
Data Types: double

FutureValue — Future value or target value attained after NumPeriods periods
numeric
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Future value or target value to be attained after NumPeriods periods, specified as a numeric.
Data Types: double

Days — Actual number of days until first payment is made
integer

Actual number of days until the first payment is made, specified as an integer.
Data Types: double

Output Arguments
Payment — Payment
numeric

Payment, returns the payment for a loan or annuity with an odd first period.

See Also
amortize | payadv | payper

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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payper
Periodic payment of loan or annuity

Syntax
Payment = payper(Rate,NumPeriods,PresentValue)
Payment = payper( ___ ,FutureValue,Due)

Description
Payment = payper(Rate,NumPeriods,PresentValue) returns the periodic payment of a loan
or annuity.

Payment = payper( ___ ,FutureValue,Due) adds optional arguments.

Examples

Compute the Periodic Payment of a Loan or Annuity

This example shows how to find the monthly payment for a three-year loan of $9000 with an annual
interest rate of 11.75%.

Payment = payper(0.1175/12, 36, 9000, 0, 0)

Payment = 297.8553

Input Arguments
Rate — Interest rate per period
decimal

Interest rate per period, specified as a decimal.
Data Types: double

NumPeriods — Number of payment periods in life of instrument
integer

Number of payment periods in the life of instrument, specified as an integer.
Data Types: double

PresentValue — Present value of the instrument
numeric

Present value of the instrument, specified as a numeric.
Data Types: double
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FutureValue — Future value or target value attained after NumPeriods periods
0 (default) | numeric

(Optional) Future value or target value to be attained after NumPeriods periods, specified as a
numeric.
Data Types: double

Due — Indicator for when payments are due
0 (default) | logical with value of 1 or 0

(Optional) Indicator for when payments are due, specified as a logical with a value of 0 = end of
period (default), or 1 = beginning of period.
Data Types: logical

Output Arguments
Payment — Periodic payment
numeric

Periodic payment, returns the periodic payment of a loan or annuity.

More About
Annuity

An annuity is a series of payments over a period of time.

The payments are usually in equal amounts and usually at regular intervals such as quarterly,
semiannually, or annually.

See Also
fvfix | amortize | payadv | payodd | pvfix

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a

 payper

19-1115



payuni
Uniform payment equal to varying cash flow

Syntax
Series = payuni(CashFlow,Rate)

Description
Series = payuni(CashFlow,Rate) computes the uniform series value of a varying cash flow.

Examples

Calculate the Uniform Series Value

This example shows how to calculate the uniform series value using payuni.

The following cash flow represents the yearly income from an initial investment of $10,000. The
annual interest rate is 8%.

Year 1 - $2000

Year 2 - $1500

Year 3 - $3000

Year 4 - $3800

Year 5 - $5000

To calculate the uniform series value:

Series = payuni([-10000 2000 1500 3000 3800 5000], 0.08)

Series = 429.6296

Input Arguments
CashFlow — Cash flows
vector

Cash flows, specified as a vector of varying cash flows. Include the initial investment as the initial
cash flow value (a negative number).
Data Types: double

Rate — Periodic interest rate
decimal

Periodic interest rate, specified as a decimal.
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Data Types: double

Output Arguments
Series — Uniform series
numeric

Uniform series, returned as the value of a varying cash flow.

See Also
fvfix | pvfix | fvvar | irr | pvvar

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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pcalims
Linear inequalities for individual asset allocation

Syntax
[A,b] = pcalims(AssetMin,AssetMax)
[A,b] = pcalims( ___ ,NumAssets)

Description
As an alternative to pcalims, use the Portfolio object (Portfolio) for mean-variance portfolio
optimization. This object supports gross or net portfolio returns as the return proxy, the variance of
portfolio returns as the risk proxy, and a portfolio set that is any combination of the specified
constraints to form a portfolio set. For information on the workflow when using Portfolio objects, see
“Portfolio Object Workflow” on page 4-17.

[A,b] = pcalims(AssetMin,AssetMax) specifies the lower and upper bounds of portfolio
allocations in each of NumAssets available asset investments. pcalims specifies the lower and upper
bounds of portfolio allocations in each of NASSETS available asset investments.

Note If pcalims is called with fewer than two output arguments, the function returns A
concatenated with b [A,b].

[A,b] = pcalims( ___ ,NumAssets) specifies options using an optional argument in addition to
the input arguments in the previous syntax.

Examples

Compute Linear Inequalities for Individual Asset Allocation

Set the minimum weight in every asset to 0 (no short-selling), and set the maximum weight of IBM
stock to 0.5 and CSCO to 0.8, while letting the maximum weight in INTC float.

Minimum weight:

• IBM — 0
• INTC — 0
• CSCO — 0

Maximum weight:

• IBM — 0.5
• INTC —
• CSCO — 0.8

AssetMin = 0

19 Functions

19-1118



AssetMin = 0

AssetMax = [0.5 NaN 0.8]

AssetMax = 1×3

    0.5000       NaN    0.8000

[A,b] = pcalims(AssetMin, AssetMax)

A = 5×3

     1     0     0
     0     0     1
    -1     0     0
     0    -1     0
     0     0    -1

b = 5×1

    0.5000
    0.8000
         0
         0
         0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints

Set the minimum weight in every asset to 0 and the maximum weight to 1.

Minimum weight:

• IBM — 0
• INTC — 0
• CSCO — 0

Maximum weight:

• IBM — 1
• INTC — 1
• CSCO — 1

AssetMin = 0

AssetMin = 0

AssetMax = 1

AssetMax = 1

NumAssets = 3

NumAssets = 3

[A,b] = pcalims(AssetMin, AssetMax, NumAssets)
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A = 6×3

     1     0     0
     0     1     0
     0     0     1
    -1     0     0
     0    -1     0
     0     0    -1

b = 6×1

     1
     1
     1
     0
     0
     0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

Input Arguments
AssetMin — Minimum allocations in each asset
scalar numeric | vector

Minimum allocations in each asset, specified as a scalar numeric or NASSETS vector. NaN indicates no
constraint.
Data Types: double

AssetMax — Maximum allocations in each asset
scalar numeric | vector

Maximum allocations in each asset, specified as a scalar numeric or NASSETS vector. NaN indicates
no constraint.
Data Types: double

NumAssets — Number of assets
length of AssetMin or AssetMax (default) | scalar numeric

(Optional) Number of assets, specified as a scalar numeric.
Data Types: double

Output Arguments
A — Lower bound
matrix

Lower bound, returned as a matrix such that A*PortWts' <= b, where PortWts is a 1-by-NASSETS
vector of asset allocations.
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b — Upper bound
vector

Upper bound, returned as a vector such that A*PortWts' <= b, where PortWts is a 1-by-NASSETS
vector of asset allocations.

See Also
pcgcomp | pcglims | portstats | pcpval | portcons | portopt | Portfolio

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Selection and Risk Aversion” on page 3-7
“Active Returns and Tracking Error Efficient Frontier” on page 3-32
“Analyzing Portfolios” on page 3-2
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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pcgcomp
Linear inequalities for asset group comparison constraints

Syntax
[A,b] = pcgcomp(GroupA,AtoBmin,AtoBmax,GroupB)

Description
As an alternative to pcgcomp, use the Portfolio object (Portfolio) for mean-variance portfolio
optimization. This object supports gross or net portfolio returns as the return proxy, the variance of
portfolio returns as the risk proxy, and a portfolio set that is any combination of the specified
constraints to form a portfolio set. For information on the workflow when using Portfolio objects, see
“Portfolio Object Workflow” on page 4-17.

[A,b] = pcgcomp(GroupA,AtoBmin,AtoBmax,GroupB) specifies that the ratio of allocations in
one group to allocations in another group is at least AtoBmin to 1 and at most AtoBmax to 1.
Comparisons can be made between an arbitrary number of group pairs NGROUPS comprising subsets
of NASSETS available investments.

If pcgcomp is called with fewer than two output arguments, the function returns A concatenated with
b [A,b].

Examples

Linear Inequalities for Asset Group-to-Group Comparison Constraints

Use the following assets and groupings.

Make the North American energy sector compose exactly 20% of the North American investment.

%          INTC  XOM  RD       
GroupA = [   0    1   0  ];  % North American Energy
GroupB = [   1    1   0  ];  % North America

AtoBmin = 0.20;
AtoBmax = 0.20;

[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)
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A = 2×3

    0.2000   -0.8000         0
   -0.2000    0.8000         0

b = 2×1

     0
     0

Portfolio weights of 40% for INTC, 10% for XOM, and 50% for RD satisfy the constraints.

Input Arguments
GroupA — Grouping A
vector

Grouping A, specified as a number of groups (NGROUPS) by number of assets (NASSETS) vector of
groups to compare. Each row specifies a group. For a specific group, Group(i,j) = 1 if the group
contains asset j; otherwise, Group(i,j) = 0.
Data Types: double

AtoBmin — Minimum ratios
scalar | vector

Minimum ratios, specified as a scalar or NGROUPS-long vectors of minimum ratios of allocations in
GroupA to allocations in GroupB. NaN indicates no constraint between the two groups. Scalar bounds
are applied to all group pairs. The total number of assets allocated to GroupA divided by the total
number of assets allocated to GroupB is >= AtoBmin and <= AtoBmax.
Data Types: double

AtoBmax — Maximum ratios
scalar | vector

Maximum ratios, specified as a scalar or NGROUPS-long vectors of maximum ratios of allocations in
GroupA to allocations in GroupB. NaN indicates no constraint between the two groups. Scalar bounds
are applied to all group pairs. The total number of assets allocated to GroupA divided by the total
number of assets allocated to GroupB is >= AtoBmin and <= AtoBmax.
Data Types: double

GroupB — Grouping A
vector

Grouping B, specified as a number of groups (NGROUPS) by number of assets (NASSETS) vector of
groups to compare. Each row specifies a group. For a specific group, Group(i,j) = 1 if the group
contains asset j; otherwise, Group(i,j) = 0.
Data Types: double
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Output Arguments
A — Lower bound
matrix

Lower bound, returned as a matrix such that A*PortWts' <= b, where PortWts is a 1-by-NASSETS
vector of asset allocations.

b — Upper bound
vector

Upper bound, returned as a vector such that A*PortWts' <= b, where PortWts is a 1-by-NASSETS
vector of asset allocations.

See Also
pcalims | pcglims | pcpval | portcons | portopt | Portfolio

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Selection and Risk Aversion” on page 3-7
“Active Returns and Tracking Error Efficient Frontier” on page 3-32
“Analyzing Portfolios” on page 3-2
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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pcglims
Linear inequalities for asset group minimum and maximum allocation

Syntax
[A,b] = pcglims(Groups,GroupMin,GroupMax)

Description
As an alternative to pcglims, use the Portfolio object (Portfolio) for mean-variance portfolio
optimization. This object supports gross or net portfolio returns as the return proxy, the variance of
portfolio returns as the risk proxy, and a portfolio set that is any combination of the specified
constraints to form a portfolio set. For information on the workflow when using Portfolio objects, see
“Portfolio Object Workflow” on page 4-17.

[A,b] = pcglims(Groups,GroupMin,GroupMax) specifies minimum and maximum allocations to
groups of assets. Bounds can be specified for an arbitrary number of groups NGROUPS,made up as
subsets of the NASSETS investments.

If pcglims is called with fewer than two output arguments, the function returns A concatenated with
b [A,b].

Examples

Linear Inequalities for Asset Group Minimum and Maximum Allocation

Use the following assets and groupings.

Set the minimum and maximum investment in various groups.

%          INTC  XOM  RD       
Groups = [   1    1   0  ;  % North America
             0    0   1  ;  % Europe
             1    0   0  ;  % Technology
             0    1   1  ]; % Energy

GroupMin = [0.30
            0.10
            0.20
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            0.50];

GroupMax = [0.75
            0.55
            0.50
            0.50];

[A,b] = pcglims(Groups, GroupMin, GroupMax)

A = 8×3

    -1    -1     0
     0     0    -1
    -1     0     0
     0    -1    -1
     1     1     0
     0     0     1
     1     0     0
     0     1     1

b = 8×1

   -0.3000
   -0.1000
   -0.2000
   -0.5000
    0.7500
    0.5500
    0.5000
    0.5000

Portfolio weights of 50% in INTC, 25% in XOM, and 25% in RD satisfy the constraints.

Input Arguments
Groups — Grouping
vector

Grouping, specified as a number of groups (NGROUPS) by number of assets (NASSETS) vector of which
assets belong to which group. Each row specifies a group. For a specific group, Group(i,j) = 1 if
the group contains asset j; otherwise, Group(i,j) = 0.
Data Types: double

GroupMin — Minimum allocations
scalar | vector

Minimum allocations, specified as a scalar or NGROUPS-long vectors of minimum combined allocations
in each group. NaN indicates no constraint. Scalar bounds are applied to all groups.
Data Types: double

GroupMax — Maximum allocations
scalar | vector
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Maximum allocations, specified as a scalar or NGROUPS-long vectors maximum combined allocations
in each group. NaN indicates no constraint. Scalar bounds are applied to all groups.
Data Types: double

Output Arguments
A — Lower bound
matrix

Lower bound, returned as a matrix such that A*PortWts' <= b, where PortWts is a 1-by-NASSETS
vector of asset allocations.

b — Upper bound
vector

Upper bound, returned as a vector such that A*PortWts' <= b, where PortWts is a 1-by-NASSETS
vector of asset allocations.

See Also
pcalims | pcgcomp | pcpval | portcons | portopt | Portfolio

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Selection and Risk Aversion” on page 3-7
“Active Returns and Tracking Error Efficient Frontier” on page 3-32
“Analyzing Portfolios” on page 3-2
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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pcpval
Linear inequalities for fixing total portfolio value

Syntax
[A,b] = pcpval(PortValue,NumAssets)

Description
[A,b] = pcpval(PortValue,NumAssets) scales the total value of a portfolio of NumAssets
assets to PortValue. All portfolio weights, bounds, return, and risk values except ExpReturn and
ExpCovariance (see portopt) are in terms of PortValue.

Note As an alternative to pcpval, use the Portfolio object (Portfolio) for mean-variance
portfolio optimization. The Portfolio object supports gross or net portfolio returns as the return
proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any combination of
the specified constraints to form a portfolio set. For information on the workflow when using Portfolio
objects, see “Portfolio Object Workflow” on page 4-17.

Examples

Scale the Value of a Portfolio

Scale the value of a portfolio of three assets that are equal to 1, so all return values are rates and all
weight values are in fractions of the portfolio.

PortValue = 1;
NumAssets = 3;

[A,b] = pcpval(PortValue, NumAssets)

A = 2×3

     1     1     1
    -1    -1    -1

b = 2×1

     1
    -1

Portfolio weights of 40%, 10%, and 50% in the three assets satisfy the constraints.
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Input Arguments
PortValue — Total value of asset portfolio
numeric

Total value of asset portfolio, specified as a scalar numeric representing the sum of the allocations in
all assets. PortValue = 1 specifies weights as fractions of the portfolio and return and risk
numbers as rates instead of value.
Data Types: double

NumAssets — Number of available asset investments
numeric

Number of available asset investments, specified as a scalar numeric.
Data Types: double

Output Arguments
A — Asset allocations
matrix

Asset allocations, returned as a matrix such that A*PortWts' <= b, where PortWts is a 1-by-
NASSETS vector of asset allocations.

b — Asset allocations
vector

Asset allocations, returned as a vector such that A*PortWts' <= b, where PortWts is a 1-by-
NASSETS vector of asset allocations.

Note If pcpcval is called with fewer than two output arguments, returns A and b are concatenated
together:

Cons = [A, b];
Cons = pcpval(PortValue, NumAssets)

See Also
pcalims | pcgcomp | pcglims | portcons | portopt | Portfolio

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Selection and Risk Aversion” on page 3-7
“Active Returns and Tracking Error Efficient Frontier” on page 3-32
“Analyzing Portfolios” on page 3-2
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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peravg
Periodic average of FINTS object

Note peravg is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
avgfts = peravg(tsobj)

avgfts = peravg(tsobj,numperiod)

avgfts = peravg(tsobj,daterange)

Arguments

tsobj Financial time series object
numperiod (Optional) Integer specifying the number of data points over which each

periodic average should be averaged
daterange (Optional) Time period over which the data is averaged

Description
peravg calculates periodic averages of a financial time series object. Periodic averages are
calculated from the values per period defined. If the period supplied is a character vector, it is
assumed as a range of date character vector. If the period is entered as numeric, the number
represents the number of data points (financial time series periods) to be included in a period for the
calculation. For example, if you enter '01/01/98::01/01/99' as the period input argument,
peravg returns the average of the time series between those dates, inclusive. However, if you enter
the number 5 as the period input, peravg returns a series of averages from the time series data
taken 5 date points (financial time series periods) at a time.

avgfts = peravg(tsobj,numperiod) returns a structure avgfts that contains the periodic (per
numperiod periods) average of the financial time series object. avgfts has field names identical to
the data series names of tsobj.

avgfts = peravg(tsobj,daterange) returns a structure avgfts that contains the periodic (as
specified by daterange) average of the financial time series object. avgfts has field names identical
to the data series names of tsobj.

Note peravg calculates periodic averages of a FINTS object. Periodic averages are calculated from
the values per period defined. If the period supplied is a character vector, it is assumed as a range of
date character vectors. If the period is entered as numeric, the number represents the number of
data points to be included in a period for the calculation.
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Examples
If you enter 01-Jan-2001::03-Jan-2001 as the period input argument, peravg returns the
average of the time series between those dates, inclusive. However, if you enter the number 5 as the
period input, peravg returns a series of averages from the time series data, taken 5 date points at a
time.

%% Create the FINTS object %%
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ', size(dates, 1), 1), times]);
data  = [(1:6)', 2*(1:6)'];
myFts = fints(dates_times, data, {'Data1', 'Data2'}, 1, 'My first FINTS')

%% Create the FINTS object %%
[p, pFts] = peravg(myFts, 3)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
myFts = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'    'Data2:  (6)'
    '01-Jan-2001'    '11:00'          [          1]    [          2]
    '     "     '    '12:00'          [          2]    [          4]
    '02-Jan-2001'    '11:00'          [          3]    [          6]
    '     "     '    '12:00'          [          4]    [          8]
    '03-Jan-2001'    '11:00'          [          5]    [         10]
    '     "     '    '12:00'          [          6]    [         12]

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/peravg (line 85) 

p = 

  struct with fields:

    Data1: [2 5]
    Data2: [4 10]

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
pFts = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'    'Data2:  (2)'
    '02-Jan-2001'    '11:00'          [          2]    [          4]
    '03-Jan-2001'    '12:00'          [          5]    [         10]

[p, pFts] = peravg(myFts,'01-Jan-2001 12:00::03-Jan-2001 11:00')
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/peravg (line 85) 

p = 

  struct with fields:

    Data1: 3.5000
    Data2: 7

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
pFts = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (1)'    'times:  (1)'    'Data1:  (1)'    'Data2:  (1)'
    '03-Jan-2001'    '11:00'          [     3.5000]    [          7]

See Also
mean | tsmovavg

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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periodicreturns
Periodic total returns from total return prices

Syntax
TotalReturn = periodicreturns(TotalReturnPrices)
TotalReturn = periodicreturns( ___ ,Period)

Description
TotalReturn = periodicreturns(TotalReturnPrices) calculates the daily total returns from
a daily total return price series.

TotalReturn = periodicreturns( ___ ,Period) specifies options using one or more optional
arguments in addition to the input arguments in the previous syntax.

Examples

Compute TotalReturn Using datetime Input for TotalReturnPrices

Compute TotalReturn returned as a table using datetime input in a table for
TotalReturnPrices.

Dates = datetime(2015,1,1:10,'Locale','en_US')';
Prices = [0.01 0.03 0.1  -0.05  0.02 0.07 0.03 -0.01 -0.02 0.01]';
TotalReturnPrices = table(Dates,Prices);
TotalReturn = periodicreturns(TotalReturnPrices)

TotalReturn=9×2 table
       Dates        Prices 
    ___________    ________

    02-Jan-2015           2
    03-Jan-2015      2.3333
    04-Jan-2015        -1.5
    05-Jan-2015        -1.4
    06-Jan-2015         2.5
    07-Jan-2015    -0.57143
    08-Jan-2015     -1.3333
    09-Jan-2015           1
    10-Jan-2015        -1.5

Input Arguments
TotalReturnPrices — Total return prices for a given security
matrix | table
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Total return prices for a given security, specified as an NUMOBS-by-NASSETS + 1 matrix where
Column 1 contains MATLAB serial date numbers. The remaining columns contain total return price
data.

If you specify TotalReturnPrices as a table, the first column of the table represents the dates (as
either serial date numbers, date character vectors, or datetime arrays) while the other columns
represent the returns data. If a table is used, TotalReturn is returned as a table.

Note Although input returns can have dates in either ascending or descending order, output total
returns in TotalReturn have dates in ascending order, with the earliest date in the first row of
TotalReturn, and the most recent date in the last row of TotalReturn.

Data Types: double | table

Period — Periodicity flag used to compute total returns
'd' (default) | character vector | numeric

(Optional) Periodicity flag used to compute total returns, specified as one of the following values:

• 'd' = daily values (default)
• 'w' = weekly values
• 'm' = monthly values
• n = rolling return periodic values, where n is an integer

Data Types: char | double

Output Arguments
TotalReturn — Total return values
matrix | table

Total return values, returned as a P-by-N matrix or table consisting of either Dates in column 1 and
daily return values in the remaining columns or period-end dates in column 1 and monthly return
values in the remaining columns. The format of TotalReturn matches the format of the input
TotalReturnPrices.

See Also
totalreturnprice

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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plot
Plot data series

Note Using a fints object for the tsobj argument of plot is not recommended. Use a timetable
or table instead for financial time series. For more information, see “Convert Financial Time Series
Objects fints to Timetables”.

Syntax
plot(tsobj)

hp = plot(tsobj)

plot(tsobj,linefmt)

hp = plot(tsobj,linefmt)

plot(..., volumename,bar)

hp = plot(..., volumename,bar)

Arguments
tsobj Financial time series object.
linefmt (Optional) Line format.
volumename (Optional) Specifies which data series is the volume series. volumename

must be the exact data series name for the volume column (case sensitive).
bar (Optional)

• bar = 0 — (Default) Plot volume as a line.
• bar = 1 — Plot volume as a bar chart. The width of each bar is the same

as the default in bar, barh.

Description
plot(tsobj) plots the data series contained in the object tsobj. Each data series is a line. plot
automatically generates a legend and dates on the x-axis. Grid is turned on by default. plot uses the
default color order as if plotting a matrix.

The plot command automatically creates subplots when multiple time series are encountered, and
they differ greatly on their decimal scales. For example, subplots are generated if one time series
data set is in the 10s and another is in the 10,000s.

hp = plot(tsobj) also returns the handle(s) to the object(s) inside the plot figure. If there are
multiple lines in the plot, hp is a vector of multiple handles.

plot(tsobj,linefmt) plots the data series in tsobj using the line format specified. For a list of
possible line formats, see plot. The plot legend is not generated, but the dates on the x-axis and the
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plot grid are. The specified line format is applied to all data series; that is, all data series have the
same line type.

hp = plot(tsobj,linefmt) plots the data series in tsobj using the format specified. The plot
legend is not generated, but the dates on the x-axis and the plot grid are. The specified line format is
applied to all data series, that is, all data series can have the same line type. If there are multiple
lines in the plot, hp is a vector of multiple handles.

plot(..., volumename,bar) also specifies which data series is the volume. The volume is plotted
in a subplot below the other data series. If bar = 1, the volume is plotted as a bar chart. Otherwise,
a line plot is used.

hp = plot(..., volumename,bar) returns handles for each line. If bar = 1, the handle to the
patch for the bars is also returned.

Note To turn off the legend, enter legend off at the MATLAB command line. Once you turn it off,
the legend is deleted. To turn it back on, recreate it using the legend command as if you are creating
it for the first time. To turn off the grid, enter grid off. To turn it back on, enter grid on.

See Also
candle | chartfts | highlow | grid | legend | plot

Introduced before R2006a
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plotFrontier
Plot efficient frontier

Syntax
[prsk,pret] = plotFrontier(obj)

[prsk,pret] = plotFrontier(obj,NumPorts)
[prsk,pret] = plotFrontier(obj,PortWeights)
[prsk,pret] = plotFrontier(obj,PortRisk,PortReturn)

Description
[prsk,pret] = plotFrontier(obj) estimates the efficient frontier with default number of 10
portfolios on the frontier, and plots the corresponding efficient frontier for Portfolio,
PortfolioCVaR, or PortfolioMAD objects. For details on the respective workflows when using
these different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object
Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

[prsk,pret] = plotFrontier(obj,NumPorts) estimates the efficient frontier with a specified
number portfolios on the frontier, and plots the corresponding efficient frontier. The number of
portfolios is defined by NumPorts.

[prsk,pret] = plotFrontier(obj,PortWeights) estimates efficient portfolio risks and
returns with PortWeights, and plots the efficient frontier with those portfolios. This syntax assumes
that you provide valid efficient portfolio weights as input. PortWeights is a NumAsset-by-NumPorts
matrix.

[prsk,pret] = plotFrontier(obj,PortRisk,PortReturn) plots the efficient frontier with
the given risks and returns. This syntax assumes that you provide valid inputs for efficient portfolio
risks and returns. PortRisk and PortReturn are vectors with the same size.

Note plotFrontier handles multiple input formats as described above. Given an asset universe
with NumAssets assets and an efficient frontier with NumPorts portfolios, remember that portfolio
weights are NumAsset-by-NumPorts matrices and that portfolio risks and returns are NumPorts
column vectors.

Examples

Plot the Efficient Frontier for the Portfolio Object

Given a portfolio p, plot the efficient frontier.

load CAPMuniverse

p = Portfolio('AssetList',Assets(1:12));
p = estimateAssetMoments(p, Data(:,1:12),'missingdata',true);
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p = setDefaultConstraints(p);
plotFrontier(p);

Plot the Efficient Frontier for the Portfolio Object with BoundType and MaxNumAssets
Constraints

Create a Portfolio object for 12 stocks based on CAPMuniverse.mat.

load CAPMuniverse
p0 = Portfolio('AssetList',Assets(1:12));
p0 = estimateAssetMoments(p0, Data(:,1:12),'missingdata',true);
p0 = setDefaultConstraints(p0);

Use setMinMaxNumAssets to define a maximum number of 3 assets.

pWithMaxNumAssets = setMinMaxNumAssets(p0, [], 3);

Use setBounds to define a lower and upper bound and a BoundType of 'Conditional'.

pWithConditionalBound = setBounds(p0, 0.1, 0.5,'BoundType', 'Conditional');

Use plotFrontier to compare the different portfolio objects.

figure;
plotFrontier(p0); hold on; 
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plotFrontier(pWithMaxNumAssets); hold on; 
plotFrontier(pWithConditionalBound); hold off;
legend('p0', 'with Max 3 assets invested', ' with each asset weight 0 or [0.1, 0.5]', 'location', 'best');

Define a target return and use estimateFrontierByReturn to compare the three portfolio objects.

targetRetn = 2.0e-3;
pwgt0 = estimateFrontierByReturn(p0, targetRetn);
pwgtWithMaxNumAssets = estimateFrontierByReturn(pWithMaxNumAssets, targetRetn);
pwgtConditionalBound = estimateFrontierByReturn(pWithConditionalBound, targetRetn);

The following table shows the final allocation for specified target return among the three portfolio
objects. You can see that the small positions in 'AAPL'and 'HPQ' are avoided in
pwgtConditionalBound, and only three assets are invested in pwgtWithMaxNumAssets.

result = table(p0.AssetList',pwgt0,pwgtWithMaxNumAssets,pwgtConditionalBound)

result=12×4 table
      Var1       pwgt0      pwgtWithMaxNumAssets    pwgtConditionalBound
    ________    ________    ____________________    ____________________

    {'AAPL'}    0.076791                0                     0.1       
    {'AMZN'}           0                0                       0       
    {'CSCO'}           0                0                       0       
    {'DELL'}           0                0                       0       
    {'EBAY'}           0                0                       0       
    {'GOOG'}     0.44841          0.47297                 0.44255       
    {'HPQ' }    0.022406                0                       0       
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    {'IBM' }     0.31139          0.34762                 0.31592       
    {'INTC'}           0                0                       0       
    {'MSFT'}     0.14101          0.17941                 0.14153       
    {'ORCL'}           0                0                       0       
    {'YHOO'}           0                0                       0       

Plot the Efficient Frontier for the PortfolioCVaR Object

Given a PortfolioCVaR p, plot the efficient frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

plotFrontier(p);
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Plot Efficient Frontier for PortfolioMAD Object

Given a PortfolioMAD p, plot the efficient frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

plotFrontier(p);
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Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

NumPorts — Number of points to obtain on efficient frontier
value from hidden property defaultNumPorts (default value is 10) (default) | scalar integer

Number of points to obtain on the efficient frontier, specified as a scalar integer.

Note If no value is specified for NumPorts, the default value is obtained from the hidden property
defaultNumPorts (default value is 10). If NumPorts = 1, this function returns the portfolio
specified by the hidden property defaultFrontierLimit (current default value is 'min').
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Data Types: double

PortRisk — Standard deviations of portfolio returns for each portfolio
[] (default) | vector

Standard deviations of portfolio returns for each portfolio, specified as a vector.

Note PortRisk and PortReturn must be vectors with the same size.

Data Types: double

PortReturn — Means of portfolio returns for each portfolio
[] (default) | vector

Means of portfolio returns for each portfolio, specified as a vector.

Note PortRisk and PortReturn must be vectors with the same size.

Data Types: double

PortWeights — Optimal portfolios on the efficient frontier
[] (default) | matrix

Optimal portfolios on the efficient frontier, specified as a NumAsset-by-NumPorts matrix.
Data Types: double

Output Arguments
prsk — Estimated efficient portfolio risks (standard deviation of returns
vector

Estimated efficient portfolio risks (standard deviation of returns, returned as a vector for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Note

• If the portfolio object has a name in the Name property, the name is displayed as the title of the
plot. Otherwise, the plot is labeled “Efficient Frontier.”

• If the portfolio object has an initial portfolio in the InitPort property, the initial portfolio is
plotted and labeled.

• If portfolio risks and returns are inputs, make sure that risks come first in the calling sequence. In
addition, if portfolio risks and returns are not sorted in ascending order, this method performs the
sort. On output, the sorted moments are returned.

pret — Estimated efficient portfolio returns
vector
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Estimated efficient portfolio returns, returned as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note

• If the portfolio object has a name in the Name property, the name is displayed as the title of the
plot. Otherwise, the plot is labeled “Efficient Frontier.”

• If the portfolio object has an initial portfolio in the InitPort property, the initial portfolio is
plotted and labeled.

• If portfolio risks and returns are inputs, make sure that risks come first in the calling sequence. In
addition, if portfolio risks and returns are not sorted in ascending order, this method performs the
sort. On output, the sorted moments are returned.

Tips
You can also use dot notation to plot the efficient frontier.

[prsk, pret] = obj.plotFrontier;

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierLimits

Topics
“Plotting the Efficient Frontier for a Portfolio Object” on page 4-119
“Plotting the Efficient Frontier for a PortfolioCVaR Object” on page 5-103
“Plotting the Efficient Frontier for a PortfolioMAD Object” on page 6-100
“Portfolio Optimization Examples” on page 4-141

Introduced in R2011a
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plus
Financial time series addition

Note plus is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = tsobj_1 + tsobj_2

newfts = tsobj + array

newfts = array + tsobj

Arguments
tsobj_1, tsobj_2 A pair of financial time series objects.
array A scalar value or array with the number of rows equal to the number

of dates in tsobj and the number of columns equal to the number of
data series in tsobj.

Description
plus is an element-by-element addition of the components.

newfts = tsobj_1 + tsobj_2 adds financial time series objects. If an object is to be added to
another object, both objects must have the same dates and data series names, although the order
need not be the same. The order of the data series, when one financial time series object is added to
another, follows the order of the first object.

newfts = tsobj + array adds an array element by element to a financial time series object.

newfts = array + tsobj adds a financial time series object element by element to an array.

See Also
minus | rdivide | times

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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pointfig
Point and figure chart

Note pointfig is updated to accept data input as a matrix, timetable, or table.

Syntax
pointfig(Data)
h = pointfig(ax,Data)

Description
pointfig(Data) plots a point and figure chart from a series of prices of a security. Upward price
movements are plotted as X's and downward price movements are plotted as O's.

h = pointfig(ax,Data) adds an optional argument for ax.

Examples

Generate a Point and Figure Chart for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. This Point and Figure chart is for closing prices of the stock TMW for the most recent 21 days.
Note that the variable name of asset price is be renamed to 'Price' (case insensitive).

load SimulatedStock.mat
TMW.Properties.VariableNames{'Close'} = 'Price';
pointfig(TMW(1:200,:))
title('Point and figure chart for TMW')
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Input Arguments
Data — Data for a series of prices
matrix | table | timetable

Data for a series of prices, specified as a matrix, table, or timetable. Timetables and tables with M
rows must contain a variable named 'Price' (case insensitive).
Data Types: double | table | timetable

ax — Valid axis object
current axes (ax = gca) (default) | axes object

(Optional) Valid axis object, specified as an axes object. The point and figure plot is created in the
axes specified by ax instead of in the current axes (ax = gca). The option ax can precede any of the
input argument combinations.
Data Types: object

Output Arguments
h — Graphic handle of the figure
handle object

Graphic handle of the figure, returned as a handle object.
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See Also
timetable | table | movavg | linebreak | highlow | kagi | priceandvol | renko | volarea |
candle

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced in R2006a
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portalloc
Optimal capital allocation to efficient frontier portfolios

Syntax
[RiskyRisk,RiskyReturn,RiskyWts,RiskyFraction,OverallRisk,OverallReturn] =
portalloc(PortRisk,PortReturn,PortWts,RisklessRate)
[RiskyRisk,RiskyReturn,RiskyWts,RiskyFraction,OverallRisk,OverallReturn] =
portalloc( ___ ,BorrowRate,RiskAversion)

portalloc(PortRisk,PortReturn,PortWts,RisklessRate,BorrowRate,RiskAversion)

Description
[RiskyRisk,RiskyReturn,RiskyWts,RiskyFraction,OverallRisk,OverallReturn] =
portalloc(PortRisk,PortReturn,PortWts,RisklessRate) calculates the optimal risky
portfolio and the optimal allocation of funds between that risky portfolio of NASSETS and the risk-free
asset.

[RiskyRisk,RiskyReturn,RiskyWts,RiskyFraction,OverallRisk,OverallReturn] =
portalloc( ___ ,BorrowRate,RiskAversion) specifies options using one or more optional
arguments in addition to the input arguments in the previous syntax.

portalloc(PortRisk,PortReturn,PortWts,RisklessRate,BorrowRate,RiskAversion)
when invoked without any output arguments, a graph of the optimal capital allocation decision is
displayed.

Examples

Compute the Optimal Risky Portfolio

This example shows how to compute the optimal risky portfolio by generating the efficient frontier
from the asset data and then finding the optimal risky portfolio and allocate capital. The risk-free
investment return is 8%, and the borrowing rate is 12%.

ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance = [0.005   -0.010    0.004 
                -0.010    0.040   -0.002 
                 0.004   -0.002    0.023];
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... 
ExpCovariance);

RisklessRate  = 0.08;
BorrowRate    = 0.12;
RiskAversion  = 3;

[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, ... 
OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn,... 
PortWts, RisklessRate, BorrowRate, RiskAversion)
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RiskyRisk = 0.1283

RiskyReturn = 0.1788

RiskyWts = 1×3

    0.0265    0.6023    0.3712

RiskyFraction = 1.1898

OverallRisk = 0.1527

OverallReturn = 0.1899

Input Arguments
PortRisk — Standard deviation of each risky asset efficient frontier portfolio
vector

Standard deviation of each risky asset efficient frontier portfolio, specified as an NPORTS-by-1 vector.
Data Types: double

PortReturn — Expected return of each risky asset efficient frontier portfolio
vector

Expected return of each risky asset efficient frontier portfolio, specified an NPORTS-by-1 vector.
Data Types: double

PortWts — Weights allocated to each asset
numeric

Weights allocated to each asset, specified as an NPORTS by number of assets (NASSETS) matrix of
weights allocated to each asset. Each row represents an efficient frontier portfolio of risky assets.
Total of all weights in a portfolio is 1.
Data Types: double

RisklessRate — Risk-free lending rate
scalar decimal

Risk-free lending rate, specified as a scalar decimal.
Data Types: double

BorrowRate — Borrowing rate
NaN (default) | scalar decimal

(Optional) Borrowing rate, specified as a scalar decimal. If borrowing is not desired, or not an option,
set the BorrowRate to NaN (which is the default value).
Data Types: double

RiskAversion — Coefficient of investor's degree of risk aversion
3 (default) | scalar numeric
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(Optional) Coefficient of investor's degree of risk aversion, specified as a scalar numeric. Higher
numbers indicate greater risk aversion. Typical coefficients range from 2.0 through 4.0. The default
value of RiskAversion is 3.

Note Consider that a less risk-averse investor would be expected to accept much greater risk and,
consequently, a more risk-averse investor would accept less risk for a given level of return. Therefore,
making the RiskAversion argument higher reflects the risk-return tradeoff in the data.

Data Types: double

Output Arguments
RiskyRisk — Standard deviation of the optimal risky portfolio
numeric

Standard deviation of the optimal risky portfolio, returned as a scalar.

RiskyReturn — Expected return of the optimal risky portfolio
numeric

Expected return of the optimal risky portfolio, returned as a scalar.

RiskyWts — Weights allocated to the optimal risky portfolio
vector

Weights allocated to the optimal risky portfolio, returned a 1-by-NASSETS vector. The total of all
weights in the portfolio is 1.

RiskyFraction — Fraction of the complete portfolio allocated to the risky portfolio
numeric

Fraction of the complete portfolio (that is, the overall portfolio including risky and risk-free assets)
allocated to the risky portfolio, returned as a scalar.

OverallRisk — Standard deviation of the optimal overall portfolio
numeric

Standard deviation of the optimal overall portfolio, returned as a scalar.

OverallReturn — Expected rate of return of the optimal overall portfolio
numeric

Expected rate of return of the optimal overall portfolio, returned as a scalar.

References
[1] Bodie, Z., Kane, A., and A. Marcus. Investments. McGraw-Hill Education, 2013.

See Also
portrand | portstats
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Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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portalpha
Compute risk-adjusted alphas and returns for one or more assets

Syntax
portalpha(Asset,Benchmark)
portalpha(Asset,Benchmark,Cash)
[Alpha,RAReturn] = portalpha(Asset,Benchmark,Cash,Choice)

Description
portalpha(Asset,Benchmark) computes risk-adjusted alphas.

portalpha(Asset,Benchmark,Cash) computes risk-adjusted alphas using the optional argument
Cash.

[Alpha,RAReturn] = portalpha(Asset,Benchmark,Cash,Choice) computes risk-adjusted
alphas and returns for one or more methods specified by Choice.

Examples

Calculate the Risk-Adjusted Return

This example shows how to calculate the risk-adjusted return using portalpha and compare it with
the fund and market's mean returns.

Use the example data with a fund, a market, and a cash series.

load FundMarketCash 
Returns = tick2ret(TestData);
Fund = Returns(:,1);
Market = Returns(:,2);
Cash = Returns(:,3);
MeanFund = mean(Fund)

MeanFund = 0.0038

MeanMarket = mean(Market)

MeanMarket = 0.0030

[MM, aMM] = portalpha(Fund, Market, Cash, 'MM')

MM = 0.0022

aMM = 0.0052

[GH1, aGH1] = portalpha(Fund, Market, Cash, 'gh1')

GH1 = 0.0013

aGH1 = 0.0025
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[GH2, aGH2] = portalpha(Fund, Market, Cash, 'gh2')

GH2 = 0.0022

aGH2 = 0.0052

[SML, aSML] = portalpha(Fund, Market, Cash, 'sml')

SML = 0.0013

aSML = 0.0025

Since the fund's risk is much less than the market's risk, the risk-adjusted return of the fund is much
higher than both the nominal fund and market returns.

Input Arguments
Asset — Asset returns
matrix

Asset returns, specified as a NUMSAMPLES x NUMSERIES matrix with NUMSAMPLES observations of
asset returns for NUMSERIES asset return series.
Data Types: double

Benchmark — Returns for a benchmark asset
vector

Returns for a benchmark asset, specified as a NUMSAMPLES vector of returns for a benchmark asset.
The periodicity must be the same as the periodicity of Asset. For example, if Asset is monthly data,
then Benchmark should be monthly returns.
Data Types: double

Cash — Riskless asset
0 (default) | numeric | vector

(Optional) Riskless asset, specified as a either a scalar return for a riskless asset or a vector of asset
returns to be a proxy for a “riskless” asset. In either case, the periodicity must be the same as the
periodicity of Asset. For example, if Asset is monthly data, then Cash must be monthly returns. If
no value is supplied, the default value for Cash returns is 0.
Data Types: double

Choice — Computed measures
'xs' (default) | character vector | cell array of character vectors

(Optional) Computed measures, specified as a character vector or cell array of character vectors to
indicate one or more measures to be computed from among various risk-adjusted alphas and return
measures. The number of choices selected in Choice is NUMCHOICES. The list of choices is given in
the following table:

Code Description
'xs' Excess Return (no risk adjustment)
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Code Description
'sml' Security Market Line — The security market line shows that the

relationship between risk and return is linear for individual securities
(that is, increased risk = increased return).

'capm' Jensen's Alpha — Risk-adjusted performance measure that represents
the average return on a portfolio or investment, above or below that
predicted by the capital asset pricing model (CAPM), given the
portfolio's or investment's beta and the average market return.

'mm' Modigliani & Modigliani — Measures the returns of an investment
portfolio for the amount of risk taken relative to some benchmark
portfolio.

'gh1' Graham-Harvey 1 — Performance measure developed by John Graham
and Campbell Harvey. The idea is to lever a fund's portfolio to exactly
match the volatility of the S&P 500. The difference between the fund's
levered return and the S&P 500 return is the performance measure.

'gh2' Graham-Harvey 2 — In this measure, the idea is to lever up or down
the fund's recommended investment strategy (using a Treasury bill),
so that the strategy has the same volatility as the S&P 500.

'all' Compute all measures.

Choice is specified by using the code from the table (for example, to select the Modigliani &
Modigliani measure, Choice = 'mm'). A single choice is either a character vector or a scalar cell
array with a single code from the table.

Multiple choices can be selected with a cell array of character vectors for choice codes (for example,
to select both Graham-Harvey measures, Choice = {'gh1','gh2'}). To select all choices, specify
Choice = 'all'. If no value is supplied, the default choice is to compute the excess return with
Choice = 'xs'. Choice is not case-sensitive.
Data Types: char | cell

Output Arguments
Alpha — Risk-adjusted alphas
matrix

Risk-adjusted alphas, returned as an NUMCHOICES-by-NUMSERIES matrix of risk-adjusted alphas for
each series in Asset with each row corresponding to a specified measure in Choice.

RAReturn — Risk-adjusted returns
matrix

Risk-adjusted returns, returned as an NUMCHOICES-by-NUMSERIES matrix of risk-adjusted returns for
each series in Asset with each row corresponding to a specified measure in Choice.

Note NaN values in the data are ignored and, if NaNs are present, some results could be
unpredictable. Although the alphas are comparable across measures, risk-adjusted returns depend on
whether the Asset or Benchmark is levered or unlevered to match its risk with the alternative. If
Choice = 'all', the order of rows in Alpha and RAReturn follows the order in the table. In
addition, Choice = 'all' overrides all other choices.
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See Also
inforatio | sharpe

Topics
“Performance Metrics Illustration” on page 7-3
“Performance Metrics Overview” on page 7-2

Introduced in R2006b
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portcons
Portfolio constraints

Syntax
ConSet = portcons(ConstType,consttype_values)

Description
As an alternative to portcons, use the Portfolio object (Portfolio) for mean-variance portfolio
optimization. This object supports gross or net portfolio returns as the return proxy, the variance of
portfolio returns as the risk proxy, and a portfolio set that is any combination of the specified
constraints to form a portfolio set. For information on the workflow when using Portfolio objects, see
“Portfolio Object Workflow” on page 4-17.

ConSet = portcons(ConstType,consttype_values) generates a matrix of constraints, using
linear inequalities, for a portfolio of asset investments. The inequalities are of the type A*Wts' <= b,
where Wts is the matrix of weights. The matrix ConSet is defined as ConSet = [A b].

Examples

Generate Matrix of Constraints for Portfolio of Asset Investments

Constrain a portfolio of three assets:

NumAssets = 3;
PVal = 1; % Scale portfolio value to 1.
AssetMin = 0;
AssetMax = [0.5 0.9 0.8];
GroupA = [1 1 0];
GroupB = [0 0 1];
AtoBmax = 1.5 % Value of assets in Group A at most 1.5 times value 

AtoBmax = 1.5000

              % in group B.

ConSet = portcons('PortValue', PVal, NumAssets,'AssetLims',... 
AssetMin, AssetMax, NumAssets, 'GroupComparison',GroupA, NaN,... 
AtoBmax, GroupB)

ConSet = 9×4

    1.0000    1.0000    1.0000    1.0000
   -1.0000   -1.0000   -1.0000   -1.0000
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    1.0000         0         0    0.5000
         0    1.0000         0    0.9000
         0         0    1.0000    0.8000
   -1.0000         0         0         0
         0   -1.0000         0         0
         0         0   -1.0000         0
    1.0000    1.0000   -1.5000         0

For instance, one possible solution for portfolio weights that satisfy the constraints is 30% in IBM,
30% in HPQ, and 40% in XOM.

Input Arguments
ConstType — Constraint type
character vector with value 'Default', 'PortValue', 'AssetLims',
'GroupLims' ,'GroupComparison' , or 'Custom'

Constraint type, specified as a character vector defined as follows:

Constraint Type Description Values
'Default' All allocations are >= 0;

no short selling allowed.
Combined value of
portfolio allocations
normalized to 1.

NumAssets (required). Scalar representing number of
assets in portfolio.

'PortValue' Fix total value of
portfolio to PVal.

PVal (required). Scalar representing total value of
portfolio.

NumAssets (required). Scalar representing number of
assets in portfolio. See pcpval.

'AssetLims' Minimum and maximum
allocation per asset.

AssetMin (required). Scalar or vector of length NASSETS,
specifying minimum allocation per asset.

AssetMax (required). Scalar or vector of length NASSETS,
specifying maximum allocation per asset.

NumAssets (optional). See pcalims.
'GroupLims' Minimum and maximum

allocations to asset
group.

Groups (required). NGROUPS-by-NASSETS matrix
specifying which assets belong to each group.

GroupMin (required). Scalar or a vector of length
NGROUPS, specifying minimum combined allocations in
each group.

GroupMax (required). Scalar or a vector of length
NGROUPS, specifying maximum combined allocations in
each group.

See pcglims.
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Constraint Type Description Values
'GroupComparison' Group-to-group

comparison constraints.
GroupA (required). NGROUPS-by-NASSETS matrix
specifying first group in the comparison.

AtoBmin (required). Scalar or vector of length NGROUPS
specifying minimum ratios of allocations in GroupA to
allocations in GroupB.

AtoBmax (required). Scalar or vector of length NGROUPS
specifying maximum ratios of allocations in GroupA to
allocations in GroupB.

GroupB (required). NGROUPS-by-NASSETS matrix
specifying second group in the comparison.

See pcgcomp.
'Custom' Custom linear inequality

constraints A*PortWts'
<= b.

A (required). NCONSTRAINTS-by-NASSETS matrix,
specifying weights for each asset in each inequality
equation.

b (required). Vector of length NCONSTRAINTS specifying
the right-hand sides of the inequalities.

Note For more information using Custom, see
“Specifying Group Constraints” on page 3-30.

Note You can specify multiple 'ConstType' arguments as ConSet =
portcons('ConstType1',consttype_value1,'ConstType2',consttype_value2,'ConstTy
peN',consttype_valueN).

Data Types: char

Output Arguments
ConSet — Constraints
matrix

Constraints, returned as a matrix. ConSet is defined as ConSet = [A b]. A is a matrix and b a
vector such that A*Wts' <= b sets the value, where Wts is the matrix of weights.

See Also
pcalims | pcgcomp | pcglims | pcpval | portopt | Portfolio

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Selection and Risk Aversion” on page 3-7
“Active Returns and Tracking Error Efficient Frontier” on page 3-32
“Analyzing Portfolios” on page 3-2
“Portfolio Optimization Functions” on page 3-3
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Portfolio
Create Portfolio object for mean-variance portfolio optimization and analysis

Description
Use the Portfolio function to create a Portfolio object for mean-variance portfolio optimization.

The main workflow for portfolio optimization is to create an instance of a Portfolio object that
completely specifies a portfolio optimization problem and to operate on the Portfolio object using
supported functions to obtain and analyze efficient portfolios. For details on this workflow, see
“Portfolio Object Workflow” on page 4-17.

You can use the Portfolio object in several ways. To set up a portfolio optimization problem in a
Portfolio object, the simplest syntax is:

p = Portfolio;

This syntax creates a Portfolio object, p, such that all object properties are empty.

The Portfolio object also accepts collections of name-value pair arguments for properties and their
values. The Portfolio object accepts inputs for properties with the general syntax:

    p = Portfolio('property1',value1,'property2',value2, ... );

If a Portfolio object exists, the syntax permits the first (and only the first argument) of the
Portfolio object to be an existing object with subsequent name-value pair arguments for properties
to be added or modified. For example, given an existing Portfolio object in p, the general syntax is:

p = Portfolio(p,'property1',value1,'property2',value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In addition, several
properties can be specified with alternative argument names (see “Shortcuts for Property Names” on
page 19-1176). The Portfolio object tries to detect problem dimensions from the inputs and, once
set, subsequent inputs can undergo various scalar or matrix expansion operations that simplify the
overall process to formulate a problem. In addition, a Portfolio object is a value object so that,
given portfolio p, the following code creates two objects, p and q, that are distinct:

q = Portfolio(p, ...)

After creating a Portfolio object, you can use the associated object functions to set portfolio
constraints, analyze the efficient frontier, and validate the portfolio model.

For more detailed information on the theoretical basis for mean-variance optimization, see “Portfolio
Optimization Theory” on page 4-3.

Creation
Syntax
p = Portfolio
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p = Portfolio(Name,Value)

p = Portfolio(p,Name,Value)

Description

p = Portfolio creates an empty Portfolio object for mean-variance portfolio optimization and
analysis. You can then add elements to the Portfolio object using the supported "add" and "set"
functions. For more information, see “Creating the Portfolio Object” on page 4-24.

p = Portfolio(Name,Value) creates a Portfolio object (p) and sets Properties on page 19-
1162 using name-value pairs. For example, p = Portfolio('AssetList',Assets(1:12)). You
can specify multiple name-value pairs.

p = Portfolio(p,Name,Value) creates a Portfolio object (p) using a previously created
Portfolio object p and sets Properties on page 19-1162 using name-value pairs. You can specify
multiple name-value pairs.

Input Arguments

p — Previously constructed Portfolio object
object

Previously constructed Portfolio object, specified using Portfolio.

Properties
Setting Up the Object

AssetList — Names or symbols of assets in universe
[] (default) | cell array of character vectors | string array

Names or symbols of assets in the universe, specified as a cell array of character vectors or a string
array.
Data Types: cell | string

InitPort — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
Data Types: double

Name — Name for instance of Portfolio object
[] (default) | character vector | string

Name for instance of the Portfolio object, specified as a character vector or a string.
Data Types: char | string

NumAssets — Number of assets in the universe
[] (default) | integer scalar

Number of assets in the universe, specified as an integer scalar.
Data Types: double
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Portfolio Object Constraints

AEquality — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

AInequality — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
Data Types: double

bEquality — Linear equality constraint vector
[] (default) | vector

Linear equality constraint vector, specified as a vector.
Data Types: double

bInequality — Linear inequality constraint vector
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

GroupA — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

GroupB — Group B weights
[] (default) | matrix

Group B weights, specified as a matrix.
Data Types: double

GroupMatrix — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double

LowerBound — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

LowerBudget — Lower-bound budget constraint
[] (default) | scalar
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Lower-bound budget constraint, specified as a scalar.
Data Types: double

LowerGroup — Lower-bound group constraint
[] (default) | vector

Lower-bound group constraint, specified as a vector.
Data Types: double

LowerRatio — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.
Data Types: double

TrackingError — Upper bound for tracking error constraint
[] (default) | scalar

Upper bound for tracking error constraint, specified as a scalar.
Data Types: double

TrackingPort — Tracking portfolio for tracking error constraint
[] (default) | vector

Tracking portfolio for tracking error constraint, specified as a vector.
Data Types: double

UpperBound — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double

UpperBudget — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

UpperGroup — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double

UpperRatio — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.
Data Types: double
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BoundType — Type of bounds for each asset weight
'Simple' (default) | character vector with value 'Simple' or 'Conditional' | string with value
"Simple" or "Conditional" | cell array of character vectors with values 'Simple' or
'Conditional' | string array with values "Simple" or "Conditional"

Type of bounds for each asset weight, specified as a scalar character vector or string, or a cell array
of character vectors or a string array. For more information, see setBounds.
Data Types: char | cell | string

MinNumAssets — Minimum number of assets allocated in portfolio
[] (default) | numeric

Minimum number of assets allocated in portfolio, specified as a scalar numeric value. For more
information, see setMinMaxNumAssets.
Data Types: double

MaxNumAssets — Maximum number of assets allocated in portfolio
[] (default) | numeric

Maximum number of assets allocated in portfolio, specified as a scalar numeric value. For more
information, see setMinMaxNumAssets.
Data Types: double

SellTurnover — Turnover constraint on sales
[] (default) | scalar

Turnover constraint on sales, specified as a scalar.
Data Types: double

BuyTurnover — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

Turnover — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

Portfolio Object Modeling

AssetCovar — Covariance of asset returns
[] (default) | square matrix

Covariance of asset returns, specified as a square matrix. If AssetCovar is not a symmetric positive
semidefinite matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.
Data Types: double

AssetMean — Mean of asset returns
[] (default) | vector
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Mean of asset returns, specified as a vector.
Data Types: double

BuyCost — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

RiskFreeRate — Risk-free rate
[] (default) | scalar

Risk-free rate, specified as a scalar.
Data Types: double

SellCost — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

Object Functions
setAssetList Set up list of identifiers for assets
setInitPort Set up initial or current portfolio
setDefaultConstraints Set up portfolio constraints with nonnegative weights that sum to 1
getAssetMoments Obtain mean and covariance of asset returns from Portfolio object
setAssetMoments Set moments (mean and covariance) of asset returns for Portfolio object
estimateAssetMoments Estimate mean and covariance of asset returns from data
setCosts Set up proportional transaction costs
addEquality Add linear equality constraints for portfolio weights to existing

constraints
addGroupRatio Add group ratio constraints for portfolio weights to existing group ratio

constraints
addGroups Add group constraints for portfolio weights to existing group constraints
addInequality Add linear inequality constraints for portfolio weights to existing

constraints
getBounds Obtain bounds for portfolio weights from portfolio object
getBudget Obtain budget constraint bounds from portfolio object
getCosts Obtain buy and sell transaction costs from portfolio object
getEquality Obtain equality constraint arrays from portfolio object
getGroupRatio Obtain group ratio constraint arrays from portfolio object
getGroups Obtain group constraint arrays from portfolio object
getInequality Obtain inequality constraint arrays from portfolio object
getOneWayTurnover Obtain one-way turnover constraints from portfolio object
setGroups Set up group constraints for portfolio weights
setInequality Set up linear inequality constraints for portfolio weights
setBounds Set up bounds for portfolio weights for a portfolio object
setBudget Set up budget constraints
setCosts Set up proportional transaction costs
setEquality Set up linear equality constraints for portfolio weights
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setGroupRatio Set up group ratio constraints for portfolio weights
setInitPort Set up initial or current portfolio
setOneWayTurnover Set up one-way portfolio turnover constraints
setTurnover Set up maximum portfolio turnover constraint
setTrackingPort Set up benchmark portfolio for tracking error constraint
setTrackingError Set up maximum portfolio tracking error constraint
setMinMaxNumAssets Set cardinality constraints on the number of assets invested in a

portfolio object
checkFeasibility Check feasibility of input portfolios against portfolio object
estimateBounds Estimate global lower and upper bounds for set of portfolios
estimateFrontier Estimate specified number of optimal portfolios on the efficient frontier
estimateFrontierByReturn Estimate optimal portfolios with targeted portfolio returns
estimateFrontierByRisk Estimate optimal portfolios with targeted portfolio risks
estimateFrontierLimits Estimate optimal portfolios at endpoints of efficient frontier
plotFrontier Plot efficient frontier
estimateMaxSharpeRatio Estimate efficient portfolio to maximize Sharpe ratio for Portfolio object
estimatePortMoments Estimate moments of portfolio returns for Portfolio object
estimatePortReturn Estimate mean of portfolio returns
estimatePortRisk Estimate portfolio risk according to risk proxy associated with

corresponding object
setSolver Choose main solver and specify associated solver options for portfolio

optimization
setSolverMINLP Choose mixed integer nonlinear programming (MINLP) solver for

portfolio optimization

Examples

Create an Empty Portfolio Object

You can create a Portfolio object, p, with no input arguments and display it using disp.

p = Portfolio;
disp(p);

  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: []
       AssetCovar: []
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: []
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
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       LowerBound: []
       UpperBound: []
      LowerBudget: []
      UpperBudget: []
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: []

This approach provides a way to set up a portfolio optimization problem with the Portfolio
function. You can then use the associated set functions to set and modify collections of properties in
the Portfolio object.

Create a Portfolio Object Using a Single-Step Setup

You can use the Portfolio object directly to set up a “standard” portfolio optimization problem,
given a mean and covariance of asset returns in the variables m and C.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio('assetmean', m, 'assetcovar', C, ...
'lowerbudget', 1, 'upperbudget', 1, 'lowerbound', 0)

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [4x1 double]
       AssetCovar: [4x4 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 4
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [4x1 double]
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       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: []

Note that the LowerBound property value undergoes scalar expansion since AssetMean and
AssetCovar provide the dimensions of the problem.

Create a Portfolio Object Using a Sequence of Steps

Using a sequence of steps is an alternative way to accomplish the same task of setting up a
“standard” portfolio optimization problem, given a mean and covariance of asset returns in the
variables m and C (which also illustrates that argument names are not case sensitive).

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p = Portfolio(p, 'assetmean', m, 'assetcovar', C);
p = Portfolio(p, 'lowerbudget', 1, 'upperbudget', 1);
p = Portfolio(p, 'lowerbound', 0);
 
plotFrontier(p);
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This way works because the calls to Portfolio are in this particular order. In this case, the call to
initialize AssetMean and AssetCovar provides the dimensions for the problem. If you were to do
this step last, you would have to explicitly dimension the LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p = Portfolio(p, 'LowerBound', zeros(size(m)));
p = Portfolio(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);
 
plotFrontier(p);
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If you did not specify the size of LowerBound but, instead, input a scalar argument, the Portfolio
object assumes that you are defining a single-asset problem and produces an error at the call to set
asset moments with four assets.

Create a Portfolio Object Using Shortcuts for Property Names

You can create a Portfolio object, p with Portfolio using shortcuts for property names.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio('mean', m, 'covar', C, 'budget', 1, 'lb', 0)

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [4x1 double]
       AssetCovar: [4x4 double]
    TrackingError: []
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     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 4
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [4x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: []

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly, however no error-checking is done on
your inputs.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
p.NumAssets = numel(m);
p.AssetMean = m;
p.AssetCovar = C;
p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));
disp(p)

  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [4x1 double]
       AssetCovar: [4x4 double]
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    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 4
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [4x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: []

Create a Portfolio Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = Portfolio('AssetList',Assets(1:12));
p = estimateAssetMoments(p, Data(:,1:12),'missingdata',true);
p = setDefaultConstraints(p);
plotFrontier(p);
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pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
    pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1        Port2       Port3       Port4      Port5
    AAPL     0.017926    0.058247    0.097816    0.12955    0    
    AMZN            0           0           0          0    0    
    CSCO            0           0           0          0    0    
    DELL    0.0041906           0           0          0    0    
    EBAY            0           0           0          0    0    
    GOOG      0.16144     0.35678     0.55228    0.75116    1    
    HPQ      0.052566    0.032302    0.011186          0    0    
    IBM       0.46422     0.36045     0.25577    0.11928    0    
    INTC            0           0           0          0    0    
    MSFT      0.29966     0.19222    0.082949          0    0    
    ORCL            0           0           0          0    0    
    YHOO            0           0           0          0    0    

19 Functions

19-1174



More About
Mean-Variance Portfolio Optimization

A mean-variance optimization problem is completely specified with three elements.

The three elements for a mean-variance optimization problem are:

• A universe of assets with estimates for the prospective mean and covariance of asset total returns
for a period of interest.

• A portfolio set that specifies the set of portfolio choices in terms of a collection of constraints.
• A model for portfolio return and risk, which, for mean-variance optimization, is either the gross or

net mean of portfolio returns and the standard deviation of portfolio returns.

After you specify these three elements in an unambiguous way, you can solve and analyze portfolio
optimization problems. The simplest mean-variance portfolio optimization problem has:

• A mean and covariance of asset total returns
• Nonnegative weights for all portfolios that sum to 1 (the summation constraint is known as a

budget constraint)
• Built-in models for portfolio return and risk that use the mean and covariance of asset total

returns

For more information on the theory and definition of mean-variance optimization supported by
portfolio optimization tools in Financial Toolbox, see “Portfolio Optimization Theory” on page 4-3.

Portfolio Problem Sufficiency

A mean-variance portfolio optimization is completely specified with the Portfolio object if two
condition are met.

The following are the two conditions that must be met:

• The moments of asset returns must be specified such that the property AssetMean contains a
valid finite mean vector of asset returns and the property AssetCovar contains a valid symmetric
positive-semidefinite matrix for the covariance of asset returns.

The first condition is satisfied by setting the properties associated with the moments of asset
returns.

• The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and
bounded.

The second condition is satisfied by an extensive collection of properties that define different types
of constraints to form a set of feasible portfolios. Since such sets must be bounded, either explicit
or implicit constraints can be imposed, and several functions, such as estimateBounds, provide
ways to ensure that your problem is properly formulated.

Given mean and covariance of asset returns in the variables AssetMean and AssetCovar, this
problem is completely specified by:
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar,...
'LowerBound', 0, 'UpperBudget',1, 'LowerBudget',1)

or equivalently by:
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p = Portfolio;
p = setAssetMoments(p, AssetMean, AssetCovar); 
p = setDefaultConstraints(p);

Although the general sufficiency conditions for mean-variance portfolio optimization go beyond these
two conditions, the Portfolio object implemented in Financial Toolbox implicitly handles all these
additional conditions. For more information on the Markowitz model for mean-variance portfolio
optimization, see “Portfolio Optimization” on page A-5.

Shortcuts for Property Names

The Portfolio object has shorter argument names that replace longer argument names associated
with specific properties of the Portfolio object.

For example, rather than enter 'assetcovar', the Portfolio object accepts the case-insensitive
name 'covar' to set the AssetCovar property in a Portfolio object. Every shorter argument
name corresponds with a single property in the Portfolio object. The one exception is the
alternative argument name 'budget', which signifies both the LowerBudget and UpperBudget
properties. When 'budget' is used, then the LowerBudget and UpperBudget properties are set to
the same value to form an equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name
ae AEquality
ai AInequality
covar AssetCovar
assetnames or assets AssetList
mean AssetMean
be bEquality
bi bInequality
group GroupMatrix
lb LowerBound
n or num NumAssets
rfr RiskFreeRate
ub UpperBound
budget UpperBudget and LowerBudget

References
[1] For a complete list of references for the Portfolio object, see “Portfolio Optimization” on page A-

5.

See Also
plotFrontier | estimateFrontier | PortfolioCVaR | PortfolioMAD | nearcorr

Topics
“Creating the Portfolio Object” on page 4-24
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“Working with Portfolio Constraints Using Defaults” on page 4-57
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page 4-94
“Estimate Efficient Frontiers for Portfolio Object” on page 4-116
“Asset Allocation Case Study” on page 4-161
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
“Black-Litterman Portfolio Optimization” on page 4-204
“Portfolio Optimization Using Factor Models” on page 4-213
“Portfolio Optimization Theory” on page 4-3
“Portfolio Object Workflow” on page 4-17
“Portfolio Object Properties and Functions” on page 4-19
“Working with Portfolio Objects” on page 4-19
“Setting and Getting Properties” on page 4-19
“Displaying Portfolio Objects” on page 4-20
“Saving and Loading Portfolio Objects” on page 4-20
“Estimating Efficient Portfolios and Frontiers” on page 4-20
“Arrays of Portfolio Objects” on page 4-21
“Subclassing Portfolio Objects” on page 4-22
“Conventions for Representation of Data” on page 4-22

External Websites
Getting Started with Portfolio Optimization (4 min 12 sec)

Introduced in R2011a
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PortfolioCVaR
Creates PortfolioCVaR object for conditional value-at-risk portfolio optimization and analysis

Description
Use PortfolioCVaR to create a PortfolioCVaR object for conditional value-at-risk portfolio
optimization.

The main workflow for CVaR portfolio optimization is to create an instance of a PortfolioCVaR
object that completely specifies a portfolio optimization problem and to operate on the
PortfolioCVaR object using supported functions to obtain and analyze efficient portfolios. For
details on this workflow, see “PortfolioCVaR Object Workflow” on page 5-15.

You can use the PortfolioCVaR object in several ways. To set up a portfolio optimization problem in
a PortfolioCVaR object, the simplest syntax is:

p = PortfolioCVaR;

This syntax creates a PortfolioCVaR object, p, such that all object properties are empty.

The PortfolioCVaR object also accepts collections of name-value pair arguments for properties and
their values. The PortfolioCVaR function accepts inputs for properties with the general syntax:

    p = PortfolioCVaR('property1',value1,'property2',value2, ... );

If a PortfolioCVaR object already exists, the syntax permits the first (and only the first argument)
of the PortfolioCVaR object to be an existing object with subsequent name-value pair arguments
for properties to be added or modified. For example, given an existing PortfolioCVaR object in p,
the general syntax is:

p = PortfolioCVaR(p,'property1',value1,'property2',value2, ... );

Input argument names are not case sensitive, but must be completely specified. In addition, several
properties can be specified with alternative argument names (see “Shortcuts for Property Names” on
page 19-1193). The PortfolioCVaR object tries to detect problem dimensions from the inputs and,
once set, subsequent inputs can undergo various scalar or matrix expansion operations that simplify
the overall process to formulate a problem. In addition, a PortfolioCVaR object is a value object so
that, given portfolio p, the following code creates two objects, p and q, that are distinct:

q = PortfolioCVaR(p, ...)

After creating a PortfolioCVaR object, you can use the associated object functions to set portfolio
constraints, analyze the efficient frontier, and validate the portfolio model.

For more detailed information on the theoretical basis for conditional value-at-risk portfolio
optimization, see “Portfolio Optimization Theory” on page 5-2.
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Creation

Syntax
p = PortfolioCVaR
p = PortfolioCVaR(Name,Value)

p = PortfolioCVaR(p,Name,Value)

Description

p = PortfolioCVaR creates an empty PortfolioCVaR object for conditional value-at-risk portfolio
optimization and analysis. You can then add elements to the PortfolioCVaR object using the
supported "add" and "set" functions. For more information, see “Creating the PortfolioCVaR Object”
on page 5-21.

p = PortfolioCVaR(Name,Value) creates a PortfolioCVaR object (p) and sets Properties on
page 19-1179 using name-value pairs. For example, p =
PortfolioCVaR('AssetList',Assets(1:12)). You can specify multiple name-value pairs.

p = PortfolioCVaR(p,Name,Value) creates a PortfolioCVaR object (p) using a previously
created PortfolioCVaR object p and sets Properties on page 19-1179 using name-value pairs. You
can specify multiple name-value pairs.

Input Arguments

p — Previously constructed PortfolioCVaR object
object

Previously constructed PortfolioCVaR object, specified using PortfolioCVaR.

Properties
Setting Up the Object

AssetList — Names or symbols of assets in universe
[] (default) | cell array of character vectors | string array

Names or symbols of assets in the universe, specified as a cell array of character vectors or a string
array.
Data Types: cell | string

InitPort — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
Data Types: double

Name — Name for instance of PortfolioCVaR object
[] (default) | character vector | string

Name for instance of the PortfolioCVaR object, specified as a character vector or string.
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Data Types: char | string

NumAssets — Number of assets in the universe
[] (default) | integer scalar

Number of assets in the universe, specified as an integer scalar.
Data Types: double

Portfolio Object Constraints

AEquality — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

AInequality — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
Data Types: double

bEquality — Linear equality constraint vector
[] (default) | vector

Linear equality constraint vector, specified as a vector.
Data Types: double

bInequality — Linear inequality constraint
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

GroupA — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

GroupB — Group B weights
[] (default) | matrix

Group B weights, specified as a matrix.
Data Types: double

GroupMatrix — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double
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LowerBound — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

LowerBudget — Lower-bound budget constraint
[] (default) | scalar

Lower-bound budget constraint, specified as a scalar.
Data Types: double

LowerGroup — Lower-bound group constraint
[] (default) | vector

Lower-bound group constraint, specified as a vector.
Data Types: double

LowerRatio — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.
Data Types: double

UpperBound — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double

UpperBudget — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

UpperGroup — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double

UpperRatio — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.
Data Types: double
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BoundType — Type of bounds for each asset weight
'Simple' (default) | character vector with value 'Simple' or 'Conditional' | string with value
"Simple" or "Conditional" | cell array of character vectors with values 'Simple' or
'Conditional' | string array with values "Simple" or "Conditional"

Type of bounds for each asset weight, specified as a scalar character vector or string, or a cell array
of character vectors or a string array. For more information, see setBounds.
Data Types: char | cell | string

MinNumAssets — Minimum number of assets allocated in portfolio
[] (default) | numeric

Minimum number of assets allocated in portfolio, specified as a scalar numeric value. For more
information, see setMinMaxNumAssets.
Data Types: double

MaxNumAssets — Maximum number of assets allocated in portfolio
[] (default) | numeric

Maximum number of assets allocated in portfolio, specified as a scalar numeric value. For more
information, see setMinMaxNumAssets.
Data Types: double

Turnover — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

SellTurnover — Turnover constraint on sales
[] (default) | scalar

Turnover constraint on sales, specified as a scalar.
Data Types: double

BuyTurnover — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

Portfolio Object Modeling

BuyCost — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

RiskFreeRate — Risk-free rate
[] (default) | scalar
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Risk-free rate, specified as a scalar.
Data Types: double

ProbabilityLevel — Value-at-risk probability level which is 1 − (loss probability)
[] (default) | scalar

Value-at-risk probability level which is 1 − (loss probability), specified as a scalar.
Data Types: double

NumScenarios — Number of scenarios
[] (default) | integer scalar

Number of scenarios, specified as an integer scalar.
Data Types: double

SellCost — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

Object Functions
setAssetList Set up list of identifiers for assets
setInitPort Set up initial or current portfolio
setDefaultConstraints Set up portfolio constraints with nonnegative weights that

sum to 1
estimateAssetMoments Estimate mean and covariance of asset returns from data
setCosts Set up proportional transaction costs
addEquality Add linear equality constraints for portfolio weights to

existing constraints
addGroupRatio Add group ratio constraints for portfolio weights to existing

group ratio constraints
addGroups Add group constraints for portfolio weights to existing group

constraints
addInequality Add linear inequality constraints for portfolio weights to

existing constraints
getBounds Obtain bounds for portfolio weights from portfolio object
getBudget Obtain budget constraint bounds from portfolio object
getCosts Obtain buy and sell transaction costs from portfolio object
getEquality Obtain equality constraint arrays from portfolio object
getGroupRatio Obtain group ratio constraint arrays from portfolio object
getGroups Obtain group constraint arrays from portfolio object
getInequality Obtain inequality constraint arrays from portfolio object
getOneWayTurnover Obtain one-way turnover constraints from portfolio object
setGroups Set up group constraints for portfolio weights
setInequality Set up linear inequality constraints for portfolio weights
setBounds Set up bounds for portfolio weights for a portfolio object
setMinMaxNumAssets Set cardinality constraints on the number of assets invested

in a portfolio object
setBudget Set up budget constraints
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setCosts Set up proportional transaction costs
setDefaultConstraints Set up portfolio constraints with nonnegative weights that

sum to 1
setEquality Set up linear equality constraints for portfolio weights
setGroupRatio Set up group ratio constraints for portfolio weights
setInitPort Set up initial or current portfolio
setOneWayTurnover Set up one-way portfolio turnover constraints
setTurnover Set up maximum portfolio turnover constraint
checkFeasibility Check feasibility of input portfolios against portfolio object
estimateBounds Estimate global lower and upper bounds for set of portfolios
estimateFrontier Estimate specified number of optimal portfolios on the

efficient frontier
estimateFrontierByReturn Estimate optimal portfolios with targeted portfolio returns
estimateFrontierByRisk Estimate optimal portfolios with targeted portfolio risks
estimateFrontierLimits Estimate optimal portfolios at endpoints of efficient frontier
plotFrontier Plot efficient frontier
estimatePortReturn Estimate mean of portfolio returns
estimatePortRisk Estimate portfolio risk according to risk proxy associated

with corresponding object
setSolver Choose main solver and specify associated solver options for

portfolio optimization
setProbabilityLevel Set probability level for VaR and CVaR calculations
setScenarios Set asset returns scenarios by direct matrix
getScenarios Obtain scenarios from portfolio object
simulateNormalScenariosByData Simulate multivariate normal asset return scenarios from

data
simulateNormalScenariosByMoments Simulate multivariate normal asset return scenarios from

mean and covariance of asset returns
estimateScenarioMoments Estimate mean and covariance of asset return scenarios
estimatePortVaR Estimate value-at-risk for PortfolioCVaR object
estimatePortStd Estimate standard deviation of portfolio returns

Examples

Create an Empty PortfolioCVaR Object

You can create a PortfolioCVaR object, p, with no input arguments and display it using disp.

p = PortfolioCVaR;
disp(p);

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: []
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           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: []
          UpperBound: []
         LowerBudget: []
         UpperBudget: []
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: []

This approach provides a way to set up a portfolio optimization problem with the PortfolioCVaR
function. You can then use the associated set functions to set and modify collections of properties in
the PortfolioCVaR object.

Create a PortfolioCVaR Object Using a Single-Step Setup

You can use the PortfolioCVaR object directly to set up a “standard” portfolio optimization
problem. Given scenarios of asset returns in the variable AssetScenarios, this problem is
completely specified as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR('Scenarios', AssetScenarios, ...
'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1, ...
'ProbabilityLevel', 0.95)

p = 
  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: 0.9500
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
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        NumScenarios: 20000
                Name: []
           NumAssets: 4
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [4x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: []

Note that the LowerBound property value undergoes scalar expansion since AssetScenarios
provides the dimensions of the problem.

Create a PortfolioCVaR Object Using a Sequence of Steps

Using a sequence of steps is an alternative way to accomplish the same task of setting up a
“standard” CVaR portfolio optimization problem, given AssetScenarios variable is:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = PortfolioCVaR(p, 'LowerBound', 0);
p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = setProbabilityLevel(p, 0.95);

plotFrontier(p);
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This way works because the calls to PortfolioCVaR are in this particular order. In this case, the call
to initialize AssetScenarios provides the dimensions for the problem. If you were to do this step
last, you would have to explicitly dimension the LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = PortfolioCVaR(p, 'LowerBound', zeros(size(m)));
p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = setProbabilityLevel(p, 0.95);
p = setScenarios(p, AssetScenarios); 

plotFrontier(p);
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If you did not specify the size of LowerBound but, instead, input a scalar argument, the
PortfolioCVaR object assumes that you are defining a single-asset problem and produces an error
at the call to set asset scenarios with four assets.

Create a PortfolioCVaR Object Using Shortcuts for Property Names

You can create a PortfolioCVaR object, p with the PortfolioCVaR object using shortcuts for
property names.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR('scenario', AssetScenarios, 'lb', 0, 'budget', 1, 'plevel', 0.95)

p = 
  PortfolioCVaR with properties:
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             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: 0.9500
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: 20000
                Name: []
           NumAssets: 4
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [4x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: []

Direct Setting of PortfolioCVaR Object Properties

Although not recommended, you can set properties directly, however no error-checking is done on
your inputs.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);
p.ProbabilityLevel = 0.95;

p.LowerBudget = 1;
p.UpperBudget = 1;
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p.LowerBound = zeros(size(m));
disp(p)

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: 0.9500
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: 20000
                Name: []
           NumAssets: 4
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [4x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: []

Scenarios cannot be assigned directly to a PortfolioCVaR object. Scenarios must always be set
through either the PortfolioCVaR function, the setScenarios function, or any of the scenario
simulation functions.

Construct a PortfolioCVaR Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = PortfolioCVaR('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

plotFrontier(p);
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pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
    pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1       Port2        Port3       Port4      Port5
    AAPL    0.010562      0.07364     0.11931    0.13073    0    
    AMZN           0            0           0          0    0    
    CSCO           0            0           0          0    0    
    DELL    0.022649            0           0          0    0    
    EBAY           0            0           0          0    0    
    GOOG       0.203      0.38011     0.56202    0.75919    1    
    HPQ     0.042772    0.0094711           0          0    0    
    IBM      0.44444      0.36456     0.26305    0.11009    0    
    INTC           0            0           0          0    0    
    MSFT     0.27658      0.17222    0.055624          0    0    
    ORCL           0            0           0          0    0    
    YHOO           0            0           0          0    0    
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More About
Conditional Value-at-Risk Portfolio Optimization

A CVaR optimization problem is completely specified with four elements.

The four elements for a CVaR optimization problem are:

• A universe of assets with scenarios of asset total returns for a period of interest, where scenarios
comprise a collection of samples from the underlying probability distribution for asset total
returns. This collection must be sufficiently large for asymptotic convergence of sample statistics.
Asset return moments and related statistics are derived exclusively from the scenarios.

• A portfolio set that specifies the set of portfolio choices in terms of a collection of constraints.
• A model for portfolio return and risk proxies, which, for CVaR optimization, is either the gross or

net mean of portfolio returns and the conditional value-at-risk of portfolio returns.
• A probability level that specifies the probability that a loss is less than or equal to the value-at-

risk. Typical values are 0.9 and 0.95, which indicate 10% and 5% loss probabilities.

After these four elements have been specified in an unambiguous way, it is possible to solve and
analyze CVaR portfolio optimization problems.

The simplest CVaR portfolio optimization problem has:

• Scenarios of asset total returns
• A requirement that all portfolios have nonnegative weights that sum to 1 (the summation

constraint is known as a budget constraint)
• Built-in models for portfolio return and risk proxies that use scenarios of asset total returns
• A probability level of 0.95

Given scenarios of asset returns in the variable AssetScenarios, this problem is completely
specified by:
p = PortfolioCVaR('Scenarios', AssetScenarios, 'LowerBound', 0, 'Budget', 1, ...
'ProbabilityLevel', 0.95);

or equivalently by:

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

To confirm that this is a valid portfolio optimization problem, the following function determines
whether the set of PortfolioCVaR choices is bounded (a necessary condition for portfolio
optimization).

[lb, ub, isbounded] = estimateBounds(p);

Given the problem specified in the PortfolioCVaR object p, the efficient frontier for this problem
can be displayed with:

plotFrontier(p);

and efficient portfolios can be obtained with:

pwgt = estimateFrontier(p);
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For more information on the theory and definition of conditional value-at-risk optimization supported
by portfolio optimization tools in Financial Toolbox, see “Portfolio Optimization Theory” on page 5-2.

PortfolioCVaR Problem Sufficiency

A CVaR portfolio optimization problem is completely specified with the PortfolioCVaR object if
three conditions are met.

The following are the three conditions that must be met:

• You must specify a collection of asset returns or prices known as scenarios such that all scenarios
are finite asset returns or prices. These scenarios are meant to be samples from the underlying
probability distribution of asset returns. This condition can be satisfied by the setScenarios
function or with several canned scenario simulation functions.

• The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and
bounded. You can satisfy this condition using an extensive collection of properties that define
different types of constraints to form a set of feasible portfolios. Since such sets must be bounded,
either explicit or implicit constraints can be imposed and several tools, such as the
estimateBounds function, provide ways to ensure that your problem is properly formulated.

• You must specify a probability level to locate the level of tail loss above which the conditional
value-at-risk is to be minimized. This condition can be satisfied by the setProbabilityLevel
function.

Although the general sufficient conditions for CVaR portfolio optimization go beyond the first
three conditions, the PortfolioCVaR object handles all these additional conditions.

Shortcuts for Property Names

The PortfolioCVaR object has shorter argument names that replace longer argument names
associated with specific properties of the PortfolioCVaR object.

For example, rather than enter 'ProbabilityLevel', the PortfolioCVaR object accepts the case-
insensitive name 'plevel' to set the ProbabilityLevel property in a PortfolioCVaR object.
Every shorter argument name corresponds with a single property in the PortfolioCVaR object. The
one exception is the alternative argument name 'budget', which signifies both the LowerBudget
and UpperBudget properties. When 'budget' is used, then the LowerBudget and UpperBudget
properties are set to the same value to form an equality budget constraint.
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Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name
ae AEquality
ai AInequality
assetnames or assets AssetList
be bEquality
bi bInequality
budget UpperBudget and LowerBudget
group GroupMatrix
lb LowerBound
n or num NumAssets
level, problevel, or plevel ProbabilityLevel
rfr RiskFreeRate
scenario or assetscenarios Scenarios
ub UpperBound

References
[1] For a complete list of references for the PortfolioCVaR object, see “Portfolio Optimization” on page

A-5.

See Also
plotFrontier | estimateFrontier | setScenarios | Portfolio | PortfolioMAD | nearcorr

Topics
“Creating the PortfolioCVaR Object” on page 5-21
“Common Operations on the PortfolioCVaR Object” on page 5-28
“Working with CVaR Portfolio Constraints Using Defaults” on page 5-49
“Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
“Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-81
“Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-100
“Postprocessing Results to Set Up Tradable Portfolios” on page 5-108
“Hedging Using CVaR Portfolio Optimization” on page 5-116
“Portfolio Optimization Theory” on page 5-2
“PortfolioCVaR Object Workflow” on page 5-15
“PortfolioCVaR Object Properties and Functions” on page 5-16
“Working with PortfolioCVaR Objects” on page 5-16
“Setting and Getting Properties” on page 5-17
“Displaying PortfolioCVaR Objects” on page 5-17
“Saving and Loading PortfolioCVaR Objects” on page 5-17
“Estimating Efficient Portfolios and Frontiers” on page 5-17
“Arrays of PortfolioCVaR Objects” on page 5-18
“Subclassing PortfolioCVaR Objects” on page 5-19
“Conventions for Representation of Data” on page 5-19
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External Websites
CVaR Portfolio Optimization (4 min 56 sec)
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b
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PortfolioMAD
Create PortfolioMAD object for mean-absolute deviation portfolio optimization and analysis

Description
The PortfolioMAD object implements mean-absolute deviation portfolio optimization, where MAD
stands for “mean-absolute deviation.” PortfolioMAD objects support functions that are specific to
MAD portfolio optimization.

The main workflow for MAD portfolio optimization is to create an instance of a PortfolioMAD object
that completely specifies a portfolio optimization problem and to operate on the PortfolioMAD
object to obtain and analyze efficient portfolios. For more information on the workflow when using
PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-15.

You can use the PortfolioMAD object in several ways. To set up a portfolio optimization problem in a
PortfolioMAD object, the simplest syntax is:

p = PortfolioMAD;

This syntax creates a PortfolioMAD object, p, such that all object properties are empty.

The PortfolioMAD object also accepts collections of name-value pair arguments for properties and
their values. The PortfolioMAD object accepts inputs for properties with the general syntax:

    p = PortfolioMAD('property1',value1,'property2',value2, ... );

If a PortfolioMAD object exists, the syntax permits the first (and only the first argument) of the
PortfolioMAD object to be an existing object with subsequent name-value pair arguments for
properties to be added or modified. For example, given an existing PortfolioMAD object in p, the
general syntax is:

p = PortfolioMAD(p,'property1',value1,'property2',value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In addition, several
properties can be specified with alternative argument names (see “Shortcuts for Property Names” on
page 19-1211). The PortfolioMAD object tries to detect problem dimensions from the inputs and,
once set, subsequent inputs can undergo various scalar or matrix expansion operations that simplify
the overall process to formulate a problem. In addition, a PortfolioMAD object is a value object so
that, given portfolio p, the following code creates two objects, p and q, that are distinct:

q = PortfolioMAD(p, ...)

After creating a PortfolioMAD object, you can use the associated object functions to set portfolio
constraints, analyze the efficient frontier, and validate the portfolio model.

For more detailed information on the theoretical basis for conditional value-at-risk portfolio
optimization, see “Portfolio Optimization Theory” on page 6-2.
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Creation

Syntax
p = PortfolioMAD
p = PortfolioMAD(Name,Value)

p = PortfolioMAD(p,Name,Value)

Description

p = PortfolioMAD creates an empty PortfolioMAD object for mean-absolute deviation portfolio
optimization and analysis. You can then add elements to the PortfolioMAD object using the
supported "add" and "set" functions. For more information, see “Creating the PortfolioMAD Object”
on page 6-21.

p = PortfolioMAD(Name,Value) creates a PortfolioMAD object (p) and sets Properties on page
19-1197 using name-value pairs. For example, p =
PortfolioMAD('AssetList',Assets(1:12)). You can specify multiple name-value pairs.

p = PortfolioMAD(p,Name,Value) creates a PortfolioMAD object (p) using a previously
created PortfolioMAD object p and sets Properties on page 19-1197 using name-value pairs. You
can specify multiple name-value pairs.

Input Arguments

p — Previously constructed PortfolioMAD object
object

Previously constructed PortfolioMAD object, specified using PortfolioMAD.

Properties
Setting Up the Object

AssetList — Names or symbols of assets in universe
[] (default) | cell array of character vectors | string array

Names or symbols of assets in the universe, specified as a cell array of character vectors or a string
array.
Data Types: cell | string

InitPort — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
Data Types: double

Name — Name for instance of PortfolioMAD object
[] (default) | character vector | string

Name for instance of the PortfolioMAD object, specified as a character vector.
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Data Types: char | string

NumAssets — Number of assets in the universe
[] (default) | integer scalar

Number of assets in the universe, specified as an integer scalar.
Data Types: double

Portfolio Object Constraints

AEquality — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

AInequality — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
Data Types: double

bEquality — Linear equality constraint vector
[] (default) | vector

Linear equality constraint vector, specified as a vector.
Data Types: double

bInequality — Linear inequality constraint
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

GroupA — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

GroupB — Group B weights
[] (default) | matrix

Group B weights, specified as a matrix.
Data Types: double

GroupMatrix — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double
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LowerBound — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

LowerBudget — Lower-bound budget constraint
[] (default) | scalar

Lower-bound budget constraint, specified as a scalar.
Data Types: double

LowerGroup — Lower-bound group constraint
[] (default) | vector

Lower-bound group constraint, specified as a vector.
Data Types: double

LowerRatio — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.
Data Types: double

UpperBound — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double

UpperBudget — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

UpperGroup — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double

UpperRatio — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.
Data Types: double
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BoundType — Type of bounds for each asset weight
'Simple' (default) | character vector with value 'Simple' or 'Conditional' | string with value
"Simple" or "Conditional" | cell array of character vectors with values 'Simple' or
'Conditional' | string array with values "Simple" or "Conditional"

Type of bounds for each asset weight, specified as a scalar character vector or string, or a cell array
of character vectors or a string array. For more information, see setBounds.
Data Types: char | cell | string

MinNumAssets — Minimum number of assets allocated in portfolio
[] (default) | numeric

Minimum number of assets allocated in portfolio, specified as a scalar numeric value. For more
information, see setMinMaxNumAssets.
Data Types: double

MaxNumAssets — Maximum number of assets allocated in portfolio
[] (default) | numeric

Maximum number of assets allocated in portfolio, specified as a scalar numeric value. For more
information, see setMinMaxNumAssets.
Data Types: double

BuyTurnover — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

SellTurnover — Turnover constraint on sales
[] (default) | scalar

Turnover constraint on sales, specified as a scalar.
Data Types: double

Turnover — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

Portfolio Object Modeling

BuyCost — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

RiskFreeRate — Risk-free rate
[] (default) | scalar
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Risk-free rate, specified as a scalar.
Data Types: double

ProbabilityLevel — Value-at-risk probability level which is 1 − (loss probability)
[] (default) | scalar

Value-at-risk probability level which is 1 − (loss probability), specified as a scalar.
Data Types: double

NumScenarios — Number of scenarios
[] (default) | integer scalar

Number of scenarios, specified as an integer scalar.
Data Types: double

SellCost — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

Object Functions
setAssetList Set up list of identifiers for assets
setInitPort Set up initial or current portfolio
setDefaultConstraints Set up portfolio constraints with nonnegative weights that

sum to 1
estimateAssetMoments Estimate mean and covariance of asset returns from data
setCosts Set up proportional transaction costs
addEquality Add linear equality constraints for portfolio weights to

existing constraints
addGroupRatio Add group ratio constraints for portfolio weights to existing

group ratio constraints
addGroups Add group constraints for portfolio weights to existing group

constraints
addInequality Add linear inequality constraints for portfolio weights to

existing constraints
getBounds Obtain bounds for portfolio weights from portfolio object
getBudget Obtain budget constraint bounds from portfolio object
getCosts Obtain buy and sell transaction costs from portfolio object
getEquality Obtain equality constraint arrays from portfolio object
getGroupRatio Obtain group ratio constraint arrays from portfolio object
getGroups Obtain group constraint arrays from portfolio object
getInequality Obtain inequality constraint arrays from portfolio object
getOneWayTurnover Obtain one-way turnover constraints from portfolio object
setGroups Set up group constraints for portfolio weights
setInequality Set up linear inequality constraints for portfolio weights
setBounds Set up bounds for portfolio weights for a portfolio object
setMinMaxNumAssets Set cardinality constraints on the number of assets invested

in a portfolio object
setBudget Set up budget constraints
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setCosts Set up proportional transaction costs
setDefaultConstraints Set up portfolio constraints with nonnegative weights that

sum to 1
setEquality Set up linear equality constraints for portfolio weights
setGroupRatio Set up group ratio constraints for portfolio weights
setInitPort Set up initial or current portfolio
setOneWayTurnover Set up one-way portfolio turnover constraints
setTurnover Set up maximum portfolio turnover constraint
checkFeasibility Check feasibility of input portfolios against portfolio object
estimateBounds Estimate global lower and upper bounds for set of portfolios
estimateFrontier Estimate specified number of optimal portfolios on the

efficient frontier
estimateFrontierByReturn Estimate optimal portfolios with targeted portfolio returns
estimateFrontierByRisk Estimate optimal portfolios with targeted portfolio risks
estimateFrontierLimits Estimate optimal portfolios at endpoints of efficient frontier
plotFrontier Plot efficient frontier
estimatePortReturn Estimate mean of portfolio returns
estimatePortRisk Estimate portfolio risk according to risk proxy associated

with corresponding object
setSolver Choose main solver and specify associated solver options for

portfolio optimization
setProbabilityLevel Set probability level for VaR and CVaR calculations
setScenarios Set asset returns scenarios by direct matrix
getScenarios Obtain scenarios from portfolio object
simulateNormalScenariosByData Simulate multivariate normal asset return scenarios from

data
simulateNormalScenariosByMoments Simulate multivariate normal asset return scenarios from

mean and covariance of asset returns
estimateScenarioMoments Estimate mean and covariance of asset return scenarios
estimatePortStd Estimate standard deviation of portfolio returns

Examples

Create an Empty PortfolioMAD Object

You can create a PortfolioMAD object, p, with no input arguments and display it using disp.

p = PortfolioMAD;
disp(p);

  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: []
            Name: []
       NumAssets: []
       AssetList: []
        InitPort: []
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     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: []
      UpperBound: []
     LowerBudget: []
     UpperBudget: []
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: []

This approach provides a way to set up a portfolio optimization problem with the PortfolioMAD
function. You can then use the associated set functions to set and modify collections of properties in
the PortfolioMAD object.

Create a PortfolioMAD Object Using a Single-Step Setup

You can use the PortfolioMAD object directly to set up a “standard” portfolio optimization problem.
Given scenarios of asset returns in the variable AssetScenarios, this problem is completely
specified as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('Scenarios', AssetScenarios, ...
'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1)

p = 
  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: 20000
            Name: []
       NumAssets: 4
       AssetList: []

 PortfolioMAD

19-1203



        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [4x1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: []

Note that the LowerBound property value undergoes scalar expansion since AssetScenarios
provides the dimensions of the problem.

Create a PortfolioMAD Object Using a Sequence of Steps

Using a sequence of steps is an alternative way to accomplish the same task of setting up a
“standard” MAD portfolio optimization problem, given AssetScenarios variable is:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = PortfolioMAD(p, 'LowerBound', 0);
p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);

plotFrontier(p);
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This way works because the calls to PortfolioMAD are in this particular order. In this case, the call
to initialize AssetScenarios provides the dimensions for the problem. If you were to do this step
last, you would have to explicitly dimension the LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = PortfolioMAD(p, 'LowerBound', zeros(size(m)));
p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);
p = setScenarios(p, AssetScenarios);

plotFrontier(p);
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If you did not specify the size of LowerBound but, instead, input a scalar argument, the
PortfolioMAD object assumes that you are defining a single-asset problem and produces an error at
the call to set asset scenarios with four assets.

Create a PortfolioMAD Object Using Shortcuts for Property Names

You can create a PortfolioMAD object, p with the PortfolioMAD object using shortcuts for property
names.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('scenario', AssetScenarios, 'lb', 0, 'budget', 1)

p = 
  PortfolioMAD with properties:
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         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: 20000
            Name: []
       NumAssets: 4
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [4x1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: []

Direct Setting of PortfolioMAD Object Properties

Although not recommended, you can set properties directly, however no error-checking is done on
your inputs.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p.LowerBudget = 1;
p.UpperBudget = 1;
p.LowerBound = zeros(size(m));
disp(p);
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  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: 20000
            Name: []
       NumAssets: 4
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [4x1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: []

Scenarios cannot be assigned directly to a PortfolioMAD object. Scenarios must always be set
through either the PortfolioMAD function, the setScenarios function, or any of the scenario
simulation functions.

Create a PortfolioMAD Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = PortfolioMAD('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);
p = setDefaultConstraints(p);

plotFrontier(p);
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pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
    pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1        Port2       Port3       Port4      Port5
    AAPL     0.029787    0.076199     0.11265    0.13397    0    
    AMZN            0           0           0          0    0    
    CSCO            0           0           0          0    0    
    DELL    0.0089177           0           0          0    0    
    EBAY            0           0           0          0    0    
    GOOG      0.16094      0.3516     0.54479    0.74898    1    
    HPQ      0.056856    0.023073           0          0    0    
    IBM       0.46074     0.37919     0.29379    0.11705    0    
    INTC            0           0           0          0    0    
    MSFT      0.28277     0.16994    0.048762          0    0    
    ORCL            0           0           0          0    0    
    YHOO            0           0           0          0    0    
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More About
Mean-Absolute Deviation Portfolio Optimization

A MAD optimization problem is completely specified with three elements.

The three elements for a A MAD optimization problem are:

• A universe of assets with scenarios of asset total returns for a period of interest, where scenarios
comprise a collection of samples from the underlying probability distribution for asset total
returns. This collection must be sufficiently large for asymptotic convergence of sample statistics.
Asset return moments and related statistics are derived exclusively from the scenarios.

• A portfolio set that specifies the set of portfolio choices in terms of a collection of constraints.
• A model for portfolio return and risk proxies, which, for MAD optimization, is either the gross or

net mean of portfolio returns and the mean-absolute deviation of portfolio returns.

After these three elements have been specified unambiguously, it is possible to solve and analyze
MAD portfolio optimization problems.

The simplest MAD portfolio optimization problem has:

• Scenarios of asset total returns
• A requirement that all portfolios have nonnegative weights that sum to 1 (the summation

constraint is known as a budget constraint)
• Built-in models for portfolio return and risk proxies that use scenarios of asset total returns

Given scenarios of asset returns in the variable AssetScenarios, this problem is completely
specified by:
p = PortfolioMAD('Scenarios', AssetScenarios, 'LowerBound', 0, 'Budget', 1);

or equivalently by:

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

To confirm that this is a valid portfolio optimization problem, the following function determines
whether the set of PortfolioMAD choices is bounded (a necessary condition for portfolio optimization).

[lb, ub, isbounded] = estimateBounds(p);

Given the problem specified in the PortfolioMAD object p, the efficient frontier for this problem can
be displayed with:

plotFrontier(p);

and efficient portfolios can be obtained with:

pwgt = estimateFrontier(p);

For more detailed information on the theoretical basis for mean-absolute deviation optimization, see
“Portfolio Optimization Theory” on page 6-2.
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PortfolioMAD Problem Sufficiency

A MAD portfolio optimization problem is completely specified with the PortfolioMAD object if three
conditions are met.

The following are the three conditions that must be met:

• You must specify a collection of asset returns or prices known as scenarios such that all scenarios
are finite asset returns or prices. These scenarios are meant to be samples from the underlying
probability distribution of asset returns. This condition can be satisfied by the setScenarios
function or with several canned scenario simulation functions.

• The set of feasible portfolios must be a nonempty compact set, where a compact set is closed and
bounded. You can satisfy this condition using an extensive collection of properties that define
different types of constraints to form a set of feasible portfolios. Since such sets must be bounded,
either explicit or implicit constraints can be imposed and several tools, such as the
estimateBounds function, provide ways to ensure that your problem is properly formulated.

Although the general sufficient conditions for MAD portfolio optimization go beyond these
conditions, the PortfolioMAD object handles all these additional conditions.

Shortcuts for Property Names

The PortfolioMAD object has shorter argument names that replace longer argument names
associated with specific properties of the PortfolioMAD object.

For example, rather than enter 'AInequality', PortfolioMAD accepts the case-insensitive name
'ai' to set the AInequality property in a PortfolioMAD object. Every shorter argument name
corresponds with a single property in the PortfolioMAD function. The one exception is the
alternative argument name 'budget', which signifies both the LowerBudget and UpperBudget
properties. When 'budget' is used, then the LowerBudget and UpperBudget properties are set to
the same value to form an equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name
ae AEquality
ai AInequality
assetnames or assets AssetList
be bEquality
bi bInequality
budget UpperBudget and LowerBudget
group GroupMatrix
lb LowerBound
n or num NumAssets
rfr RiskFreeRate
scenario or assetscenarios Scenarios
ub UpperBound
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References
[1] For a complete list of references for the PortfolioMAD object, see “Portfolio Optimization” on page

A-5.

See Also
plotFrontier | estimateFrontier | setScenarios | PortfolioCVaR | Portfolio | nearcorr

Topics
“Creating the PortfolioMAD Object” on page 6-21
“Common Operations on the PortfolioMAD Object” on page 6-28
“Working with MAD Portfolio Constraints Using Defaults” on page 6-48
“Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34
“Validate the MAD Portfolio Problem” on page 6-76
“Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on page 6-80
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-97
“Postprocessing Results to Set Up Tradable Portfolios” on page 6-105
“Portfolio Optimization Theory” on page 6-2
“PortfolioMAD Object Workflow” on page 6-15
“PortfolioMAD Object Properties and Functions” on page 6-16
“Working with PortfolioMAD Objects” on page 6-16
“Setting and Getting Properties” on page 6-17
“Displaying PortfolioMAD Objects” on page 6-17
“Saving and Loading PortfolioMAD Objects” on page 6-17
“Estimating Efficient Portfolios and Frontiers” on page 6-17
“Arrays of PortfolioMAD Objects” on page 6-18
“Subclassing PortfolioMAD Objects” on page 6-19
“Conventions for Representation of Data” on page 6-19

Introduced in R2013b
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portopt
Portfolios on constrained efficient frontier

Note portopt has been partially removed and will no longer accept ConSet or varargin
arguments. Use Portfolio instead to solve portfolio problems that are more than a long-only fully-
invested portfolio. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow”. For more information on migrating portopt code to Portfolio, see “portopt
Migration to Portfolio Object”.

Syntax
[PortRisk,PortReturn,PortWts] = portopt(ExpReturn,ExpCovariance)
[PortRisk,PortReturn,PortWts] = portopt( ___ ,NumPorts,PortReturn)
portopt( ___ ,NumPorts,PortReturn)

Description
[PortRisk,PortReturn,PortWts] = portopt(ExpReturn,ExpCovariance) sets up the most
basic portfolio problem with weights greater than or equal to 0 that must sum to 1. All that is
necessary to solve this problem is the mean and covariance of asset returns. By default, portopt
returns 10 equally-spaced points on the efficient frontier.

portopt solves the "standard" mean-variance portfolio optimization problem for a long-only fully-
invested investor with no additional constraints. Specifically, every portfolios on the efficient frontier
has non-negative weights that sum to 1.

[PortRisk,PortReturn,PortWts] = portopt( ___ ,NumPorts,PortReturn) specifies
options using one or more optional arguments in addition to the input arguments in the previous
syntax.

portopt( ___ ,NumPorts,PortReturn) returns a plot of the efficient frontier if portopt is
invoked with no output arguments.

Examples

Plot the Risk-Return Efficient Frontier

Use portopt to connect 20 portfolios along the efficient frontier having evenly spaced returns. By
default, choose among portfolios without short-selling and scale the value of the portfolio to 1.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005   -0.010    0.004
                -0.010    0.040   -0.002
                 0.004   -0.002    0.023];

NumPorts = 20;
portopt(ExpReturn, ExpCovariance, NumPorts)
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Input Arguments
ExpReturn — Expected (mean) return of each asset
vector

Expected (mean) return of each asset, specified as a 1-by-number of assets (NASSETS) vector.
Data Types: double

ExpCovariance — Covariance of the asset returns
matrix

Covariance of the asset returns, specified as a NASSETS-by-NASSETS matrix.
Data Types: double

NumPorts — Number of portfolios generated along the efficient frontier
10 (default) | scalar numeric

(Optional) Number of portfolios generated along the efficient frontier, specified as a scalar numeric.
Returns are equally spaced between the maximum possible return and the minimum risk point. If
NumPorts is empty (entered as []), portopt computes 10 equally spaced points. If you specify 1,
portopt returns the minimum-risk portfolio.
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Note If not over-ridden by PortReturn, these portfolios are spaced evenly from the minimum to the
maximum return on the efficient frontier. If NumPorts = 1, then the minimum-risk portfolio is
computed (positive integer).

Data Types: double

PortReturn — Target portfolio returns to be computed on the efficient frontier
[ ] (default) | vector

(Optional) Target portfolio returns to be computed on the efficient frontier, specified as a number of
portfolios (NPORTS-by-1 vector). If not entered or empty, NumPorts equally spaced returns between
the minimum and maximum possible values are used.

Note portopt requires that if you set PortReturn, NumPorts should be empty. If you specify
PortReturn with a nonempty vector, PortReturn overrides NumPorts. If any returns in
PortReturn fall outside the range of returns on the efficient frontier, portopt generates a warning
and the efficient portfolios closest to the endpoints of the efficient frontier are computed.

Data Types: double

Output Arguments
PortRisk — Standard deviation of each portfolio
vector

Standard deviation of each portfolio, returned as a NPORTS-by-1 vector.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. Each row represents a
portfolio. The total of all weights in a portfolio is 1.

PortReturn — expected return of each portfolio
vector

Expected return of each portfolio, returned as a NPORTS-by-1 vector.

PortWts — Weights allocated to each asset
matrix

Weights allocated to each asset, returned as a NPORTS-by-NASSETS matrix. Each row represents a
portfolio. The total of all weights in a portfolio is 1.

See Also
ewstats | frontier | portstats | portcons | Portfolio

Topics
“Portfolio Construction Examples” on page 3-5
“Plotting an Efficient Frontier Using portopt” on page 10-22
“Portfolio Selection and Risk Aversion” on page 3-7
“Active Returns and Tracking Error Efficient Frontier” on page 3-32
“portopt Migration to Portfolio Object” on page 3-11
“Analyzing Portfolios” on page 3-2
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“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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portrand
Randomized portfolio risks, returns, and weights

Syntax
[PortRisk,PortReturn,PortWts] = portrand(Asset,Return,Points,Method)

portrand(Asset,Return,Points,Method)

Arguments

Asset Matrix of time series data. Each row is an observation and each column
represents a single security.

Return (Optional) Row vector where each column represents the rate of return for
the corresponding security in Asset. By default, Return is computed by
taking the average value of each column of Asset.

Points (Optional) Scalar that specifies how many random points should be
generated. Default = 1000.

Method (Optional) A character vector that specifies how to generate random
portfolios from the set of portfolios with two possible methods:

• 'uniform' – Uniformly distributed portfolio weights (default method).
The 'uniform' method generates portfolio weights that are uniformly
distributed on the set of portfolio weights.

• 'geometric' – Concentrated portfolio weights around the geometric
center of the set of portfolios. The 'geometric' method generates
portfolio weights that are concentrated around the geometric center of
the set of portfolio weights.

Note The 'uniform' and 'geometric' methods generate weights that are
distributed symmetrically around the geometric center of the set of weights.

Description
[PortRisk,PortReturn,PortWts] = portrand(Asset,Return,Points,Method) returns the
risks, rates of return, and weights of random portfolio configurations.

PortRisk Points-by-1 vector of standard deviations.
PortReturn Points-by-1 vector of expected rates of return.
PortWts Points by number of securities matrix of asset weights. Each row of

PortWts is a different portfolio configuration.

portrand(Asset, Return, Points, Method) plots the points representing each portfolio
configuration. It does not return any data to the MATLAB workspace.
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Note Portfolios are selected at random from a set of portfolios such that portfolio weights are
nonnegative and sum to 1. The sample mean and covariance of asset returns are used to compute
portfolio returns for each random portfolio.

References
Bodie, Kane, and Marcus. Investments. Chapter 7.

See Also
portror | portvar

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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portror
Portfolio expected rate of return

Syntax
R = portror(Return,Weight)

Description
R = portror(Return,Weight) returns a 1-by-M vector for the expected rate of return.

Examples

Portfolio Expected Rate of Return

This example shows a portfolio that is made up of two assets ABC and XYZ having expected rates of
return of 10% and 14%, respectively. If 40% percent of the portfolio's funds are allocated to asset
ABC and the remaining funds are allocated to asset XYZ, the portfolio's expected rate of return is:

r = portror([.1 .14],[.4 .6])

r = 0.1240

Input Arguments
Return — Rates of return
matrix

Rates of return, specified as a 1-by-N matrix. Each column of Return represents the rate of return for
a single security.
Data Types: double

Weight — Weights
matrix

Weights, specified as a M-by-N matrix. Each row of Weight represents a different weighting
combination of the assets in the portfolio.
Data Types: double

Output Arguments
R — Expected rate of return
vector

Expected rate of return, returned as a 1-by-M vector.
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References
[1] Zvi Bodie, Alex Kane, Alan Marcus. Investments. McGraw-Hill Education; 10th edition (September

9, 2013).

See Also
portrand | portvar

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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portsim
Monte Carlo simulation of correlated asset returns

Syntax
RetSeries = portsim(ExpReturn,ExpCovariance,NumObs)
RetSeries = portsim( ___ ,RetIntervals,NumSim,Method)

Description
RetSeries = portsim(ExpReturn,ExpCovariance,NumObs) simulates correlated returns of
NASSETS assets over NUMOBS consecutive observation intervals. Asset returns are simulated as the
proportional increments of constant drift, constant volatility stochastic processes, thereby
approximating continuous-time geometric Brownian motion.

RetSeries = portsim( ___ ,RetIntervals,NumSim,Method) specifies options using one or
more optional arguments in addition to the input arguments in the previous syntax.

Examples

Distinction Between Simulation Methods

This example shows the distinction between the Exact and Expected methods of simulation.

Consider a portfolio of five assets with the following expected returns, standard deviations, and
correlation matrix based on daily asset returns (where ExpReturn and Sigmas are divided by 100 to
convert percentages to returns).

ExpReturn     = [0.0246  0.0189  0.0273  0.0141  0.0311]/100;
Sigmas        = [0.9509  1.4259  1.5227  1.1062  1.0877]/100;
Correlations  = [1.0000  0.4403  0.4735  0.4334  0.6855
                 0.4403  1.0000  0.7597  0.7809  0.4343
                 0.4735  0.7597  1.0000  0.6978  0.4926
                 0.4334  0.7809  0.6978  1.0000  0.4289
                 0.6855  0.4343  0.4926  0.4289  1.0000];

Convert the correlations and standard deviations to a covariance matrix.

ExpCovariance = corr2cov(Sigmas, Correlations)

ExpCovariance = 5×5
10-3 ×

    0.0904    0.0597    0.0686    0.0456    0.0709
    0.0597    0.2033    0.1649    0.1232    0.0674
    0.0686    0.1649    0.2319    0.1175    0.0816
    0.0456    0.1232    0.1175    0.1224    0.0516
    0.0709    0.0674    0.0816    0.0516    0.1183
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Assume that there are 252 trading days in a calendar year, and simulate two sample paths
(realizations) of daily returns over a two-year period. Since ExpReturn and ExpCovariance are
expressed daily, set RetIntervals = 1.

StartPrice    = 100;
NumObs        = 504;  % two calendar years of daily returns
NumSim        = 2;
RetIntervals  = 1;    % one trading day
NumAssets     = 5;

To illustrate the distinction between methods, simulate two paths by each method, starting with the
same random number state.

rng('default'); 
RetExact = portsim(ExpReturn, ExpCovariance, NumObs, ... 
RetIntervals, NumSim, 'Exact');
rng(0); 
RetExpected = portsim(ExpReturn, ExpCovariance, NumObs, ... 
RetIntervals, NumSim, 'Expected');

Compare the mean and covariance of RetExact with the inputs (ExpReturn and ExpCovariance),
you will observe that they are almost identical.

At this point, RetExact and RetExpected are both 504-by-5-by-2 arrays. Now assume an equally
weighted portfolio formed from the five assets and create arrays of portfolio returns in which each
column represents the portfolio return of the corresponding sample path of the simulated returns of
the five assets. The portfolio arrays PortRetExact and PortRetExpected are 504-by-2 matrices.

Weights         = ones(NumAssets, 1)/NumAssets;
PortRetExact    = zeros(NumObs, NumSim);
PortRetExpected = zeros(NumObs, NumSim);

for i = 1:NumSim
    PortRetExact(:,i)    = RetExact(:,:,i) * Weights;
    PortRetExpected(:,i) = RetExpected(:,:,i) * Weights; 
end

Finally, convert the simulated portfolio returns to prices and plot the data. In particular, note that
since the Exact method matches expected return and covariance, the terminal portfolio prices are
virtually identical for each sample path. This is not true for the Expected simulation method.
Although this example examines portfolios, the same methods apply to individual assets as well. Thus,
Exact simulation is most appropriate when unique paths are required to reach the same terminal
prices.

PortExact   = ret2tick(PortRetExact, ... 
repmat(StartPrice,1,NumSim)); 
PortExpected = ret2tick(PortRetExpected, ... 
repmat(StartPrice,1,NumSim)); 
subplot(2,1,1), plot(PortExact, '-r')
ylabel('Portfolio Prices')
title('Exact Method')
subplot(2,1,2), plot(PortExpected, '-b')
ylabel('Portfolio Prices')
title('Expected Method')
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Interaction Between ExpReturn, ExpCovariance, and RetIntervals

This example shows the interplay among ExpReturn, ExpCovariance, and RetIntervals. Recall
that portsim simulates correlated asset returns over an interval of length dt, given by the equation

dS
S = μdt + σdz = μdt + σε dt,

where S is the asset price, μ is the expected rate of return, σ is the volatility of the asset price, and ε
represents a random drawing from a standardized normal distribution.

The time increment dt is determined by the optional input RetIntervals, either as an explicit input
argument or as a unit time increment by default. Regardless, the periodicity of ExpReturn,
ExpCovariance, and RetIntervals must be consistent. For example, if ExpReturn and
ExpCovariance are annualized, then RetIntervals must be in years. This point is often
misunderstood.

To illustrate the interplay among ExpReturn, ExpCovariance, and RetIntervals, consider a
portfolio of five assets with the following expected returns, standard deviations, and correlation
matrix based on daily asset returns.
ExpReturn     = [0.0246  0.0189  0.0273  0.0141  0.0311]/100;

Sigmas        = [0.9509  1.4259  1.5227  1.1062  1.0877]/100;
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Correlations  = [1.0000  0.4403  0.4735  0.4334  0.6855
                 0.4403  1.0000  0.7597  0.7809  0.4343
                 0.4735  0.7597  1.0000  0.6978  0.4926
                 0.4334  0.7809  0.6978  1.0000  0.4289
                 0.6855  0.4343  0.4926  0.4289  1.0000];

Convert the correlations and standard deviations to a covariance matrix of daily returns.
 ExpCovariance = corr2cov(Sigmas, Correlations);

Assume 252 trading days per calendar year, and simulate a single sample path of daily returns over a
four-year period. Since the ExpReturn and ExpCovariance inputs are expressed daily, set
RetIntervals = 1.
StartPrice    = 100;
NumObs        = 1008;   % four calendar years of daily returns
RetIntervals  = 1;      % one trading day
NumAssets     = length(ExpReturn);
randn('state',0);
RetSeries1 = portsim(ExpReturn, ExpCovariance, NumObs, ... 
RetIntervals, 1, 'Expected');

Now annualize the daily data, thereby changing the periodicity of the data, by multiplying
ExpReturn and ExpCovariance by 252 and dividing RetIntervals by 252 (RetIntervals =
1/252 of a year). Resetting the random number generator to its initial state, you can reproduce the
results.

rng('default'); 
RetSeries2 = portsim(ExpReturn*252, ExpCovariance*252, ... 
NumObs, RetIntervals/252, 1, 'Expected');

Assume an equally weighted portfolio and compute portfolio returns associated with each simulated
return series.

Weights  = ones(NumAssets, 1)/NumAssets;

PortRet1 = RetSeries2 * Weights;
PortRet2 = RetSeries2 * Weights;

Comparison of the data reveals that PortRet1 and PortRet2 are identical.

Univariate Geometric Brownian Motion

This example shows how to simulate a univariate geometric Brownian motion process. It is based on
an example found in Hull, Options, Futures, and Other Derivatives, 5th Edition (see example 12.2 on
page 236). In addition to verifying Hull's example, it also graphically illustrates the lognormal
property of terminal stock prices by a rather large Monte Carlo simulation.

Assume that you own a stock with an initial price of $20, an annualized expected return of 20% and
volatility of 40%. Simulate the daily price process for this stock over the course of one full calendar
year (252 trading days).
StartPrice    = 20;
ExpReturn     = 0.2; 
ExpCovariance = 0.4^2;
NumObs        = 252;
NumSim        = 10000;
RetIntervals  = 1/252;
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RetIntervals is expressed in years, consistent with the fact that ExpReturn and ExpCovariance
are annualized. Also, ExpCovariance is entered as a variance rather than the more familiar
standard deviation (volatility).

Set the random number generator state, and simulate 10,000 trials (realizations) of stock returns
over a full calendar year of 252 trading days.
rng('default');
RetSeries = squeeze(portsim(ExpReturn, ExpCovariance, NumObs, ... 
RetIntervals, NumSim, 'Expected'));

The squeeze function reformats the output array of simulated returns from a 252-by-1-by-10000
array to more convenient 252-by-10000 array. (Recall that portsim is fundamentally a multivariate
simulation engine).

In accordance with Hull's equations 12.4 and 12.5 on page 236

E ST = S0eμT

var ST = S02e2μT eσ2T − 1

convert the simulated return series to a price series and compute the sample mean and the variance
of the terminal stock prices.
StockPrices = ret2tick(RetSeries, repmat(StartPrice, 1, NumSim));

SampMean = mean(StockPrices(end,:))
SampVar = var(StockPrices(end,:))

SampMean =

   24.4489

SampVar =

  101.4243

Compare these values with the values you obtain by using Hull's equations.

ExpValue = StartPrice*exp(ExpReturn)
ExpVar = ... 
StartPrice*StartPrice*exp(2*ExpReturn)*(exp((ExpCovariance)) - 1)

ExpValue =

   24.4281

ExpVar =

  103.5391

These results are very close to the results shown in Hull's example 12.2.

Display the sample density function of the terminal stock price after one calendar year. From the
sample density function, the lognormal distribution of terminal stock prices is apparent.

[count, BinCenter] = hist(StockPrices(end,:), 30);
figure
bar(BinCenter, count/sum(count), 1, 'r')
xlabel('Terminal Stock Price')
ylabel('Probability')
title('Lognormal Terminal Stock Prices')
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Input Arguments
ExpReturn — Expected (mean) return of each asset
vector

Expected (mean) return of each asset, specified as a 1-by-NASSETS vector.
Data Types: double

ExpCovariance — Asset return covariances
matrix

Asset return covariances, specified as an NASSETS-by-NASSETS matrix. ExpCovariance must be
symmetric and positive semidefinite (no negative eigenvalues). The standard deviations of the returns
are ExpSigma = sqrt(diag(ExpCovariance)). If ExpCovariance is not a symmetric positive
semidefinite matrix, use nearcorr to create a positive semidefinite matrix for a correlation matrix.
Data Types: double

NumObs — Number of consecutive observations in the return time series
positive scalar integer

number of consecutive observations in the return time series, specified as a positive scalar integer. If
NumObs is entered as the empty matrix [], the length of RetIntervals is used.
Data Types: double

RetIntervals — Interval times between observations
1 (default) | positive scalar | vector

(Optional) Interval times between observations, specified as a positive scalar or a number of
observations NUMOBS-by-1 vector. If RetIntervals is not specified, all intervals are assumed to have
length 1.
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Data Types: double

NumSim — Number of simulated sample paths (realizations) of NUMOBS observations
1 (default) | positive scalar integer

(Optional) Number of simulated sample paths (realizations) of NUMOBS observations, specified as a
positive scalar integer. The default value for NumSim is 1 (single realization of NUMOBS correlated
asset returns).
Data Types: double

Method — Type of Monte Carlo simulation
'Exact' (default) | character vector

(Optional) Type of Monte Carlo simulation, specified as a character vector with one of the following
values:

• 'Exact' (default) generates correlated asset returns in which the sample mean and covariance
match the input mean (ExpReturn) and covariance (ExpCovariance) specifications.

• 'Expected' generates correlated asset returns in which the sample mean and covariance are
statistically equal to the input mean and covariance specifications. (The expected values of the
sample mean and covariance are equal to the input mean (ExpReturn) and covariance
(ExpCovariance) specifications.)

For either Method, the sample mean and covariance returned are appropriately scaled by
RetIntervals.
Data Types: char

Output Arguments
RetSeries — Three-dimensional array of correlated, normally distributed, proportional
asset returns
array

Three-dimensional array of correlated, normally distributed, proportional asset returns, returned as a
NUMOBS-by-NASSETS-by-NUMSIM three-dimensional array.

Asset returns over an interval of length dt are given by

dS
S = μdt + σdz = μdt + σε dt,

where S is the asset price, μ is the expected rate of return, σ is the volatility of the asset price, and ε
represents a random drawing from a standardized normal distribution.

Notes

• When Method is 'Exact', the sample mean and covariance of all realizations (scaled by
RetIntervals) match the input mean and covariance. When the returns are then converted to
asset prices, all terminal prices for a given asset are in close agreement. Although all realizations
are drawn independently, they produce similar terminal asset prices. Set Method to 'Expected'
to avoid this behavior.
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• The returns from the portfolios in PortWts are given by
PortReturn = PortWts * RetSeries(:,:,1)', where PortWts is a matrix in which each
row contains the asset allocations of a portfolio. Each row of PortReturn corresponds to one of
the portfolios identified in PortWts, and each column corresponds to one of the observations
taken from the first realization (the first plane) in RetSeries. See portopt and portstats for
portfolio specification and optimization.

References
[1] Hull, J. C. Options, Futures, and Other Derivatives. Prentice-Hall, 2003.

See Also
ewstats | portopt | portstats | randn | ret2tick | squeeze | nearcorr

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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portstats
Portfolio expected return and risk

Syntax
[PortRisk,PortReturn] = portstats(ExpReturn,ExpCovariance)
[PortRisk,PortReturn] = portstats( ___ ,Wts)

Description
[PortRisk,PortReturn] = portstats(ExpReturn,ExpCovariance) computes the expected
rate of return and risk for a portfolio of assets.

[PortRisk,PortReturn] = portstats( ___ ,Wts) specifies options using one or more optional
arguments in addition to the input arguments in the previous syntax.

Examples

Computes the Expected Rate of Return and Risk for a Portfolio of Assets

This example shows how to calculate the expected rate of return and risk for a portfolio of assets.

ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance = [0.0100   -0.0061    0.0042 
                -0.0061    0.0400   -0.0252 
                 0.0042   -0.0252    0.0225 ];
 
PortWts=[0.4 0.2 0.4; 0.2 0.4 0.2];

[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,... 
PortWts)

PortRisk = 2×1

    0.0560
    0.0550

PortReturn = 2×1

    0.1400
    0.1300

Input Arguments
ExpReturn — Expected (mean) return of each asset
vector
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Expected (mean) return of each asset, specified as a 1-by-NASSETS vector.
Data Types: double

ExpCovariance — Asset return covariances
matrix

Asset return covariances, specified as an NASSETS-by-NASSETS matrix.
Data Types: double

Wts — Weights allocated to each asset
1/NASSETS (equally weighted) (default) | matrix

(Optional) Weights allocated to each asset, specified as an NPORTS-by-NASSETS matrix. Each row
represents a different weighting combination of the assets in the portfolio. If Wts is not entered,
weights of 1/NASSETS are assigned to each security.

Data Types: double

Output Arguments
PortRisk — Standard deviation of each portfolio
vector

Standard deviation of each portfolio, returned as an NPORTS-by-1 vector.

PortReturn — Expected return of each portfolio
vector

Expected return of each portfolio, returned an NPORTS-by-1 vector.

See Also
ewstats | portalloc

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Selection and Risk Aversion” on page 3-7
“Active Returns and Tracking Error Efficient Frontier” on page 3-32
“Analyzing Portfolios” on page 3-2
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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portvar
Variance for portfolio of assets

Syntax
V = portvar(Asset,Weight)

Arguments
Asset M-by-N matrix of M asset returns for N securities.
Weight R-by-N matrix of R portfolio weights for N securities. Each row of Weight

constitutes a portfolio of securities in Asset.

Description
V = portvar(Asset,Weight) returns the portfolio variance as an R-by-1 vector (assuming Weight
is a matrix of size R-by-N) with each row representing a variance calculation for each row of Weight.

V = portvar(Asset) assigns each security an equal weight when calculating the portfolio
variance.

References
Bodie, Kane, and Marcus. Investments. Chapter 7.

See Also
portrand | portror

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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portvrisk
Portfolio value at risk (VaR)

Syntax
ValueAtRisk = portvrisk(PortReturn,PortRisk)
ValueAtRisk = portvrisk( ___ ,RiskThreshold,PortValue)

Description
ValueAtRisk = portvrisk(PortReturn,PortRisk) returns the maximum potential loss in the
value of a portfolio over one period of time (that is, monthly, quarterly, yearly, and so on) given the
loss probability level. portvrisk calculates ValueAtRisk using a normal distribution.

ValueAtRisk = portvrisk( ___ ,RiskThreshold,PortValue) adds optional arguments for
RiskThreshold and PortValue.

Examples

Compute the Maximum Potential Loss in the Value of a Portfolio Over One Period of Time

This example shows how to return the maximum potential loss in the value of a portfolio over one
period of time, where ValueAtRisk is computed on a per-unit basis.

PortReturn = 0.29/100;
PortRisk = 3.08/100;
RiskThreshold = [0.01;0.05;0.10];
PortValue = 1;
ValueAtRisk = portvrisk(PortReturn,PortRisk,... 
RiskThreshold,PortValue)

ValueAtRisk = 3×1

    0.0688
    0.0478
    0.0366

Compute the Maximum Potential Loss in the Value of a Portfolio Over One Period of Time
Using Actual Values

This example shows how to return the maximum potential loss in the value of a portfolio over one
period of time, where ValueAtRisk is computed with actual values.

PortReturn = [0.29/100;0.30/100];
PortRisk = [3.08/100;3.15/100];
RiskThreshold = 0.10;
PortValue = [1000000000;500000000];
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ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)

ValueAtRisk = 2×1
107 ×

    3.6572
    1.8684

Input Arguments
PortReturn — Expected return of each portfolio over period
scalar numeric | vector

Expected return of each portfolio over the period, specified as a scalar numeric or an NPORTS-by-1
vector.
Data Types: double

PortRisk — Standard deviation of each portfolio over period
scalar numeric | vector

Standard deviation of each portfolio over period, specified as a scalar numeric or NPORTS-by-1 vector.
Data Types: double

RiskThreshold — Loss probability
0.05 (5%) (default) | scalar decimal | vector

(Optional) Loss probability, specified as a scalar decimal or an NPORTS-by-1 vector.
Data Types: double

PortValue — Total value of asset portfolio
1 (default) | scalar numeric | vector

(Optional) Total value of asset portfolio, specified as a scalar numeric or an NPORTS-by-1 vector.

Note If PortReturn and PortRisk are in dollar units, then PortValue should be 1. If
PortReturn and PortRisk are on a percentage basis, then PortValue should be the total value of
the portfolio.

Data Types: double

Output Arguments
ValueAtRisk — Estimated maximum loss in portfolio
vector

Estimated maximum loss in the portfolio, returned as an NPORTS-by-1 vector. ValueAtRisk is
predicted with a confidence probability of 1 − RiskThreshold.
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Note If PortValue is not given, ValueAtRisk is presented on a per-unit basis. A value of 0
indicates no losses.

See Also
portopt | Portfolio

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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posvolidx
Positive volume index

Note Using a fints object for the Data argument of posvolidx is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
volume = posvolidx(Data)
volume = posvolidx( ___ ,Name,Value)

Description
volume = posvolidx(Data) calculates the positive volume index from the series of closing stock
prices and trade volume.

volume = posvolidx( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Positive Volume Index for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
volume = posvolidx(TMW);
plot(volume.Time,volume.PositiveVolume)
title('Positive Volume Index for TMW')
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Input Arguments
Data — Data with closing prices and trade volume
matrix | table | timetable

Data with closing prices and trade volume, specified as a matrix, table, or timetable. For matrix input,
Data is an M-by-2 with closing prices and trade volume stored in the first and second columns.
Timetables and tables with M rows must contain variables named 'Close' and 'Volume' (case
insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: volume = posvolidx(TMW,'InitialValue',500)

InitialValue — Initial value for positive volume index
100 (default) | positive integer

Initial value for positive volume index, specified as the comma-separated pair consisting of
'InitialValue' and a scalar positive integer.
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Data Types: double

Output Arguments
volume — Positive volume index
matrix | table | timetable

Positive volume index, returned with the same number of rows (M) and the same type (matrix, table,
or timetable) as the input Data.

More About
Positive Volume Index

Positive volume index shows the days when the trading volume of a particular security is substantially
higher than other days.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 236–238.

See Also
timetable | table | onbalvol | negvolidx

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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power
Financial time series power

Note power is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = tsobj .^ array

newfts = array .^tsobj

newfts = tsobj_1 .^ tsobj_2

Arguments

tsobj Financial time series object.
array Scalar value or array with the number of rows equal to the number

of dates in tsobj and the number of columns equal to the number of
data series in tsobj.

tsobj_1, tsobj_2 Pair of financial time series objects.

Description
newfts = tsobj .^ array raises all values in the data series of the financial time series object
tsobj element by element to the power indicated by the array value. The results are stored in
another financial time series object newfts. The newfts object contains the same data series names
as tsobj.

newfts = array .^ tsobj raises the array values element by element to the values contained in
the data series of the financial time series object tsobj. The results are stored in another financial
time series object newfts. The newfts object contains the same data series names as tsobj.

newfts = tsobj_1 .^ tsobj_2 raises the values in the object tsobj_1 element by element to
the values in the object tsobj_2. The data series names, the dates, and the number of data points in
both series must be identical. newfts contains the same data series names as the original time series
objects.

See Also
minus | plus | rdivide | times

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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prbyzero
Price bonds in portfolio by set of zero curves

Syntax
BondPrices = prbyzero(Bonds,Settle,ZeroRates,ZeroDates)
BondPrices = prbyzero( ___ ,Compounding)

Description
BondPrices = prbyzero(Bonds,Settle,ZeroRates,ZeroDates) computes the bond prices in
a portfolio using a set of zero curves.

BondPrices = prbyzero( ___ ,Compounding) adds an optional argument for Compounding.

Examples

Compute the Bond Prices in a Portfolio Using a Set of Zero Curves

This example uses the function zbtprice to compute a zero curve given a portfolio of coupon bonds
and their prices. It then reverses the process, using the zero curve as input to the function prbyzero
to compute the prices.

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0; 
         datenum('7/1/2000') 0.06 100 2 0 0; 
         datenum('7/1/2000') 0.09375 100 6 1 0; 
         datenum('6/30/2001') 0.05125 100 1 3 1;
         datenum('4/15/2002') 0.07125 100 4 1 0;
         datenum('1/15/2000') 0.065 100 2 0 0; 
         datenum('9/1/1999') 0.08 100 3 3 0; 
         datenum('4/30/2001') 0.05875 100 2 0 0; 
         datenum('11/15/1999') 0.07125 100 2 0 0; 
         datenum('6/30/2000') 0.07 100 2 3 1; 
         datenum('7/1/2001') 0.0525 100 2 3 0; 
         datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [ 99.375;
           99.875;
          105.75 ;
           96.875;
          103.625;
          101.125;
          103.125;
           99.375;
          101.0  ;
          101.25 ;
           96.375;
          102.75 ];

Settle = datenum('12/18/1997');
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Set semiannual compounding for the zero curve, on an actual/365 basis.

OutputCompounding = 2;

Execute the function zbtprice which returns the zero curve at the maturity dates.

[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle,...
OutputCompounding)

ZeroRates = 11×1

    0.0616
    0.0609
    0.0658
    0.0590
    0.0647
    0.0655
    0.0606
    0.0601
    0.0642
    0.0621
      ⋮

ZeroDates = 11×1

      729907
      730364
      730439
      730500
      730667
      730668
      730971
      731032
      731033
      731321
      ⋮

Execute the function prbyzero.

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)

BondPrices = 12×1

   99.3750
   98.7980
  106.8270
   96.8750
  103.6249
  101.1250
  103.1250
   99.3637
  101.0000
  101.2500
      ⋮

In this example zbtprice and prbyzero do not exactly reverse each other. Many of the bonds have
the end-of-month rule off (EndMonthRule = 0). The rule subtly affects the time factor computation.
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If you set the rule on (EndMonthRule = 1) everywhere in the Bonds matrix, then prbyzero returns
the original prices, except when the two incompatible prices fall on the same maturity date.

Compute the Bond Prices in a Portfolio Using a Set of Zero Curves and datetime Inputs

This example uses the function zbtprice to compute a zero curve given a portfolio of coupon bonds
and their prices. It then reverses the process, using the zero curve as input to the function prbyzero
with datetime inputs to compute the prices.

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
         datenum('7/1/2000') 0.06 100 2 0 0;
         datenum('7/1/2000') 0.09375 100 6 1 0;
         datenum('6/30/2001') 0.05125 100 1 3 1;
         datenum('4/15/2002') 0.07125 100 4 1 0;
         datenum('1/15/2000') 0.065 100 2 0 0;
         datenum('9/1/1999') 0.08 100 3 3 0;
         datenum('4/30/2001') 0.05875 100 2 0 0;
         datenum('11/15/1999') 0.07125 100 2 0 0;
         datenum('6/30/2000') 0.07 100 2 3 1;
         datenum('7/1/2001') 0.0525 100 2 3 0;
         datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [ 99.375;
           99.875;
          105.75 ;
           96.875;
          103.625;
          101.125;
          103.125;
           99.375;
          101.0  ;
          101.25 ;
           96.375;
          102.75 ];

Settle = datenum('12/18/1997');
OutputCompounding = 2;

[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle, OutputCompounding);

dates = datetime(Bonds(:,1),'ConvertFrom','datenum','Locale','en_US');
data = Bonds(:,2:end);
t=[table(dates) array2table(data)];
BondPrices = prbyzero(t, datetime(Settle,'ConvertFrom','datenum','Locale','en_US'),...
ZeroRates, datetime(ZeroDates,'ConvertFrom','datenum','Locale','en_US'))

BondPrices = 12×1

   99.3750
   98.7980
  106.8270
   96.8750
  103.6249
  101.1250
  103.1250
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   99.3637
  101.0000
  101.2500
      ⋮

Input Arguments
Bonds — Coupon bond information to compute prices
table | matrix

Coupon bond information to compute prices, specified as a 6-column table or a NumBonds-by-6 matrix
of bond information where the table columns or matrix columns contains:

• Maturity (Required) Maturity date of the bond, as a serial date number. Use datenum to convert
date character vectors to serial date numbers. If the input Bonds is a table, the Maturity dates
can be serial date numbers, date character vectors, or datetime arrays.

• CouponRate (Required) Decimal number indicating the annual percentage rate used to determine
the coupons payable on a bond.

• Face (Optional) Face or par value of the bond. Default = 100.
• Period (Optional) Coupons per year of the bond. Allowed values are 0, 1, 2 (default), 3, 4, 6, and

12.
• Basis (Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
• For more information, see “Basis” on page 2-19.

• EndMonthRule (Optional) End-of-month rule. This rule applies only when Maturity is an end-of-
month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon
payment date is always the same numerical day of the month. 1 = set rule on (default), meaning
that a bond's coupon payment date is always the last actual day of the month

:
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Note

• If Bonds is a table, the table columns have the same meaning as when a matrix is used, but the
Maturity dates can be serial date numbers, date character vectors, or datetime arrays.

• If Bonds is a matrix, it is a NUMBONDS-by-6 matrix of bonds where each row describes one bond.
The first two columns are required; the remaining columns are optional but must be added in
order. All rows in Bonds must have the same number of columns. The columns are Maturity,
CouponRate, Face, Period, Basis, and EndMonthRule.

.
Data Types: double | table

Settle — Settlement date
serial date number | date character vector | datetime

Settlement date, specified as serial date numbers, date character vectors, or datetime arrays.
Data Types: double | datetime | char

ZeroRates — Observed zero rates
decimal fractions

Observed zero rates, specified as NUMDATES-by-NUMCURVES matrix of decimal fractions. Each column
represents a rate curve. Each row represents an observation date.
Data Types: double | datetime | char

ZeroDates — Observed dates for ZeroRates
serial date number | date character vector | datetime

Observed dates for ZeroRates, specified as a NUMDATES-by-1 column using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | datetime | char

Compounding — Compounding frequency of input ZeroRates when annualized
2 (default) | numeric values: 1, 2, 3, 4, 6, 12,

(Optional) Compounding frequency of input ZeroRates when annualized, specified using the allowed
values:

• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Data Types: double
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Output Arguments
BondPrices — Clean bond prices
numeric

Clean bond prices, returned as a NUMBONDS-by-NUMCURVES matrix. Each column is derived from the
corresponding zero curve in ZeroRates.

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an
IRDataCurve object with a Dates property to create a vector of dates and data acceptable for
prbyzero. For more information, see “Converting an IRDataCurve or IRFunctionCurve Object”
(Financial Instruments Toolbox).

See Also
tr2bonds | zbtprice | datetime

Topics
“Term Structure of Interest Rates” on page 2-32
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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prcroc
Price rate of change

Note Using a fints object for the Data argument of prcroc is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
PriceChangeRate = prcroc(Data)
PriceChangeRate = prcroc( ___ ,Name,Value)

Description
PriceChangeRate = prcroc(Data) calculates the price rate-of-change, PriceChangeRate, from
the series of closing stock prices. By default, the volume rate-of-change is calculated between the
current closing price and the closing price 12 periods ago.

PriceChangeRate = prcroc( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Price Rate-of-Change for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
PriceChangeRate = prcroc(TMW);
plot(PriceChangeRate.Time,PriceChangeRate.PriceRoc)
title('Price Rate of Change for TMW')

 prcroc

19-1245



Input Arguments
Data — Data for closing prices
matrix | table | timetable

Data for closing prices, specified as a matrix, table, or timetable. For matrix input, Data is an M-by-1
matrix of closing prices. Timetables and tables with M rows must contain a variable named 'Close'
(case insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: PriceChangeRate = prcroc(TMW,'NumPeriods',18)

NumPeriods — Period difference
12 (default) | positive integer

Period difference, specified as the comma-separated pair consisting of 'NumPeriods' and a scalar
positive integer.
Data Types: double

19 Functions

19-1246



Output Arguments
PriceChangeRate — Closing price rate-of-change
matrix | table | timetable

Closing price rate-of-change, returned with the same number of rows (M) and the same type (matrix,
table, or timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 243–245.

See Also
timetable | table | volroc

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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prdisc
Price of discounted security

Syntax
Price = prdisc(Settle,Maturity,FaceDiscount)
Price = prdisc( ___ ,Basis)

Description
Price = prdisc(Settle,Maturity,FaceDiscount) returns the price of a security whose yield
is quoted as a bank discount rate (for example, U. S. Treasury bills).

Price = prdisc( ___ ,Basis) adds an optional argument for Basis.

Examples

Calculate the Price of a Security Whose Yield is Quoted as a Bank Discount Rate

This example shows how to return the price of a security whose yield is quoted as a bank discount
rate (for example, U. S. Treasury bills).

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Discount = 0.087;
Basis = 2;

Price = prdisc(Settle, Maturity, Face, Discount, Basis)

Price = 96.2783

Calculate the Price of a Security Whose Yield is Quoted as a Bank Discount Rate Using
datetime Inputs

This example shows how to use datetime inputs to return the price of a security whose yield is
quoted as a bank discount rate (for example, U. S. Treasury bills).

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Discount = 0.087;
Basis = 2;

Price = prdisc(datetime(Settle,'Locale','en_US'),datetime(Maturity,'Locale','en_US'), Face, Discount, Basis)

Price = 96.2783
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Input Arguments
Settle — Settlement date
serial date number | date character vector | datetime

Settlement date, specified as serial date numbers, date character vectors, or datetime arrays.

Settle must be earlier than Maturity.
Data Types: double | datetime | char

Maturity — Maturity date
serial date number | date character vector | datetime

Maturity date, specified as serial date numbers, date character vectors, or datetime arrays.
Data Types: double | datetime | char

Face — Redemption (par, face) value
numeric

Redemption (par, face) value, specified as a numeric value.
Data Types: double

Discount — Bank discount rate of the security
decimal fraction

Bank discount rate of the security, specified as a decimal fraction value.
Data Types: double

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

(Optional) Day-count basis of the instrument, specified as a numeric value. Allowed values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

 prdisc

19-1249



For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
Price — Price of discounted security
numeric

Price of discounted security, returned as a numeric value.

References
[1] Mayle. “Standard Securities Calculation Methods.” Volumes I-II, 3rd edition. Formula 2.

See Also
acrudisc | bndprice | discrate | prmat | ylddisc | datetime

Topics
“Pricing Functions” on page 2-24
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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priceandvol
Price and Volume chart

Note priceandvol is updated to accept data input as a matrix, timetable, or table.

The syntax for priceandvol has changed. Previously, when using table input, the first column of
dates could be serial date numbers, date character vectors, or datetime arrays, and you were
required to have specific number of columns.

When using table input, the new syntax for priceandvol supports:

• No need for time information. If you want to pass in date information, use timetable input.
• No requirement of specific number of columns. However, you must provide valid column names.

linebreak must contain columns named 'open', 'high', 'low', 'close', and 'volume'
(case insensitive).

Syntax
priceandvol(Data)
h = priceandvol(Data)

Description
priceandvol(Data) plots two charts from a series of opening, high, low, closing prices, and traded
volume. Opening, high, low, and closing prices are on one axis and the volume series are on a second
axis.

h = priceandvol(Data) adds a Graphic handle for the figure.

Examples

Generate a Price and Volume Chart for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. This price and volume chart for the TMW stock contains the open, high, low, close, and volume
for the most recent 21 days.

load SimulatedStock.mat
priceandvol(TMW(end-20:end,:));
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Input Arguments
Data — Data for opening, high, low, closing prices, and volume traded
matrix | table | timetable

Data for opening, high, low, closing prices, and volume traded, specified as a matrix, table, or
timetable. For matrix input, Data is an M-by-5 matrix of opening, high, low, closing prices and traded
volume. Timetables and tables with M rows must contain variables named 'Open', 'High', 'Low',
'Close', and 'Volume' (case insensitive).
Data Types: double | table | timetable

Output Arguments
h — Graphic handle of the figure
handle object

Graphic handle of the figure, returned as a handle object.

See Also
timetable | table | movavg | linebreak | highlow | kagi | volarea | candle | pointfig

Topics
“Using Timetables in Finance” on page 12-7
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“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced in R2008a
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prmat
Price with interest at maturity

Syntax
[Price,AccruInterest] = prmat(Settle,Maturity,Issue,Face,CouponRateYield)
[Price,AccruInterest] = prmat( ___ ,Basis)

Description
[Price,AccruInterest] = prmat(Settle,Maturity,Issue,Face,CouponRateYield)
returns the price and accrued interest of a security that pays interest at maturity. This function also
applies to zero coupon bonds or pure discount securities by setting CouponRate = 0.

[Price,AccruInterest] = prmat( ___ ,Basis) adds an optional argument for Basis.

Examples

Find the Yield of a Security Paying Interest at Maturity

This example shows how to find the yield of a security paying interest at maturity for the following.

Settle = '02/07/2000';
Maturity = '04/13/2000';
Issue = '10/11/1999';
Face = 100;
Price = 99.98;
CouponRate = 0.0608;
Basis = 1;

Yield = yldmat(Settle, Maturity, Issue, Face, Price,... 
CouponRate, Basis)

Yield = 0.0607

Find the Yield of a Security Paying Interest at Maturity Using datetime Inputs

This example shows how to use datetime inputs find the yield of a security paying interest at
maturity for the following:

Settle = '7-Feb-2000';
Maturity = '13-Apr-2000';
Issue = '11-Oct-1999';
Face = 100;
Price = 99.98;
CouponRate = 0.0608;
Basis = 1;
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Settle = datetime(Settle,'Locale','en_US');
Maturity = datetime(Maturity,'Locale','en_US');
Issue = datetime(Issue,'Locale','en_US');

Yield = yldmat(Settle, Maturity, Issue, Face, Price,...
CouponRate, Basis)

Yield = 0.0607

Input Arguments
Settle — Settlement date of security
serial date number | date character vector | datetime

Settlement date of the security, specified as serial date numbers, date character vectors, or datetime
arrays. The Settle date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date of security
serial date number | date character vector | datetime

Maturity date of the security, specified as serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Issue — Issue date
serial date number | date character vector | datetime

Issue date of the security, specified as serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Face — Redemption value
numeric

Redemption value (par value), specified as a numeric value.
Data Types: double

CouponRate — Coupon rate
decimal fraction

Coupon rate, specified as a decimal fraction value.
Data Types: double

Yield — Annual yield
decimal fraction

Annual yield, specified as a decimal fraction value.
Data Types: double

 prmat

19-1255



Basis — Day-count basis
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

(Optional) Day-count basis of the security, specified using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
Price — Security price
numeric

Security price, returned as a numeric value.

AccruInterest — Accrued interest
numeric

Accrued interest for security, returned as a numeric value.

References
[1] Mayle, J. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula 3.

See Also
acrudisc | bndprice | bndyield | ylddisc | yldtbill | datetime

Topics
“Yield Functions” on page 2-25
“Yield Conventions” on page 2-24
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Introduced before R2006a
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prtbill
Price of Treasury bill

Syntax
Price = prtbill(Settle,Maturity,Face,Discount)

Description
Price = prtbill(Settle,Maturity,Face,Discount) returns the price for a Treasury bill.

Examples

Calculate the Price for a Treasury Bill

This example shows how to return the price for a Treasury bill, where the settlement date of a
Treasury bill is February 10, 2002, the maturity date is August 6, 2002, the discount rate is 3.77%,
and the par value is $1000.

Price = prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)

Price = 981.4642

Calculate the Price for a Treasury Bill Using datetime Inputs

This example shows how to use datetime inputs to return the price for a Treasury bill, where the
settlement date of a Treasury bill is February 10, 2002, the maturity date is August 6, 2002, the
discount rate is 3.77%, and the par value is $1000.

Price = prtbill(datetime('10-Feb-2002','Locale','en_US'), datetime('6-Aug-2002','Locale','en_US'), 1000, 0.0377)

Price = 981.4642

Input Arguments
Settle — Settlement date for Treasury bill
serial date number | date character vector | datetime

Settlement date for the Treasury bill, specified as serial date numbers, date character vectors, or
datetime arrays. The Settle date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date for Treasury bill
serial date number | date character vector | datetime
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Maturity date for the Treasury bill, specified as serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Face — Redemption value of Treasury bill
numeric

Redemption value (par value) of the Treasury bill, specified as a numeric value.
Data Types: double

Discount — Discount rate of Treasury bill
decimal fraction

Discount rate of the Treasury bill, specified as a decimal fraction value.
Data Types: double

Output Arguments
Price — Treasury bill price
numeric

Treasury bill price, returned as a numeric value.

References
[1] Bodie, Kane, and Marcus. Investments. McGraw-Hill Education, 2013.

See Also
beytbill | yldtbill | datetime

Topics
“Computing Treasury Bill Price and Yield” on page 2-29
“Treasury Bills Defined” on page 2-28

Introduced before R2006a
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pvfix
Present value with fixed periodic payments

Syntax
PresentVal = pvfix(Rate,NumPeriods,Payment)
PresentVal = pvfix( ___ ,ExtraPayment,Due)

Description
PresentVal = pvfix(Rate,NumPeriods,Payment) computes the present value of a series of
equal payments.

PresentVal = pvfix( ___ ,ExtraPayment,Due) adds optional arguments.

Examples

Calculate the Present Value of a Series of Equal Payments

This example shows how to return the present value of a series of equal payments, where $200 is
paid monthly into a savings account earning 6%. The payments are made at the end of the month for
five years.

PresentVal = pvfix(0.06/12, 5*12, 200, 0, 0)

PresentVal = 1.0345e+04

Input Arguments
Rate — Periodic interest rate
decimal

Periodic interest rate, specified as a decimal.
Data Types: double

NumPeriods — Number of periods
integer

Number of periods, specified as an integer.
Data Types: double

Payment — Periodic payment
numeric

Periodic payment., specified as a numeric.
Data Types: double
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ExtraPayment — Payment received other than Payment in the last period
0 (default) | numeric

(Optional) Payment received other than Payment in the last period, specified as a numeric.
Data Types: double

Due — Indicator for when payments are due
0 (default) | logical with value of 1 or 0

(Optional) Indicator for when payments are due, specified as a logical with a value of 0 = end of
period (default), or 1 = beginning of period.
Data Types: logical

Output Arguments
PresentVal — Present value
numeric

Present value, returned as a series of equal payments.

See Also
fvfix | fvvar | payper | pvvar

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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pvtrend
Price and Volume Trend (PVT)

Note Using a fints object for the Data argument of pvtrend is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
trend = pvtrend(Data)

Description
trend = pvtrend(Data) calculates the Price and Volume Trend (PVT) from the series of closing
stock prices and trade volume.

Examples

Calculate the Price and Volume Trend for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
trend = pvtrend(TMW);
plot(trend.Time,trend.PriceVolumeTrend)
title('Price and Volume Trend for TMW')
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Input Arguments
Data — Data for closing prices and trade volume
matrix | table | timetable

Data for closing prices and trade volume, specified as a matrix, table, or timetable. For matrix input,
Data is an M-by-2 matrix of closing prices and trade volume. Timetables and tables with M rows must
contain variables named 'Close' and 'Volume' (case insensitive).
Data Types: double | table | timetable

Output Arguments
trend — Price and volume trend
matrix | table | timetable

Price and volume trend (PVT), returned with the same number of rows (M) and the same type (matrix,
table, or timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 239–240.
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See Also
timetable | table | onbalvol | volroc | tsaccel

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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pvvar
Present value of varying cash flow

Syntax
PresentVal = pvvar(CashFlow,Rate)
PresentVal = pvvar( ___ ,CFDates)

Description
PresentVal = pvvar(CashFlow,Rate) calculates present value of a varying cash flow.

PresentVal = pvvar( ___ ,CFDates) adds an optional argument for CFDates.

Examples

Calculate Present Value for Regular and Irregular Cash Flow

Calculate the net present value for a regular and irregular cash flow.

Regular Cash Flow

This cash flow represents the yearly income from an initial investment of $10,000. The annual
interest rate is 8%.

Year 1 - $2000

Year 2 - $1500

Year 3 - $3000

Year 4 - $3800

Year 5 - $5000

To calculate the net present value of this regular cash flow:

PresentVal = pvvar([-10000 2000 1500 3000 3800 5000], 0.08)

PresentVal = 1.7154e+03

Irregular Cash Flow

An investment of $10,000 returns this irregular cash flow. The original investment and its date are
included. The periodic interest rate is 9%.

January 12, 1987 - ($1000)

February 14, 1988 - $1500

March 3, 1988 - $2000
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June 14, 1988 - $3000

December 1, 1988 - $4000

To calculate the net present value of this irregular cash flow:

CashFlow = [-10000, 2500, 2000, 3000, 4000];

CFDates = ['01/12/1987'
            '02/14/1988'
            '03/03/1988'
            '06/14/1988'
            '12/01/1988'];

PresentVal = pvvar(CashFlow, 0.09, CFDates)

PresentVal = 142.1648

The net present value of the same investment under different discount rates of 7%, 9%, and 11% is
obtained by:

PresentVal = pvvar(repmat(CashFlow,3,1)', [.07 .09 .11], CFDates)

PresentVal = 1×3

  419.0136  142.1648 -122.1275

Input Arguments
CashFlow — Cash flow amounts
vector

Cash flow amounts, specified as a vector of varying cash flows. Include the initial investment as the
initial cash flow value (a negative number). If CashFlow is a matrix, each column is treated as a
separate cash-flow stream.
Data Types: double

Rate — Periodic interest rate
decimal

Periodic interest rate, specified as a decimal. If CashFlow is a matrix, a scalar Rate is allowed when
the same rate applies to all cash-flow streams in CashFlow. When multiple cash-flow streams require
different discount rates, Rate must be a vector whose length equals the number of columns in
CashFlow.
Data Types: double

CFDates — Indicates irregular cash flow
serial date numbers | cell array of date character vectors | datetime arrays

(Optional) Indicates irregular cash flow, specified as a vector of serial date numbers, cell array of date
character vectors, or datetime arrays on which the cash flows occur.

Specify CFDates when there are irregular (nonperiodic) cash flows. The default assumes that
CashFlow contains regular (periodic) cash flows. If CashFlow is a matrix, and all cash-flow streams
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share the same dates, CFDates can be a vector whose length matches the number of rows in
CashFlow. When different cash-flow streams have different payment dates, specify CFDates as a
matrix the same size as CashFlow.
Data Types: double | cell | char | datetime

Output Arguments
PresentVal — Present value
numeric

Present value, returns the net present value of a varying cash flow. Present value is calculated at the
time the first cash flow occurs.

See Also
fvfix | fvvar | irr | payuni | pvfix | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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pyld2zero
Zero curve given par yield curve

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
new optional name-value pair inputs: InputCompounding, InputBasis, OutputCompounding, and
OutputBasis.

Syntax
[ZeroRates,CurveDates] = pyld2zero(ParRates,CurveDates,Settle)
[ZeroRates,CurveDates] = pyld2zero( ___ ,Name,Value)

Description
[ZeroRates,CurveDates] = pyld2zero(ParRates,CurveDates,Settle) returns a zero
curve given a par yield curve and its maturity dates. If either input for CurveDates or Settle is a
datetime array, CurveDates is returned as a datetime array. Otherwise, CurveDates is returned as
a serial date number.

[ZeroRates,CurveDates] = pyld2zero( ___ ,Name,Value) adds optional name-value pair
arguments

Examples

Compute Zero Curve Given Par Yield Curve

Define the settlement date, maturity, and zero rates.

Settle = datenum('01-Feb-2013');
CurveDates = datemnth(Settle,12*[1 2 3 5 7 10 20 30]');
ZeroRates = [.11 0.30 0.64 1.44 2.07 2.61 3.29 3.55]'/100;
InputCompounding = 2;
InputBasis = 1;
OutputCompounding = 2;
OutputBasis = 1;

Compute par yield curve from zero rates.

ParRates = zero2pyld(ZeroRates, CurveDates, Settle,'InputCompounding',2,...
'InputBasis',1,'OutputCompounding',2,'OutputBasis',1)

ParRates = 8×1

    0.0011
    0.0030
    0.0064
    0.0142
    0.0201
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    0.0251
    0.0309
    0.0330

Compute zero curve from the par yield curve.

ZeroRates = pyld2zero(ParRates, CurveDates, Settle,'InputCompounding',2,...
'InputBasis',1,'OutputCompounding',2,'OutputBasis',1)

ZeroRates = 8×1

    0.0011
    0.0030
    0.0064
    0.0144
    0.0207
    0.0261
    0.0329
    0.0355

Compute Zero Curve Given Par Yield Curve Using datetime Inputs

Use datetime inputs to compute the zero curve given the par yield curve.

Settle = datenum('01-Feb-2013');

CurveDates = [datenum('01-Feb-2014')
    datenum('01-Feb-2015')
    datenum('01-Feb-2016')
    datenum('01-Feb-2018')
    datenum('01-Feb-2020')
    datenum('01-Feb-2023')
    datenum('01-Feb-2033')
    datenum('01-Feb-2043')];

OriginalParRates = [0.11 0.30 0.64 1.42 2.02 2.51 3.10 3.31]'/100;

InputCompounding = 1;
InputBasis = 0;
OutputCompounding = 1;
OutputBasis = 0;

Settle = datetime(Settle, 'ConvertFrom', 'datenum','Locale','en_US');
CurveDates = datetime(CurveDates, 'ConvertFrom', 'datenum','Locale','en_US');
[ZeroRates Dates] = pyld2zero(OriginalParRates, CurveDates, Settle, ...
'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...
'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

ZeroRates = 8×1

    0.0011
    0.0030
    0.0064
    0.0144
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    0.0207
    0.0261
    0.0329
    0.0356

Dates = 8x1 datetime
   01-Feb-2014
   01-Feb-2015
   01-Feb-2016
   01-Feb-2018
   01-Feb-2020
   01-Feb-2023
   01-Feb-2033
   01-Feb-2043

Demonstrate a Roundtrip From pyld2zero to zero2pyld

Given the following a par yield curve and its maturity dates, return the ZeroRates.

Settle = datenum('01-Feb-2013');

CurveDates = [datenum('01-Feb-2014')
    datenum('01-Feb-2015')
    datenum('01-Feb-2016')
    datenum('01-Feb-2018')
    datenum('01-Feb-2020')
    datenum('01-Feb-2023')
    datenum('01-Feb-2033')
    datenum('01-Feb-2043')];

OriginalParRates = [0.11 0.30 0.64 1.42 2.02 2.51 3.10 3.31]'/100;

InputCompounding = 1;
InputBasis = 0;
OutputCompounding = 1;
OutputBasis = 0;

ZeroRates = pyld2zero(OriginalParRates, CurveDates, Settle, ...
'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...
'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

ZeroRates = 8×1

    0.0011
    0.0030
    0.0064
    0.0144
    0.0207
    0.0261
    0.0329
    0.0356
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With the ZeroRates, use the zero2pyld function to return the ParRatesOut and determine the
roundtrip error.

ParRatesOut = zero2pyld(ZeroRates, CurveDates, Settle, ...
'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...
'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

ParRatesOut = 8×1

    0.0011
    0.0030
    0.0064
    0.0142
    0.0202
    0.0251
    0.0310
    0.0331

max(abs(OriginalParRates - ParRatesOut)) % Roundtrip error

ans = 1.2750e-16

Input Arguments
ParRates — Annualized par yields
decimal fraction

Annualized par yields (coupon rates), specified as a NUMBONDS-by-1 vector using decimal fractions. In
aggregate, the rates constitute an implied zero curve for the investment horizon represented by
CurveDates.
Data Types: double

CurveDates — Maturity dates
serial date number | date character vector | datetime

Maturity dates which correspond to the input ParRates, specified as a NUMBONDS-by-1 vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | datetime | char

Settle — Common settlement date for ZeroRates
serial date number | date character vector | datetime

Common settlement date for input ParRates, specified as serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | datetime | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: [ZeroRates,CurveDates] =
pyld2zero(ParRates,CurveDates,Settle,'OutputCompounding',3,'OutputBasis',5,'I
nputCompounding',4,'InputBasis',5)

OutputCompounding — Compounding frequency of output ZeroRates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Compounding frequency of output ZeroRates, specified using the allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Note

• If OutputCompounding is set to 0 (simple), -1 (continuous), or 365 (daily), the
InputCompounding must also be specified using a valid value.

• If OutputCompounding is not specified, then OutputCompounding is assigned the value
specified for InputCompounding.

• If either OutputCompounding or InputCompounding are not specified, the default is 2
(semiannual) for both.

Data Types: double

OutputBasis — Day-count basis of output ZeroRates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day count basis of output ZeroRates, specified using allowed values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If OutputBasis is not specified, then OutputBasis is assigned the value specified for
InputBasis. If either InputBasis or OutputBasis are not specified, the default is 0 (actual/
actual) for both.

Data Types: double

InputCompounding — Compounding frequency of input ParRates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Compounding frequency of input ParRates, specified using allowed values:

• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note

• If OutputCompounding is 1, 2, 3, 4, 6, or 12 and InputCompounding is not specified, the value
of OutputCompounding is used.

• If OutputCompounding is 0 (simple), -1 (continuous), or 365 (daily), a valid InputCompounding
value must also be specified.

• If either InputCompounding or OutputCompounding are not specified, the default is 2
(semiannual) for both.

Data Types: double

InputBasis — Day-count basis of input ParRates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day count basis of the input ParRates, specified using allowed values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If InputBasis is not specified, then InputBasis is assigned the value specified for
OutputBasis. If either InputBasis or Outputbasis are not specified, the default is 0 (actual/
actual) for both.

Data Types: double

Output Arguments
ZeroRates — Zero rates
numeric

Zero rates, returned as a NUMBONDS-by-1 numeric vector. In aggregate, the rates in ZeroRates
constitute a zero curve for the investment horizon represented by CurveDates. ZeroRates are
ordered by ascending maturity.

CurveDates — Maturity dates that correspond to ZeroRates
serial date number | date character vector | datetime

Maturity dates that correspond to the ZeroRates, returned as a NUMBONDS-by-1 vector of maturity
dates that correspond to each par rate contained in ZeroRates. CurveDates are ordered by
ascending maturity.

If either input for CurveDates or Settle is a datetime array, CurveDates is returned as a datetime
array. Otherwise, CurveDates are returned as a serial date numbers.

See Also
fwd2zero | zero2fwd | getForwardRates | datetime | disc2zero | zero2disc | zero2pyld |
zbtprice | zbtyield | datetime

Topics
“Term Structure of Interest Rates” on page 2-32
“Sensitivity of Bond Prices to Interest Rates” on page 10-2
“Bond Prices and Yield Curve Parallel Shifts” on page 10-9
“Bond Prices and Yield Curve Nonparallel Shifts” on page 10-12
“Term Structure Analysis and Interest-Rate Swaps” on page 10-18
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“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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quarter
Returns the quarter of given date

Syntax
q = quarter(date)
q = quarter( ___ ,month1)
q = quarter(date,month1,dateformat)

Description
q = quarter(date) returns the quarter of the given date, assuming the standard calendar
(starting on January 1st).

q = quarter( ___ ,month1) returns the quarter of the date for a calendar which starts on the
month specified by month1. month1 must be an integer between 1–12 representing Jan-Dec
respectively.

q = quarter(date,month1,dateformat) returns the quarter of the date for a calendar which
starts on the month specified by month1. month1 must be an integer between 1–12 representing
January to December respectively. The dateformat input is a character vector to specify the format
of your date character vector in case it is not normally recognized by the datenum function.

Examples

Determine the Quarter for a Given Date

quarter returns the quarter of the given date, assuming the standard calendar that starts on Jan
1st.

quarter('7-Apr-2013')

ans = 2

Determine the Quarter for a Given Date for an Off-Cycle Calendar

quarter returns the quarter of the date for a calendar which starts on the month specified by
month1.

quarter('7-Apr-2013',5)

ans = 4

If the financial calendar starts in May (where month1 = 5), April would be the last month and fall in
the last quarter.
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Determine the Quarter for a Given Date When the Date is Not Recognized by datenum

When using quarter, the optional input argument for dateformat is a character vector which lets
you specify the format of your date character vector in case it isn't normally recognized by the 
datenum function.

quarter('07-04-2013',1)

ans = 3

This gives the quarter 3 because by default datenum interprets the date as July 7th, 2013.

If you really meant April 7th, 2013, you can use dateformat to specify the intended format.

quarter('07-04-2013',1,'dd-mm-yyyy')

ans = 2

Input Arguments
date — Date in a quarter
serial date number | date character vector

Date in a quarter, specified as a serial date number or date character vector.
Data Types: double | char

month1 — First month in a calendar
integer with value between 1–12

First month in a calendar, specified as an integer with a value between 1–12, representing January to
December respectively. Use month1 when the standard calendar that starts on January 1st does not
apply.
Data Types: double

dateformat — Format of date
character vector

Format of date, specified as a character vector. dateformat input is a character vector to specify the
format of your date character vector in case it is not normally recognized by the datenum function.
Data Types: char

Output Arguments
q — Quarter for given date
integer

Quarter for given date, returned as an integer between 1–4.

See Also
datenum
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Introduced in R2016a
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rdivide
Financial time series division

Note rdivide is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = tsobj_1 ./ tsobj_2

newfts = tsobj ./ array

newfts = array ./ tsobj

Arguments

tsobj_1, tsobj_2 Pair of financial time series objects.
array Scalar value or array with the number of rows equal to the number

of dates in tsobj and the number of columns equal to the number of
data series in tsobj.

Description
The rdivide method divides, element by element, the components of one financial time series object
by the components of the other. You can also divide the whole object by an array or divide a financial
time series object into an array.

If an object is to be divided by another object, both objects must have the same dates and data series
names, although the order need not be the same. The order of the data series, when an object is
divided by another object, follows the order of the first object.

newfts = tsobj_1 ./ tsobj_2 divides financial time series objects element by element.

newfts = tsobj ./ array divides a financial time series object element by element by an array.

newfts = array ./ tsobj divides an array element by element by a financial time series object.

For financial time series objects, the rdivide operation is identical to the mrdivide operation.

See Also
minus | mrdivide | plus | times

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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renko
Renko

Note renko is updated to accept data input as a matrix, timetable, or table.

The syntax for renko has changed. Previously, when using table input, the first column of dates could
be serial date numbers, date character vectors, or datetime arrays, and you were required to have
specific number of columns.

When using table input, the new syntax for renko supports:

• No need for time information. If you want to pass in date information, use timetable input.
• No requirement of specific number of columns. However, you must provide valid column names.

renko must contain a column named ‘price’ (case insensitive).

Syntax
renko(Data)
renko(Data,Threshold,)
h = renko(ax, ___ )

Description
renko(Data) plots a Renko chart from a series of prices of a security.

renko(Data,Threshold,) adds an optional argument for Threshold.

h = renko(ax, ___ ) adds an optional argument for ax.

Examples

Generate a Renko Chart for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. This example shows how to plot a Renko chart for the most recent 21 days. Note that the
variable name of asset price is be renamed to 'Price' (case insensitive).

load SimulatedStock.mat
TMW.Properties.VariableNames{'Close'} = 'Price';
renko(TMW(end-8:end,:),2)
title('Renko Chart for TMW')
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Input Arguments
Data — Data for a series of prices
matrix | table | timetable

Data for a series of prices, specified as a matrix, table, or timetable. Timetables and tables with M
rows must contain a variable named 'Price' (case insensitive).
Data Types: double | table | timetable

Threshold — (Optional) Least price change value when adding a new box
1 (default) | positive numeric

Least price change value when adding a new box, specified as a scalar positive numeric value.
Data Types: double

ax — Valid axis object
current axes (ax = gca) (default) | axes object

(Optional) Valid axis object, specified as an axes object. The renko plot is created in the axes specified
by ax instead of in the current axes (ax = gca). The option ax can precede any of the input
argument combinations.
Data Types: object
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Output Arguments
h — Graphic handle of the figure
handle object

Graphic handle of the figure, returned as a handle object.

See Also
timetable | table | movavg | linebreak | highlow | kagi | priceandvol | volarea | candle |
pointfig

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced in R2008a
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resamplets
Downsample data

Note resamplets is not recommended. Use timetable instead. For more information, see
“Convert Financial Time Series Objects fints to Timetables”.

Syntax
newfts = resamplets(oldfts,samplestep)

Description
newfts = resamplets(oldfts,samplestep) downsamples the data contained in the financial
time series object oldfts every samplestep periods. For example, to have the new financial time
series object contain every other data element from oldfts, set samplestep to 2.

newfts is a financial time series object containing the same data series (names) as the input oldfts.

See Also
filter

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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ret2tick
Convert return series to price series

Syntax
[TickSeries,TickTimes] = ret2tick(Data)
[TickSeries,TickTimes] = ret2tick( ___ ,Name,Value)

Description
[TickSeries,TickTimes] = ret2tick(Data) computes prices from the start prices of NASSET
assets and NUMOBS return observations.

[TickSeries,TickTimes] = ret2tick( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Convert a Return Series to a Price Series

Compute the price increase of two stocks over a year's time based on three incremental return
observations.

RetSeries = [0.10 0.12
             0.05 0.04
            -0.05 0.05];

RetIntervals = [182 
                 91
                 92];

StartTime = datetime('18-Dec-2000','Locale','en_US');

[TickSeries,TickTimes] = ret2tick(RetSeries,'ReturnIntervals',RetIntervals,... 
    'StartTime',StartTime)

TickSeries = 4×2

    1.0000    1.0000
    1.1000    1.1200
    1.1550    1.1648
    1.0973    1.2230

TickTimes = 4x1 datetime
   18-Dec-2000
   18-Jun-2001
   17-Sep-2001
   18-Dec-2001
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Convert a Price Series to a Return Series Using timetable Input

Use timetable input to convert a price series to a return series, given periodic returns of two stocks
observed in the first, second, third, and fourth quarters.

RetSeries = [0.10 0.12
             0.05 0.04
            -0.05 0.05];

RetTimes = datetime({'6/18/2001','9/17/2001','12/18/2001'},'InputFormat','MM/dd/uuuu','Locale','en_US');
RetSeries = array2timetable(RetSeries,'RowTimes',RetTimes);
StartTime = datetime('12/18/2000','InputFormat','MM/dd/uuuu','Locale','en_US');

[TickSeries,TickTimes] = ret2tick(RetSeries,'StartTime',StartTime)

TickSeries=4×2 timetable
       Time        RetSeries1    RetSeries2
    ___________    __________    __________

    18-Dec-2000           1             1  
    18-Jun-2001         1.1          1.12  
    17-Sep-2001       1.155        1.1648  
    18-Dec-2001      1.0973         1.223  

TickTimes = 4x1 datetime
   18-Dec-2000
   18-Jun-2001
   17-Sep-2001
   18-Dec-2001

Input Arguments
Data — Data for asset returns
matrix | table | timetable

Data for asset returns, specified as a NUMOBSNASSETS matrix, table, or timetable. The returns are
not normalized by the time increments between successive price observations.
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [TickSeries,TickTimes] = ret2tick(RetSeries,'StartTime',StartTime)

StartPrice — Initial prices for each asset
1 for all assets (default) | numeric
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Initial prices for each asset, specified as the comma-separated pair consisting of 'StartPrice' and
a NASSETS-by-1 vector indicating initial prices for each asset, or a single scalar initial price applied to
all assets.
Data Types: double

ReturnIntervals — Return interval between prices
1 for all assets (default) | numeric | duration | calendar duration

Return interval between prices, specified as the comma-separated pair consisting of
'ReturnIntervals' and a scalar return interval applied to all returns, or a vector of length NUMOBS
return intervals between successive returns. ReturnIntervals is defined as:

ReturnIntervals(t) = TickTimes(t) - TickTimes(t-1).

Note If the type of Data is a timetable, ReturnIntervals is ignored.

Data Types: double

StartTime — Starting time for first observation applied to the prices of all assets
0 if ReturnIntervals is numeric (default) | numeric | duration | calendar duration

Starting time for first observation applied to the price series of all assets, specified as the comma-
separated pair consisting of 'StartTime' and a scalar string, character vector, double, or datetime.

Note If ReturnIntervals is a duration or calendar duration value, the default for StartTime is
datetime('today').

If Data is a timetable and StartTime is not specified, the resulting asset prices in the first period
are not reported.

Data Types: double | string | char | datetime

Method — Method to convert asset returns to prices
'Simple' (default) | character vector with value of 'Simple' or 'Continuous' | string with value
of "Simple" or "Continuous"

Method to convert asset returns to prices, specified as the comma-separated pair consisting of
'Method' and a string or character vector indicating the method to convert asset prices to returns.

If the method is 'Simple', then simple periodic returns are used:

TTickSeries(t) = TickSeries(t-1)*(1 + ReturnSeries(t)).

If the method is 'Continuous', then continuous returns are used:

TickSeries(t) = TickSeries(t-1)*exp(ReturnSeries(t)).

Data Types: char | string
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Output Arguments
TickSeries — Time series array of asset prices
matrix | table | timetable

Time series array of asset prices, returned as NUMBOBS+1-by-NASSETS time series of asset prices of
the same type (matrix, table, or timetable) as the input Data. The first row contains the oldest prices
and the last row contains the most recent. Prices across a given row are assumed to occur at the
same time for all columns, and each column is a price series of an individual asset.

TickTimes — Observation times associated with prices in TickSeries
vector

Observation times associated with the prices in TickSeries, returned as a NUMBOBS+1 length
column vector of monotonically increasing observation times associated with the prices in
TickSeries. The initial time is StartTime. For matrix and table Data, sequential observations
occur at increments specified in ReturnIntervals and for Data timetables, sequential observations
are derived from times and dates in Data.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports input Data that is specified as a tall column vector, a tall table, or a tall
timetable. For more information, see tall and “Tall Arrays”.

See Also
tick2ret | datetime | timetable | table

Topics
“Using Timetables in Finance” on page 12-7
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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ret2tick (fts)
Convert return series to price series for time series object

Note ret2tick (fts) is not recommended. Use ret2tick instead.

Syntax
priceFts = ret2tick(returnFts)

priceFts = ret2tick(returnFts,'PARAM1',VALUE1,'PARAM2',VALUE2', ...)

Arguments

returnFts Financial time series object of returns.
'PARAM1' (Optional) StartPrice is a Numeric value and is a scalar or 1-by-N

vector of initial prices for each asset. If StartPrice is unspecified
or empty, the initial price of all assets is 1.

'PARAM2' (Optional) StartTime is Date value for a scalar date number or a
single date character vector specifying the starting time for the first
observation. This date is applied to the price series of all assets.

Note The first period price value of the resulting price series will
not be reported if StartTime is not specified. The resulting price
series are scaled based on the StartPrice, even if StartTime is
not supplied.

'PARAM3' (Optional) Method is a character vector indicating the method to
convert asset returns to prices. The value must be defined as
'Simple' (default) or 'Continuous'. If Method is 'Simple',
ret2tick uses simple periodic returns. If Method is
'Continuous', the function uses continuously compounded returns.
Case is ignored for Method.

Description
priceFts = ret2tick(returnFts,'PARAM1',VALUE1,'PARAM2',VALUE2', ...) generates a
financial time series object of prices.

If Method is unspecified or 'Simple', the prices are

PriceSeries(i+1) = PriceSeries(i)*[1 + ReturnSeries(i)]

If Method is 'Continuous', the prices are

PriceSeries(i+1) = PriceSeries(i)*exp[ReturnSeries(i)]
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Examples
Compute the price series from the following return series:

RetSeries = [0.10 0.12 
             0.05 0.04 
            -0.05 0.05]

Use the following dates:

Dates = {'18-Jun-2001'; '17-Sep-2001'; '18-Dec-2001'}

where

ret = fints(Dates, RetSeries)

ret = 
desc:  (none)
freq:  Unknown (0)

'dates:  (3)'    'series1:  (3)'    'series2:  (3)'
'18-Jun-2001'    [       0.1000]    [       0.1200]
'17-Sep-2001'    [       0.0500]    [       0.0400]
'18-Dec-2001'    [      -0.0500]    [       0.0500]

PriceFtS is computed as:
PriceFts = ret2tick(ret, 'StartPrice', 100, 'StartTime', '18-Dec-2000')

PriceFts = 

desc:  (none)
freq:  Unknown (0)

'dates:  (4)'    'series1:  (4)'    'series2:  (4)'
'18-Dec-2000'    [          100]    [          100]
'18-Jun-2001'    [     110.0000]    [     112.0000]
'17-Sep-2001'    [     115.5000]    [     116.4800]
'18-Dec-2001'    [     109.7250]    [     122.3040]

See Also
portsim | tick2ret

Introduced before R2006a
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rmfield
Remove data series

Note rmfield is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
fts = rmfield(tsobj,fieldname)

Arguments
tsobj Financial time series object.
fieldname Character vector containing the data series name to remove a single series

from the object. Cell array of character vectors for the data series names to
remove multiple data series from the object at the same time.

Description
fts = rmfield(tsobj,fieldname) removes the data series fieldname and its contents from the
financial time series object tsobj.

See Also
chfield | extfield | fieldnames | getfield | isfield

Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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rsindex
Relative Strength Index (RSI)

Note Using a fints object for the Data argument of rsindex is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
index = rsindex(Data)
index = rsindex( ___ ,Name,Value)

Description
index = rsindex(Data) calculates the Relative Strength Index (RSI) from the series of closing
stock prices.

index = rsindex( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Relative Strength Index for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
index = rsindex(TMW);
plot(index.Time,index.RelativeStrengthIndex)
title('Relative Strength Index for TMW')
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Input Arguments
Data — Data with closing prices
matrix | table | timetable

Data with closing prices, specified as a matrix, table, or timetable. For matrix input, Data is M-by-1
with closing prices. Timetables and tables with M rows must contain a variable named 'Close' (case
insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: index = rsindex(TMW,'WindowSize',10)

WindowSize — Moving window size for relative strength index
14 (default) | positive integer

Moving window size for relative strength index, specified as the comma-separated pair consisting of
'WindowSize' and a scalar positive integer.
Data Types: double
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Output Arguments
index — Relative strength index
matrix | table | timetable

Relative strength index, returned with the same number of rows (M) and the same type (matrix, table,
or timetable) as the input Data.

More About
Relative Strength Index

Relative strength index is calculated by dividing the average of the gains by the average of the losses
within a specified period.

RS = (average gains) / (average losses)

References
[1] Murphy, John J. Technical Analysis of the Futures Market. New York Institute of Finance, 1986, pp.

295–302.

See Also
timetable | table | negvolidx | posvolidx

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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second
Seconds of date or time

Syntax
Seconds = second(Date)
Seconds = second( ___ ,F)

Description
Seconds = second(Date) returns the seconds given a serial date number or a character vector
representing a date and time.

Seconds = second( ___ ,F) returns the second of one or more character vectors, Date, using a
format defined by the optional input F. Date can be a character array where each row corresponds to
one character vector, or a one-dimensional cell array of character vectors. All the character vectors in
Date must have the same format F. F must designate a supported date format symbol. For more
information on supported date formats, see datestr.

Examples

Determine the Seconds of the Date for Various Dates

Find the seconds of the day (Date) using a serial date number.

Seconds = second(738647.558427893)

Seconds = 8.1700

Find the seconds of the day (Date) using a character vector representing a date and time.

Seconds = second('06-May-2022, 13:24:08.17')

Seconds = 8.1700

Input Arguments
Date — Date to determine second
serial date number | character vector | cell array of character vectors

Date to determine second, specified as a serial date number or a character vector representing a date
and time.

Date can be an array of character vectors representing a date and time, where each row corresponds
to one character vector, or a one-dimensional cell array of character vectors. All the character vectors
in Date must have the same format F. F must designate a supported date format symbol. For more
information on supported date formats, see datestr
Data Types: single | double | char | cell
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F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol for input
argument Date. For more information on supported character vector formats, see datestr. Note,
formats with 'Q' are not accepted.
Data Types: char

Output Arguments
Seconds — Seconds of date or time
nonnegative number

Seconds of date or time, returned as a nonnegative number.

See Also
datevec | minute

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a

 second
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selectreturn
Portfolio configurations from 3-D efficient frontier

Syntax
PortConfigs = selectreturn(AllMean,AllCovariance,Target)

Arguments
AllMean Number of curves (NCURVES-by-1 cell array), where each element is

a 1-by-NASSETS (number of assets) vector of the expected asset
returns used to generate each curve on the surface.

AllCovariance NCURVES-by-1 cell array where each element is an NASSETS-by-
NASSETS vector of the covariance matrix used to generate each
curve on the surface.

Target Target return value for each curve in the frontier.

Description
PortConfigs = selectreturn(AllMean,AllCovariance,Target) returns the portfolio
configurations for a target return given the average return and covariance for a rolling efficient
frontier.

PortConfigs is a NASSETS-by-NCURVES matrix of asset allocation weights needed to obtain the
target rate of return.

See Also
frontier

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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setAssetList
Set up list of identifiers for assets

Syntax
obj = setAssetList(obj,AssetList)
obj = setAssetList(obj,'asset1','asset2',asset3',...)

Description
obj = setAssetList(obj,AssetList) sets up the list of identifiers for assets for Portfolio,
PortfolioCVaR, or PorfolioMAD objects. For details on the respective workflows when using these
different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on
page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setAssetList(obj,'asset1','asset2',asset3',...) sets up a list of asset
identifiers, specified as a comma-separated list of character vectors, a cell array of character vectors,
or string array where each character vector or string is an asset identifier.

Note

• If an asset list is entered as an input, this function overwrites an existing asset list in the object if
one exists.

• If no asset list is entered as an input, three actions can occur:

• If NumAssets is nonempty and AssetList is empty, AssetList becomes a numbered list of
assets with default names according to the hidden property in defaultforAssetList
('Asset').

• If NumAssets is nonempty and AssetList is nonempty, nothing happens.
• If NumAssets is empty and AssetList is empty, the default NumAssets =1 is set and a

default asset list is created ('Asset1').

Examples

Create a Default List of Asset Names with Three Assets for a Portfolio Object

Create a default list of asset names with three assets.

p = Portfolio('NumAssets',3);
p = setAssetList(p);
disp(p.AssetList);

    {'Asset1'}    {'Asset2'}    {'Asset3'}

 setAssetList
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Create an Explicitly Named List of Asset Names with Three Assets for a Portfolio Object

Create a list of asset names for three equities AGG, EEM, and VEU.

p = Portfolio;
p = setAssetList(p, 'AGG', 'EEM', 'VEU');
disp(p.AssetList);

    {'AGG'}    {'EEM'}    {'VEU'}

Create a Default List of Asset Names with Three Assets for a PortfolioCVaR Object

Create a default list of asset names with three assets.

p = PortfolioCVaR('NumAssets',3);
p = setAssetList(p);
disp(p.AssetList);

    {'Asset1'}    {'Asset2'}    {'Asset3'}

Create an Explicitly Named List of Asset Names with Three Assets for a PortfolioCVaR
Object

Create a list of asset names for three equities AGG, EEM, and VEU.

p = PortfolioCVaR;
p = setAssetList(p, 'AGG', 'EEM', 'VEU');
disp(p.AssetList);

    {'AGG'}    {'EEM'}    {'VEU'}

Create a Default List of Asset Names with Three Assets for a PortfolioMAD Object

Create a default list of asset names with three assets.

p = PortfolioMAD('NumAssets',3);
p = setAssetList(p);
disp(p.AssetList);

    {'Asset1'}    {'Asset2'}    {'Asset3'}

Create an Explicitly Named List of Asset Names with Three Assets for a PortfolioMAD
Object

Create a list of asset names for three equities AGG, EEM, and VEU.
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p = PortfolioMAD;
p = setAssetList(p, 'AGG', 'EEM', 'VEU');
disp(p.AssetList);

    {'AGG'}    {'EEM'}    {'VEU'}

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

AssetList — List of assets
character vector | cell array of character vectors | string array

List of assets, specified using a character vector, cell array of character vectors, or string array where
each character vector or string is an asset identifier.
Data Types: char | cell | string

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

The underlying object (obj) has a number of public hidden properties to format the asset list:

• defaultforAssetList — Default name for assets ('Asset'). Change this name to create
default asset names such as 'ETF', 'Bond'.

• sortAssetList — Reserved for future implementation.
• uppercaseAssetList — If true, make all asset identifiers uppercase character vectors.

Otherwise do nothing. Default is false.

Tips
• You can also use dot notation to set up list of identifiers for assets.
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obj = obj.setAssetList(AssetList);
• To clear an AssetList, call this function with [] or {[]}.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierLimits

Topics
“Common Operations on the Portfolio Object” on page 4-32
“Common Operations on the PortfolioCVaR Object” on page 5-28
“Common Operations on the PortfolioMAD Object” on page 6-28
“Portfolio Optimization Examples” on page 4-141

Introduced in R2011a
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setAssetMoments
Set moments (mean and covariance) of asset returns for Portfolio object

Syntax
obj = setAssetMoments(obj,AssetMean)
obj = setAssetMoments(obj,AssetMean,AssetCovar,NumAssets)

Description
obj = setAssetMoments(obj,AssetMean) obtains mean and covariance of asset returns for a
Portfolio object. For details on the workflow, see “Portfolio Object Workflow” on page 4-17.

obj = setAssetMoments(obj,AssetMean,AssetCovar,NumAssets) obtains mean and
covariance of asset returns for a Portfolio object with additional options for AssetCovar and
NumAssets.

Examples

Set Asset Moments for a Portfolio Object

Set the asset moment properties, given the mean and covariance of asset returns in the variables m
and C.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
 
p = Portfolio;
p = setAssetMoments(p, m, C);
[assetmean, assetcovar] = getAssetMoments(p)

assetmean = 4×1

    0.0042
    0.0083
    0.0100
    0.0150

assetcovar = 4×4

    0.0005    0.0003    0.0002         0
    0.0003    0.0024    0.0017    0.0010
    0.0002    0.0017    0.0048    0.0028
         0    0.0010    0.0028    0.0102
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Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on creating a portfolio
object, see

• Portfolio

Data Types: object

AssetMean — Mean of asset returns
vector

Mean of asset returns, specified as a vector.

Note If AssetMean is a scalar and the number of assets is known, scalar expansion occurs. If the
number of assets cannot be determined, this method assumes that NumAssets = 1.

Data Types: double

AssetCovar — Covariance of asset returns
symmetric positive semidefinite matrix

Covariance of asset returns, specified as a symmetric positive semidefinite matrix.

Note

• If AssetCovar is a scalar and the number of assets is known, a diagonal matrix is formed with the
scalar value along the diagonals. If it is not possible to determine the number of assets, this
method assumes that NumAssets = 1.

• If AssetCovar is a vector, a diagonal matrix is formed with the vector along the diagonal.
• If AssetCovar is not a symmetric positive semidefinite matrix, use nearcorr to create a positive
semidefinite matrix for a correlation matrix.

Data Types: double

NumAssets — Number of assets
integer

Number of assets, specified as an integer.

Note If NumAssets is not already set in the object, NumAssets can be entered to resolve array
expansions with AssetMean or AssetCovar.

Data Types: double
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Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio object. For more information on creating a
portfolio object, see

• Portfolio

Tips
• You can also use dot notation to set moments (mean and covariance) of the asset returns.

obj = obj.setAssetMoments(obj, AssetMean, AssetCovar, NumAssets);

• To clear NumAssets and AssetCovar, use this function to set these respective inputs to [].

See Also
estimateAssetMoments | estimateFrontierByRisk | nearcorr

Topics
“Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-41
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization Theory” on page 4-3

Introduced in R2011a
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setBounds
Set up bounds for portfolio weights for a portfolio object

Syntax
obj = setBounds(obj,LowerBound)
obj = setBounds( ___ ,Name,Value)

obj = setBounds(obj,LowerBound,UpperBound)
obj = setBounds( ___ ,Name,Value)

Description
obj = setBounds(obj,LowerBound) sets up bounds for portfolio weights for a Portfolio,
PortfolioCVaR, or PortfolioMAD object. For details on the respective workflows when using these
different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on
page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setBounds( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax, including BoundType as
'Simple' or 'Conditional'.

obj = setBounds(obj,LowerBound,UpperBound) sets up bounds for portfolio weights for
portfolio objects with an additional option for UpperBound.

Given bound constraints LowerBound and UpperBound and 'Simple' BoundType, every weight in
a portfolio Port must satisfy the following:

LowerBound <= Port <= UpperBound

Given bound constraints LowerBound and UpperBound, and 'Conditional' BoundType, every
weight in a portfolio Port must satisfy the following:

Port = 0 or LowerBound <= Port <= UpperBound

obj = setBounds( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax, including BoundType as
'Simple' or 'Conditional'.

Examples

Set Bound Constraints for a Portfolio Object

Suppose you have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
bonds that can range from 25% to 50% of your portfolio. Use setBounds to set the bound constraints
for a balanced fund. Note that this sets default 'Simple' BoundType, which enforces
0.5<=x1<=0.75, 0.25<=x2<=0.5.

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];
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p = Portfolio;
p = setBounds(p, lb, ub);
disp(p.NumAssets);

     2

disp(p.LowerBound);

    0.5000
    0.2500

disp(p.UpperBound);

    0.7500
    0.5000

Set Bound Constraints to Define 'Conditional' BoundType Constraints for a Portfolio
Object

Suppose you have the mean and covariance of the asset returns for a three asset portfolio:

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  

The following uses setBounds with 'Conditional' BoundType (semicontinuous) constraints to set
xi = 0 or 0.02 <= xi <= 0.5 for all i = 1,...NumAssets.

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3)   

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [3x1 double]
       AssetCovar: [3x3 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 3
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [3x1 double]
       UpperBound: [3x1 double]

 setBounds
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      LowerBudget: []
      UpperBudget: []
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: [3x1 categorical]

disp(p.LowerBound);

    0.0200
    0.0200
    0.0200

disp(p.UpperBound);

    0.5000
    0.5000
    0.5000

disp(p.BoundType);

     conditional 
     conditional 
     conditional 

Set Bound Constraints to Define Mixed BoundTypes for a Portfolio Object

Suppose you have the mean and covariance of the asset returns for a three asset portfolio:

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  

The following uses setBounds with both 'Simple' and 'Conditional' BoundType constraints for
all i = 1,...NumAssets.

p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setBounds(p, 0.1, 0.5, 'BoundType',["simple"; "conditional"; "conditional"])

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [3x1 double]
       AssetCovar: [3x3 double]
    TrackingError: []
     TrackingPort: []
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         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 3
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
       LowerBound: [3x1 double]
       UpperBound: [3x1 double]
      LowerBudget: []
      UpperBudget: []
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: [3x1 categorical]

disp(p.LowerBound);

    0.1000
    0.1000
    0.1000

disp(p.UpperBound);

    0.5000
    0.5000
    0.5000

disp(p.BoundType);

     simple 
     conditional 
     conditional 

You can use supply lower and upper bounds as vectors, which defines different values for each asset.
The following have -0.8 <= x1 <= 0.2; x2 = 0 or 0.1 <= x2 <= 0.5; x3 = 0 or 0.1 <= x3 <=0.5. Note
that as 'Simple' BoundType, the assets can be held as short or long positions. However, when
using 'Conditional' BoundType, the assets can only be long positions.

p = setBounds(p, [-0.8, 0.1, 0.1], [-0.2,0.5,0.5], 'BoundType',["simple"; "conditional"; "conditional"]);
disp(p.LowerBound);

   -0.8000
    0.1000
    0.1000

disp(p.UpperBound);
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   -0.2000
    0.5000
    0.5000

disp(p.BoundType);

     simple 
     conditional 
     conditional 

Set MinNumAssets Constraint for a Portfolio Object

Set the minimum cardinality constraint for a three-asset portfolio for which you have the mean and
covariance values of the asset returns.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  
           
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p); 

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up
limits on the number of assets invested. These limits are also known as cardinality constraints. When
managing a portfolio, it is common that you want to invest in at least a certain number of assets. In
addition, you should also clearly define the weight requirement for each invested asset. You can do
this using setBounds with a 'Conditional' BoundType. If you do not specify a 'Conditional'
BoundType, the optimizer cannot understand which assets are invested assets and cannot formulate
the MinNumAssets constraint.

The following example specifies that at least two assets should be invested and the investments
should be greater than 16%.

p = setMinMaxNumAssets(p, 2, []);  
p = setBounds(p, 0.16, 'BoundType', 'conditional');

Use estimateFrontierByReturn to estimate optimal portfolios with targeted portfolio returns.

pwgt = estimateFrontierByReturn(p,[ 0.008, 0.01 ])

pwgt = 3×2

    0.2861    0.3967
    0.5001    0.2437
    0.2138    0.3595

Set Bound Constraints for a PortfolioCVaR Object

Suppose you have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
bonds that can range from 25% to 50% of your portfolio. To set the bound constraints for a balanced
fund.
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lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];

p = PortfolioCVaR;
p = setBounds(p, lb, ub);
disp(p.NumAssets);

     2

disp(p.LowerBound);

    0.5000
    0.2500

disp(p.UpperBound);

    0.7500
    0.5000

Set Bound Constraints to Define 'Conditional' BoundType Constraints for a PortfolioCVaR
Object

Suppose you have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
bonds that can range from 25% to 50% of your portfolio. To set the bound constraints for a balanced
fund with semicontinuous constraints, use setBounds with 'Conditional' BoundType
constraints to set xi = 0.25 or 0.5 <= xi <= 0.5 or 0.75 for all i = 1,...NumAssets.

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];

p = PortfolioCVaR;
p = setBounds(p,lb,ub,'BoundType',["conditional"; "conditional"]);
disp(p.NumAssets);

     2

disp(p.LowerBound);

    0.5000
    0.2500

disp(p.UpperBound);

    0.7500
    0.5000

Set Bound Constraints for a PortfolioMAD Object

Suppose you have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
bonds that can range from 25% to 50% of your portfolio. To set the bound constraints for a balanced
fund.

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];
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p = PortfolioMAD;
p = setBounds(p, lb, ub);
disp(p.NumAssets);

     2

disp(p.LowerBound);

    0.5000
    0.2500

disp(p.UpperBound);

    0.7500
    0.5000

Set Bound Constraints to Define 'Conditional' BoundType Constraints for a PortfolioMAD
Object

Suppose you have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
bonds that can range from 25% to 50% of your portfolio. To set the bound constraints for a balanced
fund with semicontinuous constraints, use setBounds with 'Conditional' BoundType
constraints to set xi = 0.25 or 0.5 <= xi <= 0.5 or 0.75 for all i = 1,...NumAssets.

lb = [ 0.5; 0.25 ];
ub = [ 0.75; 0.5 ];

p = PortfolioMAD;
p = setBounds(p,lb,ub,'BoundType',["conditional"; "conditional"]);
disp(p.NumAssets);

     2

disp(p.LowerBound);

    0.5000
    0.2500

disp(p.UpperBound);

    0.7500
    0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
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• PortfolioMAD

Data Types: object

LowerBound — Lower-bound weight for each asset
scalar | vector

Lower-bound weight for each asset, specified as a scalar or vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note

• If either LowerBound or UpperBound are input as empties with [], the corresponding attributes
in the Portfolio, PortfolioCVaR, or PortfolioMAD object are cleared and set to [].

• If LowerBound or UpperBound are specified as scalars and NumAssets exists or can be
computed, then they undergo scalar expansion. The default value for NumAssets is 1.

• If both LowerBound and UpperBound exist and they are not ordered correctly, the setBounds
function switches bounds if necessary.

• If 'Conditional'BoundType is specified, the LowerBound cannot be a negative value.

Data Types: double

UpperBound — Upper-bound weight for each asset
scalar | vector

(Optional) Upper-bound weight for each asset, specified as a scalar or vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note

• If either LowerBound or UpperBound are input as empties with [], the corresponding attributes
in the Portfolio, PortfolioCVaR, or PortfolioMAD object are cleared and set to [].

• If LowerBound or UpperBound are specified as scalars and NumAssets exists or can be
computed, then they undergo scalar expansion. The default value for NumAssets is 1.

• If both LowerBound and UpperBound exist and they are not ordered correctly, the setBounds
function switches bounds if necessary.

• If 'Conditional'BoundType is specified, the UpperBound cannot be a negative value.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: obj = setBounds(p,0.02,'BoundType','Conditional');

 setBounds
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BoundType — Type of bounds for each asset weight
'Simple' (default) | character vector with value 'Simple' or 'Conditional' | string with value
"Simple" or "Conditional" | cell array of character vectors with values 'Simple' or
'Conditional' | string array with values "Simple" or "Conditional"

Type of bounds for each asset weight, specified as the comma-separated pair consisting of
'BoundType' and a scalar character vector or string with a value of 'Simple' or 'Conditional'
or a cell array of character vectors with values of 'Simple' or 'Conditional'.

• 'Simple' is LowerBound <= AssetWeight <= UpperBound. 
• 'Conditional' is LowerBound <= AssetWeight <= UpperBound or AssetWeight = 0.

Warning If you specify the Bound range to be inclusive of zero (using either a ‘Simple’ or
‘Conditional’ BoundType), when you use setMinMaxNumAssets to specify the
MinNumAssets constraint, and then use one of the estimate functions, it is ambiguous for the
optimizer to define the minimum requirement for an allocated asset. In this case, the optimizer
considers that an asset with zero weight is a valid allocated asset and the optimization proceeds,
but with the warning that the allocation has less than the MinNumAssets required. For more
information, see “Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and
MaxNumAssets Constraints” on page 4-133.

Data Types: char | cell | string

NumAssets — Number of assets in portfolio
1 (default) | scalar numeric

Number of assets in portfolio, specified as the comma-separated pair consisting of 'NumAssets' and
a scalar numeric value.

Note NumAssets cannot be used to change the dimension of a Portfolio, PortfolioCVaR, or
PortfolioMAD object.

• If either LowerBound or UpperBound are input as empties with [], the corresponding attributes
in the Portfolio, PortfolioCVaR, or PortfolioMAD object are cleared and set to [].

• If LowerBound or UpperBound are specified as scalars and NumAssets exists or can be imputed,
then they undergo scalar expansion. The default value for NumAssets is 1.

• If both LowerBound and UpperBound exist and they are not ordered correctly, the setBounds
function switches bounds if necessary.

Data Types: double

Output Arguments
obj — Updated portfolio object
object

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object.
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Tips
You can also use dot notation to set up the bounds for portfolio weights.

 obj = obj.setBounds(LowerBound, UpperBound, Name,Value);

If any of LowerBound, UpperBound, or BoundTypeare input as empties with [ ], the corresponding
attributes in the portfolio object are cleared and set to [ ]. If BoundType is cleared as [ ], the
bound type defaults to 'Simple'.

 p = setBounds(p, LowerBound, [ ], 'BoundType',[ ]);

To reset a portfolio object to be a continuous problem, run the following:

p = setMinMaxNumAssets(p, [],[]);
p = setBounds(p, p.LowerBound, p.UpperBound, 'BoundType', 'Simple');

See Also
getBounds | setMinMaxNumAssets | setSolverMINLP | estimateAssetMoments |
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierLimits | estimateMaxSharpeRatio | estimatePortSharpeRatio |
estimatePortMoments | estimatePortReturn | estimatePortRisk

Topics
“Working with 'Simple' Bound Constraints Using Portfolio Object” on page 4-61
“Working with 'Simple' Bound Constraints Using PortfolioCVaR Object” on page 5-53
“Working with 'Simple' Bound Constraints Using PortfolioMAD Object” on page 6-52
“Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using
Portfolio Objects” on page 4-78
“Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using
PortfolioCVaR Objects” on page 5-68
“Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using
PortfolioMAD Objects” on page 6-67
“Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets
Constraints” on page 4-133
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setBudget
Set up budget constraints

Syntax
obj = setBudget(obj,LowerBudget)
obj = setBudget(obj,LowerBudget,UpperBudget)

Description
obj = setBudget(obj,LowerBudget) sets up budget constraints for Portfolio,
PortfolioCVaR, or PortfolioMAD objects. For details on the respective workflows when using
these different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object
Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setBudget(obj,LowerBudget,UpperBudget) sets up budget constraints for portfolio
objects with an additional option for UpperBudget.

Examples

Set Budget Constraint for a Portfolio Object

Assume you have a fund that permits up to 10% leverage, which means that your portfolio can be
from 100% to 110% invested in risky assets. Given a Portfolio object p, set the budget constraint.

p = Portfolio;
p = setBudget(p, 1, 1.1);
disp(p.LowerBudget);

     1

disp(p.UpperBudget);

    1.1000

Set Budget Constraint for a PortfolioCVaR Object

Assume you have a fund that permits up to 10% leverage, which means that your portfolio can be
from 100% to 110% invested in risky assets. Given a CVaR portfolio object p, set the budget
constraint.

p = PortfolioCVaR;
p = setBudget(p, 1, 1.1);
disp(p.LowerBudget);

     1

disp(p.UpperBudget);
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    1.1000

Set Budget Constraint for a PortfolioMAD Object

Assume you have a fund that permits up to 10% leverage, which means that your portfolio can be
from 100% to 110% invested in risky assets. Given PortfolioMAD object p, set the budget constraint.

p = PortfolioMAD;
p = setBudget(p, 1, 1.1);
disp(p.LowerBudget);

     1

disp(p.UpperBudget);

    1.1000

Control the Allocation of a Risk-Free Asset Using setBudget

Define mean and covariance of risk asset returns.

m = [ 0.05; 0.1; 0.12; 0.18; ];
C = [ 0.0064 0.00408 0.00192 0,; 
    0.00408 0.0289 0.0204 0.0119,;
    0.00192 0.0204 0.0576 0.0336,;
   0 0.0119 0.0336 0.1225];

Create a Portfolio object defining the risk-free rate.

p = Portfolio('RiskFreeRate',0.03, 'assetmean', m, 'assetcovar', C, ...
'lowerbudget', 1, 'upperbudget', 1, 'lowerbound', 0);

Create multiple Portfolio objects with different budgets on risky assets. By defining the risky
assets, you can control how much is invested in a risk-free asset.

p = setBudget(p, 1, 1);    % allow 0% risk-free asset allocation, meaning fully invested in risky assets
p1 = setBudget(p, 0, 1);   % allow 0 to 100% risk-free asset allocation
p2 = setBudget(p, 0.7, 1);  % allow 0 to 30% risk-free asset allocation

plotFrontier(p); hold on; 
plotFrontier(p1);hold on;
plotFrontier(p2);
legend('Without risk-free asset', 'With risk-free asset in range [0,1]', 'With risk-free asset in range [0, 0.3]', 'location', 'best');
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setBudget defines the bound for total weights for the allocated risky assets, and the remaining is
automatically the bound for a risk-free asset. Use setBudget to control the level of allowed
allocation to a risk-free asset. For additional information on using setBudget with a risk-free asset,
see “Leverage in Portfolio Optimization with a Risk-Free Asset” on page 4-199.

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

LowerBudget — Lower-bound for budget constraint
scalar

Lower-bound for budget constraint, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).
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Note Given bounds for a budget constraint in either LowerBudget or UpperBudget, budget
constraints require any portfolio in Port to satisfy:

LowerBudget <= sum(Port) <= UpperBudget

One or both constraints may be specified. The usual budget constraint for a fully invested portfolio is
to have LowerBudget = UpperBudget = 1. However, if the portfolio has allocations in cash, the
budget constraints can be used to specify the cash constraints. For example, if the portfolio can hold
between 0% and 10% in cash, the budget constraint would be set up with

obj = setBudget(obj, 0.9, 1)

Data Types: double

UpperBudget — Upper-bound for budget constraint
scalar

Upper-bound for budget constraint, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note Given bounds for a budget constraint in either LowerBudget or UpperBudget, budget
constraints require any portfolio in Port to satisfy:

LowerBudget <= sum(Port) <= UpperBudget

One or both constraints may be specified. The usual budget constraint for a fully invested portfolio is
to have LowerBudget = UpperBudget = 1. However, if the portfolio has allocations in cash, the
budget constraints can be used to specify the cash constraints. For example, if the portfolio can hold
between 0% and 10% in cash, the budget constraint would be set up with

obj = setBudget(obj, 0.9, 1)

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
You can also use dot notation to set up the budget constraints.
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obj = obj.setBudget(LowerBudget, UpperBudget);

See Also
getBudget

Topics
“Working with Budget Constraints Using Portfolio Object” on page 4-64
“Working with Budget Constraints Using PortfolioCVaR Object” on page 5-56
“Working with Budget Constraints Using PortfolioMAD Object” on page 6-55
“Portfolio Optimization Examples” on page 4-141
“Leverage in Portfolio Optimization with a Risk-Free Asset” on page 4-199
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setCosts
Set up proportional transaction costs

Syntax
obj = setCosts(obj,BuyCost)

obj = setCosts(obj,BuyCost,SellCost,InitPort,NumAssets)

Description
obj = setCosts(obj,BuyCost) sets up proportional transaction costs for Portfolio,
PortfolioCVaR, or PortfolioMAD objects. For details on the respective workflows when using
these different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object
Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setCosts(obj,BuyCost,SellCost,InitPort,NumAssets) sets up proportional
transaction costs for portfolio objects with additional options specified for SellCost, InitPort, and
NumAssets.

Given proportional transaction costs and an initial portfolio in the variables BuyCost, SellCost, and
InitPort, the transaction costs for any portfolio Port reduce expected portfolio return by:
BuyCost' * max{0, Port - InitPort} + SellCost' * max{0, InitPort - Port}

Examples

Set Up Transaction Costs for a Portfolio Object

Given a Portfolio object p with an initial portfolio already set, use the setCosts function to set up
transaction costs.

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio('InitPort', x0);
p = setCosts(p, bc, sc);
        
disp(p.NumAssets);

     5

disp(p.BuyCost);

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

disp(p.SellCost);
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    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

disp(p.InitPort);

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

Set Up Transaction Costs for a PortfolioCVaR Object

Given a CVaR portfolio object p with an initial portfolio already set, use the setCosts function to set
up transaction costs.

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR('InitPort', x0);
p = setCosts(p, bc, sc);
        
disp(p.NumAssets);

     5

disp(p.BuyCost);

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

disp(p.SellCost);

    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

disp(p.InitPort);

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000
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Set Up Transaction Costs for a PortfolioMAD Object

Given PortfolioMAD object p with an initial portfolio already set, use the setCosts function to set up
transaction costs.

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD('InitPort', x0);
p = setCosts(p, bc, sc);
        
disp(p.NumAssets);

     5

disp(p.BuyCost);

    0.0013
    0.0013
    0.0013
    0.0013
    0.0013

disp(p.SellCost);

    0.0013
    0.0070
    0.0013
    0.0013
    0.0024

disp(p.InitPort);

    0.4000
    0.2000
    0.2000
    0.1000
    0.1000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

BuyCost — Proportional transaction cost to purchase each asset
vector
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Proportional transaction cost to purchase each asset, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note

• If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists or can be
imputed, then these values undergo scalar expansion. The default value for NumAssets is 1.

• Transaction costs in BuyCost and SellCost are positive valued if they introduce a cost to trade.
In some cases, they can be negative valued, which implies trade credits.

Data Types: double

SellCost — Proportional transaction cost to sell each asset
vector

Proportional transaction cost to sell each asset, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note

• If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists or can be
imputed, then these values undergo scalar expansion. The default value for NumAssets is 1.

• Transaction costs in BuyCost and SellCost are positive valued if they introduce a cost to trade.
In some cases, they can be negative valued, which implies trade credits.

Data Types: double

InitPort — Initial or current portfolio weights
vector

Initial or current portfolio weights, specified as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note If no InitPort is specified, that value is assumed to be 0.

• If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists or can be
imputed, then these values undergo scalar expansion. The default value for NumAssets is 1.

• Transaction costs in BuyCost and SellCost are positive valued if they introduce a cost to trade.
In some cases, they can be negative valued, which implies trade credits.

Data Types: double

NumAssets — Number of assets in portfolio
scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

19 Functions

19-1322



Note NumAssets cannot be used to change the dimension of a portfolio object.

• If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists or can be
imputed, then these values undergo scalar expansion. The default value for NumAssets is 1.

• Transaction costs in BuyCost and SellCost are positive valued if they introduce a cost to trade.
In some cases, they can be negative valued, which implies trade credits.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to set up proportional transaction costs.

obj = obj.setCosts(BuyCost, SellCost, InitPort, NumAssets);

• If BuyCost or SellCost are input as empties with [], the corresponding attributes in the
portfolio object are cleared and set to []. If InitPort is set to empty with [], it will only be
cleared and set to [] if BuyCost, SellCost, and Turnover are also empty. Otherwise, it is an
error.

See Also
getCosts | setInitPort

Topics
“Working with Transaction Costs” on page 4-53
“Working with Transaction Costs” on page 5-45
“Working with Transaction Costs” on page 6-44
“Portfolio Analysis with Turnover Constraints” on page 4-193
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setDefaultConstraints
Set up portfolio constraints with nonnegative weights that sum to 1

Syntax
obj = setDefaultConstraints(obj)
obj = setDefaultConstraints(obj,NumAssets)

Description
obj = setDefaultConstraints(obj) sets up portfolio constraints with nonnegative weights that
sum to 1 for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the respective
workflows when using these different objects, see “Portfolio Object Workflow” on page 4-17,
“PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setDefaultConstraints(obj,NumAssets) sets up portfolio constraints with nonnegative
weights that sum to 1 with an additional option for NumAssets.

A "default" portfolio set has LowerBound = 0 and LowerBudget = UpperBudget = 1 such that a
portfolio Port must satisfy sum(Port) = 1 with Port >= 0.

Examples

Define Default Constraints for the Portfolio Object

Assuming you have 20 assets, you can define the "default" portfolio set.

p = Portfolio('NumAssets', 20);
p = setDefaultConstraints(p);
disp(p);

  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: []
       AssetCovar: []
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 20
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
        bEquality: []
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       LowerBound: [20x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: [20x1 categorical]

Define Default Constraints for the PortfolioCVaR Object

Assuming you have 20 assets, you can define the "default" portfolio set.

p = PortfolioCVaR('NumAssets', 20);
p = setDefaultConstraints(p);
disp(p);

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: 20
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [20x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: [20x1 categorical]

 setDefaultConstraints

19-1325



Define Default Constraints for the PortfolioMAD Object

Assuming you have 20 assets, you can define the "default" portfolio set.

p = PortfolioMAD('NumAssets', 20);
p = setDefaultConstraints(p);
disp(p);

  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: []
            Name: []
       NumAssets: 20
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [20x1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: [20x1 categorical]

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object
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NumAssets — Number of assets in portfolio
scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note NumAssets cannot be used to change the dimension of a portfolio object. The default for
NumAssets is 1.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to set up the default portfolio set.

obj = obj.setDefaultConstraints(NumAssets);
• This function does not modify any existing constraints in a portfolio object other than the bound

and budget constraints. If an UpperBound constraint exists, it is cleared and set to [].

See Also
setBounds | getBounds | setBudget

Topics
“Setting Default Constraints for Portfolio Weights Using Portfolio Object” on page 4-57
“Setting Default Constraints for Portfolio Weights Using PortfolioCVaR Object” on page 5-49
“Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-48
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setEquality
Set up linear equality constraints for portfolio weights

Syntax
obj= setEquality(obj,AEquality,bEquality)

Description
obj= setEquality(obj,AEquality,bEquality) sets up linear equality constraints for portfolio
weights for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the respective
workflows when using these different objects, see “Portfolio Object Workflow” on page 4-17,
“PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

Given linear equality constraint matrix AEquality and vector bEquality, every weight in a
portfolio Port must satisfy the following:

 AEquality * Port = bEquality

Examples

Set Linear Equality Constraints for a Portfolio Object

Suppose you have a portfolio of five assets, and you want to ensure that the first three assets are 50%
of your portfolio. Given a Portfolio object p, set the linear equality constraints with the following.

A = [ 1 1 1 0 0 ];
b = 0.5;
p = Portfolio;
p = setEquality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AEquality);

     1     1     1     0     0

disp(p.bEquality);

    0.5000

Set Linear Equality Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are 50%
of your portfolio. Given a PortfolioCVaR object p, set the linear equality constraints and obtain the
values for AEquality and bEquality:
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A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioCVaR;
p = setEquality(p, A, b);
disp(p.NumAssets);

     5

disp(p.AEquality);

     1     1     1     0     0

disp(p.bEquality);

    0.5000

Set Linear Equality Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are 50%
of your portfolio. Given a PortfolioMAD object p, set the linear equality constraints and obtain the
values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD;
p = setEquality(p, A, b);
[AEquality, bEquality] = getEquality(p)

AEquality = 1×5

     1     1     1     0     0

bEquality = 0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

AEquality — Matrix to form linear equality constraints
matrix

Matrix to form linear equality constraints, returned as a matrix for a Portfolio, PortfolioCVaR,
or PortfolioMAD input object (obj).
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Note An error results if AEquality is empty and bEquality is nonempty.

Data Types: double

bEquality — Vector to form linear equality constraints
vector

Vector to form linear equality constraints, returned as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note An error results if AEquality is nonempty and bEquality is empty.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to set up linear equality constraints for portfolio weights.

obj = obj.setEquality(AEquality, bEquality);

• Linear equality constraints can be removed from a portfolio object by entering [] for each
property you want to remove.

See Also
addEquality | getEquality

Topics
“Working with Linear Equality Constraints Using Portfolio Object” on page 4-72
“Working with Linear Equality Constraints Using PortfolioCVaR Object” on page 5-64
“Working with Linear Equality Constraints Using PortfolioMAD Object” on page 6-63
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setGroupRatio
Set up group ratio constraints for portfolio weights

Syntax
obj = setGroupRatio(obj,GroupA,GroupB,LowerRatio)
obj = setGroupRatio( ___ ,UpperRatio)

Description
obj = setGroupRatio(obj,GroupA,GroupB,LowerRatio) sets up group ratio constraints for
portfolio weights for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the
respective workflows when using these different objects, see “Portfolio Object Workflow” on page 4-
17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-
15.

obj = setGroupRatio( ___ ,UpperRatio) sets up group ratio constraints for portfolio weights
for portfolio objects with an additional optional argument for UpperRatio.

Given base and comparison group matrices GroupA and GroupB and LowerRatio or UpperRatio
bounds, group ratio constraints require any portfolio in Port to satisfy the following:
(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

Caution This collection of constraints usually requires that portfolio weights be nonnegative and that
the products GroupA * Port and GroupB * Port are always nonnegative. Although negative
portfolio weights and non-Boolean group ratio matrices are supported, use with caution.

Examples

Set Group Ratio Constraints for a Portfolio Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolio
never exceeds 50%. Assume you have six assets with three financial companies (assets 1-3) and three
nonfinancial companies (assets 4-6). Group ratio constraints can be set with:

GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = Portfolio;
p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

     6

disp(p.GroupA);

     1     1     1     0     0     0

disp(p.GroupB);
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     0     0     0     1     1     1

disp(p.UpperRatio);

    0.5000

Set Group Ratio Constraints for a PortfolioCVaR Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolio
never exceeds 50%. Assume you have six assets with three financial companies (assets 1-3) and three
nonfinancial companies (assets 4-6). Group ratio constraints can be set with:

GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = PortfolioCVaR;
p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

     6

disp(p.GroupA);

     1     1     1     0     0     0

disp(p.GroupB);

     0     0     0     1     1     1

disp(p.UpperRatio);

    0.5000

Set Group Ratio Constraints for a PortfolioMAD Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your portfolio
never exceeds 50%. Assume you have six assets with three financial companies (assets 1-3) and three
nonfinancial companies (assets 4-6). Group ratio constraints can be set with:

GA = [ true true true false false false ];    % financial companies
GB = [ false false false true true true ];    % nonfinancial companies
p = PortfolioMAD;
p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

     6

disp(p.GroupA);

     1     1     1     0     0     0

disp(p.GroupB);

     0     0     0     1     1     1
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disp(p.UpperRatio);

    0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

GroupA — Matrix that forms base groups for comparison
matrix

Matrix that forms base groups for comparison, specified as a matrix for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note The group matrices GroupA and GroupB are usually indicators of membership in groups,
which means that their elements are usually either 0 or 1. Because of this interpretation, GroupA and
GroupB matrices can be either logical or numerical arrays.

Data Types: double | logical

GroupB — Matrix that forms comparison groups
matrix

Matrix that forms comparison groups, specified as a matrix Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note The group matrices GroupA and GroupB are usually indicators of membership in groups,
which means that their elements are usually either 0 or 1. Because of this interpretation, GroupA and
GroupB matrices can be either logical or numerical arrays.

Data Types: double | logical

LowerRatio — Lower bound for ratio of GroupB groups to GroupA groups
vector

Lower bound for ratio of GroupB groups to GroupA groups, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).
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Note If input is scalar, LowerRatio undergoes scalar expansion to be conformable with the group
matrices.

Data Types: double

UpperRatio — Upper bound for ratio of GroupB groups to GroupA groups
vector

Upper bound for ratio of GroupB groups to GroupA groups, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note If input is scalar, UpperRatio undergoes scalar expansion to be conformable with the group
matrices.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to set up group ratio constraints for portfolio weight.

obj = obj.setGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio);

• To remove group ratio constraints, enter empty arrays for the corresponding arrays. To add to
existing group ratio constraints, use addGroupRatio.

See Also
addGroupRatio | getGroupRatio

Topics
“Working with Group Ratio Constraints Using Portfolio Object” on page 4-69
“Working with Group Constraints Using PortfolioCVaR Object” on page 5-58
“Working with Group Constraints Using PortfolioMAD Object” on page 6-57
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7
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Introduced in R2011a
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setGroups
Set up group constraints for portfolio weights

Syntax
obj = setGroups(obj,GroupMatrix,LowerGroup)
obj = setGroups(obj,GroupMatrix,LowerGroup,UpperGroup)

Description
obj = setGroups(obj,GroupMatrix,LowerGroup) sets up group constraints for portfolio
weights for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the respective
workflows when using these different objects, see “Portfolio Object Workflow” on page 4-17,
“PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setGroups(obj,GroupMatrix,LowerGroup,UpperGroup) sets up group constraints for
portfolio weights for portfolio objects with an additional option specified for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must satisfy the
following:

LowerGroup <= GroupMatrix * Port <= UpperGroup

Examples

Set Group Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets
constitute at most 30% of your portfolio. Given a Portfolio object p, set the group constraints with the
following.

G = [ true true true false false ];
p = Portfolio;
p = setGroups(p, G, [], 0.3);

disp(p.NumAssets);

     5

disp(p.GroupMatrix);

     1     1     1     0     0

disp(p.UpperGroup);

    0.3000
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Set Group Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets
constitute at most 30% of your portfolio. Given a CVaR portfolio object p, set the group constraints
with the following.

G = [ true true true false false ];
p = PortfolioCVaR;
p = setGroups(p, G, [], 0.3);

disp(p.NumAssets);

     5

disp(p.GroupMatrix);

     1     1     1     0     0

disp(p.UpperGroup);

    0.3000

Set Group Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets
constitute at most 30% of your portfolio. Given PortfolioMAD object p, set the group constraints with
the following.

G = [ true true true false false ];
p = PortfolioMAD;
p = setGroups(p, G, [], 0.3);

disp(p.NumAssets);

     5

disp(p.GroupMatrix);

     1     1     1     0     0

disp(p.UpperGroup);

    0.3000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
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• PortfolioMAD

Data Types: object

GroupMatrix — Group constraint matrix
logical or numeric matrix

Group constraint matrix, specified as a matrix for a Portfolio, PortfolioCVaR, or PortfolioMAD
input object (obj).

Note The group matrix GroupMatrix is usually an indicator of membership in groups, which means
that its elements are usually either 0 or 1. Because of this interpretation, GroupMatrix can be either
a logical or numerical matrix.

Data Types: double

LowerGroup — Lower bound for group constraints
vector

Lower bound for group constraints, specified as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note If input is scalar, LowerGroup undergoes scalar expansion to be conformable with
GroupMatrix.

Data Types: double

UpperGroup — Upper bound for group constraints
vector

Upper bound for group constraints, returned as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note If input is scalar, UpperGroup undergoes scalar expansion to be conformable with
GroupMatrix.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
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• PortfolioMAD

Tips
• You can also use dot notation to set up group constraints for portfolio weights.

obj = obj.setGroups(GroupMatrix, LowerGroup, UpperGroup);
• To remove group constraints, enter empty arrays for the corresponding arrays. To add to existing

group constraints, use addGroups.

See Also
getGroups | addGroups

Topics
“Working with Group Constraints Using Portfolio Object” on page 4-66
“Working with Group Constraints Using PortfolioCVaR Object” on page 5-58
“Working with Group Constraints Using PortfolioMAD Object” on page 6-57
“Constraint Specification Using a Portfolio Object” on page 3-26
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setInequality
Set up linear inequality constraints for portfolio weights

Syntax
obj = setInequality(obj,AInequality,bInequality)

Description
obj = setInequality(obj,AInequality,bInequality) sets up linear inequality constraints
for portfolio weights for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the
respective workflows when using these different objects, see “Portfolio Object Workflow” on page 4-
17, “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-
15.

Given a linear inequality constraint matrix AInequality and vector bInequality, every weight in
a portfolio Port must satisfy the following:

AInequality * Port <= bInequality

Examples

Set Linear Inequality Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no
more than 50% of your portfolio. Given a Portfolio object p, set the linear inequality constraints with
the following.

A = [ 1 1 1 0 0 ];
b = 0.5;
p = Portfolio;
p = setInequality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AInequality);

     1     1     1     0     0

disp(p.bInequality);

    0.5000
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Set Linear Inequality Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no
more than 50% of your portfolio. Given a CVaR portfolio object p, set the linear inequality constraints
with the following.

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioCVaR;
p = setInequality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AInequality);

     1     1     1     0     0

disp(p.bInequality);

    0.5000

Set Linear Inequality Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three assets are no
more than 50% of your portfolio. Given PortfolioMAD object p, set the linear inequality constraints
with the following.

A = [ 1 1 1 0 0 ];
b = 0.5;
p = PortfolioMAD;
p = setInequality(p, A, b);

disp(p.NumAssets);

     5

disp(p.AInequality);

     1     1     1     0     0

disp(p.bInequality);

    0.5000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see
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• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

AInequality — Matrix to form linear inequality constraints
matrix

Matrix to form linear inequality constraints, specified as a matrix for a Portfolio, PortfolioCVaR,
or PortfolioMAD input object (obj).

Note An error results if AInequality is empty and bInequality is nonempty.

Data Types: double

bInequality — Vector to form linear inequality constraints
vector

Vector to form linear inequality constraints, specified as a vector for a Portfolio, PortfolioCVaR,
or PortfolioMAD input object (obj).

Note An error results if AInequality is nonempty and bInequality is empty.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to set up linear inequality constraints for portfolio weights.

obj = obj.setInequality(AInequality, bInequality);
• To remove inequality constraints, enter empty arguments. To add to existing inequality

constraints, use addInequality.

See Also
getInequality | addInequality
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Topics
“Working with Linear Inequality Constraints Using Portfolio Object” on page 4-75
“Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page 5-66
“Working with Linear Inequality Constraints Using PortfolioMAD Object” on page 6-65
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setInitPort
Set up initial or current portfolio

Syntax
obj = setInitPort(obj,InitPort)
obj = setInitPort(obj,InitPort,NumAssets)

Description
obj = setInitPort(obj,InitPort) sets up initial or current portfolio for Portfolio,
PortfolioCVaR, or PortfolioMAD objects. For details on the respective workflows when using
these different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object
Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setInitPort(obj,InitPort,NumAssets) sets up initial or current portfolio for portfolio
objects with an additional options specified for NumAssets.

Examples

Set the InitPort Property for a Portfolio Object

Given an initial portfolio in x0, use the setInitPort function to set the InitPort property.

p = Portfolio('NumAssets', 4);
x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setInitPort(p, x0);
disp(p.InitPort);

    0.3000
    0.2000
    0.2000
         0

Set InitPort to Create an Equally-Weighted Portfolio of Four Assets for a Portfolio Object

Create an equally weighted portfolio of four assets using the setInitPort function.

p = Portfolio('NumAssets', 4);
p = setInitPort(p, 1/4, 4);
disp(p.InitPort);

    0.2500
    0.2500
    0.2500
    0.2500
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Set the InitPort Property for a PortfolioCVaR Object

Given an initial portfolio in x0, use the setInitPort function to set the InitPort property.

p = PortfolioCVaR('NumAssets', 4);
x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setInitPort(p, x0);
disp(p.InitPort);

    0.3000
    0.2000
    0.2000
         0

Set InitPort to Create an Equally-Weighted Portfolio of Four Assets for a PortfolioCVaR
Object

Create an equally weighted portfolio of four assets using the setInitPort function.

p = PortfolioCVaR('NumAssets', 4);
p = setInitPort(p, 1/4, 4);
disp(p.InitPort);

    0.2500
    0.2500
    0.2500
    0.2500

Set the InitPort Property for a PortfolioMAD Object

Given an initial portfolio in x0, use the setInitPort function to set the InitPort property.

p = PortfolioMAD('NumAssets', 4);
x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setInitPort(p, x0);
disp(p.InitPort);

    0.3000
    0.2000
    0.2000
         0

Set InitPort to Create an Equally-Weighted Portfolio of Four Assets for a PortfolioMAD
Object

Create an equally weighted portfolio of four assets using the setInitPort function.

p = PortfolioMAD('NumAssets', 4);
p = setInitPort(p, 1/4, 4);
disp(p.InitPort);
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    0.2500
    0.2500
    0.2500
    0.2500

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

InitPort — Initial or current portfolio weights
vector

Initial or current portfolio weights, specified as a vector for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar
expansion.

Data Types: double

NumAssets — Number of assets in portfolio
1 (default) | scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note  If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
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• PortfolioCVaR
• PortfolioMAD

Tips
• You can also use dot notation to set up an initial or current portfolio.

obj = obj.setInitPort(InitPort, NumAssets);
• To remove an initial portfolio, call this function with an empty argument [] for InitPort.

See Also
setTurnover | setCosts

Topics
“Common Operations on the Portfolio Object” on page 4-32
“Common Operations on the PortfolioCVaR Object” on page 5-28
“Common Operations on the PortfolioMAD Object” on page 6-28
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setMinMaxNumAssets
Set cardinality constraints on the number of assets invested in a portfolio object

Syntax
obj = setMinMaxNumAssets(obj,MinNumAssets,MaxNumAssets)

Description
obj = setMinMaxNumAssets(obj,MinNumAssets,MaxNumAssets) sets cardinality constraints
for a Portfolio, PortfolioCVaR, or PortfolioMAD object.

MinNumAssets and MaxNumAssets are the minimum and maximum number of assets invested in the
portfolio, respectively. The total number of allocated assets satisfying the Bound constraints is
between [MinNumAssets, MaxNumAssets]. For details on the respective workflows when using these
different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on
page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

Examples

Set MaxNumAssets Constraint for a Portfolio Object

Set the maximum cardinality constraint for a three-asset portfolio for which you have the mean and
covariance values of the asset returns.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ]; 
           
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p); 

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up
the limits on the number of assets invested. Use setMinMaxNumAssets to limit the total number of
allocated assets to no more than two.

 p = setMinMaxNumAssets(p, [], 2);

Use estimateFrontierByReturn to estimate optimal portfolios with targeted portfolio returns.

pwgt = estimateFrontierByReturn(p,[ 0.008, 0.01 ])

pwgt = 3×2

         0         0
    0.6101    0.3962
    0.3899    0.6038
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Set MinNumAssets Constraint for a Portfolio Object

Set the minimum cardinality constraint for a three-asset portfolio for which you have the mean and
covariance values of the asset returns.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  
           
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p); 

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up
limits on the number of assets invested. These limits are also known as cardinality constraints. When
managing a portfolio, it is common that you want to invest in at least a certain number of assets. In
addition, you should also clearly define the weight requirement for each invested asset. You can do
this using setBounds with a 'Conditional' BoundType. If you do not specify a 'Conditional'
BoundType, the optimizer cannot understand which assets are invested assets and cannot formulate
the MinNumAssets constraint.

The following example specifies that at least two assets should be invested and the investments
should be greater than 16%.

p = setMinMaxNumAssets(p, 2, []);  
p = setBounds(p, 0.16, 'BoundType', 'conditional');

Use estimateFrontierByReturn to estimate optimal portfolios with targeted portfolio returns.

pwgt = estimateFrontierByReturn(p,[ 0.008, 0.01 ])

pwgt = 3×2

    0.2861    0.3967
    0.5001    0.2437
    0.2138    0.3595

Set 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints for a
Portfolio Object

Set the minimum and maximum cardinality constraints and a 'Conditional' BoundType for a
three-asset portfolio for which you have the mean and covariance values of the asset returns.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  
           
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p); 

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up
the limits on the number of assets invested. The following example specifies that exactly two assets
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should be invested using setMinMaxNumAssets and the investment should be equally allocated
among the two assets using setBounds.

p = setMinMaxNumAssets(p, 2, 2);  
p = setBounds(p, 0.5, 0.5, 'BoundType', 'conditional'); 

Use estimateFrontierByReturn to estimate optimal portfolios with targeted portfolio returns.

pwgt = estimateFrontierByReturn(p,[ 0.008, 0.01 ])

pwgt = 3×2

         0    0.5000
    0.5000         0
    0.5000    0.5000

Set 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints for a
PortfolioCVaR Object

Suppose you have a universe of 12 stocks where you want to find the optimal portfolios with targeted
returns and you want to set semicontinuous and cardinality constraints for the portfolio.

load CAPMuniverse
p = PortfolioCVaR('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);
p = setProbabilityLevel(p, 0.80);

When working with a PortfolioCVaR object, the setMinMaxNumAssets function enables you to set
up the limits on the number of assets invested. The following example specifies that a minimum of
five assets and a maximum of 10 assets should be invested using setMinMaxNumAssets and the
investments should be greater than 4% and less than 45% using setBounds.

p = setMinMaxNumAssets(p, 5, 10);  
p = setBounds(p, 0.04, 0.45, 'BoundType', 'conditional'); 

Use estimateFrontierByReturn to estimate optimal portfolios with targeted portfolio returns.

pwgt = estimateFrontierByReturn(p,[ 0.00026, 0.00038 ])

pwgt = 12×2

    0.0400    0.0400
         0         0
         0         0
         0         0
         0         0
    0.0507    0.0786
    0.0400    0.0400
    0.0400    0.0400
         0         0
    0.0400    0.0400
      ⋮
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Set 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints for a
PortfolioMAD Object

Suppose you have a universe of 12 stocks where you want to find the optimal portfolios with targeted
returns and you want to set semicontinuous and cardinality constraints for the portfolio.

load CAPMuniverse
p = PortfolioMAD('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);

When working with a PortfolioMAD object, the setMinMaxNumAssets function enables you to set
up the limits on the number of assets invested. The following example specifies that a minimum of
five assets and a maximum of 10 assets should be invested using setMinMaxNumAssets and the
investments should be greater than 4% and less than 45% using setBounds.

p = setMinMaxNumAssets(p, 5, 10);  
p = setBounds(p, 0.04, 0.45, 'BoundType', 'conditional'); 

Use estimateFrontierByReturn to estimate optimal portfolios with targeted portfolio returns.

pwgt = estimateFrontierByReturn(p,[ 0.00026, 0.00038 ])

pwgt = 12×2

    0.0400    0.0400
         0         0
         0         0
         0         0
         0         0
    0.0507    0.0786
    0.0400    0.0400
    0.0400    0.0400
         0         0
    0.0400    0.0400
      ⋮

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

MinNumAssets — Minimum number of assets allocated in portfolio
scalar numeric
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Minimum number of assets allocated in the portfolio, specified using a scalar numeric.
Data Types: double

MaxNumAssets — Maximum number of assets allocated in portfolio
scalar numeric

Maximum number of assets allocated in the portfolio, specified using a scalar numeric.
Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object.

Tips
• You can also use dot notation to set up a list of identifiers for assets.

obj = obj.setMinMaxNumAssets(MinNumAssets,MaxNumAssets);
• Specifying empty values ([[]) for MinNumAssets and MaxNumAsssets removes limit constraints

from the Portfolio, PortfolioCVaR, or PortfolioMAD object.

See Also
setBounds | setSolverMINLP | estimateAssetMoments | estimateFrontier |
estimateFrontierByReturn | estimateFrontierByRisk | estimateFrontierLimits |
estimateMaxSharpeRatio | estimatePortSharpeRatio | estimatePortMoments |
estimatePortReturn | estimatePortRisk

Topics
“Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using
Portfolio Objects” on page 4-78
“Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using
PortfolioCVaR Objects” on page 5-68
“Working with 'Conditional' BoundType, MinNumAssets, and MaxNumAssets Constraints Using
PortfolioMAD Objects” on page 6-67
“Troubleshooting for Setting 'Conditional' BoundType, MinNumAssets, and MaxNumAssets
Constraints” on page 4-133
“Common Operations on the Portfolio Object” on page 4-32
“Portfolio Optimization Examples” on page 4-141
“Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
“Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based”

Introduced in R2018b
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setOneWayTurnover
Set up one-way portfolio turnover constraints

Syntax
obj = setOneWayTurnover(obj,BuyTurnover)
obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover,InitPort,NumAssets)

Description
obj = setOneWayTurnover(obj,BuyTurnover) sets up one-way portfolio turnover constraints
for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the respective workflows
when using these different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR
Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover,InitPort,NumAssets) sets
up one-way portfolio turnover constraints for portfolio objects with additional options specified for
SellTurnover, InitPort, and NumAssets.

Given an initial portfolio in InitPort and an upper bound for portfolio turnover on purchases in
BuyTurnover or sales in SellTurnover, the one-way turnover constraints require any portfolio
Port to satisfy the following:

1' * max{0, Port - InitPort} <= BuyTurnover
1' * max{0, InitPort - Port} <= SellTurnover

Note If Turnover =BuyTurnover = SellTurnover, the constraint is not equivalent to:

1' * | Port - InitPort | <= Turnover

To set this constraint, use setTurnover.

Examples

Set One-Way Turnover Constraints for a Portfolio Object

Set one-way turnover constraints.

p = Portfolio('AssetMean',[0.1, 0.2, 0.15], 'AssetCovar',...
[ 0.005, -0.010,  0.004; -0.010,  0.040, -0.002;  0.004, -0.002,  0.023]);
p = setBudget(p, 1, 1);
p = setOneWayTurnover(p, 1.3, 0.3, 0); %130-30 portfolio
plotFrontier(p);
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Set One-Way Turnover Constraints for a PortfolioCVaR Object

Set one-way turnover constraints.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = PortfolioCVaR('InitPort', x0);
p = setOneWayTurnover(p, 0.3, 0.2);
disp(p.NumAssets);

    10

disp(p.BuyTurnover)

    0.3000

disp(p.SellTurnover)

    0.2000

disp(p.InitPort);

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
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    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

Set One-Way Turnover Constraints for a PortfolioMAD Object

Set one-way turnover constraints.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = PortfolioMAD('InitPort', x0);
p = setOneWayTurnover(p, 0.3, 0.2);
disp(p.NumAssets);

    10

disp(p.BuyTurnover)

    0.3000

disp(p.SellTurnover)

    0.2000

disp(p.InitPort);

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

BuyTurnover — Turnover constraint on purchases
nonnegative and finite scalar
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Turnover constraint on purchases, specified as a nonnegative and finite scalar for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

SellTurnover — Turnover constraint on sales
nonnegative and finite scalar

Turnover constraint on sales, specified as a nonnegative and finite scalar for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

InitPort — Initial or current portfolio weights
0 (default) | finite vector with NumAssets > 0 elements

Initial or current portfolio weights, specified as a finite vector with NumAssets > 0 elements for a
Portfolio, PortfolioCVaR, PortfolioMAD input object (obj).

Note If no InitPort is specified, that value is assumed to be 0.

If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar
expansion.

Data Types: double

NumAssets — Number of assets in portfolio
1 (default) | scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note  If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About
One-way Turnover Constraint

One-way turnover constraints ensure that estimated optimal portfolios differ from an initial portfolio
by no more than specified amounts according to whether the differences are purchases or sales.
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The constraints take the form

1Tmax 0, x− x0 ≤ τB

1Tmax 0, x0− x ≤ τS

with

• x — The portfolio (NumAssets vector)
• x0 — Initial portfolio (NumAssets vector)
• τB — Upper-bound for turnover constraint on purchases (scalar)
• τS — Upper-bound for turnover constraint on sales (scalar)

Specify one-way turnover constraints using the following properties in a supported portfolio object:
BuyTurnover for τB, SellTurnover for τS, and InitPort for x0.

Note The average turnover constraint (which is set using setTurnover) is not just the combination
of the one-way turnover constraints with the same value for the constraint.

Tips
You can also use dot notation to set up one-way portfolio turnover constraints.
obj = obj.setOneWayTurnover(BuyTurnover,SellTurnover,InitPort,NumAssets)

See Also
getOneWayTurnover | setTurnover | setInitPort | setCosts

Topics
“Working with One-Way Turnover Constraints Using Portfolio Object” on page 4-84
“Working with One-Way Turnover Constraints Using PortfolioCVaR Object” on page 5-74
“Working with One-Way Turnover Constraints Using PortfolioMAD Object” on page 6-73
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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setProbabilityLevel
Set probability level for VaR and CVaR calculations

Syntax
obj = setProbabilityLevel(obj,ProbabilityLevel)

Description
obj = setProbabilityLevel(obj,ProbabilityLevel) sets probability level for VaR and CVaR
calculations for a PortfolioCVaR object. For details on the workflow, see “PortfolioCVaR Object
Workflow” on page 5-15.

Examples

Set Probability Level for a PortfolioCVaR Object

Set the ProbabilityLevel for a CVaR portfolio object.

p = PortfolioCVaR;
p = setProbabilityLevel(p, 0.95);
disp(p.ProbabilityLevel)

    0.9500

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR object.

For more information on creating a PortfolioCVaR object, see

• PortfolioCVaR

Data Types: object

ProbabilityLevel — Probability level which is 1 minus the probability of losses greater
than the value-at-risk
scalar with value from 0 to 1

Probability level which is 1 minus the probability of losses greater than the value-at-risk, specified as
a scalar with value from 0 to 1.

Note ProbabilityLevel must be a value from 0 to 1 and, in most cases, should be a value from
0.9 to 0.99.

19 Functions

19-1358



Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a PortfolioCVaR object. For more information on creating a
portfolio object, see

• PortfolioCVaR

Tips
You can also use dot notation to set the probability level for VaR and CVaR calculations:
obj = obj.setProbabilityLevel(ProbabilityLevel)

See Also
setScenarios

Topics
“What Are Scenarios?” on page 5-35
“Conditional Value-at-Risk” on page 5-4

External Websites
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b
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setSolver
Choose main solver and specify associated solver options for portfolio optimization

Syntax
obj = setSolver(obj,solverType)

obj = setSolver(obj,solverType,Name,Value)

obj = setSolver(obj,solverType,optimoptions)

Description
obj = setSolver(obj,solverType) selects the main solver and enables you to specify
associated solver options for portfolio optimization for Portfolio, PortfolioCVaR, or
PortfolioMAD objects. For details on the respective workflows when using these different objects,
see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR Object Workflow” on page 5-15, and
“PortfolioMAD Object Workflow” on page 6-15.

obj = setSolver(obj,solverType,Name,Value) selects the main solver and enables you to
specify associated solver options for portfolio optimization for portfolio objects with additional
options specified by using one or more Name,Value pair arguments.

obj = setSolver(obj,solverType,optimoptions) selects the main solver and enables you to
specify associated solver options for portfolio optimization for portfolio objects with an
optimoptions object.

Examples

Set Solver Type for a Portfolio Object

If you use the quadprog function as the solverType, the default is the interior-point-convex
version of quadprog.

load CAPMuniverse
p = Portfolio('AssetList',Assets(1:12));
p = setDefaultConstraints(p);
p = setSolver(p, 'quadprog');
display(p.solverType);

quadprog

You can switch back to lcprog with:

p = setSolver(p, 'lcprog');
display(p.solverType);

lcprog
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Set the Solver Type as 'fmincon' for a PortfolioCVaR Object

Use 'fmincon' as the solverType.

p = PortfolioCVaR;
p = setSolver(p, 'fmincon');
display(p.solverType);

fmincon

Set the Solver Type as 'fmincon' and Use Name-Value Pair Arguments to Set the Algorithm
for a PortfolioCVaR Object

Use 'fmincon' as the solverType and use name-value pair arguments to set the algorithm to
'interior-point' and to turn off the display.

p = PortfolioCVaR;
p = setSolver(p, 'fmincon', 'Algorithm', 'interior-point', 'Display', 'off');
display(p.solverOptions.Algorithm);

interior-point

display(p.solverOptions.Display);

off

Set the Solver Type as 'fmincon' and Use an optimoptions Object to Set the Algorithm for a
PortfolioCVaR Object

Use 'fmincon' as the solverType and use an optimoptions object to set the algorithm to
'interior-point' and to turn off the display.

p = PortfolioCVaR;
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off');
p = setSolver(p, 'fmincon', options);
display(p.solverOptions.Algorithm);

interior-point

display(p.solverOptions.Display);

off

Set 'TrustRegionCP' as the Solver Type with Default Options for a PortfolioCVaR Object

Use 'TrustRegionCP' as the solverType with default options.

p = PortfolioCVaR;
p = setSolver(p,'TrustRegionCP');
display(p.solverType);
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trustregioncp

display(p.solverOptions);

  struct with fields:

                MaxIterations: 1000
         AbsoluteGapTolerance: 1.0000e-07
         RelativeGapTolerance: 1.0000e-05
       NonlinearScalingFactor: 1000
       ObjectiveScalingFactor: 1000
          MasterSolverOptions: [1x1 optim.options.Linprog]
                      Display: 'off'
                CutGeneration: 'basic'
     MaxIterationsInactiveCut: 30
           ActiveCutTolerance: 1.0000e-07
                  ShrinkRatio: 0.7500
    TrustRegionStartIteration: 2
                   DeltaLimit: 1

Set 'TrustRegionCP' as the Solver Type with 'ShrinkRatio' for a PortfolioCVaR Object

Use the name-value pair 'ShrinkRatio' to shrink the size of the trust region by 0.75.

p = PortfolioCVaR;
p = setSolver(p,'TrustRegionCP','ShrinkRatio',0.75);
display(p.solverType);

trustregioncp

display(p.solverOptions);

  struct with fields:

                MaxIterations: 1000
         AbsoluteGapTolerance: 1.0000e-07
         RelativeGapTolerance: 1.0000e-05
       NonlinearScalingFactor: 1000
       ObjectiveScalingFactor: 1000
          MasterSolverOptions: [1x1 optim.options.Linprog]
                      Display: 'off'
                CutGeneration: 'basic'
     MaxIterationsInactiveCut: 30
           ActiveCutTolerance: 1.0000e-07
                  ShrinkRatio: 0.7500
    TrustRegionStartIteration: 2
                   DeltaLimit: 1

Set 'TrustRegionCP' as the Solver Type and Change the Master Solver Option for a
PortfolioCVaR Object

For the master solver, continue using the dual-simplex algorithm with no display, but tighten its
termination tolerance to 1e-8.
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p = PortfolioCVaR;
options = optimoptions('linprog','Algorithm','Dual-Simplex','Display','off','OptimalityTolerance',1e-8);
p = setSolver(p,'TrustRegionCP','MasterSolverOptions',options);
display(p.solverType)

trustregioncp

display(p.solverOptions)

  struct with fields:

                MaxIterations: 1000
         AbsoluteGapTolerance: 1.0000e-07
         RelativeGapTolerance: 1.0000e-05
       NonlinearScalingFactor: 1000
       ObjectiveScalingFactor: 1000
          MasterSolverOptions: [1x1 optim.options.Linprog]
                      Display: 'off'
                CutGeneration: 'basic'
     MaxIterationsInactiveCut: 30
           ActiveCutTolerance: 1.0000e-07
                  ShrinkRatio: 0.7500
    TrustRegionStartIteration: 2
                   DeltaLimit: 1

display(p.solverOptions.MasterSolverOptions.Algorithm)

dual-simplex

display(p.solverOptions.MasterSolverOptions.Display)

off

display(p.solverOptions.MasterSolverOptions.TolFun)

   1.0000e-08

For the master solver, use the interior-point algorithm with no display, and with a termination
tolerance of 1e-7.

p = PortfolioCVaR;
options = optimoptions('linprog','Algorithm','interior-point','Display','off','OptimalityTolerance',1e-7);
p = setSolver(p,'TrustRegionCP','MasterSolverOptions',options);
display(p.solverType)

trustregioncp

display(p.solverOptions)

  struct with fields:

                MaxIterations: 1000
         AbsoluteGapTolerance: 1.0000e-07
         RelativeGapTolerance: 1.0000e-05
       NonlinearScalingFactor: 1000
       ObjectiveScalingFactor: 1000
          MasterSolverOptions: [1x1 optim.options.Linprog]
                      Display: 'off'
                CutGeneration: 'basic'
     MaxIterationsInactiveCut: 30
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           ActiveCutTolerance: 1.0000e-07
                  ShrinkRatio: 0.7500
    TrustRegionStartIteration: 2
                   DeltaLimit: 1

display(p.solverOptions.MasterSolverOptions.Algorithm)

interior-point

display(p.solverOptions.MasterSolverOptions.Display)

off

display(p.solverOptions.MasterSolverOptions.TolFun)

   1.0000e-07

Set Solver Type as 'fmincon' for a PortfolioMAD Object

Use 'fmincon' as the solverType.

p = PortfolioMAD;
p = setSolver(p, 'fmincon');
display(p.solverType);

fmincon

Set the Solver Type as 'fmincon' and Use Name-Value Pair Arguments to Set the Algorithm
for a PortfolioMAD Object

Use 'fmincon' as the solverType and use name-value pair arguments to set the algorithm to
'sqp' and to turn on the display.

p = PortfolioMAD;
p = setSolver(p, 'fmincon', 'Algorithm', 'sqp', 'Display', 'final');
display(p.solverOptions.Algorithm);

sqp

display(p.solverOptions.Display);

final

Set Solver Type as 'fmincon' and Use an optimoptions Structure to Set the Algorithm for a
PortfolioMAD Object

Use 'fmincon' as the solverType and use an optimoptions object to set the algorithm to
'trust-region-reflective' and to turn off the display.

p = PortfolioMAD;
options = optimoptions('fmincon', 'Algorithm', 'trust-region-reflective', 'Display', 'off');
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p = setSolver(p, 'fmincon', options);
display(p.solverOptions.Algorithm);

trust-region-reflective

display(p.solverOptions.Display);

off

Set the Solver Type as 'fmincon' and Use an optimoptions Structure to Set the Algorithm
and Use of Gradients for a PortfolioMAD Object

Use 'fmincon' as the solverType and use an optimoptions object to set the algorithm to
'active-set' and to set the gradients flag 'on' for 'GradObj' and turn off the display.

p = PortfolioMAD;
options = optimoptions('fmincon','algorithm','active-set','display','off','gradobj','on');
p = setSolver(p, 'fmincon', options);
display(p.solverOptions.Algorithm);

active-set

display(p.solverOptions.Display);

off

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

solverType — Solver to use for portfolio optimization
character vector | string

Solver to use for portfolio optimization, specified using a character vector or string for the supported
solverType.

The solverType input argument depends on which type of object (obj) is being used for a portfolio
optimization.

For a Portfolio object, the supported solverType are:

• 'lcprog' (Default).
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• The 'lcprog' solver uses linear complementary programming with Lemke's algorithm with
control variables name-value pair arguments for 'maxiter', 'tiebreak', 'tolpiv'. For
more information about 'lcprog' name-value pair options, see “Portfolio Object Name-Value
Pair Arguments” on page 19-1367.

• 'fmincon'

• The default algorithm for 'fmincon' is 'sqp'. For more information about 'fmincon' name-
value pair options, see “Portfolio Object Name-Value Pair Arguments” on page 19-1367.

• 'quadprog'

• The default algorithm for 'quadprog' is interior-point-convex. For more information
about 'quadprog' name-value pair options, see “Portfolio Object Name-Value Pair Arguments”
on page 19-1367.

For a PortfolioCVaR object, the supported solverType are:

• 'TrustRegionCP' (Default)

• 'TrustRegionCP' is an implementation of Kelley's [1] cutting-plane method for convex
optimization. For more information about 'TrustRegionCP' name-value pair options, see
“Name-Value Pair Arguments for 'TrustRegionCP' and 'ExtendedCP'” on page 19-1369.

• 'ExtendedCP'

• 'ExtendedCP' is an implementation of Kelley's [1] cutting-plane method for convex
optimization. For more information about 'ExtendedCP' name-value pair options, see “Name-
Value Pair Arguments for 'TrustRegionCP' and 'ExtendedCP'” on page 19-1369.

• 'fmincon'

• The default algorithm for 'fmincon' is 'sqp'. For more information about 'fmincon' name-
value pair options, see “PortfolioCVaR Object Name-Value Pair Arguments” on page 19-1368.

• 'cuttingplane'

• The 'cuttingplane' solver is an implementation of Kelley's [1] cutting-plane method for
convex optimization with name-value pair arguments for 'MaxIter', 'Abstol', 'Reltol'
and 'MasterSolverOptions'. For more information about 'cuttingplane' name-value
pair options, see “PortfolioCVaR Object Name-Value Pair Arguments” on page 19-1368.

For a PortfolioMAD object, the supported solverType are:

• 'TrustRegionCP' (Default)

• 'TrustRegionCP' is an implementation of Kelley's [1] cutting-plane method for convex
optimization. For more information about 'TrustRegionCP' name-value pair options, see
“Name-Value Pair Arguments for 'TrustRegionCP' and 'ExtendedCP'” on page 19-1369.

• 'ExtendedCP'

• 'ExtendedCP' is an implementation of Kelley's [1] cutting-plane method for convex
optimization. For more information about 'ExtendedCP' name-value pair options, see “Name-
Value Pair Arguments for 'TrustRegionCP' and 'ExtendedCP'” on page 19-1369.

• 'fmincon'
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• The default algorithm for 'fmincon' is the 'sqp' algorithm and 'GradObj' set to 'on'. For
more information about 'fmincon' name-value pair options, see “PortfolioMAD Object Name-
Value Pair Arguments” on page 19-1369.

Note setSolver can also configure solver options for 'linprog'. linprog is a helper solver used
in estimating efficient frontier problems for a Portfolio, PorfolioCVaR, or PortfolioMAD object.
The default algorithm for 'linprog' is 'dual-simplex'. For more information about 'linprog'
name-value pair options, see “Name-Value Pair Arguments” on page 19-1367. For more details on
using a helper solver, see “Solver Guidelines for Portfolio Objects” on page 4-110, “Solver Guidelines
for PortfolioCVaR Objects” on page 5-95, or “Solver Guidelines for PortfolioMAD Objects” on page 6-
93.

Data Types: char | string

optimoptions — optimoptions object
object

(Optional) optimoptions object, specified as an optimoptions object that is created using
optimoptions from Optimization Toolbox. For example:

p = setSolver(p,'fmincon',optimoptions('fmincon','Display','iter'));

Note optimoptions is the default and recommended method to set solver options, however
optimset is also supported.

Data Types: object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: p = setSolver(p,'cuttingplane','MasterSolverOptions',options) sets
cuttingplane options for a PortfolioCVaR object.

Depending on the obj type (Portfolio, PortfolioCVaR, or PortfolioMAD) and the specified
solverType, the options for the associated name-value pair arguments are different.

Portfolio Object Name-Value Pair Arguments

• For a Portfolio object using a solverType of lcprog, choose a name-value value in this table.

Value Description
'maxiter' Maximum number of iterations,specified as the comma-separated pair

consisting of 'MaxIter' and a positive integer. The default value is 1 +
n3, where n is the dimension of the input.
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Value Description
'tiebreak' Method to break ties for pivot selection, specified as the comma-separated

pair consisting of 'tiebreak' and one of the following options:

• first - Select pivot with lowest index.
• last - Select pivot with highest index.
• random - Select a pivot at random.

The default value is first.
'tolpiv' Pivot tolerance below which a number is considered to be zero, specified

as the comma-separated pair consisting of 'tolpiv' and a numeric value.
The default value is 1.0e-9.

• For a Portfolio object using a solverType of fmincon, see “options” to choose name-value
pair arguments.

• For a Portfolio object using a solverType of linprog, see “options” to choose name-value
pair arguments.

• For a Portfolio object using a solverType of quadprog, see “options” to choose name-value
pair arguments.

PortfolioCVaR Object Name-Value Pair Arguments

• For a PortfolioCVaR object using a solverType of fmincon, see “options” to choose name-
value pair arguments.

• For a PorfolioCVaR object using a solverType of 'TrustRegionCP' or 'ExtendedCP', see
“Name-Value Pair Arguments for 'TrustRegionCP' and 'ExtendedCP'” on page 19-1369 to choose
name-value pair arguments.

• For a PorfolioCVaR object using a solverType of 'cuttingplane', choose a name-value pair
value in this table.

Value Description
'MaxIter' Maximum number of iterations, specified as the comma-separated

pair consisting of 'MaxIter' and a positive integer. The default
value is 1000.

'AbsTol' Absolute stopping tolerance, specified as the comma-separated pair
consisting of 'AbsTol' and a positive scalar. The default value is
1e-6.

'RelTol' Relative stopping tolerance, specified as the comma-separated pair
consisting of 'RelTol' and a positive scalar. The default value is
1e-5.

'MasterSolverOptio
ns'

Options for the master solver linprog, specified as the comma-
separated pair consisting of 'MasterSolverOptions' and an
optimoptions object. The default is
optimoptions('linprog','Algorithm','Dual-
Simplex','Display','off').

• For a PortfolioCVaR object using a solverType of linprog, see “options” to choose name-
value pair arguments.
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PortfolioMAD Object Name-Value Pair Arguments

• For a PortfolioMAD object using a solverType of fmincon, see “options” to choose name-
value pair arguments.

• For a PorfolioMAD object using a solverType of 'TrustRegionCP' or 'ExtendedCP', see
“Name-Value Pair Arguments for 'TrustRegionCP' and 'ExtendedCP'” on page 19-1369 to choose
name-value pair arguments.

• For a PortfolioMAD object using a solverType of linprog, see “options” to choose name-
value pair arguments.

Name-Value Pair Arguments for 'TrustRegionCP' and 'ExtendedCP'

For a PortfolioCVaR or PortfolioMAD object using a solverType of 'TrustRegionCP' or
'ExtendedCP', choose a name-value pair value in this table.

Value Description
'MaxIterations' Maximum number of iterations, specified as the comma-separated pair

consisting of 'MaxIterations' and a positive real number. The default
value is 1e-3.

'NonlinearScalingFa
ctor'

Scales the nonlinear function and its gradient by a factor, specified as the
comma-separated pair consisting of 'NonlinearScalingFactor' and a
positive real number. The default value is 1e-3.

'ObjectiveScalingFa
ctor'

Scales the objective function by a factor, specified as the comma-
separated pair consisting of 'ObjectiveScalingFactor' and a positive
real number. The default value is 1e-3.

'AbsoluteGapToleran
ce'

Solver stops if the absolute difference between the approximated
nonlinear function value and its true value is less than or equal to
AbsoluteGapTolerance, specified as the comma-separated pair
consisting of 'AbsoluteGapTolerance' and a positive real number. The
default value is 1e-7.

'RelativeGapToleran
ce'

Solver stops if the relative difference between the approximated nonlinear
function value and its true value is less than or equal to
RelativeGapTolerance, specified as the comma-separated pair
consisting of 'RelativeGapTolerance' and a positive real number. The
default value is 1e-5.

'Display' Level of display, specified as the comma-separated pair consisting of
'Display' and a supported value of:

• 'iter' displays output at each iteration and gives the technical exit
message.

• 'final' displays just the final output and gives the final technical exit
message.

• 'off' is the default and displays no output.

 setSolver

19-1369



Value Description
'CutGeneration' Method to add the cut, specified as the comma-separated pair consisting

of 'CutGeneration' and a supported value of:

• 'basic' is the default and the new cut is added at the latest solution
found.

• 'midway' is where the new cut is added at the mid point between the
latest and previous solution found.

'MaxIterationsInact
iveCut'

Removes constraints that are not active for the last
MaxIterationsInactiveCut iterations, specified as the comma-
separated pair consisting of 'MaxIterationsInactiveCut' and a
positive integer. The default value is 30.

'ActiveCutTolerance
'

Determines if the cuts are active and is used together with
MaxIterationsInactiveCut to decide which cuts to remove from the
LP subproblem, specified as the comma-separated pair consisting of
'ActiveCutTolerance' and a real number. The default value is 1e-7.

'MasterSolverOption
s'

Options for the master solver linprog, specified as the comma-separated
pair consisting of 'MasterSolverOptions' and an optimoptions
object. The default is
optimoptions('linprog','Algorithm','Dual-
Simplex','Display','off').

'TrustRegionStartIt
eration'

Use this parameter only for a solverType of 'TrustRegionCP'. Solver
starts to apply the trust region heuristic at
TrustRegionStartIteration. Nonnegative integer. Default is 2.

'ShrinkRatio' Use this parameter only for a solverType of 'TrustRegionCP'. If the
approximated functions are not agreeing well in the previous iterations,
the algorithm will shrink the size of trust region by the ShrinkRatio.
Nonnegative real between 0 and 1. Default is 0.75.

'DeltaLimit' Use this parameter only for a solverType of 'TrustRegionCP'. The
trust region of the approximated functions is bounded by DeltaLimit
during the iterations. DeltaLimit is also used to initialize the trust
region. For portfolio problems, 1 is generally a good DeltaLimit, since
portfolio weights are between 0 and 1. Nonnegative real. Default is 1.

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD
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Tips
You can also use dot notation to choose the solver and specify associated solver options.

obj = obj.setSolver(solverType,Name,Value);

Algorithms
To solve the efficient frontier of a portfolio, one version of the portfolio optimization problem
minimizes the portfolio risk Risk(x), subject to a target return, and other linear constraints specified
for the Portfolio, PortfolioCVaR, or PortfolioMAD object. For the definition of portfolio risk
and return, see “Risk Proxy” on page 4-5 and “Return Proxy” on page 4-4.

MinimizexRisk(x)
subject to  Return(x) ≥ TargetReturn
Ax ≤ b
Aeqx = beq
lb ≤ x ≤ ub

An alternative version of the portfolio optimization problem maximizes the expected return of the
portfolio, subject to a target risk and other linear constraints specified for the Portfolio,
PortfolioCVaR, or PortfolioMAD object.

MaximizexReturn(x)
subject to  Risk(x) ≤ TargetRisk
Ax ≤ b
Aeqx = beq
lb ≤ x ≤ ub

The return proxy is always a linear function. Therefore, depending on the risk proxy and whether it is
used as the objective or constraints, the problem needs to be solved by different solvers. For example,
quadprog is appropriate for problems with a quadratic function as the objective and only linear
constraints, and fmincon is appropriate for problems with nonlinear objective or constraints. In
addition, there are solvers in Financial Toolbox suitable for certain special types of problems, such as
the solverType lcprog, 'TrustRegionCP', or 'ExtendedCP'.

References
[1] Kelley, J. E. "The Cutting-Plane Method for Solving Convex Programs." Journal of the Society for

Industrial and Applied Mathematics. Vol. 8, No. 4, December 1960, pp. 703–712.

[2] Rockafellar, R. T. and S. Uryasev "Optimization of Conditional Value-at-Risk." Journal of Risk. Vol.
2, No. 3, Spring 2000, pp. 21–41.

[3] Rockafellar, R. T. and S. Uryasev "Conditional Value-at-Risk for General Loss Distributions."
Journal of Banking and Finance. Vol. 26, 2002, pp. 1443–1471.

See Also
getOneWayTurnover | setTurnover | setInitPort | setCosts | setSolverMINLP
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Topics
“Working with One-Way Turnover Constraints Using Portfolio Object” on page 4-84
“Working with One-Way Turnover Constraints Using PortfolioCVaR Object” on page 5-74
“Working with One-Way Turnover Constraints Using PortfolioMAD Object” on page 6-73
“Portfolio Optimization Examples” on page 4-141
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7
“Choosing and Controlling the Solver for Mean-Variance Portfolio Optimization” on page 4-109
“Choosing and Controlling the Solver for PortfolioCVaR Optimizations” on page 5-93
“Choosing and Controlling the Solver for PortfolioMAD Optimizations” on page 6-91

Introduced in R2011a
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setSolverMINLP
Choose mixed integer nonlinear programming (MINLP) solver for portfolio optimization

Syntax
obj = setSolverMINLP(obj,solverTypeMINLP)

obj = setSolverMINLP( ___ ,Name,Value)

Description
obj = setSolverMINLP(obj,solverTypeMINLP) selects the mixed integer nonlinear
programming (MINLP) solver and enables you to specify associated solver options for portfolio
optimization for a Portfolio, PortfolioCVaR, or PortfolioMAD object.

When any one or any combination of 'Conditional' BoundType, MinNumAssets, or
MaxNumAssets constraints are active, the portfolio problem is formulated by adding NumAssets
binary variables. The binary variable 0 indicates that an asset is not invested and the binary variable
1 indicates that an asset is invested. For more information on using 'Conditional' BoundType, see
setBounds. For more information on specifying MinNumAssets and MaxNumAssets, see
setMinMaxNumAssets.

If you use the estimate functions with a Portfolio, PortfolioCVaR, or PortfolioMAD object for
which any of the 'Conditional' BoundType, MinNumAssets, or MaxNumAssets constraints are
active, MINLP solver is automatically used. For details on MINLP, see “Algorithms” on page 19-1383.

obj = setSolverMINLP( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

Examples

Configure MINLP Solver and Options When Using a Portfolio Object

Configure the MINLP solver for a three-asset portfolio for which you have the mean and covariance
values of the asset returns.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ]; 
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);

When working with a Portfolio object, use setBounds with a 'Conditional'BoundType
constraint to set xi = 0 or 0.02 <= xi <= 0.5 for all i = 1,...NumAssets.

p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3); 

When working with a Portfolio object, use setMinMaxNumAssets function to set up
MinNumAssets and MaxNumAssets constraints for a portfolio. This sets limit constraints for the
Portfolio object, where the total number of allocated assets satisfying the constraints is between
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MinNumAssets and MaxNumAssets. Setting MinNumAssets = MaxNumAssets = 2, specifies that
only two of the three assets are invested in the portfolio.

p = setMinMaxNumAssets(p, 2, 2); 

Three different MINLP solvers (OuterApproximation, ExtendedCP, TrustRegionCP) use the
cutting plane method. Use the setSolverMINLP function to configure the OuterApproximation
solver and options.

pint = setSolverMINLP(p,'OuterApproximation', 'NonlinearScalingFactor', 1e4, 'Display', 'iter', 'CutGeneration', 'basic');
pint.solverTypeMINLP

ans = 
'OuterApproximation'

pint.solverOptionsMINLP

ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 10000
                  ObjectiveScalingFactor: 1000
                                 Display: 'iter'
                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

You can also configure the options for intlinprog,which is the Master solver for mixed integer
linear programming problems in the MINLP solver.

pint = setSolverMINLP(p,'OuterApproximation', 'IntMasterSolverOptions', optimoptions('intlinprog','Display','off'));
pint.solverOptionsMINLP.IntMasterSolverOptions

ans = 
  intlinprog options:

   Set properties:
                          Display: 'off'

   Default properties:
             AbsoluteGapTolerance: 0
                       BranchRule: 'reliability'
              ConstraintTolerance: 1.0000e-04
                    CutGeneration: 'basic'
                 CutMaxIterations: 10
                       Heuristics: 'basic'
               HeuristicsMaxNodes: 50
                IntegerPreprocess: 'basic'
                 IntegerTolerance: 1.0000e-05
                  LPMaxIterations: 'max(30000,10*(numberOfEqualities+numberOfInequalities+numberOfVariables))'
            LPOptimalityTolerance: 1.0000e-07
                MaxFeasiblePoints: Inf
                         MaxNodes: 10000000
                          MaxTime: 7200
                    NodeSelection: 'simplebestproj'
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                  ObjectiveCutOff: Inf
    ObjectiveImprovementThreshold: 0
                        OutputFcn: []
                          PlotFcn: []
             RelativeGapTolerance: 1.0000e-04
                  RootLPAlgorithm: 'dual-simplex'
              RootLPMaxIterations: 'max(30000,10*(numberOfEqualities+numberOfInequalities+numberOfVariables))'

Configure MINLP Solver and Options When Using a PortfolioCVaR Object

Configure the MINLP solver for a 12 asset portfolio that is using semicontinuous and cardinality
constraints.

load CAPMuniverse
p = PortfolioCVaR('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);
p = setProbabilityLevel(p, 0.95);

When working with a PortfolioCVaR object, the setMinMaxNumAssets function enables you to set
up the limits on the number of assets invested. The following example specifies that a minimum of
five assets and a maximum of 10 assets should be invested using setMinMaxNumAssets and the
investments should be greater than 4% and less than 45% using setBounds.

p = setMinMaxNumAssets(p, 5, 10);  
p = setBounds(p, 0.04, 0.45, 'BoundType', 'conditional');  

Three different MINLP solvers (OuterApproximation, ExtendedCP, TrustRegionCP) use the
cutting plane method. Use the setSolverMINLP function to configure the OuterApproximation
solver and options.

pint = setSolverMINLP(p,'OuterApproximation', 'NonlinearScalingFactor', 1e4, 'Display', 'iter', 'CutGeneration', 'basic');
pint.solverTypeMINLP

ans = 
'OuterApproximation'

pint.solverOptionsMINLP

ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 10000
                  ObjectiveScalingFactor: 1000
                                 Display: 'iter'
                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

You can also configure the options for intlinprog,which is the Master solver for mixed integer
linear programming problems in the MINLP solver.
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pint = setSolverMINLP(p,'OuterApproximation', 'IntMasterSolverOptions', optimoptions('intlinprog','Display','off'));
pint.solverOptionsMINLP.IntMasterSolverOptions

ans = 
  intlinprog options:

   Set properties:
                          Display: 'off'

   Default properties:
             AbsoluteGapTolerance: 0
                       BranchRule: 'reliability'
              ConstraintTolerance: 1.0000e-04
                    CutGeneration: 'basic'
                 CutMaxIterations: 10
                       Heuristics: 'basic'
               HeuristicsMaxNodes: 50
                IntegerPreprocess: 'basic'
                 IntegerTolerance: 1.0000e-05
                  LPMaxIterations: 'max(30000,10*(numberOfEqualities+numberOfInequalities+numberOfVariables))'
            LPOptimalityTolerance: 1.0000e-07
                MaxFeasiblePoints: Inf
                         MaxNodes: 10000000
                          MaxTime: 7200
                    NodeSelection: 'simplebestproj'
                  ObjectiveCutOff: Inf
    ObjectiveImprovementThreshold: 0
                        OutputFcn: []
                          PlotFcn: []
             RelativeGapTolerance: 1.0000e-04
                  RootLPAlgorithm: 'dual-simplex'
              RootLPMaxIterations: 'max(30000,10*(numberOfEqualities+numberOfInequalities+numberOfVariables))'

Configure MINLP Solver and Options When Using a PortfolioMAD Object

Configure the MINLP solver for a 12 asset portfolio that is using semicontinuous and cardinality
constraints.

load CAPMuniverse
p = PortfolioMAD('AssetList',Assets(1:12));
p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);

When working with a PortfolioMAD object, the setMinMaxNumAssets function enables you to set
up the limits on the number of assets invested. The following example specifies that a minimum of
five assets and a maximum of 10 assets should be invested using setMinMaxNumAssets and the
investments should be greater than 4% and less than 45% using setBounds.

p = setMinMaxNumAssets(p, 5, 10);  
p = setBounds(p, 0.04, 0.45, 'BoundType', 'conditional');  

Three different MINLP solvers (OuterApproximation, ExtendedCP, TrustRegionCP) use the
cutting plane method. Use the setSolverMINLP function to configure the OuterApproximation
solver and options.
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pint = setSolverMINLP(p,'OuterApproximation', 'NonlinearScalingFactor', 1e4, 'Display', 'iter', 'CutGeneration', 'basic');
pint.solverTypeMINLP

ans = 
'OuterApproximation'

pint.solverOptionsMINLP

ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 10000
                  ObjectiveScalingFactor: 1000
                                 Display: 'iter'
                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

You can also configure the options for intlinprog,which is the Master solver for mixed integer
linear programming problems in the MINLP solver.

pint = setSolverMINLP(p,'OuterApproximation', 'IntMasterSolverOptions', optimoptions('intlinprog','Display','off'));
pint.solverOptionsMINLP.IntMasterSolverOptions

ans = 
  intlinprog options:

   Set properties:
                          Display: 'off'

   Default properties:
             AbsoluteGapTolerance: 0
                       BranchRule: 'reliability'
              ConstraintTolerance: 1.0000e-04
                    CutGeneration: 'basic'
                 CutMaxIterations: 10
                       Heuristics: 'basic'
               HeuristicsMaxNodes: 50
                IntegerPreprocess: 'basic'
                 IntegerTolerance: 1.0000e-05
                  LPMaxIterations: 'max(30000,10*(numberOfEqualities+numberOfInequalities+numberOfVariables))'
            LPOptimalityTolerance: 1.0000e-07
                MaxFeasiblePoints: Inf
                         MaxNodes: 10000000
                          MaxTime: 7200
                    NodeSelection: 'simplebestproj'
                  ObjectiveCutOff: Inf
    ObjectiveImprovementThreshold: 0
                        OutputFcn: []
                          PlotFcn: []
             RelativeGapTolerance: 1.0000e-04
                  RootLPAlgorithm: 'dual-simplex'
              RootLPMaxIterations: 'max(30000,10*(numberOfEqualities+numberOfInequalities+numberOfVariables))'
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Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

solverTypeMINLP — MINLP solver for portfolio optimization
character vector with a value of 'OuterApproximation', 'ExtendedCP', or 'TrustRegionCP' |
string with a value of "OuterApproximation", "ExtendedCP", or "TrustRegionCP"

MINLP solver for portfolio optimization when any one or any combination of 'Conditional'
BoundType, MinNumAssets, or MaxNumAssets constraints are active. Specify solverTypeMINLP
using a character vector or string with a value of 'OuterApproximation', 'ExtendedCP', or
'TrustRegionCP'.

For a Portfolio object, the default value of the solverTypeMINLP is 'OuterApproximation'
with the following default settings for name-value pairs for setSolverMINLP:

• MaxIterations — 1000
• AbsoluteGapTolerance — 1.0000e-07
• RelativeGapTolerance — 1.0000e-05
• Display — 'off'
• NonlinearScalingFactor — 1000
• ObjectiveScalingFactor — 1000
• CutGeneration — 'basic'
• MaxIterationsInactiveCut — 30
• NumIterationsEarlyIntegerConvergence — 30
• ActiveCutTolerance — 1.0000e-07
• IntMasterSolverOptions — optimoptions('intlinprog','Algorithm','Dual-

Simplex','Display','off')

For a PortfolioCVaR and PortfolioMAD object, the default value of the solverTypeMINLP is
'TrustRegionCP' with the following default settings for name-value pairs for setSolverMINLP:

• MaxIterations — 1000
• AbsoluteGapTolerance — 1.0000e-07
• RelativeGapTolerance — 1.0000e-05
• Display — 'off'
• NonlinearScalingFactor — 1000
• ObjectiveScalingFactor — 1000
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• CutGeneration — 'basic'
• MaxIterationsInactiveCut — 30
• NumIterationsEarlyIntegerConvergence — 30
• ActiveCutTolerance — 1.0000e-07
• TrustRegionStartIteration - 2
• ShrinkRatio — 0.75
• DeltaLimit — 1
• IntMasterSolverOptions — optimoptions('intlinprog','Algorithm','Dual-

Simplex','Display','off')

Data Types: char | string

Name-Value Pair Arguments or optimoptions Object

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: p =
setSolverMINLP(p,'ExtendedCP','MaxIterations',10000,'NonlinearScalingFactor',
1000)

MaxIterations — Maximum number of iterations
1000 (default) | nonnegative integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a nonnegative integer value.
Data Types: double

NonlinearScalingFactor — Scaling factor for nonlinear function and gradient
1000 (default) | nonnegative real

Scaling factor for nonlinear function and gradient, specified as the comma-separated pair consisting
of 'NonlinearScalingFactor' and a nonnegative real value.
Data Types: double

ObjectiveScalingFactor — Scales the objective function used by MasterSolver by a factor
1000 (default) | nonnegative real

Scales the objective function used by MasterSolver by a factor, specified as the comma-separated pair
consisting of 'ObjectiveScalingFactor' and a nonnegative real value.
Data Types: double

AbsoluteGapTolerance — Solver stops if absolute difference between approximated
nonlinear function value and its true value is less than or equal to AbsoluteGapTolerance
0.0000001 (default) | nonnegative real

The solver stops if the absolute difference between the approximated nonlinear function value and its
true value is less than or equal to AbsoluteGapTolerance. AbsoluteGapTolerance is specified
as the comma-separated pair consisting of 'AbsoluteGapTolerance' and a nonnegative real value.
Data Types: double
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RelativeGapTolerance — Solver stops if the relative difference between approximated
nonlinear function value and its true value is less than or equal to RelativeGapTolerance
0.00001 (default) | nonnegative real

The solver stops if the relative difference between the approximated nonlinear function value and its
true value is less than or equal to RelativeGapTolerance. RelativeGapTolerance is specified
as the comma-separated pair consisting of 'AbsoluteGapTolerance' and a nonnegative real value.
Data Types: double

Display — Display output format
'off' (default) | character vector with value of 'iter', 'final', or 'off'

Display output format, specified as the comma-separated pair consisting of 'Display' and a
character vector with a value of:

• 'off' - Display no output
• 'iter' - Display output at each iteration and the technical exit message
• 'final' - Display only the final output and the final technical exit message

Data Types: char

CutGeneration — Cut specification
'basic' (default) | character vector with value of 'midway' or 'basic'

Cut specification, specified as the comma-separated pair consisting of 'CutGeneration' and a
character vector with one of these values:

• 'midway' - Add the new cut at the midpoint between the latest and previous solutions found.
• 'basic' - Add the new cut at the latest solution found.

Data Types: char

MaxIterationsInactiveCut — Removes constraints that are not active for last
MaxIterationsInactiveCut iterations
30 (default) | nonnegative integer

Removes constraints that are not active for the last MaxIterationsInactiveCut iterations,
specified as the comma-separated pair consisting of 'MaxIterationsInactiveCut' and a
nonnegative integer value. Generally, the MaxIterationsInactiveCut value is larger than 10.
Data Types: double

NumIterationsEarlyIntegerConvergence — When integer variable solution is stable for
the last NumIterationsEarlyIntegerConvergence iterations, the solver computes a final
NLP by using latest integer variable solution in the MILP
30 (default) | nonnegative integer

When the integer variable solution is stable for the last
NumIterationsEarlyIntegerConvergence iterations, the solver computes a final NLP by using
the latest integer variable solution in the MILP. NumIterationsEarlyIntegerConvergence is
specified as the comma-separated pair consisting of
'NumIterationsEarlyIntegerConvergence' and a nonnegative integer value.
Data Types: double
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ActiveCutTolerance — Determines if the cuts are active
0.0000001 (default) | nonnegative real

Determines if the cuts are active, specified as the comma-separated pair consisting of
'ActiveCutTolerance' and a nonnegative real value. ActiveCutTolerance is used together
with MaxIterationsInactiveCut to decide which cuts to remove from the MILP subproblem.
Data Types: double

TrustRegionStartIteration — Solver starts to apply trust region heuristic at
TrustRegionStartIteration
2 (default) | nonnegative integer

Solver starts to apply the trust region heuristic at TrustRegionStartIteration, specified as the
comma-separated pair consisting of 'TrustRegionStartIteration' and a nonnegative integer.

Note The TrustRegionStartIteration name-value pair argument can only be used with a
solverTypeMINLP of 'TrustRegionCP'.

Data Types: double

ShrinkRatio — Ratio to shrink size of trust region
0.75 (default) | nonnegative real between 0 and 1

Ratio to shrink size of trust region, specified as the comma-separated pair consisting of
'ShrinkRatio' and a nonnegative real value between 0 and 1. If the approximated functions do not
have good agreement in the previous iterations, the algorithm uses this ratio to shrink the trust-
region size.

Note The ShrinkRatio name-value pair argument can only be used with a solverTypeMINLP of
'TrustRegionCP'.

Data Types: double

DeltaLimit — Trust region of the approximated functions is bounded by DeltaLimit
during iterations
1 (default) | nonnegative real

Trust region of the approximated functions is bounded by DeltaLimit during the iterations,
specified as the comma-separated pair consisting of 'DeltaLimit' and a nonnegative real value.
For portfolio problems, 1 is generally a good value for DeltaLimit, since portfolio weights are
between 0 and 1.

Note The DeltaLimit name-value pair argument can only be used with a solverTypeMINLP of
'TrustRegionCP'.

Data Types: double

IntMasterSolverOptions — Options for master solver
optimoptions('intlinprog', 'Display', 'off',
'ConstraintTolerance',1e-5,'MaxTime',1000, 'IPPreprocess', 'none',
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'CutGeneration', 'advanced', 'Heuristics', 'rins', 'IntegerTolerance', 1e-5,
'NodeSelection', 'mininfeas', 'LPPreprocess', 'none') (default) | optimoptions
object

Options for the master solver intlinprog, specified as the comma-separated pair consisting of
'IntMasterSolverOptions' and an optimoptions object.
Example: 'IntMasterSolverOptions', optimoptions('intlinprog','Display','off')

Output Arguments
obj — Updated portfolio object
object

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object.

More About
MINLP Solvers

All three MINLP solvers ('OuterApproximation', 'ExtendedCP', and 'TrustRegionCP')
defined by solverTypeMINLP rely on the cutting plane concept.

These MINLP solvers approximate the nonlinear convex function f(x) by a piecewise linear
approximation, which is a sequence of linear cuts around the original function. In this way, the
original MINLP is reduced to a sequence of MILP subproblems, each one with a more refined
approximation to f(x) than previous MILPs, and yields a more optimal solution. The process continues
until the solution found from MILP converges to the true function value within a certain tolerance.

• The 'ExtendedCP' solver iteratively adds a linear cut at the latest solution found to approximate
f(x).

• The 'OuterApproximation' solver is similar to 'ExtendedCP', but they differ in where to add
the cut. Instead of using the solution from the latest MILP, OuterApproximation uses the values
of integer variables from the latest MILP solution and fixes them to reduce the MINLP to a
nonlinear programming (NLP) problem. The cut is added at the solution from this NLP problem.

• The 'TrustRegionCP' solver is a version of 'ExtendedCP' that is modified to speed up the
optimization process. In general, the trust region method uses a model to approximate the true
function within a region at each iteration. In the context of the MINLP solver, the model is the
maximum of all the added cuts. The true function is the nonlinear function f(x) in the optimization
problem. The region of the model is updated based on how well the model approximates the true
function for the iteration. This approximation is the comparison of the predicted reduction of the
objective function using the model vs. the true reduction.

Tips
You can also use dot notation to specify associated name-value pair options.

obj = obj.setSolverMINLP(Name,Value);

Note The solverTypeMINLP and solverOptionsMINLP properties cannot be set using dot
notation because they are hidden properties. To set the solverTypeMINLP and
solverOptionsMINLP properties, use the setSolverMINLP function directly.
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Algorithms
When any one, or any combination of 'Conditional' BoundType, MinNumAssets, or
MaxNumAssets constraints is active, the portfolio problem is formulated by adding NumAssets
binary variables. The binary variable 0 indicates that an asset is not invested and the binary variable
1 indicates that an asset is invested.

The MinNumAssets and MaxNumAssets constraints narrow down the number of active positions in a
portfolio to the range of [minN, maxN]. In addition, the 'Conditional' BoundType constraint is to
set a lower and upper bound so that the position is either 0 or lies in the range [minWgt, maxWgt].
These two types of constraints are incorporated into the portfolio optimization model by introducing n
variables, νi, which only take binary values 0 and 1 to indicate whether the corresponding asset is
invested (1) or not invested (0). Here n is the total number of assets and the constraints can be
formulated as the following linear inequality constraints:

minN ≤ ∑
i = 1

n
υi ≤  maxN

minWgt ∗ υi ≤ xi ≤ maxWgt ∗ υi
0 ≤ υ ≤ 1
υi are integers

In this equation, minN and maxN are representations for MinNumAsset and MaxNumAsset that are
set using setMinMaxNumAssets. Also, minWgt and maxWgt are representations for LowerBound
and UpperBound that are set using setBounds.

The portfolio optimization problem to minimize the variance of the portfolio, subject to achieving a
target expected return and some additional linear constraints on the portfolio weights, is formulated
as

minimizex  xTHx

s . t .   mTx ≥ TargetReturn
Ax ≤ b
Aeqx = beq
lb ≤ x ≤ ub

In this equation, H represents the covariance and m represents the asset returns.

The portfolio optimization problem to maximize the return, subject to an upper limit on the variance
of the portfolio return and some additional linear constraints on the portfolio weights, is formulated
as

maximizex  mTx

s . t .   xTHx ≤ TargetRisk
Ax ≤ b
Aeqx = beq
lb ≤ x ≤ ub

When the 'Conditional' BoundType, MinNumAssets, and MaxNumAssets constraints are added
to the two optimization problems, the problems become:
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minimizexυ  xTHx

s . t .   mTx ≥ TargetReturn
A′[x; υ] ≤ b′
Aeqx = beq

minN ≤ ∑
i = 1

n
υi ≤ maxN

minWgt(υi) ≤ xi ≤ maxWgt(υi)
lb ≤ x ≤ ub
0 ≤ υ ≤ 1
υi are integers

maximizexυ  mTx

s . t .   xTHx ≥ TargetRisk
A′[x; υ] ≤ b′
Aeqx = beq

minN ≤ ∑
i = 1

n
υi ≤ maxN

minWgt ∗ υi ≤ xi ≤ maxWgt(υi)
0 ≤ υ ≤ 1
υi are integers
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See Also
setBounds | setMinMaxNumAssets | estimateFrontier | estimateFrontierByReturn |
estimateFrontierByRisk | estimateFrontierLimits | estimateMaxSharpeRatio |
setSolver

Topics
“Portfolio Optimization with Semicontinuous and Cardinality Constraints” on page 4-172
“Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based”
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
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“Choosing and Controlling the Solver for Mean-Variance Portfolio Optimization” on page 4-109
“Choosing and Controlling the Solver for PortfolioCVaR Optimizations” on page 5-93
“Choosing and Controlling the Solver for PortfolioMAD Optimizations” on page 6-91

Introduced in R2018b

 setSolverMINLP

19-1385



setScenarios
Set asset returns scenarios by direct matrix

Note Using a fints object for the AssetScenarios argument of setScenarios is not
recommended. Use timetable instead for financial time series. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
obj = setScenarios(obj,AssetScenarios)
obj = setScenarios(obj,AssetScenarios,Name,Value)

Description
obj = setScenarios(obj,AssetScenarios) sets asset returns scenarios by direct matrix for
PortfolioCVaR or PortfolioMAD objects. For details on the workflows, see “PortfolioCVaR Object
Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setScenarios(obj,AssetScenarios,Name,Value) set asset returns scenarios by direct
matrix for PortfolioCVaR or PortfolioMAD objects using additional options specified by one or
more Name,Value pair arguments.

Examples

Set Asset Returns Scenarios for a PortfolioCVaR Object

Given a PortfolioCVaR object p, use the setScenarios function to set asset return scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);
disp(p)

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
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    ProbabilityLevel: 0.9500
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: 20000
                Name: []
           NumAssets: 4
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [4x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: [4x1 categorical]

Set Asset Returns Scenarios for a PortfolioMAD Object

Given PortfolioMAD object p, use the setScenarios function to set asset return scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
disp(p)

  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
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    NumScenarios: 20000
            Name: []
       NumAssets: 4
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [4x1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: [4x1 categorical]

Set Asset Returns Scenarios for a PortfolioCVaR Object Using Timetable Data

To illustrate using the setScenarios function with AssetScenarios data continued in a
timetable object, use the CAPMuniverse.mat which contains a timetable object
(AssetTimeTable) for returns data.

load CAPMuniverse;
AssetsTimeTable.Properties;
head(AssetsTimeTable,5)

ans=5×14 timetable
       Time          AAPL         AMZN         CSCO         DELL         EBAY       GOOG       HPQ          IBM         INTC         MSFT         ORCL         YHOO        MARKET         CASH   
    ___________    _________    _________    _________    _________    _________    ____    _________    _________    _________    _________    _________    _________    _________    __________

    03-Jan-2000     0.088805       0.1742     0.008775    -0.002353      0.12829    NaN       0.03244     0.075368      0.05698    -0.001627     0.054078     0.097784    -0.012143    0.00020522
    04-Jan-2000    -0.084331     -0.08324     -0.05608     -0.08353    -0.093805    NaN     -0.075613    -0.033966    -0.046667    -0.033802      -0.0883    -0.067368     -0.03166    0.00020339
    05-Jan-2000     0.014634     -0.14877    -0.003039     0.070984     0.066875    NaN     -0.006356      0.03516     0.008199     0.010567    -0.052837    -0.073363     0.011443    0.00020376
    06-Jan-2000    -0.086538    -0.060072    -0.016619    -0.038847    -0.012302    NaN     -0.063688    -0.017241     -0.05824    -0.033477    -0.058824     -0.10307     0.011743    0.00020266
    07-Jan-2000     0.047368     0.061013       0.0587    -0.037708    -0.000964    NaN      0.028416    -0.004386      0.04127     0.013091     0.076771      0.10609      0.02393    0.00020157

setScenarios accepts a name-value pair argument name 'DataFormat' with a corresponding
value set to 'prices' to indicate that the input to the function is in the form of asset prices and not
returns (the default value for the 'DataFormat' argument is 'returns').

r = PortfolioCVaR;
r = setScenarios(r,AssetsTimeTable,'dataformat','returns');

In addition, the setScenarios function also extracts asset names or identifiers from a timetable
object when the name-value argument 'GetAssetList' set to true (its default value is false). If
the 'GetAssetList' value is true, the timetable column identifiers are used to set the AssetList

19 Functions

19-1388



property of the PortfolioCVaR object. To show this, the formation of the PortfolioCVaR object r is
repeated with the 'GetAssetList' flag set to true.

r = setScenarios(r,AssetsTimeTable,'GetAssetList',true);
disp(r.AssetList')

    {'AAPL'  }
    {'AMZN'  }
    {'CSCO'  }
    {'DELL'  }
    {'EBAY'  }
    {'GOOG'  }
    {'HPQ'   }
    {'IBM'   }
    {'INTC'  }
    {'MSFT'  }
    {'ORCL'  }
    {'YHOO'  }
    {'MARKET'}
    {'CASH'  }

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

Data Types: object

AssetScenarios — Scenarios for asset returns or prices
matrix | table | timetable

Scenarios for asset returns or prices, specified as a matrix, table, or timetable that contains asset
data that can be converted into asset returns ([NumSamples-by-NumAssets] matrix).

AssetReturns data can be:

• NumSamples-by-NumAssets matrix.
• Table of NumSamples prices or returns at a given periodicity for an underlying single-period

investment horizon for a collection of NumAssets assets
• Timetable object with NumSamples observations and NumAssets time series

If the input data are prices, they can be converted into returns with the DataFormat name-value pair
argument, where the default format is assumed to be 'Returns'. Be careful using price data
because portfolio optimization usually requires total returns and not simply price returns.

This function sets up a function handle to indirectly access input AssetScenarios without needing
to make a copy of the data.
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Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: p = setScenarios(p,
AssetScenarios,'DataFormat','Returns','GetAssetList',false);

DataFormat — Flag to convert input data as prices into returns
'Returns' (default) | character vector with values 'Returns' or 'Prices'

Flag to convert input data as prices into returns, specified as the comma-separated pair consisting of
'DataFormat' and a character vector with the values:

• 'Returns' — Data in AssetReturns contains asset total returns.
• 'Prices' — Data in AssetReturns contains asset total return prices.

Data Types: char

GetAssetList — Flag indicating which asset names to use for the asset list
false (default) | logical with value true or false

Flag indicating which asset names to use for the asset list, specified as the comma-separated pair
consisting of 'GetAssetList' and a logical with a value of true or false. Acceptable values for
GetAssetList are:

• false — Do not extract or create asset names.
• true — Extract or create asset names from table or timetable.

If a table or timetable is passed into this function as AssetScenarios and the GetAssetList
flag is true, the column names from the table or timetable are used as asset names in
obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are created based on
the AbstractPortfolio property defaultforAssetList, which is currently 'Asset'.

If the GetAssetList flag is false, no action occurs, which is the default behavior.
Data Types: logical

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a PortfolioCVaR or PortfolioMAD object. For more
information on creating a portfolio object, see

• PortfolioCVaR
• PortfolioMAD
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Tips
You can also use dot notation to set asset return scenarios.

obj = obj.setScenarios(AssetScenarios);

See Also
getScenarios

Topics
“Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
“Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

External Websites
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b
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setTrackingError
Set up maximum portfolio tracking error constraint

Syntax
obj = setTrackingError(obj,TrackingError)
obj = setTrackingError( ___ ,TrackingPort,NumAssets)

Description
obj = setTrackingError(obj,TrackingError) sets up a maximum portfolio tracking error
constraint for a Portfolio object. For details on the workflow when using a Portfolio object, see
“Portfolio Object Workflow” on page 4-17.

obj = setTrackingError( ___ ,TrackingPort,NumAssets) sets up a maximum portfolio
tracking error constraint using optional arguments for TrackingPort and NumAssets.

Examples

Set up a Tracking Error Constraint

Create a Portfolio object.

AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];
AssetCovar = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio('mean', AssetMean, 'covar', AssetCovar, 'lb', 0, 'budget', 1)

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [4x1 double]
       AssetCovar: [4x4 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 4
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
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        bEquality: []
       LowerBound: [4x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: []

Estimate the Sharpe ratio for the Portfolio object p and define the tracking error.

x0 = estimateMaxSharpeRatio(p);
te = 0.08;
p = setTrackingError(p, te, x0);
display(p.NumAssets);

     4

display(p.TrackingError);

    0.0800

display(p.TrackingPort);

    0.6608
    0.1622
    0.0626
    0.1143

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on creating a portfolio
object, see Portfolio.
Data Types: object

TrackingError — Upper bound for portfolio tracking error
nonnegative and finite scalar

Upper bound for portfolio tracking error, specified using a nonnegative and finite scalar.

Given an upper bound for portfolio tracking error in TrackingError and a tracking portfolio in
TrackingPort, the tracking error constraint requires any portfolio in Port to satisfy

(Port - TrackingPort)'*AssetCovar*(Port - TrackingPort) <= TrackingError^2 .

For more information, see “Tracking Error Constraints” on page 4-14.
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Data Types: double

TrackingPort — Tracking portfolio weights
finite vector

Tracking portfolio weights, specified using a vector. TrackingPort must be a finite vector with
NumAssets > 0 elements.

If no TrackingPort is specified, it is assumed to be 0. If TrackingPort is specified as a scalar and
NumAssets exists, then TrackingPort undergoes scalar expansion.
Data Types: double

NumAssets — Number of assets in portfolio
scalar

Number of assets in portfolio, specified using a scalar. If it is not possible to obtain a value for
NumAssets, it is assumed that NumAssets is 1.
Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio object. For more information on creating a
portfolio object, see Portfolio.

Note The tracking error constraints can be used with any of the other supported constraints in the
Portfolio object without restrictions. However, since the portfolio set necessarily and sufficiently must
be a non-empty compact set, the application of a tracking error constraint can result in an empty
portfolio set. Use estimateBounds to confirm that the portfolio set is non-empty and compact.

Tips
You can also use dot notation to set up a maximum portfolio tracking error constraint.

obj = obj.setTrackingError(TrackingError, NumAssets);

To remove a tracking portfolio, call this function with an empty argument ([]) for TrackingError.

obj = setTrackingError(obj, [ ]);

See Also
setTrackingPort | Portfolio

Topics
“Working with Tracking Error Constraints Using Portfolio Object” on page 4-87
“Portfolio Optimization Examples” on page 4-141
“Tracking Error Constraints” on page 4-14
“Setting Up a Tracking Portfolio” on page 4-39
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Introduced in R2015b
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setTrackingPort
Set up benchmark portfolio for tracking error constraint

Syntax
obj = setTrackingPort(obj,TrackingPort)
obj = setTrackingPort( ___ ,NumAssets)

Description
obj = setTrackingPort(obj,TrackingPort) sets up a benchmark portfolio for a tracking error
constraint for a Portfolio object. For details on the workflow when using a Portfolio object, see
“Portfolio Object Workflow” on page 4-17.

obj = setTrackingPort( ___ ,NumAssets) sets up a benchmark portfolio for a tracking error
constraint using an optional input argument for NumAssets.

Examples

Set up a Tracking Port

Create a Portfolio object.

AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];
AssetCovar = [ 0.0064 0.00408 0.00192 0;
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

p = Portfolio('mean', AssetMean, 'covar', AssetCovar, 'lb', 0, 'budget', 1)

p = 
  Portfolio with properties:

          BuyCost: []
         SellCost: []
     RiskFreeRate: []
        AssetMean: [4x1 double]
       AssetCovar: [4x4 double]
    TrackingError: []
     TrackingPort: []
         Turnover: []
      BuyTurnover: []
     SellTurnover: []
             Name: []
        NumAssets: 4
        AssetList: []
         InitPort: []
      AInequality: []
      bInequality: []
        AEquality: []
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        bEquality: []
       LowerBound: [4x1 double]
       UpperBound: []
      LowerBudget: 1
      UpperBudget: 1
      GroupMatrix: []
       LowerGroup: []
       UpperGroup: []
           GroupA: []
           GroupB: []
       LowerRatio: []
       UpperRatio: []
     MinNumAssets: []
     MaxNumAssets: []
        BoundType: []

Estimate the Sharpe ratio for the Portfolio object p and define the tracking port.

x0 = estimateMaxSharpeRatio(p);
p = setTrackingPort(p, x0);

display(p.NumAssets);

     4

display(p.TrackingPort);

    0.6608
    0.1622
    0.0626
    0.1143

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on creating a portfolio
object, see Portfolio.
Data Types: object

TrackingPort — Tracking portfolio weights
vector

Tracking portfolio weights, specified using a vector. If TrackingPort is specified as a scalar and
NumAssets exists, then TrackingPort undergoes scalar expansion.
Data Types: double

NumAssets — Number of assets in portfolio
scalar

Number of assets in portfolio, specified using a scalar. If it is not possible to obtain a value for
NumAssets, it is assumed that NumAssets is 1.
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Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio object. For more information on creating a
portfolio object, see Portfolio.

Note The tracking error constraints can be used with any of the other supported constraints in the
Portfolio object without restrictions. However, since the portfolio set necessarily and sufficiently must
be a non-empty compact set, the application of a tracking error constraint can result in an empty
portfolio set. Use estimateBounds to confirm that the portfolio set is non-empty and compact.

Tips
You can also use dot notation to set up a benchmark portfolio for tracking error constraint.

obj = obj.setTrackingPort(TrackingPort, NumAssets);

To remove a tracking portfolio, call this function with an empty argument ([]) for TrackingPort.

obj = setTrackingPort(obj, [ ]);

See Also
setTrackingError | Portfolio

Topics
“Working with Tracking Error Constraints Using Portfolio Object” on page 4-87
“Portfolio Optimization Examples” on page 4-141
“Tracking Error Constraints” on page 4-14
“Setting Up a Tracking Portfolio” on page 4-39

Introduced in R2015b
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setTurnover
Set up maximum portfolio turnover constraint

Syntax
obj = setTurnover(obj,Turnover)
obj = setTurnover(obj,Turnover,InitPort,NumAssets)

Description
obj = setTurnover(obj,Turnover) sets up maximum portfolio turnover constraint for
Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the respective workflows
when using these different objects, see “Portfolio Object Workflow” on page 4-17, “PortfolioCVaR
Object Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = setTurnover(obj,Turnover,InitPort,NumAssets) sets up maximum portfolio
turnover constraint for portfolio objects with additional options specified for Turnover, InitPort,
and NumAssets.

Given an upper bound for portfolio turnover in Turnover and an initial portfolio in InitPort, the
turnover constraint requires any portfolio in Port to satisfy the following:

1' *1/2* | Port - InitPort | <= Turnover

Examples

Set Turnover Constraint for a Portfolio Object

Given a Portfolio object p, to ensure that average turnover is no more than 30% with an initial
portfolio of 10 assets in a variable x0, use the setTurnover method to set the turnover constraint.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = Portfolio('InitPort', x0);
p = setTurnover(p, 0.3);

disp(p.NumAssets);

    10

disp(p.Turnover);

    0.3000

disp(p.InitPort);

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
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    0.1500
    0.1100
    0.0800
    0.1000

Set Turnover Constraint for a CVaR Portfolio Object

Given a CVaR portfolio object p, to ensure that average turnover is no more than 30% with an initial
portfolio of 10 assets in a variable x0, use the setTurnover method to set the turnover constraint.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = PortfolioCVaR('InitPort', x0);
p = setTurnover(p, 0.3);

disp(p.NumAssets);

    10

disp(p.Turnover);

    0.3000

disp(p.InitPort);

    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

Set Turnover Constraint for a MAD Portfolio Object

Given PortfolioMAD object p, to ensure that average turnover is no more than 30% with an initial
portfolio of 10 assets in a variable x0, use the setTurnover method to set the turnover constraint.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 
p = PortfolioMAD('InitPort', x0);
p = setTurnover(p, 0.3);

disp(p.NumAssets);

    10

disp(p.Turnover);

    0.3000

disp(p.InitPort);
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    0.1200
    0.0900
    0.0800
    0.0700
    0.1000
    0.1000
    0.1500
    0.1100
    0.0800
    0.1000

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Data Types: object

Turnover — Portfolio turnover constraint
nonnegative and finite scalar

Portfolio turnover constraint, specified as a nonnegative and finite scalar for a Portfolio,
PortfolioCVaR, or PortfolioMADinput object (obj).

InitPort — Initial or current portfolio weights
0 (default) | finite vector with NumAssets > 0 elements.

Initial or current portfolio weights, specified as a finite vector with NumAssets > 0 elements for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Note  If no InitPort is specified, that value is assumed to be 0.

If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes scalar
expansion.

Data Types: double

NumAssets — Number of assets in portfolio
1 (default) | scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note  If it is not possible to obtain a value for NumAssets, it is assumed that NumAssets is 1.
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Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD object. For
more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Tips
You can also use dot notation to set up the maximum portfolio turnover constraint.

obj = obj.setTurnover(Turnover, InitPort, NumAssets);

See Also
getOneWayTurnover | setOneWayTurnover | setInitPort

Topics
“Working with Average Turnover Constraints Using Portfolio Object” on page 4-81
“Working with Average Turnover Constraints Using PortfolioCVaR Object” on page 5-71
“Portfolio Optimization Examples” on page 4-141
“Portfolio Analysis with Turnover Constraints” on page 4-193
“Portfolio Set for Optimization Using Portfolio Objects” on page 4-8
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-7

Introduced in R2011a
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simulateNormalScenariosByData
Simulate multivariate normal asset return scenarios from data

Note Using a fints object for the AssetReturns argument of
simulateNormalScenariosByData is not recommended. Use timetable instead for financial
time series. For more information, see “Convert Financial Time Series Objects fints to Timetables”.

Syntax
obj = simulateNormalScenariosByData(obj,AssetReturns)

obj = simulateNormalScenariosByData(obj,AssetReturns,NumScenarios,Name,Value)

Description
obj = simulateNormalScenariosByData(obj,AssetReturns) simulates multivariate normal
asset return scenarios from data for portfolio object for PortfolioCVaR or PortfolioMAD objects.
For details on the workflows, see “PortfolioCVaR Object Workflow” on page 5-15, and “PortfolioMAD
Object Workflow” on page 6-15.

obj = simulateNormalScenariosByData(obj,AssetReturns,NumScenarios,Name,Value)
simulates multivariate normal asset return scenarios from data for portfolio object for
PortfolioCVaR or PortfolioMAD objects using additional options specified by one or more
Name,Value pair arguments.

This function estimates the mean and covariance of asset returns from either price or return data and
then uses these estimates to generate the specified number of scenarios with the function mvnrnd.

Data can be in a NumSamples-by-NumAssets matrix of NumSamples prices or returns at a given
periodicity for a collection of NumAssets assets, a table or a timetable.

Note If you want to use the method multiple times and you want to simulate identical scenarios each
time the function is called, precede each function call with rng(seed) using a specified integer seed.

Examples

Simulate Multivariate Normal Asset Return Scenarios from Data for a PortfolioCVaR Object

Given a PortfolioCVaR object p, use the simulateNormalScenariosByData function to simulate
multivariate normal asset return scenarios from data.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
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C = C/12;

RawData = mvnrnd(m, C, 240);
NumScenarios = 2000;

p = PortfolioCVaR;
p = simulateNormalScenariosByData(p, RawData, NumScenarios)

p = 
  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: 2000
                Name: []
           NumAssets: 4
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: []
          UpperBound: []
         LowerBudget: []
         UpperBudget: []
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: []

p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);

disp(p);

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: 0.9000
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: 2000
                Name: []
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           NumAssets: 4
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [4x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: [4x1 categorical]

Estimate Mean and Covariance of Asset Returns from Market Data for a PortfolioCVaR
Object

Create a PortfolioCVaR object p and use the simulateNormalScenariosByData function with
market data loaded from CAPMuniverse.mat to simulate multivariate normal asset return scenarios.
The market data, AssetsTimeTable, is a timetable of asset returns.

load CAPMuniverse

p = PortfolioCVaR('AssetList',Assets);
disp(p);

  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: []
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: []
                Name: []
           NumAssets: 14
           AssetList: {1x14 cell}
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: []
          UpperBound: []
         LowerBudget: []
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         UpperBudget: []
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: []

Simulate the scenarios from the timetable data for each of the assets from CAPMuniverse.mat and
plot the efficient frontier.

p = simulateNormalScenariosByData(p,AssetsTimeTable,10000,'missingdata',true);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);
plotFrontier(p);

Estimate Mean and Covariance of Asset Returns from Data for a PortfolioMAD Object

Given a PortfolioMAD object p, use the simulateNormalScenariosByData function to simulate
multivariate normal asset return scenarios from data.
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m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

RawData = mvnrnd(m, C, 240);
NumScenarios = 2000;

p = PortfolioMAD;
p = simulateNormalScenariosByData(p, RawData, NumScenarios);
p = setDefaultConstraints(p);

disp(p);

  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: 2000
            Name: []
       NumAssets: 4
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [4x1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
    MaxNumAssets: []
       BoundType: [4x1 categorical]

Estimate Mean and Covariance of Asset Returns from Market Data for a PortfolioMAD
Object

Create a PortfolioMAD object p and use the simulateNormalScenariosByData function with
market data loaded from CAPMuniverse.mat to simulate multivariate normal asset return scenarios.
The market data, AssetsTimeTable, is a timetable of asset returns.
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load CAPMuniverse

p = PortfolioMAD('AssetList',Assets);
disp(p.AssetList');

    {'AAPL'  }
    {'AMZN'  }
    {'CSCO'  }
    {'DELL'  }
    {'EBAY'  }
    {'GOOG'  }
    {'HPQ'   }
    {'IBM'   }
    {'INTC'  }
    {'MSFT'  }
    {'ORCL'  }
    {'YHOO'  }
    {'MARKET'}
    {'CASH'  }

Simulate the scenarios from the timetable data for each of the assets from CAPMuniverse.mat and
plot the efficient frontier.

p = simulateNormalScenariosByData(p,AssetsTimeTable,10000,'missingdata',true);
p = setDefaultConstraints(p);
plotFrontier(p);
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Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

Data Types: object

AssetReturns — Asset data that can be converted into asset returns
matrix | table | timetable

Asset data that can be converted into asset returns ([NumSamples-by-NumAssets] matrix), specified
as a matrix, table, or timetable.

AssetReturns data can be:

• NumSamples-by-NumAssets matrix.
• Table of NumSamples prices or returns at a given periodicity for a collection of NumAssets assets
• Timetable object with NumSamples observations and NumAssets time series

Data Types: double | table | timetable

NumScenarios — Number of scenarios to simulate
positive integer

Number of scenarios to simulate, specified as a positive integer.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: p =
simulateNormalScenariosByData(p,RawData,NumScenarios,'DataFormat','Returns','
MissingData',true,'GetAssetList',true)

DataFormat — Flag to convert input data as prices into returns
'Returns' (default) | character vector with values 'Returns' or 'Prices'

Flag to convert input data as prices into returns, specified as the comma-separated pair consisting of
'DataFormat' and a character vector with the values:

• 'Returns' — Data in AssetReturns contains asset total returns.
• 'Prices' — Data in AssetReturns contains asset total return prices.

Data Types: char
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MissingData — Flag to use ECM algorithm to handle NaN values
false (default) | logical with values true or false

Flag to use ECM algorithm to handle NaN values, specified as the comma-separated pair consisting of
'MissingData' and a logical with a value of true or false.

• false — Do not use ECM algorithm to handle NaN values (exclude NaN values).
• true — Use ECM algorithm to handle NaN values.

Data Types: logical

GetAssetList — Flag indicating which asset names to use for the asset list
false (default) | logical with values true or false

Flag indicating which asset names to use for the asset list, specified as the comma-separated pair
consisting of 'GetAssetList' and a logical with a value of true or false.

• false — Do not extract or create asset names.
• true — Extract or create asset names from the table or timetable.

If a table or timetable is passed into this function using the AssetReturns argument and the
GetAssetList flag is true, the column names from the table or timetable are used as asset
names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are created based on
the AbstractPortfolio property defaultforAssetList, which is 'Asset'.

If the GetAssetList flag is false, no action occurs, which is the default behavior.
Data Types: logical

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a PortfolioCVaR or PortfolioMAD object. For more
information on creating a portfolio object, see

• PortfolioCVaR
• PortfolioMAD

Tips
You can also use dot notation to simulate multivariate normal asset return scenarios from data for a
PortfolioCVaR or PortfolioMAD object.
obj = obj.simulateNormalScenariosByData(AssetReturns,NumScenarios,Name,Value);

See Also
simulateNormalScenariosByMoments | fints | rng

Topics
“Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
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“Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

External Websites
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b

 simulateNormalScenariosByData
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simulateNormalScenariosByMoments
Simulate multivariate normal asset return scenarios from mean and covariance of asset returns

Syntax
obj = simulateNormalScenariosByMoments(obj,AssetMean,AssetCovar,NumScenarios)
obj = simulateNormalScenariosByMoments(obj,AssetMean,AssetCovarNumScenarios,
NumAssets)

Description
obj = simulateNormalScenariosByMoments(obj,AssetMean,AssetCovar,NumScenarios)
simulates multivariate normal asset return scenarios from mean and covariance of asset returns for
PortfolioCVaR or PortfolioMAD objects. For details on the workflows, see “PortfolioCVaR Object
Workflow” on page 5-15, and “PortfolioMAD Object Workflow” on page 6-15.

obj = simulateNormalScenariosByMoments(obj,AssetMean,AssetCovarNumScenarios,
NumAssets) simulates multivariate normal asset return scenarios from mean and covariance of asset
returns for PortfolioCVaR or PortfolioMAD objects using the optional input NumScenarios.

Note This function overwrites existing scenarios associated with PortfolioCVaR or PortfolioMAD
objects, and also, possibly, NumScenarios.

If you want to use the function multiple times and you want to simulate identical scenarios each time
the function is called, precede each function call with rng(seed) using a specified integer seed.

Examples

Simulate Multivariate Normal Asset Return Scenarios from Moments for a PortfolioCVaR
Object

Given PortfolioCVaR object p, use the simulateNormalScenariosByMoments function to simulate
multivariate normal asset return scenarios from moments.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);
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AssetMean = [.5]

AssetMean = 0.5000

AssetCovar = [.5]

AssetCovar = 0.5000

NumScenarios = 100

NumScenarios = 100

p = simulateNormalScenariosByMoments(p, AssetMean, AssetCovar, NumScenarios)

p = 
  PortfolioCVaR with properties:

             BuyCost: []
            SellCost: []
        RiskFreeRate: []
    ProbabilityLevel: 0.9500
            Turnover: []
         BuyTurnover: []
        SellTurnover: []
        NumScenarios: 100
                Name: []
           NumAssets: 4
           AssetList: []
            InitPort: []
         AInequality: []
         bInequality: []
           AEquality: []
           bEquality: []
          LowerBound: [4x1 double]
          UpperBound: []
         LowerBudget: 1
         UpperBudget: 1
         GroupMatrix: []
          LowerGroup: []
          UpperGroup: []
              GroupA: []
              GroupB: []
          LowerRatio: []
          UpperRatio: []
        MinNumAssets: []
        MaxNumAssets: []
           BoundType: [4x1 categorical]

Simulate Multivariate Normal Asset Return Scenarios from Moments for a PortfolioMAD
Object

Given PortfolioMAD object p, use the simulateNormalScenariosByMoments function to simulate
multivariate normal asset return scenarios from moments.
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m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

AssetMean = [.5]

AssetMean = 0.5000

AssetCovar = [.5]

AssetCovar = 0.5000

NumScenarios = 100

NumScenarios = 100

p = simulateNormalScenariosByMoments(p, AssetMean, AssetCovar, NumScenarios)

p = 
  PortfolioMAD with properties:

         BuyCost: []
        SellCost: []
    RiskFreeRate: []
        Turnover: []
     BuyTurnover: []
    SellTurnover: []
    NumScenarios: 100
            Name: []
       NumAssets: 4
       AssetList: []
        InitPort: []
     AInequality: []
     bInequality: []
       AEquality: []
       bEquality: []
      LowerBound: [4x1 double]
      UpperBound: []
     LowerBudget: 1
     UpperBudget: 1
     GroupMatrix: []
      LowerGroup: []
      UpperGroup: []
          GroupA: []
          GroupB: []
      LowerRatio: []
      UpperRatio: []
    MinNumAssets: []
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    MaxNumAssets: []
       BoundType: [4x1 categorical]

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

Data Types: object

AssetMean — Mean of asset returns
vector

Mean of asset returns, specified as a vector.

Note If AssetMean is a scalar and the number of assets is known, scalar expansion occurs. If the
number of assets cannot be determined, this function assumes that NumAssets = 1.

Data Types: double

AssetCovar — Covariance of asset returns
symmetric positive semidefinite matrix

Covariance of asset returns, specified as a symmetric positive semidefinite matrix.

Note

• If AssetCovar is a scalar and the number of assets is known, a diagonal matrix is formed with the
scalar value along the diagonals. If it is not possible to determine the number of assets, this
method assumes that NumAssets = 1.

• If AssetCovar is a vector, a diagonal matrix is formed with the vector along the diagonal.
• If AssetCovar is not a symmetric positive semidefinite matrix, use nearcorr to create a positive
semidefinite matrix for a correlation matrix.

Data Types: double

NumScenarios — Number of scenarios to simulate
positive integer

Number of scenarios to simulate, specified as a positive integer.
Data Types: double
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NumAssets — Number of assets
scalar

Number of assets, specified as a scalar.
Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a PortfolioCVaR or PortfolioMAD object. For more
information on creating a portfolio object, see

• PortfolioCVaR
• PortfolioMAD

Tips
You can also use dot notation to simulate multivariate normal asset return scenarios from a mean and
covariance of asset returns for a PortfolioCVaR or PortfolioMAD object.
obj = obj.simulateNormalScenariosByMoments(AssetMean, AssetCovar, NumScenarios, NumAssets);

See Also
simulateNormalScenariosByData | rng | nearcorr

Topics
“Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-35
“Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-34

External Websites
Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50 min 42 sec)

Introduced in R2012b
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setfield
Set content of specific field

Note setfield is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = setfield(tsobj,field,V)

newfts = setfield(tsobj,field,{dates},V)

Description
setfield treats the contents of fields in a time series object (tsobj) as fields in a structure.

newfts = setfield(tsobj,field,V) sets the contents of the specified field to the value V. This
is equivalent to the syntax S.field = V.

newfts = setfield(tsobj,field,{dates},V) sets the contents of the specified field for the
specified dates. dates can be individual cells of date character vectors or a cell of a date character
vector’s range using the :: operator, for example, '03/01/99::03/31/99'. Dates can contain time-
of-day information.

Examples
Example 1. Set the closing value for all days to 3890.

load dji30short 
format bank
myfts1 = setfield(myfts1, 'Close', 3890) 

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/setfield (line 84) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

myfts1 = 
 
    desc:  DJI30MAR94.dat
    freq:  Daily (1)

    'dates:  (20)'    'Open:  (20)'    'High:  (20)'    'Low:  (20)'    'Close:  (20)'
    '04-Mar-1994'     [    3830.90]    [    3868.04]    [   3800.50]    [     3890.00]
    '07-Mar-1994'     [    3851.72]    [    3882.40]    [   3824.71]    [     3890.00]
    '08-Mar-1994'     [    3858.48]    [    3881.55]    [   3822.45]    [     3890.00]
    '09-Mar-1994'     [    3853.97]    [    3874.52]    [   3817.95]    [     3890.00]
    '10-Mar-1994'     [    3852.57]    [    3865.51]    [   3801.63]    [     3890.00]
    '11-Mar-1994'     [    3832.58]    [    3872.83]    [   3806.69]    [     3890.00]
    '14-Mar-1994'     [    3870.29]    [    3894.21]    [   3835.96]    [     3890.00]
    '15-Mar-1994'     [    3863.41]    [    3888.46]    [   3826.85]    [     3890.00]
    '16-Mar-1994'     [    3851.03]    [    3879.53]    [   3819.94]    [     3890.00]
    '17-Mar-1994'     [    3853.62]    [    3891.34]    [   3821.66]    [     3890.00]
    '18-Mar-1994'     [    3865.42]    [    3911.78]    [   3838.65]    [     3890.00]
    '21-Mar-1994'     [    3878.38]    [    3898.25]    [   3838.65]    [     3890.00]
    '22-Mar-1994'     [    3865.71]    [    3896.23]    [   3840.66]    [     3890.00]
    '23-Mar-1994'     [    3868.88]    [    3901.41]    [   3839.80]    [     3890.00]
    '24-Mar-1994'     [    3849.88]    [    3865.42]    [   3792.58]    [     3890.00]
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    '25-Mar-1994'     [    3827.13]    [    3826.85]    [   3774.73]    [     3890.00]
    '28-Mar-1994'     [    3776.46]    [    3793.45]    [   3719.74]    [     3890.00]
    '29-Mar-1994'     [    3757.17]    [    3771.86]    [   3689.23]    [     3890.00]
    '30-Mar-1994'     [    3688.36]    [    3718.88]    [   3612.36]    [     3890.00]
    '31-Mar-1994'     [    3639.71]    [    3673.10]    [   3544.12]    [     3890.00]

Example 2. Set values for specific times on specific days.

First create a financial time series containing time-of-day data.
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...
                       times]);
myfts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...
              'My FINTS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

myfts = 
 
    desc:  My FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [        NaN]
    '     "     '    '12:00'          [          6]

Now use setfield to replace the data in myfts with new data starting at 12:00 on January 1, 2001
and ending at 11:00 on January 3, 2001.
S = setfield(myfts,'Data1',...
            {'01-Jan-2001 12:00::03-Jan-2001 11:00'},(102:105)')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/setfield (line 84) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

S = 
 
    desc:  My FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [       1.00]
    '     "     '    '12:00'          [     102.00]
    '02-Jan-2001'    '11:00'          [     103.00]
    '     "     '    '12:00'          [     104.00]
    '03-Jan-2001'    '11:00'          [     105.00]
    '     "     '    '12:00'          [       6.00]

See Also
chfield | fieldnames | getfield | isfield | rmfield
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Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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sharpe
Compute Sharpe ratio for one or more assets

Syntax
sharpe(Asset)
sharpe(Asset,Cash)
Ratio = sharpe(Asset,Cash)

Description
sharpe(Asset) computes Sharpe ratio for each asset.

sharpe(Asset,Cash) computes Sharpe ratio for each asset including the optional argument Cash.

Ratio = sharpe(Asset,Cash) computes Sharpe ratio for each asset including the optional
argument Cash.

Examples

Compute Sharpe Ratio

This example shows how to compute the Sharpe ratio using the mean return of a cash asset as the
return for the riskless asset.

Given asset return data and the riskless asset return, the Sharpe ratio is calculated:

load FundMarketCash 
Returns = tick2ret(TestData);
Riskless = mean(Returns(:,3))

Riskless = 0.0017

Sharpe = sharpe(Returns, Riskless)

Sharpe = 1×3

    0.0886    0.0315         0

The Sharpe ratio of the example fund is significantly higher than the Sharpe ratio of the market. As is
demonstrated with portalpha, this translates into a strong risk-adjusted return. Since the Cash
asset is the same as Riskless, it makes sense that its Sharpe ratio is 0. The Sharpe ratio is
calculated with the mean of cash returns. The Sharpe ratio can also be calculated with the cash
return series as input for the riskless asset.

Sharpe = sharpe(Returns, Returns(:,3))

Sharpe = 1×3
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    0.0886    0.0315         0

When using the Portfolio object, you can use the estimateMaxSharpeRatio function to estimate
an efficient portfolio that maximizes the Sharpe ratio. For more information, see “Efficient Portfolio
That Maximizes Sharpe Ratio” on page 4-106.

Input Arguments
Asset — Asset returns
matrix

Asset returns, specified as a NUMSAMPLES x NUMSERIES matrix with NUMSAMPLES observations of
asset returns for NUMSERIES asset return series.
Data Types: double

Cash — Riskless asset
0 (default) | numeric | vector

(Optional) Riskless asset, specified as a either a scalar return for a riskless asset or a vector of asset
returns to be a proxy for a “riskless” asset. In either case, the periodicity must be the same as the
periodicity of Asset. For example, if Asset is monthly data, then Cash must be monthly returns. If
no value is supplied, the default value for Cash returns is 0.
Data Types: double

Output Arguments
Ratio — Sharpe ratios
vector

Sharpe ratios, returned as a 1-by-NUMSERIES row vector of Sharpe ratios for each series in Asset.
Any series in Asset with standard deviation of returns equal to 0 has a NaN value for its Sharpe ratio.

Note If Cash is a vector, Asset and Cash need not have the same number of returns but must have
the same periodicity of returns. The classic Sharpe ratio assumes that Cash is riskless. In reality, a
short-term cash rate is not necessarily riskless. NaN values in the data are ignored.

References
[1] Sharpe, W. F. "Mutual Fund Performance." Journal of Business. Vol. 39, No. 1, Part 2, January

1966, pp. 119–138.

See Also
inforatio | portalpha

Topics
“Performance Metrics Illustration” on page 7-3
“Performance Metrics Overview” on page 7-2
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Introduced in R2006b
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size
Number of dates and data series

Note size is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
szfts = size(tsobj,dim)

[numRows,numCols] = size(tsobj)

Arguments
tsobj Financial time series object.
dim (Optional) A scalar that specifies the following dimension:

dim = 1 returns number of dates (rows).

dim = 2 returns number of data series (columns).

Description
szfts = size(tsobj) returns the number of dates (rows) and the number of data series (columns)
in the financial time series object tsobj. The result is returned in the vector szfts, whose first
element is the number of dates and second is the number of data series.

szfts = size(tsobj,dim) specifies the dimension you want to extract.

numRows returns a scalar representing the number of dates (rows).

numCols returns a scalar representing the number of data series (columns).

See Also
length | size

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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smoothts
Smooth data

Note smoothts is not recommended. Use smoothdata instead.

Syntax
output = smoothts(input)

output = smoothts(input,'b',wsize)

output = smoothts(input,'g',wsize,stdev)

output = smoothts(input,'e',n)

Arguments

input Financial time series object or a row-oriented matrix. In a row-oriented
matrix, each row represents an individual set of observations.

'b', 'g', or 'e' Smoothing method (essentially the type of filter used). Can be Exponential
(e), Gaussian (g), or Box (b). Default = b.

wsize Window size (scalar). Default = 5.
stdev Scalar that represents the standard deviation of the Gaussian window.

Default = 0.65.
n For Exponential method, specifies window size or exponential factor,

depending upon value.

• n > 1 (window size) or period length
• n < 1 and > 0 (exponential factor: alpha)
• n = 1 (either window size or alpha)

If n is not supplied, the defaults are wsize = 5 and alpha = 0.3333.

Description
smoothts smooths the input data using the specified method.

output = smoothts(input) smooths the input data using the default Box method with window
size, wsize, of 5.

output = smoothts(input,'b',wsize) smooths the input data using the Box (simple, linear)
method. wsize specifies the width of the box to be used.

output = smoothts(input,'g',wsize,stdev) smooths the input data using the Gaussian
window method.
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output = smoothts(input,'e',n) smooths the input data using the Exponential method. n can
represent the window size (period length) or alpha. If n > 1, n represents the window size. If 0 < n
< 1, n represents alpha, where

α = 2
wsize + 1 .

If input is a financial time series object, output is a financial time series object identical to input
except for contents. If input is a row-oriented matrix, output is a row-oriented matrix of the same
length.

See Also
tsmovavg

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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sortfts
Sort financial time series

Note sortfts is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
sfts = sortfts(tsobj)

sfts = sortfts(tsobj,flag)

sfts = sortfts(tsobj,seriesnames,flag)

[sfts,sidx] = sortfts(...)

Arguments
tsobj Financial time series object.
flag (Optional) Sort order:

flag = 1; increasing order (default)

flag = -1; decreasing order
seriesnames (Optional) Character vector containing a data series name or cell array of

character vectors containing a list of data series names.

Description
sfts = sortfts(tsobj) sorts the financial time series object tsobj in increasing order based
only upon the 'dates' vector if tsobj does not contain time-of-day information. If the object
includes time-of-day information, the sort is based upon a combination of the 'dates' and 'times'
vectors. The 'times' vector cannot be sorted individually.

sfts = sortfts(tsobj, flag) sets the order of the sort. flag = 1: increasing date and time
order. flag = -1: decreasing date and time order.

sfts = sortfts(tsobj, seriesnames, flag) sorts the financial time series object tsobj
based upon the data series name(s) seriesnames. The seriesnames argument can be a single
character vector containing a data series name or a cell array of character vectors containing a list of
data series names. If the optional flag is set to -1, the sort is in decreasing order.

[sfts, sidx] = sortfts(...) also returns the index of the original object tsobj sorted based
on 'dates' or specified data series name(s).

See Also
issorted | sort | sortrows
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Topics
“What Is the Financial Time Series App?” on page 14-2

Introduced before R2006a
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spctkd
Slow stochastics

Note spctkd is not recommended. Use stochosc instead.

Syntax
[spctk,spctd] = spctkd(fastpctk,fastpctd)

[spctk,spctd] = spctkd([fastpctk fastpctd])

[spctk,spctd] = spctkd(fastpctk,fastpctd,dperiods,dmamethod)

[spctk,spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)

skdts = spctkd(tsobj)

skdts = spctkd(tsobj,dperiods,dmamethod)

skdts = spctkd(tsobj,dperiods,dmamethod,'ParameterName',ParameterValue, ...)

Arguments

fastpctk Fast stochastic F%K (vector).
fastpctd Fast stochastic F%D (vector).
dperiods (Optional) %D periods. Default = 3.
dmamethod (Optional) %D moving average method. Default = 'e' (exponential).
tsobj Financial time series object.

Description
[spctk,spctd] = spctkd(fastpctk,fastpctd) calculates the slow stochastics S%K and S%D.
spctk and spctd are column vectors representing the respective slow stochastics. The inputs must
be single column-oriented vectors containing the fast stochastics F%K and F%D.

[spctk,spctd] = spctkd([fastpctk fastpctd]) accepts a two-column matrix as input. The
first column contains the fast stochastic F%K values, and the second contains the fast stochastic F%D
values.

[spctk,spctd] = spctkd(fastpctk,fastpctd,dperiods,dmamethod) calculates the slow
stochastics, S%K and S%D, using the value of dperiods to set the number of periods and
dmamethod to indicate the moving average method. The inputs fastpctk and fastpctk must
contain the fast stochastics, F%K and F%D, in column orientation. spctk and spctd are column
vectors representing the respective slow stochastics.

Valid moving average methods for %D are exponential ('e'), triangular ('t'), and modified ('m').
See tsmovavg for explanations of these methods.
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[spctk,spctd] = spctkd([fastpctk fastpctd],dperiods,dmamethod) accepts a two-
column matrix rather than two separate vectors. The first column contains the F%K values, and the
second contains the F%D values.

skdts = spctkd(tsobj) calculates the slow stochastics, S%K and S%D. tsobj must contain the
fast stochastics, F%K and F%D, in data series named PercentK and PercentD. The skdts output is
a financial time series object with the same dates as tsobj. Within tsobj the two series SlowPctK
and SlowPctD represent the respective slow stochastics.

skdts = spctkd(tsobj,dperiods,dmamethod) lets you specify the length and the method of the
moving average used to calculate S%D values.

skdts = spctkd(tsobj,dperiods,dmamethod,'ParameterName',ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Valid parameter names are

• KName: F%K series name
• DName: F%D series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Calculate the Slow Stochastics

This example shows how to calculate the slow stochastics for Disney stock and plot the results.

load disney.mat

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

dis_FastStoch = fpctkd(dis); 

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

dis_SlowStoch = spctkd(dis_FastStoch);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

plot(dis_SlowStoch)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

title('Slow Stochastics for Disney')
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References
Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 268–271.

See Also
fpctkd | stochosc | tsmovavg

Introduced before R2006a
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std
Standard deviation

Note std is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
tsstd = std(tsobj)

tsstd = std(tsobj,flag)

Arguments
tsobj Financial time series object.
flag (Optional) Normalization factor:

flag = 1 normalizes by n (number of observations).

flag = 0 normalizes by n-1.

Description
tsstd = std(tsobj) computes the standard deviation of each data series in the financial time
series object tsobj and returns the results in tsstd. The tsstd output is a structure with field
name(s) identical to the data series name(s).

tsstd = std(tsobj,flag) normalizes the data as indicated by flag.

See Also
hist | mean

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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stochosc
Stochastic oscillator

Note Using a fints object for the Data argument of stochosc is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
percentKnD = stochosc(Data)
percentKnD = stochosc( ___ ,Name,Value)

Description
percentKnD = stochosc(Data) calculates the stochastic oscillator.

percentKnD = stochosc( ___ ,Name,Value) adds optional name-value pair arguments.

Input Arguments
Data — Data with high, low, open, close information
matrix | table | timetable

Data with high, low, open, close information, specified as a matrix, table, or timetable. For matrix
input, Data is an M-by-3 matrix of high, low, and closing prices stored in the corresponding columns,
respectively. Timetables and tables with M rows must contain variables named 'High', 'Low', and
'Close' (case insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: percentKnD =
stochosc(TMW,'NumPeriodsD',10,'NumPeriodsK',3,'Type','exponential')

NumPeriodsK — Period difference for PercentK
10 (default) | positive integer

Period difference for PercentK, specified as the comma-separated pair consisting of 'NumPeriodsK'
and a scalar positive integer.
Data Types: double

NumPeriodsD — Length of moving average in periods for PercentD
3 (default) | positive integer

19 Functions

19-1432



Length of moving average in periods for PercentD, specified as the comma-separated pair consisting
of 'NumPeriodsD' and a scalar positive integer.
Data Types: double

Type — Moving average method for PercentD calculation
'e' (exponential) (default) | character vector with values 'exponential' or 'triangular'

Moving average method for PercentD calculation, specified as the comma-separated pair consisting of
'Type' and a character vector with a value of:

• 'exponential' – Exponential moving average is a weighted moving average. Exponential
moving averages reduce the lag by applying more weight to recent prices. For example, a 10
period exponential moving average weights the most recent price by 18.18%.

• 'triangular' – Triangular moving average is a double-smoothing of the data. The first simple
moving average is calculated and then a second simple moving average is calculated on the first
moving average with the same window size.

Data Types: char

Output Arguments
percentKnD — PercentK and PercentD
matrix | table | timetable

PercentK and PercentD, returned with the same number of rows (M) and type (matrix, table, or
timetable) as the input Data.

Examples

Calculate the Stochastic Oscillator for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
oscillator = stochosc(TMW,'NumPeriodsD',7,'NumPeriodsK',10,'Type','exponential');  
plot(oscillator.Time,oscillator.FastPercentK,oscillator.Time,oscillator.FastPercentD)
title('Stochastic Oscillator for TMW')

 stochosc

19-1433



More About
Stochastic Oscillator

The stochastic oscillator calculates the Fast PercentK (F%K), Fast PercentD (F%D), Slow PercentK (S
%K), and Slow PercentD (S%D) from the series of high, low, and closing stock prices.

By default, the stochastic oscillator is based on 10-period difference for PercentK and a 3-period
exponential moving average for PercentD.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 268–271.

See Also
timetable | table | chaikosc

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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subsasgn
Content assignment

Note subsasgn is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
subasgn

Description
subasgn assigns content to a component within a financial time series object. subasgn supports
integer indexing or date character vector indexing into the time series object with values assigned to
the designated components. Serial date numbers cannot be used as indices. To use date character
vector indexing, enclose the date character vector(s) in a pair of single quotation marks ' '.

You can use integer indexing on the object as in any other MATLAB matrix. It will return the
appropriate entry(ies) from the object.

You must specify the component to which you want to assign values. An assigned value must be either
a scalar or a column vector.

Examples
Given a time series myfts with a default data series name of series1,

myfts.series1('07/01/98::07/03/98') = [1 2 3]'; 

assigns the values 1, 2, and 3 corresponding to the first three days of July, 1998.

myfts('07/01/98::07/05/98')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans =

      desc:  Data Assignment 
      freq:  Daily (1) 

      'dates:  (5)'    'series1:  (5)'
      '01-Jul-1998'    [            1]
      '02-Jul-1998'    [            2]
      '03-Jul-1998'    [            3]
      '04-Jul-1998'    [       4561.2]
      '05-Jul-1998'    [       5612.3]

When the financial time series object contains a time-of-day specification, you can assign data to a
specific time on a specific day. For example, create a financial time series object called timeday
containing both dates and times:
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dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 
times]);
timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

timeday = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

Use integer indexing to assign the value 999 to the first item in the object.

timeday(1) = 999

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsasgn (line 118) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

timeday = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [        999]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

For value assignment using date character vectors, enclose the character vector in single quotation
marks. If a date has multiple times, designating only the date and assigning a value results in every
element of that date taking on the assigned value. For example, to assign the value 0.5 to all times-of-
day on January 1, 2001, enter

timedata('01-Jan-2001') = 0.5

The result is

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/size (line 28)
  In help (line 53) 
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timedata = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [     0.5000]
    '     "     '    '12:00'          [     0.5000]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

To access the individual components of the financial time series object, use the structure syntax. For
example, to assign a range of data to all the data items in the series Data1, you can use

timedata.Data1 = (0: .1 : .5)'

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/size (line 28)
  In help (line 53) 

timedata = 
 
    desc:  My first FINTS
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          0]
    '     "     '    '12:00'          [     0.1000]
    '02-Jan-2001'    '11:00'          [     0.2000]
    '     "     '    '12:00'          [     0.3000]
    '03-Jan-2001'    '11:00'          [     0.4000]
    '     "     '    '12:00'          [     0.5000]

See Also
datestr | subsref

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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subsref
Subscripted reference

Note subsref is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
subref

Description
subsref implements indexing for a financial time series object. Integer indexing or date (and time)
character vector indexing is allowed. Serial date numbers cannot be used as indices.

To use date character vector indexing, enclose the date character vector(s) in a pair of single
quotation marks ''.

You can use integer indexing on the object as in any other MATLAB matrix. It returns the appropriate
entry(ies) from the object.

Additionally, subsref lets you access the individual components of the object using the structure
syntax.

Examples
Create a time series named myfts:
myfts = fints((datenum('07/01/98'):datenum('07/01/98')+4)',... 
[1234.56; 2345.61; 3456.12; 4561.23; 5612.34], [], 'Daily',... 
'Data Reference')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
myfts = 
 
    desc:  Data Reference
    freq:  Daily (1)

    'dates:  (5)'    'series1:  (5)'
    '01-Jul-1998'    [   1.2346e+03]
    '02-Jul-1998'    [   2.3456e+03]
    '03-Jul-1998'    [   3.4561e+03]
    '04-Jul-1998'    [   4.5612e+03]
    '05-Jul-1998'    [   5.6123e+03]

Extract the data for the single day July 1, 1998:

myfts('07/01/98')
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  Data Reference
    freq:  Daily (1)

    'dates:  (1)'    'series1:  (1)'
    '01-Jul-1998'    [   1.2346e+03]

Now, extract the data for the range of dates July 1, 1998, through July 5, 1998:

myfts('07/01/98::07/03/98')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  Data Reference
    freq:  Daily (1)

    'dates:  (3)'    'series1:  (3)'
    '01-Jul-1998'    [   1.2346e+03]
    '02-Jul-1998'    [   2.3456e+03]
    '03-Jul-1998'    [   3.4561e+03]

You can use the MATLAB structure syntax to access the individual components of a financial time
series object. To get the description field of myfts, enter

myfts.desc

at the command line, which returns

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 

ans =

    'Data Reference'

Similarly

myfts.series1

returns

 Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
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    desc:  Data Reference
    freq:  Daily (1)

    'dates:  (5)'    'series1:  (5)'
    '01-Jul-1998'    [   1.2346e+03]
    '02-Jul-1998'    [   2.3456e+03]
    '03-Jul-1998'    [   3.4561e+03]
    '04-Jul-1998'    [   4.5612e+03]
    '05-Jul-1998'    [   5.6123e+03]

The syntax for integer indexing is the same as for any other MATLAB matrix. Create a new financial
time series object containing both dates and times:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 
                       times]);
anewfts = fints(dates_times,(1:6)',{'Data1'},1,'Another FinTs')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
anewfts = 
 
    desc:  Another FinTs
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

Use integer indexing to extract the second and third data items from the object.
anewfts(2:3)

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  Another FinTs
    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'
    '01-Jan-2001'    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]

For date character vector, enclose the indexing character vector in a pair of single quotation marks.

If there is one date with multiple times, indexing with only the date returns all the times for that
specific date:
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anewfts('01-Jan-2001')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  Another FinTs
    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]

To specify one specific date and time, index with that date and time:
anewfts('01-Jan-2001 12:00')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  Another FinTs
    freq:  Daily (1)

    'dates:  (1)'    'times:  (1)'    'Data1:  (1)'
    '01-Jan-2001'    '12:00'          [          2]

To specify a range of dates and times, use the double colon (::) operator:
anewfts('01-Jan-2001 12:00::03-Jan-2001 11:00')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  Another FinTs
    freq:  Daily (1)

    'dates:  (4)'    'times:  (4)'    'Data1:  (4)'
    '01-Jan-2001'    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]

To request all the dates, times, and data, use the :: operator without specifying any specific date or
time:

anewfts('::')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/subsref (line 106) 
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
ans = 
 
    desc:  Another FinTs
    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
    '01-Jan-2001'    '11:00'          [          1]
    '     "     '    '12:00'          [          2]
    '02-Jan-2001'    '11:00'          [          3]
    '     "     '    '12:00'          [          4]
    '03-Jan-2001'    '11:00'          [          5]
    '     "     '    '12:00'          [          6]

See Also
datestr | fts2mat | subsasgn

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a

19 Functions

19-1442



targetreturn
Portfolio weight accuracy

Syntax
return = targetreturn(Universe,Window,Offset,Weights)

Arguments
Universe Number of observations (NUMOBS) by number of assets plus one (NASSETS +

1) array containing total return data for a group of securities. Each row
represents an observation. Column 1 contains MATLAB serial date numbers.
The remaining columns contain the total return data for each security.

Window Number of data periods used to calculate frontier.
Offset Increment in number of periods at which each frontier is generated.
Weights Number of assets (NASSETS) by number of curves (NCURVES) matrix of asset

allocation weights needed to obtain the target rate of return.

Description
return = targetreturn(Universe,Window,Offset,Weights) computes target return values
for each window of data and given portfolio weights. These values should match the input target
return used with selectreturn.

See Also
frontier | portopt

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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taxedrr
After-tax rate of return

Syntax
Return = taxedrr(PreTaxReturn,TaxRate)

Description
Return = taxedrr(PreTaxReturn,TaxRate) calculates the after-tax rate of return.

Examples

Calculate the After-Tax Rate of Return

This example shows how to calculate the after-tax rate of return, given an investment that has a 12%
nominal rate of return and is taxed at a 30% rate.

Return = taxedrr(0.12, 0.30)

Return = 0.0840

Input Arguments
PreTaxReturn — Normal rate of return
decimal

Normal rate of return, specified as a decimal.
Data Types: double

TaxRate — Tax rate
decimal

Tax rate, specified as a decimal.
Data Types: double

Output Arguments
Return — After-tax rate of return
decimal

After-tax rate of return, returned as a decimal.

See Also
effrr | irr | mirr | nomrr | xirr
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Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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tbilldisc2yield
Convert Treasury bill discount to equivalent yield

Syntax
[BEYield,MMYield] = tbilldisc2yield(Discount,Settle,Maturity)

Description
[BEYield,MMYield] = tbilldisc2yield(Discount,Settle,Maturity) converts the
discount rate on Treasury bills into their respective money-market or bond-equivalent yields.

Examples

Convert the Discount Rate on Treasury Bills

This example shows how to convert the discount rate on Treasury bills into their respective money-
market or bond-equivalent yields, given a Treasury bill with the following characteristics.

Discount = 0.0497;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

BEYield = 0.0517

MMYield = 0.0510

Convert the Discount Rate on Treasury Bills Using datetime Inputs

This example shows how to use datetime inputs to convert the discount rate on Treasury bills into
their respective money-market or bond-equivalent yields, given a Treasury bill with the following
characteristics.

Discount = 0.0497;
Settle = datetime('01-Oct-02','Locale','en_US');
Maturity = datetime('31-Mar-03','Locale','en_US');
[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

BEYield = 0.0517

MMYield = 0.0510
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Input Arguments
Discount — Discount rate of Treasury bills
decimal

Discount rate of the Treasury bills, specified as a scalar of a NTBILLS-by-1 vector of decimal values.
The discount rate basis is actual/360.
Data Types: double

Settle — Settlement date of Treasury bill
serial date number | date character vector | datetime

Settlement date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays. Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date of Treasury bill
serial date number | date character vector | datetime

Maturity date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
BEYield — Bond equivalent yields of Treasury bills
numeric

Bond equivalent yields of the Treasury bills, returned as a NTBILLS-by-1 vector. The bond-equivalent
yield basis is actual/365.

MMYield — Money-market yields of Treasury bills
numeric

Money-market yields of the Treasury bills, returned as a NTBILLS-by-1 vector. The money-market
yield basis is actual/360.

References
[1] SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. Volume 1, 3rd

edition, pp. 44–45.

[2] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
tbillyield2disc | zeroyield | datetime

Topics
“Computing Treasury Bill Price and Yield” on page 2-29
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“Bond Portfolio Optimization” on page 10-30
“Treasury Bills Defined” on page 2-28

Introduced before R2006a
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tbillprice
Price Treasury bill

Syntax
Price = tbillprice(Rate,Settle,Maturity)
Price = tbillprice( ___ ,Type)

Description
Price = tbillprice(Rate,Settle,Maturity) computes the price of a Treasury bill given a
yield or discount rate.

Price = tbillprice( ___ ,Type) adds an optional argument for Type.

Examples

Compute the Price of a Treasury Bill Using the Bond-Equivalent Yield

Given a Treasury bill with the following characteristics, compute the price of the Treasury bill using
the bond-equivalent yield (Type = 2) as input.

Rate = 0.045;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

Type = 2;

Price = tbillprice(Rate, Settle, Maturity, Type)

Price = 97.8172

Price a Portfolio of Treasury Bills

Use tbillprice to price a portfolio of Treasury bills.

Rate = [0.045; 0.046];
Settle = {'02-Jan-02'; '01-Mar-02'};
Maturity = {'30-June-02'; '30-June-02'};
Type = [2 3];

Price = tbillprice(Rate, Settle, Maturity, Type)

Price = 2×1

   97.8408
   98.4539
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Price a Portfolio of Treasury Bills Using datetime Input

Use tbillprice to price a portfolio of Treasury bills using datetime input.

Rate = [0.045; 0.046];
Type = [2 3];

Settle = datetime({'2002-01-02';'2002-03-01'},'InputFormat','yyyy-MM-dd','Locale','en_US');
Maturity = datetime({'2002-06-30';'2002-06-30'},'InputFormat','yyyy-MM-dd','Locale','en_US');
Price = tbillprice(Rate, Settle, Maturity, Type)

Price = 2×1

   97.8408
   98.4539

Input Arguments
Rate — Bond-equivalent yield, money-market yield, or discount rate
decimal

Bond-equivalent yield, money-market yield, or discount rate (defined by the input Type), specified as
a scalar of a NTBILLS-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date of Treasury bill
serial date number | date character vector | datetime

Settlement date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Maturity — Maturity date of Treasury bill
serial date number | date character vector | datetime

Maturity date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Type — (Optional) Rate type
2 (default) | numeric with values 1 = money market, 2 = bond-equivalent, 3 = discount rate

Rate type (determines how to interpret values entered in Rate), specified as a numeric value of 1,2,
or 3 using a scalar or a NTBILLS-by-1 vector.

Note The bond-equivalent yield basis is actual/365. The money-market yield basis is actual/360. The
discount rate basis is actual/360.
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Data Types: double

Output Arguments
Price — Treasury bill price for every $100 face
numeric

Treasury bill prices for every $100 face, returned as a NTBILLS-by-1 vector.

References
[1] SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. Volume 1, 3rd

edition, pp. 44–45.

[2] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
tbillyield | zeroprice | datetime

Topics
“Computing Treasury Bill Price and Yield” on page 2-29
“Bond Portfolio Optimization” on page 10-30
“Treasury Bills Defined” on page 2-28

Introduced before R2006a
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tbillrepo
Break-even discount of repurchase agreement

Syntax
TBEDiscount = tbillrepo(RepoRate,InitialDiscount,PurchaseDate,SaleDate,
Maturity)

Description
TBEDiscount = tbillrepo(RepoRate,InitialDiscount,PurchaseDate,SaleDate,
Maturity) computes the true break-even discount of a repurchase agreement.

Examples

Compute the True Break-Even Discount

This example shows how to compute the true break-even discount of a Treasury bill repurchase
agreement.

RepoRate = [0.045; 0.0475];
InitialDiscount = 0.0475;
PurchaseDate = '3-Jan-2002';
SaleDate = '3-Feb-2002';
Maturity = '3-Apr-2002';

TBEDiscount = tbillrepo(RepoRate, InitialDiscount,... 
PurchaseDate, SaleDate, Maturity)

TBEDiscount = 2×1

    0.0491
    0.0478

Compute the True Break-Even Discount Using datetime Inputs

This example shows how to use datetime inputs to compute the true break-even discount of a
Treasury bill repurchase agreement.

RepoRate = [0.045; 0.0475];
InitialDiscount = 0.0475;
PurchaseDate = datetime('3-Jan-2002','Locale','en_US');
SaleDate = datetime('3-Feb-2002','Locale','en_US');
Maturity = datetime('3-Apr-2002','Locale','en_US');
TBEDiscount = tbillrepo(RepoRate, InitialDiscount,...
PurchaseDate, SaleDate, Maturity)
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TBEDiscount = 2×1

    0.0491
    0.0478

Input Arguments
RepoRate — Annualized, 360-day based repurchase rate
decimal

Annualized, 360-day based repurchase rate, specified as a scalar of a NTBILLS-by-1 vector of decimal
values.
Data Types: double

InitialDiscount — Discount on Treasury bill on day of purchase
decimal

Discount on the Treasury bill on the day of purchase, specified as a scalar of a NTBILLS-by-1 vector
of decimal values.
Data Types: double

PurchaseDate — Date Treasury bill is purchased
serial date number | date character vector | datetime

Date the Treasury bill is purchased, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

SaleDate — Date Treasury bill repurchase term is due
serial date number | date character vector | datetime

Date the Treasury bill repurchase term is due, specified as a scalar or a NTBILLS-by-1 vector of serial
date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Maturity — Maturity date of Treasury bill
serial date number | date character vector | datetime

Maturity date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
TBEDiscount — True break-even discount of repurchase agreement
numeric

True break-even discount of a repurchase agreement, returned as a scalar or NTBILLS-by-1 vector.
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References
[1] SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. Volume 1, 3rd

edition, pp. 44–45.

[2] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
tbillyield | tbillprice | tbillval01 | datetime

Topics
“Computing Treasury Bill Price and Yield” on page 2-29
“Bond Portfolio Optimization” on page 10-30
“Treasury Bills Defined” on page 2-28

Introduced before R2006a
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tbillval01
Value of one basis point

Syntax
[Val01Disc,Val01MMY,Val01BEY] = tbillval01(Settle,Maturity)

Description
[Val01Disc,Val01MMY,Val01BEY] = tbillval01(Settle,Maturity) calculates the value of
one basis point of $100 Treasury bill face value on the discount rate, money-market yield, or bond-
equivalent yield.

Examples

Compute the Value of One Basis Point

This example shows how to compute the value of one basis point, given a Treasury bill with the
following settle and maturity dates.

Settle = '01-Mar-03';
Maturity = '30-June-03';
[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Val01Disc = 0.0034

Val01MMY = 0.0034

Val01BEY = 0.0033

Compute the Value of One Basis Point Using datetime Inputs

This example shows how to use datetime inputs to compute the value of one basis point, given a
Treasury bill with the following settle and maturity dates.

Settle = datetime(2003,3,1);
Maturity = datetime(2003,6,30);
[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Val01Disc = 0.0034

Val01MMY = 0.0034

Val01BEY = 0.0033

 tbillval01

19-1455



Input Arguments
Settle — Settlement date of Treasury bill
serial date number | date character vector | datetime

Settlement date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays. Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date of Treasury bill
serial date number | date character vector | datetime

Maturity date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
Val01Disc — Value of one basis point of discount rate for every $100 face
numeric

Value of one basis point of discount rate for every $100 face, returned as a NTBILLS-by-1 vector.

Val01MMY — Value of one basis point of money-market yield for every $100 face
numeric

Value of one basis point of money-market yield for every $100 face, returned as a NTBILLS-by-1
vector.

Val01BEY — Value of one basis point of bond-equivalent yield for every $100 face
numeric

Value of one basis point of bond-equivalent yield for every $100 face, returned as a NTBILLS-by-1
vector.

References
[1] SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. Volume 1, 3rd

edition, pp. 44–45.

[2] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
tbillyield2disc | zeroyield | datetime

Topics
“Computing Treasury Bill Price and Yield” on page 2-29
“Bond Portfolio Optimization” on page 10-30
“Treasury Bills Defined” on page 2-28

19 Functions

19-1456



Introduced before R2006a

 tbillval01

19-1457



tbillyield
Yield on Treasury bill

Syntax
[MMYield,BEYield,Discount] = tbillyield(Price,Settle,Maturity)

Description
[MMYield,BEYield,Discount] = tbillyield(Price,Settle,Maturity) computes the yield
of US Treasury bills given Price, Settle, and Maturity.

Examples

Compute the Yield of U.S. Treasury Bills

This example shows how to compute the yield of U.S. Treasury bills, given a Treasury bill with the
following characteristics.

Price = 98.75;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

[MMYield, BEYield, Discount] = tbillyield(Price, Settle,... 
Maturity)

MMYield = 0.0252

BEYield = 0.0255

Discount = 0.0249

Compute the Yield of U.S. Treasury Bills Using datetime Inputs

This example shows how to use datetime inputs to compute the yield of U.S. Treasury bills, given a
Treasury bill with the following characteristics.

Price = 98.75;
Settle = datetime('01-Oct-2002','Locale','en_US');
Maturity = datetime('31-Mar-2003','Locale','en_US');
[MMYield, BEYield, Discount] = tbillyield(Price, Settle,Maturity)

MMYield = 0.0252

BEYield = 0.0255

Discount = 0.0249
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Input Arguments
Price — Price of Treasury bills for every $100 face value
numeric

Price of Treasury bills for every $100 face value, specified as a scalar of a NTBILLS-by-1 vector of
decimal values.
Data Types: double

Settle — Settlement date of Treasury bill
serial date number | date character vector | datetime

Settlement date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays. Settle must be earlier than Maturity.
Data Types: double | char | datetime

Maturity — Maturity date of Treasury bill
serial date number | date character vector | datetime

Maturity date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
MMYield — Money-market yields of Treasury bills
numeric

Money-market yields of the Treasury bills, returned as a NTBILLS-by-1 vector.

BEYield — Bond equivalent yields of Treasury bills
numeric

Bond equivalent yields of the Treasury bills, returned as a NTBILLS-by-1 vector.

Discount — Discount rates of Treasury bills
numeric

Discount rates of the Treasury bills, returned as a NTBILLS-by-1 vector.

References
[1] SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. Volume 1, 3rd

edition, pp. 44–45.

[2] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
zeroyield | tbillprice | tbilldisc2yield | tbillyield2disc | datetime
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Topics
“Computing Treasury Bill Price and Yield” on page 2-29
“Bond Portfolio Optimization” on page 10-30
“Treasury Bills Defined” on page 2-28

Introduced before R2006a
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tbillyield2disc
Convert Treasury bill yield to equivalent discount

Syntax
Discount = tbillyield2disc(Yield,Settle,Maturity)
Discount = tbillyield2disc( ___ ,Type)

Description
Discount = tbillyield2disc(Yield,Settle,Maturity) converts the yield on some Treasury
bills into their respective discount rates.

Discount = tbillyield2disc( ___ ,Type) adds an optional argument for Type.

Examples

Compute the Discount Rate on a Money-Market Basis

Given a Treasury bill with these characteristics, compute the discount rate.

Yield = 0.0497;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

Discount = tbillyield2disc(Yield,Settle,Maturity)

Discount = 0.0485

Compute the Discount Rate on a Money-Market Basis Using datetime Inputs

Given a Treasury bill with these characteristics, compute the discount rate using datetime inputs.

Yield = 0.0497;
Settle = datetime('01-Oct-2002','Locale','en_US');
Maturity = datetime('31-Mar-2003','Locale','en_US');

Discount = tbillyield2disc(Yield,Settle,Maturity)

Discount = 0.0485

Input Arguments
Yield — Yield of Treasury bills
decimal

Yield of Treasury bills, specified as a scalar of a NTBILLS-by-1 vector of decimal values.
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Data Types: double

Settle — Settlement date of Treasury bill
serial date number | date character vector | datetime

Settlement date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Maturity — Maturity date of Treasury bill
serial date number | date character vector | datetime

Maturity date of the Treasury bill, specified as a scalar or a NTBILLS-by-1 vector of serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

Type — Yield type
1 (default) | numeric with values 1 = money market, 2 = bond-equivalent

(Optional) Yield type (determines how to interpret values entered in Yield), specified as a numeric
value of 1 or 2 using a scalar or a NTBILLS-by-1 vector.

Note The bond-equivalent yield basis is actual/365. The money-market yield basis is actual/360.

Data Types: double

Output Arguments
Discount — Discount rates of Treasury bills
numeric

Discount rates of the Treasury bills, returned as a NTBILLS-by-1 vector.

References
[1] SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. Volume 1, 3rd

edition, pp. 44–45.

[2] Krgin, D. Handbook of Global Fixed Income Calculations. Wiley, 2002.

[3] Stigum, M., Robinson, F. Money Market and Bond Calculation. McGraw-Hill, 1996.

See Also
tbilldisc2yield | datetime

Topics
“Computing Treasury Bill Price and Yield” on page 2-29
“Bond Portfolio Optimization” on page 10-30
“Treasury Bills Defined” on page 2-28
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Introduced before R2006a
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tbl2bond
Treasury bond parameters given Treasury bill parameters

Syntax
[TBondMatrix,Settle] = tbl2bond(TBillMatrix)

Description
[TBondMatrix,Settle] = tbl2bond(TBillMatrix) restates US Treasury bill market
parameters in US Treasury bond form as zero-coupon bonds. This function makes Treasury bills
directly comparable to Treasury bonds and notes.

Examples

Restate U.S. Treasury Bill in U.S. Treasury Bond Form

This example shows how to restate U.S. Treasury bill market parameters in U.S. Treasury bond form,
given published Treasury bill market parameters for December 22, 1997.

TBill = [datenum('jan 02 1998')  10  0.0526  0.0522  0.0530
         datenum('feb 05 1998')  44  0.0537  0.0533  0.0544
         datenum('mar 05 1998')  72  0.0529  0.0527  0.0540];

TBond = tbl2bond(TBill)

TBond = 3×5
105 ×

         0    7.2976    0.0010    0.0010    0.0000
         0    7.2979    0.0010    0.0010    0.0000
         0    7.2982    0.0010    0.0010    0.0000

Restate U.S. Treasury Bill in U.S. Treasury Bond Form Using datetime Input

This example shows how to use datetime input to restate U.S. Treasury bill market parameters in
U.S. Treasury bond form, given published Treasury bill market parameters for December 22, 1997.

TBill = [datenum('jan 02 1998')  10  0.0526  0.0522  0.0530
         datenum('feb 05 1998')  44  0.0537  0.0533  0.0544
         datenum('mar 05 1998')  72  0.0529  0.0527  0.0540];

dates = datetime(TBill(:,1), 'ConvertFrom', 'datenum','Locale','en_US');
data = TBill(:,2:end);
t=[table(dates) array2table(data)];
[TBond, Settle] = tbl2bond(t)
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TBond=3×5 table
    CouponRate     Maturity       Bid      Asked     AskYield
    __________    ___________    ______    ______    ________

        0         02-Jan-1998    99.854    99.855      0.053 
        0         05-Feb-1998    99.344    99.349     0.0544 
        0         05-Mar-1998    98.942    98.946      0.054 

Settle = 3x1 datetime
   22-Dec-1997
   22-Dec-1997
   22-Dec-1997

Input Arguments
TBillMatrix — Treasury bill parameters
table | matrix

Treasury bill parameters, specified as a 5-column table or a N-by-5 matrix of bond information where
the table columns or matrix columns contains:

• Maturity (Required) Maturity date of Treasury bills, specified as a serial date number when
using a matrix. Use datenum to convert date character vectors to serial date numbers. If the input
TBillMatrix is a table, the Maturity dates can be serial date numbers, date character vectors,
or datetime arrays.

• DaysMaturity (Required) Days to maturity, specified as an integer. Days to maturity are quoted
on a skip-day basis; the actual number of days from settlement to maturity is DaysMaturity +
1.

• Bid (Required) Bid bank-discount rate (the percentage discount from face value at which the bill
could be bought, annualized on a simple-interest basis), specified as a decimal fraction.

• Asked (Required) Asked bank-discount rate, specified as a decimal fraction.
• AskYield (Required) Asked yield (the bond-equivalent yield from holding the bill to maturity,

annualized on a simple-interest basis and assuming a 365-day year), specified as a decimal
fraction.

Data Types: double | table

Output Arguments
TBondMatrix — Treasury bond parameters
table | matrix

Treasury bond parameters, returned as a table or matrix depending on the TBillMatrix input.

When TBillMatrix is a table, TBondMatrix is also a table, and the variable type for the Maturity
dates in TBondMatrix (column 1) matches the variable type for Maturity in TBillMatrix. For
example, if Maturity dates are datetime arrays in TBillMatrix, they will also be datetime arrays
in TBondMatrix.

When TBillMatrix input is a N-by-5 matrix, then each row describes a Treasury bond.
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The parameters or columns returned for TBondMatrix are:

• CouponRate (Column 1) Coupon rate, which is always 0 since the Treasury bills are, by definition,
a zero coupon instrument.

.
• Maturity (Column 2) Maturity date for each bond in the portfolio as a serial date number. The

format of the dates matches the format used for Maturity in TBillMatrix (serial date number,
date character vector, or datetime array).

• Bid (Column 3) Bid price based on $100 face value.
• Asked (Column 4) Asked price based on $100 face value.
• AskYield (Column 5) Asked yield to maturity: the effective return from holding the bond to

maturity, annualized on a compound-interest basis.

Settle — Settlement dates implied by maturity dates and number of days to maturity
quote
serial date number | datetime

Settlement dates implied by the maturity dates and the number of days to maturity quote, returned as
a N-by-5 vector containing serial date numbers, by default. Settle is returned as a datetime array
only if the input TBillMatrix is a table containing datetime arrays for Maturity in the first
column.

See Also
tr2bonds | datetime

Topics
“Term Structure of Interest Rates” on page 2-32
“Computing Treasury Bill Price and Yield” on page 2-29
“Bond Portfolio Optimization” on page 10-30
“Treasury Bills Defined” on page 2-28

Introduced before R2006a
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thirdwednesday
Find third Wednesday of month

Syntax
[BeginDates,EndDates] = thirdwednesday(Month,Year)
[BeginDates,EndDates] = thirdwednesday( ___ ,outputType)

Description
[BeginDates,EndDates] = thirdwednesday(Month,Year) computes the beginning and end
period date for a LIBOR contract (third Wednesdays of delivery months).

[BeginDates,EndDates] = thirdwednesday( ___ ,outputType), using optional input
arguments, computes the beginning and end period date for a LIBOR contract (third Wednesdays of
delivery months).

The type of the outputs depends on the input outputType. If this variable is 'datenum',
BeginDates and EndDates are serial date numbers. If outputType is 'datetime', then
BeginDates and EndDates are datetime arrays. By default, outputType is set to 'datenum'.

Examples

Determine the Third Wednesday for Given Months and Years

Find the third Wednesday dates for swaps commencing in the month of October in the years 2002,
2003, and 2004.

Months = [10; 10; 10];
Year = [2002; 2003; 2004];
[BeginDates, EndDates] = thirdwednesday(Months, Year);
datestr(BeginDates)

ans = 3x11 char array
    '16-Oct-2002'
    '15-Oct-2003'
    '20-Oct-2004'

datestr(EndDates)

ans = 3x11 char array
    '16-Jan-2003'
    '15-Jan-2004'
    '20-Jan-2005'

Find the third Wednesday dates for swaps commencing in the month of October in the years 2002,
2003, and 2004 using an outputType of 'datetime'.
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Months = [10; 10; 10];
Year = [2002; 2003; 2004];
[BeginDates, EndDates] = thirdwednesday(Months, Year,'datetime')

BeginDates = 3x1 datetime
   16-Oct-2002
   15-Oct-2003
   20-Oct-2004

EndDates = 3x1 datetime
   16-Jan-2003
   15-Jan-2004
   20-Jan-2005

Input Arguments
Month — Month of delivery for Eurodollar futures
integer from 1 through 12 | vector of integers from 1 through 12

Month of delivery for Eurodollar futures, specified as an N-by-1 vector of integers from 1 through 12.

Duplicate dates are returned when identical months and years are supplied.
Data Types: single | double

Year — Delivery year for Eurodollar futures/Libor contracts corresponding to Month
four-digit nonnegative integer | vector of four-digit nonnegative integers

Delivery year for Eurodollar futures/Libor contracts corresponding to Month, specified as an N-by-1
vector of our-digit nonnegative integers.

Duplicate dates are returned when identical months and years are supplied.
Data Types: single | double

outputType — Output date format
'datenum' (default) | character vector with values 'datenum' or 'datetime'

Output date format, specified as a character vector with values 'datenum' or 'datetime'. If
outputType is 'datenum', then BeginDates and EndDates are serial date numbers. However, if
outputType is 'datetime', then BeginDates and EndDates are datetime arrays.
Data Types: char

Output Arguments
BeginDates — Third Wednesday of given month and year
serial date number | date character vector

Third Wednesday of given month and year, returned as serial date numbers or date character vectors,
or datetime arrays. This is also the beginning of the 3-month period contract.
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The type of the outputs depends on the input outputType. If this variable is 'datenum',
BeginDates and EndDates are serial date numbers. If outputType is 'datetime',
thenBeginDates and EndDates are datetime arrays. By default, outputType is set to 'datenum'.

EndDates — End of three-month period contract for given month and year
serial date number | date character vector

End of three-month period contract for given month and year, returned as serial date numbers or date
character vectors, or datetime arrays.

The type of the outputs depends on the input outputType. If this variable is 'datenum',
BeginDates and EndDates are serial date numbers. If outputType is 'datetime',
thenBeginDates and EndDates are datetime arrays. By default, outputType is set to 'datenum'.

See Also
tr2bonds | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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thirtytwo2dec
Thirty-second quotation to decimal

Syntax
OutNumber = thirtytwo2dec(InNumber,InFraction)

Description
OutNumber = thirtytwo2dec(InNumber,InFraction) changes the price quotation for a bond
or bond future from a fraction with a denominator of 32 to a decimal.

Examples

Change the Price Quotation for a Bond or Bond Future From a Fraction

This example shows how to change the price quotation for a bond or bond future from a fraction with
a denominator of 32 to a decimal, given two bonds that are quoted as 101-25 and 102-31.

InNumber  = [101; 102];
InFraction = [25; 31];

OutNumber = thirtytwo2dec(InNumber, InFraction)

OutNumber = 2×1

  101.7812
  102.9688

Input Arguments
InNumber — Input number
integer

Input number, specified as a scalar or an N-by-1 vector of integers representing price without the
fractional components.
Data Types: double

InFraction — Fractional portions of each element in InNumber
numeric decimal fraction

Fractional portions of each element in InNumber, specified as a scalar or an N-by-1 vector of numeric
decimal fractions.
Data Types: double
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Output Arguments
OutNumber — Output number that represents sum of InNumber and InFraction
decimal

Output number that represents sum of InNumber and InFraction, returned as a decimal.

See Also
dec2thirtytwo

Introduced before R2006a
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tick2ret
Convert price series to return series

Syntax
[Returns,Intervals] = tick2ret(Data)
[Returns,Intervals] = tick2ret( ___ ,Name,Value)

Description
[Returns,Intervals] = tick2ret(Data) computes asset returns for NUMOBS price
observations of NASSETS assets.

[Returns,Intervals] = tick2ret( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Convert Price Series to Return Series

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. Then convert a price series to a return series, given the first 10 periodic returns of TMW.

load SimulatedStock.mat

TMW_Close = TMW(1:10,'Close');
[Returns,Intervals] = tick2ret(TMW_Close)

Returns=9×1 timetable
       Time           Close   
    ___________    ___________

    05-Sep-2012      0.0017955
    06-Sep-2012       0.013741
    07-Sep-2012      -0.022591
    10-Sep-2012      -0.011557
    11-Sep-2012      -0.014843
    12-Sep-2012     -0.0012384
    13-Sep-2012      0.0081628
    14-Sep-2012    -0.00051245
    17-Sep-2012       -0.02902

Intervals = 9x1 duration
   24:00:00
   24:00:00
   24:00:00
   72:00:00
   24:00:00
   24:00:00
   24:00:00
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   24:00:00
   72:00:00

Convert Price Series to Return Series Using datetime Input

Use datetime input to convert a price series to a return series, given periodic returns of two stocks
observed in the first, second, third, and fourth quarters.

TickSeries = [100 80
110 90
115 88
110 91];

TickTimes = datetime({'1/1/2015','1/7/2015','1/16/2015','1/28/2015'},'InputFormat','MM/dd/uuuu');
[Returns,Intervals] = tick2ret(TickSeries,'TickTimes',TickTimes)

Returns = 3×2

    0.1000    0.1250
    0.0455   -0.0222
   -0.0435    0.0341

Intervals = 3x1 duration
   144:00:00
   216:00:00
   288:00:00

Input Arguments
Data — Data for asset prices
matrix | table | timetable

Data for asset prices, specified as a NUMOBSNASSETS matrix, table, or timetable. Prices across a
given row are assumed to occur at the same time for all columns, and each column is a price series of
an individual asset.
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Returns,Intervals] = tick2ret(TickSeries,'TickTimes',TickTimes)

TickTimes — Observation times associated with prices
sequential observation times from 1,2,...NUMOBS assumed for all assets (default) | vector

Observation times associated with prices, specified as the comma-separated pair consisting of
'TickTimes' and a NUMOBS element column vector of monotonically increasing observation times
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associated with the prices in Data. Times are taken either as serial date numbers (day units), date
strings, datetime arrays, or as decimal numbers in arbitrary units (for example, yearly).

Note If the input Data type is a timetable, the row times information in the timetable overwrites the
TickTimes input.

Data Types: double | datetime | string

Method — Method to convert asset prices to returns
'Simple' (default) | character vector with value of 'Simple' or 'Continuous' | string with value
of "Simple" or "Continuous"

Method to convert asset prices to returns, specified as the comma-separated pair consisting of
'Method' and a string or character vector indicating the method to convert asset prices to returns.

If the method is 'Simple', then simple periodic returns at time t are computed as:

Returns(t) = Data(t)/Data(t-1) - 1.

If the method is 'Continuous', the continuous returns are computed as:

Returns(t) = log(Data(t)/Data(t-1)).

Data Types: char | string

Output Arguments
Returns — Time series array of asset returns
matrix | table | timetable

Time series array of asset returns, returned as a NUMOBS-1-by-NASSETS array of asset returns with
the same type (matrix, table, or timetable) as the input Data. The first row contains the oldest
returns and the last row contains the most recent. Returns across a given row are assumed to occur
at the same time for all columns, and each column is a return series of an individual asset.

Intervals — Interval times between successive prices
vector

Interval times between successive prices, returned as a NUMOBS-1 length column vector where
Intervals(t) = TickTimes(t) - TickTimes(t - 1).

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports input Data that is specified as a tall column vector, a tall table, or a tall
timetable. For more information, see tall and “Tall Arrays”.

See Also
ret2tick | timetable | table | datetime
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Topics
“Using Timetables in Finance” on page 12-7
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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tick2ret (fts)
Convert price series to return series for time series object

Note tick2ret (fts) is not recommended. Use tick2ret instead.

Syntax
returnFts = tick2ret(priceFts)

returnFts = tick2ret(priceFts,'PARAM1',VALUE1,'PARAM2',VALUE2', ...)

Arguments
priceFts Financial time series object of prices.
'PARAM1' (Optional) Method is a character vector indicating the method to

convert asset returns to prices. The value must be defined as
'Simple' (default) or 'Continuous'. If Method is 'Simple',
tick2ret uses simple periodic returns. If Method is
'Continuous', the function uses continuously compounded returns.
Case is ignored for Method.

Description
returnFts = tick2ret(priceFts,'PARAM1',VALUE1,'PARAM2',VALUE2', ...) generates a
financial time series object of returns.

Note The i'th return is quoted for the period PriceSeries(i) to PriceSeries(i+1) and is not
normalized by the time increment between successive price observations.

If Method is unspecified or 'Simple', the prices are

ReturnSeries(i) = PriceSeries(i+1)/PriceSeries(i)-1

If Method is 'Continuous', the prices are

ReturnSeries(i) = log[PriceSeries(i+1)/PriceSeries(i)]

Examples

Convert Price Series to Return Series for a fints Object

Compute the return series from the following price series:

PriceSeries = [100.0000  100.0000 
110.0000  112.0000

19 Functions

19-1476



115.5000  116.4800
109.7250  122.3040]

PriceSeries = 4×2

  100.0000  100.0000
  110.0000  112.0000
  115.5000  116.4800
  109.7250  122.3040

Use the following dates:

Dates = {'18-Dec-2000'
'18-Jun-2001'
'17-Sep-2001'
'18-Dec-2001'}

Dates = 4x1 cell
    {'18-Dec-2000'}
    {'18-Jun-2001'}
    {'17-Sep-2001'}
    {'18-Dec-2001'}

The fints object is:

p = fints(Dates, PriceSeries)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
p = 
 
    desc:  (none)
    freq:  Unknown (0)

    {'dates:  (4)'}    {'series1:  (4)'}    {'series2:  (4)'}
    {'18-Dec-2000'}    {[          100]}    {[          100]}
    {'18-Jun-2001'}    {[          110]}    {[          112]}
    {'17-Sep-2001'}    {[     115.5000]}    {[     116.4800]}
    {'18-Dec-2001'}    {[     109.7250]}    {[     122.3040]}

returnFts is computed as:

 tick2ret(p)

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
ans = 
 
    desc:  (none)
    freq:  Unknown (0)

    {'dates:  (3)'}    {'series1:  (3)'}    {'series2:  (3)'}
    {'18-Jun-2001'}    {[       0.1000]}    {[       0.1200]}
    {'17-Sep-2001'}    {[       0.0500]}    {[       0.0400]}
    {'18-Dec-2001'}    {[      -0.0500]}    {[       0.0500]}
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Note that for n dates in the original time series, there are ( n-1) dates returned for returnFts from
tick2ret. The formula for the date output dates is described as: RetDate(i) = PriceDate (i+1).

See Also
portsim | ret2tick

Introduced before R2006a
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time2date
Dates from time and frequency

Syntax
Dates = time2date(Settle,TFactors)
Dates = time2date( ___ ,Compounding,Basis,EndMonthRule)

Description
Dates = time2date(Settle,TFactors) computes Dates corresponding to compounded rate
quotes between Settle and TFactors. time2date is the inverse of date2time.

Dates = time2date( ___ ,Compounding,Basis,EndMonthRule) computes Dates
corresponding to compounded rate quotes between Settle and TFactors using optional input
arguments for Compounding, Basis, and EndMonthRule. time2date is the inverse of date2time.

Examples

Calculate Dates Using time2date

Show that date2time and time2date are the inverse of each other. First compute the time factors
using date2time.

Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006'; 
                 '31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
TFactors = date2time(Settle, Dates, Compounding, Basis,... 
EndMonthRule)

TFactors = 4×1

    5.9945
    6.9945
    7.5738
    8.6576

Now use the calculated TFactors in time2date and compare the calculated dates with the original
set.

Dates_calc = time2date(Settle, TFactors, Compounding, Basis,... 
EndMonthRule)

Dates_calc = 4×1

      732555
      732736
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      732843
      733042

datestr(Dates_calc)

ans = 4x11 char array
    '31-Aug-2005'
    '28-Feb-2006'
    '15-Jun-2006'
    '31-Dec-2006'

Show time2date support for datetime input for Settle.

Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006'; 
                 '31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
TFactors = date2time(Settle, Dates, Compounding, Basis,... 
EndMonthRule);
Dates_calc = time2date(datetime(Settle,'Locale','en_US'), TFactors,...
Compounding, Basis, EndMonthRule)

Dates_calc = 4x1 datetime
   31-Aug-2005
   28-Feb-2006
   15-Jun-2006
   31-Dec-2006

Input Arguments
Settle — Settlement date
serial date number | date character vector | datetime object

Settlement date, specified as a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

TFactors — Time factors
vector

Time factors, corresponding to the compounding value, specified as a vector. TFactors must be
equal to or greater than zero.
Data Types: double

Compounding — Rate at which input zero rates are compounded when annualized
2 (Semiannual compounding) (default) | scalar with numeric values of 0, 1, 2, 3, 4, 5, 6, 12, 365, –1

Rate at which input zero rates are compounded when annualized, specified as a scalar with numeric
values of: 0, 1, 2, 3, 4, 5, 6, 12, 365, or –1. Allowed values are defined as:
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• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

The optional Compounding argument determines the formula for the discount factors (Disc):

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is
the time in periodic units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number
of days elapsed computed by basis.

• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.

Basis — Day-count basis
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with values 0
through 13

Day-count basis, specified as an integer with a value of 0 through 13 or a N-by-1 vector of integers
with values 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
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Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as scalar nonnegative integer [0,
1] or a using a N-by-1 vector of values. This rule applies only when Maturity is an end-of-month date
for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the month.
• 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

Output Arguments
Dates — Dates corresponding to compounded rate quotes between Settle and TFactors
serial date number | datetime array

Dates corresponding to compounded rate quotes between Settle and TFactors, returned as a
scalar or a N-by-1 vector using serial date numbers or datetime arrays.
Data Types: double | datetime

See Also
cftimes | date2time | datetime | cfamounts

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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times
Financial time series multiplication

Note times is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
newfts = tsobj_1 .* tsobj_2

newfts = tsobj .* array

newfts = array .* tsobj

Arguments
tsobj_1, tsobj_2 Pair of financial time series objects.
array A scalar value or array with the number of rows equal to the number

of dates in tsobj and the number of columns equal to the number of
data series in tsobj.

Description
The times method multiplies element by element the components of one financial time series object
by the components of the other. You can also multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have the same dates and data
series names, although the order need not be the same. The order of the data series, when an object
is multiplied by another object, follows the order of the first object.

newfts = tsobj_1 .* tsobj_2 multiplies financial time series objects element by element.

newfts = tsobj .* array multiplies a financial time series object element by element by an
array.

newfts = array .* tsobj and newfts = array / tsobj multiplies an array element by
element by a financial time series object.

For financial time series objects, the times operation is identical to the mtimes operation.

See Also
minus | mtimes | plus | rdivide

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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tmfactor
Time factors of arbitrary dates

Syntax
TMFactors = tmfactor(Settle,Maturity)

Description
TMFactors = tmfactor(Settle,Maturity) determines the time factors from a vector of
Settlement dates to a vector of Maturity dates.

Examples

Find Time Factors of Settle and Maturity Dates

Find the TFactors for Settle and Maturity dates.

TFactors = tmfactor('1-Jan-2015','1-Jan-2016')

TFactors = 2

Find the TFactors for Settle and Maturity dates using a datetimes.

TFactors = tmfactor(datetime('1-Jan-2015','Locale','en_US'),datetime('1-Jan-2016','Locale','en_US'))

TFactors = 2

Input Arguments
Settle — Settlement date
serial date number | date character vector | datetime

Settlement date, specified as a cell array of date character vectors, a vector of serial date numbers,
or a datetime array.

Note Settle must be earlier than Maturity.

Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime

Maturity date, specified as a cell array of date character vectors, a vector of serial date numbers, or a
datetime array.
Data Types: double | char | datetime
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Output Arguments
TMFactors — Time factors from a vector of Settle dates to a vector of Maturity dates
scalar numeric

Time factors from a vector of Settle dates to a vector of Maturity dates, returned as a scalar
numeric.

See Also
cfamounts | cftimes | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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toannual
Convert to annual

Note toannual is not recommended. Use convert2annual instead.

Syntax
newfts = toannual(oldfts)

newfts = toannual(oldfts,'ParameterName',ParameterValue, ...)

Arguments
oldfts Financial time series object.

Description
newfts = toannual(oldfts) converts a financial time series of any frequency to one of an annual
frequency. The default end-of-year is the last business day of the December. toannual uses
holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as '00:00' for
those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for toannual triggers the use of the
defaults.

newfts = toannual(oldfts,'ParameterName',ParameterValue, ...) accepts parameter
name/parameter value pairs as input, as specified in the following table.

Parameter Name Parameter Value Description
CalcMethod CumSum Returns the cumulative sum of the values within each year.

Data for missing dates are given the value 0.
CalcMethod Exact Returns the exact value at the end-of-year date. No data

manipulation occurs.
CalcMethod Nearest (Default) Returns the values located at the end-of-year dates.

If there is missing data, Nearest returns the nearest data
point preceding the end-of-year date.

CalcMethod SimpAvg Returns an averaged annual value that only takes into
account dates with data (non-NaN) within each year.
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Parameter Name Parameter Value Description
CalcMethod v21x This mode is compatible with previous versions of this

function (Version 2.1.x and earlier). It returns an averaged
end-of-year value using a previous toannual algorithm. This
algorithm takes into account all dates and data. For dates
that do not contain any data, the data is assumed to be 0.

Note If you set CalcMethod to v21x, settings for all the following parameter name/parameter
value pairs are not supported.
BusDays 0 Returns a financial time series that ranges from (or between)

the first date to the last date in oldfts (includes NYSE
nonbusiness days and holidays).

BusDays 1 (Default) Generates a monthly financial time series that
ranges from the first date to the last date in oldfts
(excludes NYSE nonbusiness days and holidays and
weekends based on AltHolidays and Weekend). If an end-
of-month date falls on a nonbusiness day or NYSE holiday,
returns the last business day of the month.

NYSE market closures, holidays, and weekends are observed
if AltHolidays and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all annual dates between the start and end
dates of oldfts. Some dates may be disregarded if
BusDays = 1.

Note The default is to create a time series with every date
at the specified periodicity, which is with DateFilter =
Absolute. If you use DateFilter = Relative, the
endpoint effects do not apply since only your data defines
which dates appear in the output time series object.

DateFilter Relative Returns only the annual dates that exist in oldfts. Some
dates may be disregarded if BusDays = 1.

ED 0 Annual period ends on the last day or last business day of the
month.

ED 1 - 31 Specifies a particular annual day. Months that do not contain
the specified day return the last day (or last business day) of
the month (for example, ED = 31 does not exist for
February.)

EM 1 - 12 (Default) The annual period ends on the last day (or last
business day) of the specified month. All subsequent annual
dates are calculated from this month. Default annual month
is December (12).
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Parameter Name Parameter Value Description
EndPtTol [Begin, End] Denotes the minimum number of days that constitute an odd

annual period at the endpoints of the time series (before the
first-time series date and after the last end-of-year date).

Begin and End must be -1 or any positive integer greater
than or equal to 0.

A single value input for 'EndPtTol' is the same as
specifying that single value for Begin and End.

-1   Exclude odd annual period dates and data from
calculations.

0    (Default) Include odd annual period dates and data in
calculations.

n   Number of days (any positive integer) that constitute an
odd annual period. If there are insufficient days for a
complete year, the endpoint data is ignored.

The following diagram is a general depiction of the factors involved in the determination of
endpoints for this function.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

TimeSpec Last (Default) Returns only the observation that occurs at the last
(latest) time for a specific date.

AltHolidays  Vector of dates specifying an alternate set of market closure
dates.

AltHolidays -1 Excludes all holidays.
Weekend  Vector of length 7 containing 0's and 1's. The value 1

indicates a weekend day. The first element of this vector
corresponds to Sunday. For example, when Saturday and
Sunday are weekend days (default) then Weekend = [1 0
0 0 0 0 1].

Examples

19 Functions

19-1488



Transform Time Series Object from Weekly to Annual Values

This example shows how to transform a time series object from weekly to annual values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time
series object with a weekly frequency.

load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
x0 = 
 
    desc:  Index
    freq:  Weekly (2)

    {'dates:  (53)'}    {'Metric:  (53)'}
    {'01-Jan-1999' }    {[      97.8872]}
    {'08-Jan-1999' }    {[      97.0847]}
    {'15-Jan-1999' }    {[     109.6312]}
    {'22-Jan-1999' }    {[     105.5743]}
    {'29-Jan-1999' }    {[     108.4028]}
    {'05-Feb-1999' }    {[     134.4882]}
    {'12-Feb-1999' }    {[     117.5581]}
    {'19-Feb-1999' }    {[     106.6683]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'05-Mar-1999' }    {[     105.6835]}
    {'12-Mar-1999' }    {[     128.5836]}
    {'19-Mar-1999' }    {[     115.1746]}
    {'26-Mar-1999' }    {[     131.2854]}
    {'02-Apr-1999' }    {[     130.7116]}
    {'09-Apr-1999' }    {[     123.1684]}
    {'16-Apr-1999' }    {[     107.2975]}
    {'23-Apr-1999' }    {[      91.5625]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'07-May-1999' }    {[      65.2904]}
    {'14-May-1999' }    {[      70.8581]}
    {'21-May-1999' }    {[      72.4807]}
    {'28-May-1999' }    {[      72.9190]}
    {'04-Jun-1999' }    {[      64.3460]}
    {'11-Jun-1999' }    {[      59.8743]}
    {'18-Jun-1999' }    {[      55.0026]}
    {'25-Jun-1999' }    {[      49.4032]}
    {'02-Jul-1999' }    {[      49.9485]}
    {'09-Jul-1999' }    {[      47.8061]}
    {'16-Jul-1999' }    {[      61.0517]}
    {'23-Jul-1999' }    {[      58.9313]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'06-Aug-1999' }    {[      44.8472]}
    {'13-Aug-1999' }    {[      45.0463]}
    {'20-Aug-1999' }    {[      45.1088]}
    {'27-Aug-1999' }    {[      56.4897]}
    {'03-Sep-1999' }    {[      61.2449]}
    {'10-Sep-1999' }    {[      58.1012]}
    {'17-Sep-1999' }    {[      50.8974]}
    {'24-Sep-1999' }    {[      46.5143]}
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    {'01-Oct-1999' }    {[      38.0806]}
    {'08-Oct-1999' }    {[      33.6664]}
    {'15-Oct-1999' }    {[      34.2992]}
    {'22-Oct-1999' }    {[      33.4202]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'05-Nov-1999' }    {[      35.1278]}
    {'12-Nov-1999' }    {[      41.8128]}
    {'19-Nov-1999' }    {[      35.8199]}
    {'26-Nov-1999' }    {[      36.9495]}
    {'03-Dec-1999' }    {[      36.2880]}
    {'10-Dec-1999' }    {[      33.8457]}
    {'17-Dec-1999' }    {[      33.3868]}
    {'24-Dec-1999' }    {[      32.7737]}
    {'31-Dec-1999' }    {[      28.5665]}

Use toannual to obtain the annual aggregate for the x0 times series.

x1 = toannual(x0)

Warning: FINTS is not recommended. Use convert2annual instead.

 
x1 = 
 
    desc:  TOANNUAL: Index
    freq:  Annual (6)

    {'dates:  (1)'}    {'Metric:  (1)'}
    {'31-Dec-1999'}    {[     28.5665]}

See Also
convertto | todaily | fints | tomonthly | toquarterly | tosemi | toweekly

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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todaily
Convert to daily

Note todaily is not recommended. Use convert2daily instead.

Syntax
newfts = todaily(oldfts)

newfts = todaily(oldfts,'ParameterName',ParameterValue, ...)

Arguments
oldfts Financial time series object

Description
newfts = todaily(oldfts) converts a financial time series of any frequency to a daily frequency.
todaily uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as '00:00' for
those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for todaily trigger the use of the defaults.

newfts = todaily(oldfts,'ParameterName',ParameterValue, ...) accepts parameter
name/parameter value pairs as input, as specified in the following table.

Parameter Name Parameter Value Description
CalcMethod Exact Returns the value at specific dates/times. No data

manipulation occurs.
CalcMethod v21x This mode is compatible with previous versions of this

function (Version 2.1.x and earlier). It returns a five-day
business week that starts on Monday and ends on Friday.

Note If you set CalcMethod to v21x, settings for all the following parameter name/parameter
value pairs are not supported.
BusDays 0 Generates a financial time series that ranges from (or

between) the first date to the last date in oldfts (includes
NYSE nonbusiness days and holidays).

 todaily
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Parameter Name Parameter Value Description
BusDays 1 (Default) Generates a daily financial time series that ranges

from the first date to the last date in oldfts (excludes NYSE
nonbusiness days and holidays and weekends based on
AltHolidays and Weekend).

NYSE market closures, holidays, and weekends are observed
if AltHolidays and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Displays all daily dates between the start and end
dates of oldfts. Some dates may be disregarded if
BusDays = 1.

Note The default is to create a time series with every date
at the specified periodicity, which is with DateFilter =
Absolute. If you use DateFilter = Relative, the
endpoint effects do not apply since only your data defines
which dates appear in the output time series object.

DateFilter Relative Displays only dates that exist in oldfts. Some dates may be
disregarded if BusDays = 1.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

TimeSpec Last (Default) Returns only the observation that occurs at the last
(latest) time for a specific date.

AltHolidays  Vector of dates specifying an alternate set of market closure
dates.

AltHolidays -1 Excludes all holidays.
Weekend  Vector of length 7 containing 0's and 1's. The value 1

indicates a weekend day. The first element of this vector
corresponds to Sunday. For example, when Saturday and
Sunday are weekend days (default) then Weekend = [1 0
0 0 0 0 1].

Examples

Transform Time Series Object from Weekly to Daily Values

Load the data from the file predict_ret_data.mat and use the fints function to create a time
series object with a weekly frequency.

load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
x0 = 
 
    desc:  Index
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    freq:  Weekly (2)

    {'dates:  (53)'}    {'Metric:  (53)'}
    {'01-Jan-1999' }    {[      97.8872]}
    {'08-Jan-1999' }    {[      97.0847]}
    {'15-Jan-1999' }    {[     109.6312]}
    {'22-Jan-1999' }    {[     105.5743]}
    {'29-Jan-1999' }    {[     108.4028]}
    {'05-Feb-1999' }    {[     134.4882]}
    {'12-Feb-1999' }    {[     117.5581]}
    {'19-Feb-1999' }    {[     106.6683]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'05-Mar-1999' }    {[     105.6835]}
    {'12-Mar-1999' }    {[     128.5836]}
    {'19-Mar-1999' }    {[     115.1746]}
    {'26-Mar-1999' }    {[     131.2854]}
    {'02-Apr-1999' }    {[     130.7116]}
    {'09-Apr-1999' }    {[     123.1684]}
    {'16-Apr-1999' }    {[     107.2975]}
    {'23-Apr-1999' }    {[      91.5625]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'07-May-1999' }    {[      65.2904]}
    {'14-May-1999' }    {[      70.8581]}
    {'21-May-1999' }    {[      72.4807]}
    {'28-May-1999' }    {[      72.9190]}
    {'04-Jun-1999' }    {[      64.3460]}
    {'11-Jun-1999' }    {[      59.8743]}
    {'18-Jun-1999' }    {[      55.0026]}
    {'25-Jun-1999' }    {[      49.4032]}
    {'02-Jul-1999' }    {[      49.9485]}
    {'09-Jul-1999' }    {[      47.8061]}
    {'16-Jul-1999' }    {[      61.0517]}
    {'23-Jul-1999' }    {[      58.9313]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'06-Aug-1999' }    {[      44.8472]}
    {'13-Aug-1999' }    {[      45.0463]}
    {'20-Aug-1999' }    {[      45.1088]}
    {'27-Aug-1999' }    {[      56.4897]}
    {'03-Sep-1999' }    {[      61.2449]}
    {'10-Sep-1999' }    {[      58.1012]}
    {'17-Sep-1999' }    {[      50.8974]}
    {'24-Sep-1999' }    {[      46.5143]}
    {'01-Oct-1999' }    {[      38.0806]}
    {'08-Oct-1999' }    {[      33.6664]}
    {'15-Oct-1999' }    {[      34.2992]}
    {'22-Oct-1999' }    {[      33.4202]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'05-Nov-1999' }    {[      35.1278]}
    {'12-Nov-1999' }    {[      41.8128]}
    {'19-Nov-1999' }    {[      35.8199]}
    {'26-Nov-1999' }    {[      36.9495]}
    {'03-Dec-1999' }    {[      36.2880]}
    {'10-Dec-1999' }    {[      33.8457]}
    {'17-Dec-1999' }    {[      33.3868]}
    {'24-Dec-1999' }    {[      32.7737]}
    {'31-Dec-1999' }    {[      28.5665]}

Use todaily to obtain the daily aggregate for the x0 times series.
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x1 = todaily(x0)

Warning: FINTS is not recommended. Use convert2daily instead.

 
x1 = 
 
    desc:  TODAILY: Index
    freq:  Daily (1)

    {'dates:  (252)'}    {'Metric:  (252)'}
    {'04-Jan-1999'  }    {[           NaN]}
    {'05-Jan-1999'  }    {[           NaN]}
    {'06-Jan-1999'  }    {[           NaN]}
    {'07-Jan-1999'  }    {[           NaN]}
    {'08-Jan-1999'  }    {[       97.0847]}
    {'11-Jan-1999'  }    {[           NaN]}
    {'12-Jan-1999'  }    {[           NaN]}
    {'13-Jan-1999'  }    {[           NaN]}
    {'14-Jan-1999'  }    {[           NaN]}
    {'15-Jan-1999'  }    {[      109.6312]}
    {'19-Jan-1999'  }    {[           NaN]}
    {'20-Jan-1999'  }    {[           NaN]}
    {'21-Jan-1999'  }    {[           NaN]}
    {'22-Jan-1999'  }    {[      105.5743]}
    {'25-Jan-1999'  }    {[           NaN]}
    {'26-Jan-1999'  }    {[           NaN]}
    {'27-Jan-1999'  }    {[           NaN]}
    {'28-Jan-1999'  }    {[           NaN]}
    {'29-Jan-1999'  }    {[      108.4028]}
    {'01-Feb-1999'  }    {[           NaN]}
    {'02-Feb-1999'  }    {[           NaN]}
    {'03-Feb-1999'  }    {[           NaN]}
    {'04-Feb-1999'  }    {[           NaN]}
    {'05-Feb-1999'  }    {[      134.4882]}
    {'08-Feb-1999'  }    {[           NaN]}
    {'09-Feb-1999'  }    {[           NaN]}
    {'10-Feb-1999'  }    {[           NaN]}
    {'11-Feb-1999'  }    {[           NaN]}
    {'12-Feb-1999'  }    {[      117.5581]}
    {'16-Feb-1999'  }    {[           NaN]}
    {'17-Feb-1999'  }    {[           NaN]}
    {'18-Feb-1999'  }    {[           NaN]}
    {'19-Feb-1999'  }    {[      106.6683]}
    {'22-Feb-1999'  }    {[           NaN]}
    {'23-Feb-1999'  }    {[           NaN]}
    {'24-Feb-1999'  }    {[           NaN]}
    {'25-Feb-1999'  }    {[           NaN]}
    {'26-Feb-1999'  }    {[      118.2912]}
    {'01-Mar-1999'  }    {[           NaN]}
    {'02-Mar-1999'  }    {[           NaN]}
    {'03-Mar-1999'  }    {[           NaN]}
    {'04-Mar-1999'  }    {[           NaN]}
    {'05-Mar-1999'  }    {[      105.6835]}
    {'08-Mar-1999'  }    {[           NaN]}
    {'09-Mar-1999'  }    {[           NaN]}
    {'10-Mar-1999'  }    {[           NaN]}
    {'11-Mar-1999'  }    {[           NaN]}
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    {'12-Mar-1999'  }    {[      128.5836]}
    {'15-Mar-1999'  }    {[           NaN]}
    {'16-Mar-1999'  }    {[           NaN]}
    {'17-Mar-1999'  }    {[           NaN]}
    {'18-Mar-1999'  }    {[           NaN]}
    {'19-Mar-1999'  }    {[      115.1746]}
    {'22-Mar-1999'  }    {[           NaN]}
    {'23-Mar-1999'  }    {[           NaN]}
    {'24-Mar-1999'  }    {[           NaN]}
    {'25-Mar-1999'  }    {[           NaN]}
    {'26-Mar-1999'  }    {[      131.2854]}
    {'29-Mar-1999'  }    {[           NaN]}
    {'30-Mar-1999'  }    {[           NaN]}
    {'31-Mar-1999'  }    {[           NaN]}
    {'01-Apr-1999'  }    {[           NaN]}
    {'05-Apr-1999'  }    {[           NaN]}
    {'06-Apr-1999'  }    {[           NaN]}
    {'07-Apr-1999'  }    {[           NaN]}
    {'08-Apr-1999'  }    {[           NaN]}
    {'09-Apr-1999'  }    {[      123.1684]}
    {'12-Apr-1999'  }    {[           NaN]}
    {'13-Apr-1999'  }    {[           NaN]}
    {'14-Apr-1999'  }    {[           NaN]}
    {'15-Apr-1999'  }    {[           NaN]}
    {'16-Apr-1999'  }    {[      107.2975]}
    {'19-Apr-1999'  }    {[           NaN]}
    {'20-Apr-1999'  }    {[           NaN]}
    {'21-Apr-1999'  }    {[           NaN]}
    {'22-Apr-1999'  }    {[           NaN]}
    {'23-Apr-1999'  }    {[       91.5625]}
    {'26-Apr-1999'  }    {[           NaN]}
    {'27-Apr-1999'  }    {[           NaN]}
    {'28-Apr-1999'  }    {[           NaN]}
    {'29-Apr-1999'  }    {[           NaN]}
    {'30-Apr-1999'  }    {[       78.5738]}
    {'03-May-1999'  }    {[           NaN]}
    {'04-May-1999'  }    {[           NaN]}
    {'05-May-1999'  }    {[           NaN]}
    {'06-May-1999'  }    {[           NaN]}
    {'07-May-1999'  }    {[       65.2904]}
    {'10-May-1999'  }    {[           NaN]}
    {'11-May-1999'  }    {[           NaN]}
    {'12-May-1999'  }    {[           NaN]}
    {'13-May-1999'  }    {[           NaN]}
    {'14-May-1999'  }    {[       70.8581]}
    {'17-May-1999'  }    {[           NaN]}
    {'18-May-1999'  }    {[           NaN]}
    {'19-May-1999'  }    {[           NaN]}
    {'20-May-1999'  }    {[           NaN]}
    {'21-May-1999'  }    {[       72.4807]}
    {'24-May-1999'  }    {[           NaN]}
    {'25-May-1999'  }    {[           NaN]}
    {'26-May-1999'  }    {[           NaN]}
    {'27-May-1999'  }    {[           NaN]}
    {'28-May-1999'  }    {[       72.9190]}
    {'01-Jun-1999'  }    {[           NaN]}
    {'02-Jun-1999'  }    {[           NaN]}
    {'03-Jun-1999'  }    {[           NaN]}
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    {'04-Jun-1999'  }    {[       64.3460]}
    {'07-Jun-1999'  }    {[           NaN]}
    {'08-Jun-1999'  }    {[           NaN]}
    {'09-Jun-1999'  }    {[           NaN]}
    {'10-Jun-1999'  }    {[           NaN]}
    {'11-Jun-1999'  }    {[       59.8743]}
    {'14-Jun-1999'  }    {[           NaN]}
    {'15-Jun-1999'  }    {[           NaN]}
    {'16-Jun-1999'  }    {[           NaN]}
    {'17-Jun-1999'  }    {[           NaN]}
    {'18-Jun-1999'  }    {[       55.0026]}
    {'21-Jun-1999'  }    {[           NaN]}
    {'22-Jun-1999'  }    {[           NaN]}
    {'23-Jun-1999'  }    {[           NaN]}
    {'24-Jun-1999'  }    {[           NaN]}
    {'25-Jun-1999'  }    {[       49.4032]}
    {'28-Jun-1999'  }    {[           NaN]}
    {'29-Jun-1999'  }    {[           NaN]}
    {'30-Jun-1999'  }    {[           NaN]}
    {'01-Jul-1999'  }    {[           NaN]}
    {'02-Jul-1999'  }    {[       49.9485]}
    {'06-Jul-1999'  }    {[           NaN]}
    {'07-Jul-1999'  }    {[           NaN]}
    {'08-Jul-1999'  }    {[           NaN]}
    {'09-Jul-1999'  }    {[       47.8061]}
    {'12-Jul-1999'  }    {[           NaN]}
    {'13-Jul-1999'  }    {[           NaN]}
    {'14-Jul-1999'  }    {[           NaN]}
    {'15-Jul-1999'  }    {[           NaN]}
    {'16-Jul-1999'  }    {[       61.0517]}
    {'19-Jul-1999'  }    {[           NaN]}
    {'20-Jul-1999'  }    {[           NaN]}
    {'21-Jul-1999'  }    {[           NaN]}
    {'22-Jul-1999'  }    {[           NaN]}
    {'23-Jul-1999'  }    {[       58.9313]}
    {'26-Jul-1999'  }    {[           NaN]}
    {'27-Jul-1999'  }    {[           NaN]}
    {'28-Jul-1999'  }    {[           NaN]}
    {'29-Jul-1999'  }    {[           NaN]}
    {'30-Jul-1999'  }    {[       53.9584]}
    {'02-Aug-1999'  }    {[           NaN]}
    {'03-Aug-1999'  }    {[           NaN]}
    {'04-Aug-1999'  }    {[           NaN]}
    {'05-Aug-1999'  }    {[           NaN]}
    {'06-Aug-1999'  }    {[       44.8472]}
    {'09-Aug-1999'  }    {[           NaN]}
    {'10-Aug-1999'  }    {[           NaN]}
    {'11-Aug-1999'  }    {[           NaN]}
    {'12-Aug-1999'  }    {[           NaN]}
    {'13-Aug-1999'  }    {[       45.0463]}
    {'16-Aug-1999'  }    {[           NaN]}
    {'17-Aug-1999'  }    {[           NaN]}
    {'18-Aug-1999'  }    {[           NaN]}
    {'19-Aug-1999'  }    {[           NaN]}
    {'20-Aug-1999'  }    {[       45.1088]}
    {'23-Aug-1999'  }    {[           NaN]}
    {'24-Aug-1999'  }    {[           NaN]}
    {'25-Aug-1999'  }    {[           NaN]}
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    {'26-Aug-1999'  }    {[           NaN]}
    {'27-Aug-1999'  }    {[       56.4897]}
    {'30-Aug-1999'  }    {[           NaN]}
    {'31-Aug-1999'  }    {[           NaN]}
    {'01-Sep-1999'  }    {[           NaN]}
    {'02-Sep-1999'  }    {[           NaN]}
    {'03-Sep-1999'  }    {[       61.2449]}
    {'07-Sep-1999'  }    {[           NaN]}
    {'08-Sep-1999'  }    {[           NaN]}
    {'09-Sep-1999'  }    {[           NaN]}
    {'10-Sep-1999'  }    {[       58.1012]}
    {'13-Sep-1999'  }    {[           NaN]}
    {'14-Sep-1999'  }    {[           NaN]}
    {'15-Sep-1999'  }    {[           NaN]}
    {'16-Sep-1999'  }    {[           NaN]}
    {'17-Sep-1999'  }    {[       50.8974]}
    {'20-Sep-1999'  }    {[           NaN]}
    {'21-Sep-1999'  }    {[           NaN]}
    {'22-Sep-1999'  }    {[           NaN]}
    {'23-Sep-1999'  }    {[           NaN]}
    {'24-Sep-1999'  }    {[       46.5143]}
    {'27-Sep-1999'  }    {[           NaN]}
    {'28-Sep-1999'  }    {[           NaN]}
    {'29-Sep-1999'  }    {[           NaN]}
    {'30-Sep-1999'  }    {[           NaN]}
    {'01-Oct-1999'  }    {[       38.0806]}
    {'04-Oct-1999'  }    {[           NaN]}
    {'05-Oct-1999'  }    {[           NaN]}
    {'06-Oct-1999'  }    {[           NaN]}
    {'07-Oct-1999'  }    {[           NaN]}
    {'08-Oct-1999'  }    {[       33.6664]}
    {'11-Oct-1999'  }    {[           NaN]}
    {'12-Oct-1999'  }    {[           NaN]}
    {'13-Oct-1999'  }    {[           NaN]}
    {'14-Oct-1999'  }    {[           NaN]}
    {'15-Oct-1999'  }    {[       34.2992]}
    {'18-Oct-1999'  }    {[           NaN]}
    {'19-Oct-1999'  }    {[           NaN]}
    {'20-Oct-1999'  }    {[           NaN]}
    {'21-Oct-1999'  }    {[           NaN]}
    {'22-Oct-1999'  }    {[       33.4202]}
    {'25-Oct-1999'  }    {[           NaN]}
    {'26-Oct-1999'  }    {[           NaN]}
    {'27-Oct-1999'  }    {[           NaN]}
    {'28-Oct-1999'  }    {[           NaN]}
    {'29-Oct-1999'  }    {[       36.9287]}
    {'01-Nov-1999'  }    {[           NaN]}
    {'02-Nov-1999'  }    {[           NaN]}
    {'03-Nov-1999'  }    {[           NaN]}
    {'04-Nov-1999'  }    {[           NaN]}
    {'05-Nov-1999'  }    {[       35.1278]}
    {'08-Nov-1999'  }    {[           NaN]}
    {'09-Nov-1999'  }    {[           NaN]}
    {'10-Nov-1999'  }    {[           NaN]}
    {'11-Nov-1999'  }    {[           NaN]}
    {'12-Nov-1999'  }    {[       41.8128]}
    {'15-Nov-1999'  }    {[           NaN]}
    {'16-Nov-1999'  }    {[           NaN]}
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    {'17-Nov-1999'  }    {[           NaN]}
    {'18-Nov-1999'  }    {[           NaN]}
    {'19-Nov-1999'  }    {[       35.8199]}
    {'22-Nov-1999'  }    {[           NaN]}
    {'23-Nov-1999'  }    {[           NaN]}
    {'24-Nov-1999'  }    {[           NaN]}
    {'26-Nov-1999'  }    {[       36.9495]}
    {'29-Nov-1999'  }    {[           NaN]}
    {'30-Nov-1999'  }    {[           NaN]}
    {'01-Dec-1999'  }    {[           NaN]}
    {'02-Dec-1999'  }    {[           NaN]}
    {'03-Dec-1999'  }    {[       36.2880]}
    {'06-Dec-1999'  }    {[           NaN]}
    {'07-Dec-1999'  }    {[           NaN]}
    {'08-Dec-1999'  }    {[           NaN]}
    {'09-Dec-1999'  }    {[           NaN]}
    {'10-Dec-1999'  }    {[       33.8457]}
    {'13-Dec-1999'  }    {[           NaN]}
    {'14-Dec-1999'  }    {[           NaN]}
    {'15-Dec-1999'  }    {[           NaN]}
    {'16-Dec-1999'  }    {[           NaN]}
    {'17-Dec-1999'  }    {[       33.3868]}
    {'20-Dec-1999'  }    {[           NaN]}
    {'21-Dec-1999'  }    {[           NaN]}
    {'22-Dec-1999'  }    {[           NaN]}
    {'23-Dec-1999'  }    {[           NaN]}
    {'27-Dec-1999'  }    {[           NaN]}
    {'28-Dec-1999'  }    {[           NaN]}
    {'29-Dec-1999'  }    {[           NaN]}
    {'30-Dec-1999'  }    {[           NaN]}
    {'31-Dec-1999'  }    {[       28.5665]}

See Also
convertto | toannual | fints | tomonthly | toquarterly | tosemi | toweekly

Topics
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today
Current date

Syntax
Date = today
Date = today(outputType)

Description
Date = today returns the current date as a serial date number.

Date = today(outputType) returns the current date using an optional outputType. The type of
output is determined by an optional outputType variable input.

Examples

Return the Current Date

Use today to return the current date with the default serial date number.

Date = today

Date = 738400

Use the optional argument outputType to return a datetime array.

Date = today('datetime')

Date = datetime
   01-Sep-2021

Input Arguments
outputType — Type of output
'datenum' (default) | character vector with values 'datetime' or 'datenum'

Type of output, specified as a character vector with values 'datetime' or 'datenum'.

If outputType is 'datenum', then Date is a serial date number. If outputType is 'datetime',
then Date is a datetime array. By default, outputType is 'datenum'.
Data Types: char

Output Arguments
Date — Current date
serial date number or datetime array

 today
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Current date, returned as a serial date number or datetime array, depending on the optional input
argument outputType.

See Also
datenum | datestr | now | datetime

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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todecimal
Fractional to decimal conversion

Syntax
usddec = todecimal(quote,fracpart)

Description
usddec = todecimal(quote,fracpart) returns the decimal equivalent, usddec, of a security
whose price is normally quoted as a whole number and a fraction (quote). fracpart indicates the
fractional base (denominator) with which the security is normally quoted (default = 32).

Examples
In the Wall Street Journal, bond prices are quoted in fractional form based on a denominator of 32.
For example, if you see the quoted price is 100:05 it means 100 5/32. To find the equivalent decimal
value, enter

usddec = todecimal(100.05)

usddec = 
   100.1563

usddec = todecimal(97.04, 16)

usddec =
   97.2500

Note The convention of using . (period) as a substitute for : (colon) in the input is adopted from
Excel software.

See Also
toquoted

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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tomonthly
Convert to monthly

Note tomonthly is not recommended. Use convert2monthly instead.

Syntax
newfts = tomonthly(oldfts)

newfts = tomonthly(oldfts,'ParameterName',ParameterValue, ...)

Arguments
oldfts Financial time series object.

Description
newfts = tomonthly(oldfts) converts a financial time series of any frequency to a monthly
frequency. The default end-of-month day is the last business day of the month. tomonthly uses
holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as 00:00 for
those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for tomonthly triggers the use of the
defaults.

newfts = tomonthly(oldfts,'ParameterName',ParameterValue, ...) accepts parameter
name/parameter value pairs as input, as specified in the following table.

Parameter Name Parameter Value Description
CalcMethod CumSum Returns the cumulative sum of the values within each month.

Data for missing dates are given the value 0.
 Exact Returns the exact value at the end-of-month date. No data

manipulation occurs.
 Nearest (Default) Returns the values located at the end-of-month

date. If there is missing data, 'Nearest' returns the nearest
data point preceding the end-of-month date.

 SimpAvg Returns an averaged monthly value that only takes into
account dates with data (non-NaN) within each month.
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Parameter Name Parameter Value Description
 v21x This mode is compatible with previous versions of this

function (Version 2.1.x and earlier). It returns an averaged
end-of-month value using a previous tomonthly algorithm.
This algorithm takes into account all dates and data. For
dates that do not contain any data, the data is assumed to be
0.

Note If you set CalcMethod to v21x, settings for all the following parameter
name/parameter value pairs are not supported.

BusDays 0 Generates a monthly financial time series that ranges from
the first date to the last date in oldfts (includes NYSE
nonbusiness days and holidays).

 1 (Default) Generates a monthly financial time series that
ranges from the first date to the last date in oldfts
(excludes NYSE nonbusiness days and holidays and
weekends based on AltHolidays and Weekend). If an end-
of-month date falls on a nonbusiness day or NYSE holiday,
returns the last business day of the month.

NYSE market closures, holidays, and weekends are observed
if AltHolidays and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all monthly dates between the start and
end dates of oldfts. Some dates may be disregarded if
BusDays = 1.

Note The default is to create a time series with every date
at the specified periodicity, which is with DateFilter =
Absolute. If you use DateFilter = Relative, the
endpoint effects do not apply since only your data defines
which dates appear in the output time series object.

 Relative Returns only monthly dates that exist in oldfts. Some dates
may be disregarded if BusDays = 1.

ED 0 (Default) The end-of-month date is the last day (or last
business day) of the month.

 1 - 31 Returns values on the specified end-of-month day. Months
that do not contain the specified end-of-month day return the
last day of the month instead (for example, ED = 31 does
not exist for February).

If end-of-month falls on a NYSE non-business day or holiday,
the previous business day is returned if BusDays = 1.
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Parameter Name Parameter Value Description
EndPtTol [Begin, End] Denotes the minimum number of days that constitute an odd

month at the end points of the time series (before the first
whole period and after the last whole period).

Begin and End must be -1 or any positive integer greater
than or equal to 0.

A single value input for EndPtTol is the same as specifying
that single value for Begin and End.

-1   Do not include odd month dates and data in calculations.

0    (Default) Include all odd month dates and data in
calculations.

n   Number of days that constitute an odd month. If the
minimum number of days is not met, the odd month dates
and data are ignored.

The following diagram is a general depiction of the factors involved in the determination of end
points for this function.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

 Last (Default) Returns only the observation that occurs at the last
(latest) time for a specific date.

AltHolidays  Vector of dates specifying an alternate set of market closure
dates.

 -1 Excludes all holidays.
Weekend  Vector of length 7 containing 0's and 1's. The value 1

indicates a weekend day. The first element of this vector
corresponds to Sunday. For example, when Saturday and
Sunday are weekend days (default) then Weekend = [1 0
0 0 0 0 1].

Examples
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Transform Time Series Object from Weekly to Monthly Values

This example shows how to transform a time series object from weekly to monthly values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time
series object with a weekly frequency.

load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
x0 = 
 
    desc:  Index
    freq:  Weekly (2)

    {'dates:  (53)'}    {'Metric:  (53)'}
    {'01-Jan-1999' }    {[      97.8872]}
    {'08-Jan-1999' }    {[      97.0847]}
    {'15-Jan-1999' }    {[     109.6312]}
    {'22-Jan-1999' }    {[     105.5743]}
    {'29-Jan-1999' }    {[     108.4028]}
    {'05-Feb-1999' }    {[     134.4882]}
    {'12-Feb-1999' }    {[     117.5581]}
    {'19-Feb-1999' }    {[     106.6683]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'05-Mar-1999' }    {[     105.6835]}
    {'12-Mar-1999' }    {[     128.5836]}
    {'19-Mar-1999' }    {[     115.1746]}
    {'26-Mar-1999' }    {[     131.2854]}
    {'02-Apr-1999' }    {[     130.7116]}
    {'09-Apr-1999' }    {[     123.1684]}
    {'16-Apr-1999' }    {[     107.2975]}
    {'23-Apr-1999' }    {[      91.5625]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'07-May-1999' }    {[      65.2904]}
    {'14-May-1999' }    {[      70.8581]}
    {'21-May-1999' }    {[      72.4807]}
    {'28-May-1999' }    {[      72.9190]}
    {'04-Jun-1999' }    {[      64.3460]}
    {'11-Jun-1999' }    {[      59.8743]}
    {'18-Jun-1999' }    {[      55.0026]}
    {'25-Jun-1999' }    {[      49.4032]}
    {'02-Jul-1999' }    {[      49.9485]}
    {'09-Jul-1999' }    {[      47.8061]}
    {'16-Jul-1999' }    {[      61.0517]}
    {'23-Jul-1999' }    {[      58.9313]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'06-Aug-1999' }    {[      44.8472]}
    {'13-Aug-1999' }    {[      45.0463]}
    {'20-Aug-1999' }    {[      45.1088]}
    {'27-Aug-1999' }    {[      56.4897]}
    {'03-Sep-1999' }    {[      61.2449]}
    {'10-Sep-1999' }    {[      58.1012]}
    {'17-Sep-1999' }    {[      50.8974]}
    {'24-Sep-1999' }    {[      46.5143]}
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    {'01-Oct-1999' }    {[      38.0806]}
    {'08-Oct-1999' }    {[      33.6664]}
    {'15-Oct-1999' }    {[      34.2992]}
    {'22-Oct-1999' }    {[      33.4202]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'05-Nov-1999' }    {[      35.1278]}
    {'12-Nov-1999' }    {[      41.8128]}
    {'19-Nov-1999' }    {[      35.8199]}
    {'26-Nov-1999' }    {[      36.9495]}
    {'03-Dec-1999' }    {[      36.2880]}
    {'10-Dec-1999' }    {[      33.8457]}
    {'17-Dec-1999' }    {[      33.3868]}
    {'24-Dec-1999' }    {[      32.7737]}
    {'31-Dec-1999' }    {[      28.5665]}

Use tomonthly to obtain the monthly aggregate for the x0 times series.

x1 = tomonthly(x0)

Warning: FINTS is not recommended. Use convert2monthly instead.

 
x1 = 
 
    desc:  TOMONTHLY: Index
    freq:  Monthly (3)

    {'dates:  (12)'}    {'Metric:  (12)'}
    {'29-Jan-1999' }    {[     108.4028]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'31-Mar-1999' }    {[     131.2854]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'28-May-1999' }    {[      72.9190]}
    {'30-Jun-1999' }    {[      49.4032]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'31-Aug-1999' }    {[      56.4897]}
    {'30-Sep-1999' }    {[      46.5143]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'30-Nov-1999' }    {[      36.9495]}
    {'31-Dec-1999' }    {[      28.5665]}

See Also
convertto | toannual | fints | todaily | toquarterly | tosemi | toweekly

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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toquarterly
Convert to quarterly

Note toquarterly is not recommended. Use convert2quarterly instead.

Syntax
newfts = toquarterly(oldfts)

newfts = toquarterly(oldfts,'ParameterName',ParameterValue, ...)

Arguments
oldfts Financial time series object

Description
newfts = toquarterly(oldfts) converts a financial time series of any frequency to a quarterly
frequency. The default quarterly days are the last business day of March, June, September, and
December. toquarterly uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as 00:00 for
those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for toquarterly triggers the use of the
defaults.

newfts = toquarterly(oldfts,'ParameterName',ParameterValue, ...) accepts
parameter name/parameter value pairs as input, as specified in the following table.

Parameter
Name

Parameter Value Description

CalcMethod CumSum Returns the cumulative sum of the values between each
quarter. Data for missing dates are given the value 0.

 Exact Returns the exact value at the end-of-quarter date. No data
manipulation occurs.

 Nearest (Default) Returns the values located at the end-of-quarter
date. If there is missing data, Nearest returns the nearest
data point preceding the end-of-quarter date.

 SimpAvg Returns an averaged quarterly value that only takes into
account dates with data (non-NaN) within each quarter.
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Parameter
Name

Parameter Value Description

 v21x This mode is compatible with previous versions of this
function (Version 2.1.x and earlier). It returns an averaged
end-of-quarter value using a previous toquarterly
algorithm. This algorithm takes into account all dates and
data. For dates that do not contain any data, the data is
assumed to be 0.

Note If you set CalcMethod to v21x, settings for all the following parameter
name/parameter value pairs are not supported.

BusDays 0 Generates a financial time series that ranges from (or
between) the first date to the last date in oldfts (includes
NYSE nonbusiness days and holidays).

 1 (Default) Generates a financial time series that ranges from
the first date to the last date in oldfts (excludes NYSE
nonbusiness days and holidays and weekends based on
AltHolidays and Weekend). If an end-of-quarter date falls
on a nonbusiness day or NYSE holiday, returns the last
business day of the quarter.

NYSE market closures, holidays, and weekends are observed
if AltHolidays and Weekend are not supplied or empty ([]).

DateFilter Absolute (Default) Returns all quarterly dates between the start and
end dates of oldfts. Some dates may be disregarded if
BusDays = 1.

Note The default is to create a time series with every date
at the specified periodicity, which is with DateFilter =
Absolute. If you use DateFilter = Relative, the
endpoint effects do not apply since only your data defines
which dates appear in the output time series object.

 Relative Returns only quarterly dates that exist in oldfts. Some
dates may be disregarded if BusDays = 1.

ED 0 (Default) The end-of-quarter date is the last day (or last
business day) of the quarter.

 1 - 31 Specifies a particular end-of-quarter day. Months that do not
contain the specified end-of-quarter day return the last day
of the quarter instead (for example, ED = 31 does not exist
for February).

EM 1 - 12 Last month of the first quarter. All subsequent quarterly
dates are based on this month. The default end-of-first-
quarter month is March (3).
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Parameter
Name

Parameter Value Description

EndPtTol [Begin, End] Denotes the minimum number of days that constitute an odd
quarter at the endpoints of the time series (before the first
whole period and after the last whole period).

Begin and End must be -1 or any positive integer greater
than or equal to 0.

A single value input for EndPtTol is the same as specifying
that single value for Begin and End.

-1   Do not include odd quarter dates and data in
calculations.

0    (Default) Include all odd quarter dates and data in
calculations.

n   Number of days (any positive integer) that constitute an
odd quarter. If there are insufficient days for a complete
quarter, the odd quarter dates and data are ignored.

The following diagram is a general depiction of the factors involved in the determination of
endpoints for this function.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

 Last (Default) Returns only the observation that occurs at the last
(latest) time for a specific date.

AltHolidays  Vector of dates specifying an alternate set of market closure
dates.

 -1 Excludes all holidays.
Weekend  Vector of length 7 containing 0's and 1's. The value 1

indicates a weekend day. The first element of this vector
corresponds to Sunday. For example, when Saturday and
Sunday are weekend days (default) then Weekend = [1 0
0 0 0 0 1].

Examples
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Transform Time Series Object from Weekly to Quarterly Values

This example shows how to transform a time series object from weekly to quarterly values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time
series object with a weekly frequency.

load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
x0 = 
 
    desc:  Index
    freq:  Weekly (2)

    {'dates:  (53)'}    {'Metric:  (53)'}
    {'01-Jan-1999' }    {[      97.8872]}
    {'08-Jan-1999' }    {[      97.0847]}
    {'15-Jan-1999' }    {[     109.6312]}
    {'22-Jan-1999' }    {[     105.5743]}
    {'29-Jan-1999' }    {[     108.4028]}
    {'05-Feb-1999' }    {[     134.4882]}
    {'12-Feb-1999' }    {[     117.5581]}
    {'19-Feb-1999' }    {[     106.6683]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'05-Mar-1999' }    {[     105.6835]}
    {'12-Mar-1999' }    {[     128.5836]}
    {'19-Mar-1999' }    {[     115.1746]}
    {'26-Mar-1999' }    {[     131.2854]}
    {'02-Apr-1999' }    {[     130.7116]}
    {'09-Apr-1999' }    {[     123.1684]}
    {'16-Apr-1999' }    {[     107.2975]}
    {'23-Apr-1999' }    {[      91.5625]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'07-May-1999' }    {[      65.2904]}
    {'14-May-1999' }    {[      70.8581]}
    {'21-May-1999' }    {[      72.4807]}
    {'28-May-1999' }    {[      72.9190]}
    {'04-Jun-1999' }    {[      64.3460]}
    {'11-Jun-1999' }    {[      59.8743]}
    {'18-Jun-1999' }    {[      55.0026]}
    {'25-Jun-1999' }    {[      49.4032]}
    {'02-Jul-1999' }    {[      49.9485]}
    {'09-Jul-1999' }    {[      47.8061]}
    {'16-Jul-1999' }    {[      61.0517]}
    {'23-Jul-1999' }    {[      58.9313]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'06-Aug-1999' }    {[      44.8472]}
    {'13-Aug-1999' }    {[      45.0463]}
    {'20-Aug-1999' }    {[      45.1088]}
    {'27-Aug-1999' }    {[      56.4897]}
    {'03-Sep-1999' }    {[      61.2449]}
    {'10-Sep-1999' }    {[      58.1012]}
    {'17-Sep-1999' }    {[      50.8974]}
    {'24-Sep-1999' }    {[      46.5143]}
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    {'01-Oct-1999' }    {[      38.0806]}
    {'08-Oct-1999' }    {[      33.6664]}
    {'15-Oct-1999' }    {[      34.2992]}
    {'22-Oct-1999' }    {[      33.4202]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'05-Nov-1999' }    {[      35.1278]}
    {'12-Nov-1999' }    {[      41.8128]}
    {'19-Nov-1999' }    {[      35.8199]}
    {'26-Nov-1999' }    {[      36.9495]}
    {'03-Dec-1999' }    {[      36.2880]}
    {'10-Dec-1999' }    {[      33.8457]}
    {'17-Dec-1999' }    {[      33.3868]}
    {'24-Dec-1999' }    {[      32.7737]}
    {'31-Dec-1999' }    {[      28.5665]}

Use toquarterly to obtain the quarterly aggregate for the x0 times series.

x1 = toquarterly(x0)

Warning: FINTS is not recommended. Use convert2quarterly instead.

 
x1 = 
 
    desc:  TOQUARTERLY: Index
    freq:  Quarterly (4)

    {'dates:  (4)'}    {'Metric:  (4)'}
    {'31-Mar-1999'}    {[    131.2854]}
    {'30-Jun-1999'}    {[     49.4032]}
    {'30-Sep-1999'}    {[     46.5143]}
    {'31-Dec-1999'}    {[     28.5665]}

Transform Time Series Object from Weekly to Quarterly Values Including NYSE Nonbusiness
Days and Holidays

Load the data from the file predict_ret_data.mat and use the fints function to create a time
series object with a weekly frequency.

load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
x0 = 
 
    desc:  Index
    freq:  Weekly (2)

    {'dates:  (53)'}    {'Metric:  (53)'}
    {'01-Jan-1999' }    {[      97.8872]}
    {'08-Jan-1999' }    {[      97.0847]}
    {'15-Jan-1999' }    {[     109.6312]}
    {'22-Jan-1999' }    {[     105.5743]}
    {'29-Jan-1999' }    {[     108.4028]}
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    {'05-Feb-1999' }    {[     134.4882]}
    {'12-Feb-1999' }    {[     117.5581]}
    {'19-Feb-1999' }    {[     106.6683]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'05-Mar-1999' }    {[     105.6835]}
    {'12-Mar-1999' }    {[     128.5836]}
    {'19-Mar-1999' }    {[     115.1746]}
    {'26-Mar-1999' }    {[     131.2854]}
    {'02-Apr-1999' }    {[     130.7116]}
    {'09-Apr-1999' }    {[     123.1684]}
    {'16-Apr-1999' }    {[     107.2975]}
    {'23-Apr-1999' }    {[      91.5625]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'07-May-1999' }    {[      65.2904]}
    {'14-May-1999' }    {[      70.8581]}
    {'21-May-1999' }    {[      72.4807]}
    {'28-May-1999' }    {[      72.9190]}
    {'04-Jun-1999' }    {[      64.3460]}
    {'11-Jun-1999' }    {[      59.8743]}
    {'18-Jun-1999' }    {[      55.0026]}
    {'25-Jun-1999' }    {[      49.4032]}
    {'02-Jul-1999' }    {[      49.9485]}
    {'09-Jul-1999' }    {[      47.8061]}
    {'16-Jul-1999' }    {[      61.0517]}
    {'23-Jul-1999' }    {[      58.9313]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'06-Aug-1999' }    {[      44.8472]}
    {'13-Aug-1999' }    {[      45.0463]}
    {'20-Aug-1999' }    {[      45.1088]}
    {'27-Aug-1999' }    {[      56.4897]}
    {'03-Sep-1999' }    {[      61.2449]}
    {'10-Sep-1999' }    {[      58.1012]}
    {'17-Sep-1999' }    {[      50.8974]}
    {'24-Sep-1999' }    {[      46.5143]}
    {'01-Oct-1999' }    {[      38.0806]}
    {'08-Oct-1999' }    {[      33.6664]}
    {'15-Oct-1999' }    {[      34.2992]}
    {'22-Oct-1999' }    {[      33.4202]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'05-Nov-1999' }    {[      35.1278]}
    {'12-Nov-1999' }    {[      41.8128]}
    {'19-Nov-1999' }    {[      35.8199]}
    {'26-Nov-1999' }    {[      36.9495]}
    {'03-Dec-1999' }    {[      36.2880]}
    {'10-Dec-1999' }    {[      33.8457]}
    {'17-Dec-1999' }    {[      33.3868]}
    {'24-Dec-1999' }    {[      32.7737]}
    {'31-Dec-1999' }    {[      28.5665]}

Use toquarterly with the optional BusDays argument set to 0 to obtain the quarterly cumulative
sums for the x0 times series that includes NYSE nonbusiness days and holidays.

x1 = toquarterly(x0,'CalcMethod','CumSum','Busdays',0)

Warning: FINTS is not recommended. Use convert2quarterly instead.

 
x1 = 
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    desc:  TOQUARTERLY: Index
    freq:  Quarterly (4)

    {'dates:  (4)'}    {'Metric:  (4)'}
    {'31-Mar-1999'}    {[  1.4763e+03]}
    {'30-Jun-1999'}    {[  1.0415e+03]}
    {'30-Sep-1999'}    {[    679.9459]}
    {'31-Dec-1999'}    {[    490.9659]}

See Also
convertto | toannual | fints | todaily | tomonthly | tosemi | toweekly

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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toquoted
Decimal to fractional conversion

Syntax
quote = toquoted(usddec,fracpart)

Description
quote = toquoted(usddec,fracpart) returns the fractional equivalent, quote, of the decimal
figure, usddec, based on the fractional base (denominator), fracpart. The fractional bases are the
ones used for quoting equity prices in the United States (denominator 2, 4, 8, 16, or 32). If fracpart
is not entered, the denominator 32 is assumed.

Examples
A United States equity price in decimal form is 101.625. To convert this to fractional form in eighths
of a dollar:

quote = toquoted(101.625, 8)

quote =
        101.05

The answer is interpreted as 101 5/8.

Note The convention of using . (period) as a substitute for : (colon) in the output is adopted from
Excel software.

See Also
todecimal

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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tosemi
Convert to semiannual

Note tosemi is not recommended. Use convert2semiannual instead.

Syntax
newfts = tosemi(oldfts)

newfts = tosemi(oldfts,'ParameterName',ParameterValue, ...)

Arguments
oldfts Financial time series object.

Description
newfts = tosemi(oldfts) converts a financial time series of any frequency to a semiannual
frequency. The default semiannual days are the last business day of June and December. tosemi uses
holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as 00:00 for
those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for tosemi triggers the use of the defaults.

newfts = tosemi(oldfts,'ParameterName',ParameterValue, ...) accepts parameter
name/parameter value pairs as input, as specified in the following table.

Parameter Name Parameter Value Description
CalcMethod CumSum Returns the cumulative sum of the values within each

semiannual period. Data for missing dates are given the
value 0.

 Exact Returns the exact value at the end-of-period date. No data
manipulation occurs.

 Nearest (Default) Returns the values located at the end-of-period
date. If there is missing data, Nearest returns the nearest
data point preceding the end-of-period date.

 SimpAvg Returns an averaged semiannual value that only takes into
account dates with data (non-NaN) within each semiannual
period.
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Parameter Name Parameter Value Description
 v21x This mode is compatible with previous versions of this

function (Version 2.1.x and earlier). It returns an averaged
end-of-period value using a previous tosemi algorithm. This
algorithm takes into account all dates and data. For dates
that do not contain any data, the data is assumed to be 0.

Note If you set CalcMethod to v21x, settings for all the following parameter
name/parameter value pairs are not supported.

BusDays 0 Generates a financial time series that ranges from (or
between) the first date to the last date in oldfts (includes
NYSE nonbusiness days and holidays).

 1 (Default) Generates a financial time series that ranges from
the first date to the last date in oldfts (excludes NYSE
nonbusiness days and holidays and weekends based on
AltHolidays and Weekend). If an end-of-quarter date falls
on a nonbusiness day or NYSE holiday, returns the last
business day of the quarter.

NYSE market closures, holidays, and weekends are observed
if AltHolidays and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all semiannual dates between the start and
end dates of oldfts. Some dates may be disregarded if
BusDays = 1.

Note The default is to create a time series with every date
at the specified periodicity, which is with DateFilter =
Absolute. If you use DateFilter = Relative, the
endpoint effects do not apply since only your data defines
which dates appear in the output time series object.

 Relative Returns only semiannual dates that exist in oldfts. Some
dates may be disregarded if BusDays = 1.

ED 0 (Default) The end-of-period date is the last day (or last
business day) of the semiannual period.

 1 - 31 Specifies a particular end-of-period day. Months that do not
contain the specified end-of-period day return the last day of
the semiannual period instead (for example, ED = 31 does
not exist for February).

EM 1 - 12 End month of the first semiannual period. All subsequent
period dates are based on this month. The default end-of-
period months are June (6) and December (12).
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Parameter Name Parameter Value Description
EndPtTol [Begin, End] Denotes the minimum number of days that constitute an odd

semiannual period at the endpoints of the time series (before
the first whole period and after the last whole period).

Begin and End must be -1 or any positive integer greater
than or equal to 0.

A single value input for EndPtTol is the same as specifying
that single value for Begin and End.

-1   Do not include odd period dates and data in calculations.

0    (Default) Include all odd period dates and data in
calculations.

n   Number of days (any positive integer) that constitute an
odd period. If there are insufficient days for a complete
semiannual period, the odd period dates and data are
ignored.

The following diagram is a general depiction of the factors involved in the determination of
endpoints for this function.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

 Last (Default) Returns only the observation that occurs at the last
(latest) time for a specific date.

AltHolidays  Vector of dates specifying an alternate set of market closure
dates.

 -1 Excludes all holidays.
Weekend  Vector of length 7 containing 0's and 1's. The value 1

indicates a weekend day. The first element of this vector
corresponds to Sunday. For example, when Saturday and
Sunday are weekend days (default) then Weekend = [1 0
0 0 0 0 1].

Examples

 tosemi
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Transform Time Series Object from Weekly to Semiannual Values

This example shows how to transform a time series object from weekly to semiannual values.

Load the data from the file predict_ret_data.mat and then use the fints function to create a
time series object with a weekly frequency.

load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
x0 = 
 
    desc:  Index
    freq:  Weekly (2)

    {'dates:  (53)'}    {'Metric:  (53)'}
    {'01-Jan-1999' }    {[      97.8872]}
    {'08-Jan-1999' }    {[      97.0847]}
    {'15-Jan-1999' }    {[     109.6312]}
    {'22-Jan-1999' }    {[     105.5743]}
    {'29-Jan-1999' }    {[     108.4028]}
    {'05-Feb-1999' }    {[     134.4882]}
    {'12-Feb-1999' }    {[     117.5581]}
    {'19-Feb-1999' }    {[     106.6683]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'05-Mar-1999' }    {[     105.6835]}
    {'12-Mar-1999' }    {[     128.5836]}
    {'19-Mar-1999' }    {[     115.1746]}
    {'26-Mar-1999' }    {[     131.2854]}
    {'02-Apr-1999' }    {[     130.7116]}
    {'09-Apr-1999' }    {[     123.1684]}
    {'16-Apr-1999' }    {[     107.2975]}
    {'23-Apr-1999' }    {[      91.5625]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'07-May-1999' }    {[      65.2904]}
    {'14-May-1999' }    {[      70.8581]}
    {'21-May-1999' }    {[      72.4807]}
    {'28-May-1999' }    {[      72.9190]}
    {'04-Jun-1999' }    {[      64.3460]}
    {'11-Jun-1999' }    {[      59.8743]}
    {'18-Jun-1999' }    {[      55.0026]}
    {'25-Jun-1999' }    {[      49.4032]}
    {'02-Jul-1999' }    {[      49.9485]}
    {'09-Jul-1999' }    {[      47.8061]}
    {'16-Jul-1999' }    {[      61.0517]}
    {'23-Jul-1999' }    {[      58.9313]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'06-Aug-1999' }    {[      44.8472]}
    {'13-Aug-1999' }    {[      45.0463]}
    {'20-Aug-1999' }    {[      45.1088]}
    {'27-Aug-1999' }    {[      56.4897]}
    {'03-Sep-1999' }    {[      61.2449]}
    {'10-Sep-1999' }    {[      58.1012]}
    {'17-Sep-1999' }    {[      50.8974]}
    {'24-Sep-1999' }    {[      46.5143]}
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    {'01-Oct-1999' }    {[      38.0806]}
    {'08-Oct-1999' }    {[      33.6664]}
    {'15-Oct-1999' }    {[      34.2992]}
    {'22-Oct-1999' }    {[      33.4202]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'05-Nov-1999' }    {[      35.1278]}
    {'12-Nov-1999' }    {[      41.8128]}
    {'19-Nov-1999' }    {[      35.8199]}
    {'26-Nov-1999' }    {[      36.9495]}
    {'03-Dec-1999' }    {[      36.2880]}
    {'10-Dec-1999' }    {[      33.8457]}
    {'17-Dec-1999' }    {[      33.3868]}
    {'24-Dec-1999' }    {[      32.7737]}
    {'31-Dec-1999' }    {[      28.5665]}

Use tosemi to obtain the semiannual aggregate for the x0 times series.

x1 = tosemi(x0)

Warning: FINTS is not recommended. Use convert2semiannual instead.

 
x1 = 
 
    desc:  TOSEMI: Index
    freq:  Semiannual (5)

    {'dates:  (2)'}    {'Metric:  (2)'}
    {'30-Jun-1999'}    {[     49.4032]}
    {'31-Dec-1999'}    {[     28.5665]}

See Also
convertto | toannual | fints | todaily | tomonthly | toquarterly | toweekly

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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convert2daily
Aggregate timetable data to daily periodicity

Syntax
TT2 = convert2daily(TT1)
TT2 = convert2daily(TT1,Name,Value)

Description
TT2 = convert2daily(TT1) aggregates data (for example, high-frequency and intra-day data) to a
daily periodicity.

TT2 = convert2daily(TT1,Name,Value) uses additional options specified by one or more name-
value arguments.

Examples

Aggregate Prices and Logarithmic Returns to Daily Periodicity

Apply separate aggregation methods to related variables in a timetable while maintaining
consistency between aggregated results for a daily periodicity.

Load a timetable (TT) of simulated stock price data and corresponding logarithmic returns. The data
stored in TT is recorded at various times throughout the day on New York Stock Exchange (NYSE)
business days from January 1, 2018, to December 31, 2020. The timetable TT also includes NYSE
business calendar awareness. If your timetable does not account for nonbusiness days (weekends,
holidays, and market closures), add business calendar awareness by using addBusinessCalendar
first.

load('SimulatedStock.mat','TT');
head(TT)

ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051

Aggregate prices and logarithmic returns to a daily periodicity. To maintain consistency between
prices and returns, for any given trading day, aggregate the prices by reporting the last recorded
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price by using "lastvalue" and aggregate the returns by summing all logarithmic returns by using
"sum".

tt = convert2daily(TT,'Aggregation',["lastvalue" "sum"]);
head(tt)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    02-Jan-2018    101.37     0.013607 
    03-Jan-2018    100.12    -0.012408 
    04-Jan-2018    106.76     0.064214 
    05-Jan-2018    112.78     0.054856 
    08-Jan-2018    119.07     0.054273 
    09-Jan-2018    119.46      0.00327 
    10-Jan-2018    124.44     0.040842 
    11-Jan-2018    125.63    0.0095174 

To verify consistency, examine the input and output timetables for January 2 and 3, 2018.

TT(1:8,:)  % Input data for 02-Jan-2018 and 03-Jan-2018

ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051

tt(1:2,:)  % Return aggregated results

ans=2×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    02-Jan-2018    101.37     0.013607 
    03-Jan-2018    100.12    -0.012408 

For each business day in TT, notice that the output aggregated price is the last price of the day and
that the aggregated return is the sum of all logarithmic returns. Also, the aggregated returns are
consistent with aggregated prices.

For example, the aggregated return for January 3, 2018, is -0.012408, which is the logarithmic
return associated with the last prices recorded on January 2 and 3, 2018 (that is, -0.012408 =
log(100.12) - log(101.37)).

The dates of the aggregated results are whole dates that indicate the dates for which aggregated
results are reported.
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Input Arguments
TT1 — Data to aggregate to daily periodicity
timetable

Data to aggregate to a daily periodicity, specified as a timetable.

Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).

Note

• NaNs indicate missing values.
• Timestamps must be in ascending or descending order.

By default, all days are business days. If your timetable does not account for nonbusiness days
(weekends, holidays, and market closures), add business calendar awareness by using
addBusinessCalendar first. For example, the following command adds business calendar logic to
include only NYSE business days.

TT = addBusinessCalendar(TT);

Data Types: timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: TT2 = convert2daily(TT1,'Aggregation',["lastvalue" "sum"])

Aggregation — Intra-day aggregation method for data in TT1
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Intra-day aggregation method for TT1 defining how data is aggregated over business days, specified
as one of the following methods, a string vector of methods, or a length numVariables cell vector of
methods, where numVariables is the number of variables in TT1.

• "sum" — Sum the values in each year or day.
• "mean" — Calculate the mean of the values in each year or day.
• "prod" — Calculate the product of the values in each year or day.
• "min" — Calculate the minimum of the values in each year or day.
• "max" — Calculate the maximum of the values in each year or day.
• "firstvalue" — Use the first value in each year or day.
• "lastvalue" — Use the last value in each year or day.
• @customfcn — A custom aggregation method that accepts a timetable and returns a numeric

scalar (for univariate series) or row vector (for multivariate series). The function must accept
empty inputs [].
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If you specify a single method, convert2daily applies the specified method to all time series in
TT1. If you specify a string vector or cell vector aggregation, convert2daily applies
aggregation(j) to TT1(:,j); convert2daily applies each aggregation method one at a time
(for more details, see retime). For example, consider a daily timetable representing TT1 with three
variables.

              Time             AAA       BBB            CCC       
      ____________________    ______    ______    ________________
      01-Jan-2018 09:45:47    100.00    200.00    300.00    400.00
      01-Jan-2018 12:48:09    100.03    200.06    300.09    400.12
      02-Jan-2018 10:27:32    100.07    200.14    300.21    400.28
      02-Jan-2018 12:46:09    100.08    200.16    300.24    400.32
      02-Jan-2018 14:14:13    100.25    200.50    300.75    401.00
      02-Jan-2018 15:52:31    100.19    200.38    300.57    400.76
      03-Jan-2018 09:47:11    100.54    201.08    301.62    402.16
      03-Jan-2018 11:24:23    100.59    201.18    301.77    402.36
      03-Jan-2018 14:41:17    101.40    202.80    304.20    405.60
      03-Jan-2018 16:00:00    101.94    203.88    305.82    407.76
      04-Jan-2018 09:55:51    102.53    205.06    307.59    410.12
      04-Jan-2018 10:07:12    103.35    206.70    310.05    413.40
      04-Jan-2018 14:26:23    103.40    206.80    310.20    413.60
      05-Jan-2018 13:13:12    103.91    207.82    311.73    415.64
      05-Jan-2018 14:57:53    103.89    207.78    311.67    415.56

The corresponding default daily results representing TT2 (where the 'lastvalue' is reported for
each day) are as follows.

        Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      01-Jan-2018    100.03    200.06    300.09    400.12
      02-Jan-2018    100.19    200.38    300.57    400.76
      03-Jan-2018    101.94    203.88    305.82    407.76
      04-Jan-2018    103.40    206.80    310.20    413.60
      05-Jan-2018    103.89    207.78    311.67    415.56

All methods omit missing data (NaNs) in direct aggregation calculations on each variable. However,
for situations in which missing values appear in the first row of TT1, missing values can also appear
in the aggregated results TT2. To address missing data, write and specify a custom aggregation
method (function handle) that supports missing data.
Data Types: char | string | cell | function_handle

Output Arguments
TT2 — Daily data
timetable

Daily data, returned as a timetable. The time arrangement of TT1 and TT2 are the same.

If a variable of TT1 has no records for a business day within the sampling time span,
convert2daily returns a NaN for that variable and business day in TT2.

The first date in TT2 is the first business date on or after the first date in TT1. The last date in TT2 is
the last business date on or before the last date in TT1.
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See Also
convert2weekly | convert2monthly | convert2quarterly | convert2semiannual |
convert2annual | timetable | addBusinessCalendar

Topics
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Retime and Synchronize Timetable Variables Using Different Methods”

Introduced in R2021a
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convert2weekly
Aggregate timetable data to weekly periodicity

Syntax
TT2 = convert2weekly(TT1)
TT2 = convert2weekly( ___ ,Name,Value)

Description
TT2 = convert2weekly(TT1) aggregates data (for example, data recorded daily) to a weekly
periodicity.

TT2 = convert2weekly( ___ ,Name,Value) uses additional options specified by one or more
name-value arguments.

Examples

Aggregate Timetable Daily Data to Weekly Periodicity

Apply separate aggregation methods to related variables in a timetable while maintaining
consistency between aggregated results when converting from a daily to a weekly periodicity. You can
use convert2weekly to aggregate both intra-daily data and aggregated daily data. These methods
result in equivalent weekly aggregates.

Load a timetable (TT) of simulated stock price data and corresponding logarithmic returns. The data
stored in TT is recorded at various times throughout the day on New York Stock Exchange (NYSE)
business days from January 1, 2018, to December 31,2020. The timetable TT also includes NYSE
business calendar awareness. If your timetable does not account for nonbusiness days (weekends,
holidays, and market closures), add business calendar awareness by using addBusinessCalendar
first.

load('SimulatedStock.mat','TT');
head(TT)

ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051

Use convert2daily to aggregate intra-daily prices and returns to daily periodicity. To maintain
consistency between prices and returns, for any given trading day, aggregate prices by reporting the
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last recorded price with "lastvalue" and aggregate returns by summing all logarithmic returns
with "sum".

TT1 = convert2daily(TT,'Aggregation',["lastvalue" "sum"]);
head(TT1)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    02-Jan-2018    101.37     0.013607 
    03-Jan-2018    100.12    -0.012408 
    04-Jan-2018    106.76     0.064214 
    05-Jan-2018    112.78     0.054856 
    08-Jan-2018    119.07     0.054273 
    09-Jan-2018    119.46      0.00327 
    10-Jan-2018    124.44     0.040842 
    11-Jan-2018    125.63    0.0095174 

Use convert2weekly to aggregate the data to a weekly periodicity and compare the results of two
different aggregation approaches. The first approach computes weekly results by aggregating the
daily aggregates and the second approach computes weekly results by directly aggregating the
original intra-daily data.

tt1 = convert2weekly(TT1,'Aggregation',["lastvalue" "sum"]);   % Daily to weekly
tt2 = convert2weekly(TT ,'Aggregation',["lastvalue" "sum"]);   % Intra-daily to weekly

head(tt1)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    05-Jan-2018    112.78      0.12027 
    12-Jan-2018    125.93      0.11029 
    19-Jan-2018    117.67    -0.067842 
    26-Jan-2018     118.8    0.0095573 
    02-Feb-2018    120.85     0.017109 
    09-Feb-2018    123.68     0.023147 
    16-Feb-2018    124.33    0.0052417 
    23-Feb-2018    127.09     0.021956 

head(tt2)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    05-Jan-2018    112.78      0.12027 
    12-Jan-2018    125.93      0.11029 
    19-Jan-2018    117.67    -0.067842 
    26-Jan-2018     118.8    0.0095573 
    02-Feb-2018    120.85     0.017109 
    09-Feb-2018    123.68     0.023147 
    16-Feb-2018    124.33    0.0052417 
    23-Feb-2018    127.09     0.021956 
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Notice that the results of the two approaches are the same and that convert2weekly reports on
Fridays by default. For weeks in which Friday is not an NYSE trading day, the function reports results
on the previous business day. In addition, you can use the convert2weekly optional name-value pair
argument 'EndOfWeekDay' to specify a different day of the week that ends business weeks.

Input Arguments
TT1 — Data to aggregate to weekly periodicity
timetable

Data to aggregate to a weekly periodicity, specified as a timetable.

Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).

Note

• NaNs indicate missing values.
• Timestamps must be in ascending or descending order.

By default, all days are business days. If your timetable does not account for nonbusiness days
(weekends, holidays, and market closures), add business calendar awareness by using
addBusinessCalendar first. For example, the following command adds business calendar logic to
include only NYSE business days.

TT = addBusinessCalendar(TT);

Data Types: timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: TT2 = convert2weekly(TT1,'Aggregation',["lastvalue" "sum"])

Aggregation — Aggregation method for TT1 data for intra-week or inter-day aggregation
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Aggregation method for TT1 defining how data is aggregated over business days in an intra-week or
inter-day periodicity, specified as one of the following methods, a string vector of methods, or a length
numVariables cell vector of methods, where numVariables is the number of variables in TT1.

• "sum" — Sum the values in each year or day.
• "mean" — Calculate the mean of the values in each year or day.
• "prod" — Calculate the product of the values in each year or day.
• "min" — Calculate the minimum of the values in each year or day.
• "max" — Calculate the maximum of the values in each year or day.
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• "firstvalue" — Use the first value in each year or day.
• "lastvalue" — Use the last value in each year or day.
• @customfcn — A custom aggregation method that accepts a table variable and returns a numeric

scalar (for univariate series) or row vector (for multivariate series). The function must accept
empty inputs [].

If you specify a single method, convert2weekly applies the specified method to all time series in
TT1. If you specify a string vector or cell vector aggregation, convert2weekly applies
aggregation(j) to TT1(:,j); convert2weekly applies each aggregation method one at a time
(for more details, see retime). For example, consider a daily timetable representing TT1 with three
variables.

        Time           AAA       BBB            CCC       
      ___________    ______    ______    ________________
      01-Jan-2018    100.00    200.00    300.00    400.00
      02-Jan-2018    100.03    200.06    300.09    400.12
      03-Jan-2018    100.07    200.14    300.21    400.28
      04-Jan-2018    100.08    200.16    300.24    400.32
      05-Jan-2018    100.25    200.50    300.75    401.00
      06-Jan-2018    100.19    200.38    300.57    400.76
      07-Jan-2018    100.54    201.08    301.62    402.16
      08-Jan-2018    100.59    201.18    301.77    402.36
      09-Jan-2018    101.40    202.80    304.20    405.60
      10-Jan-2018    101.94    203.88    305.82    407.76
      11-Jan-2018    102.53    205.06    307.59    410.12
      12-Jan-2018    103.35    206.70    310.05    413.40
      13-Jan-2018    103.40    206.80    310.20    413.60
      14-Jan-2018    103.91    207.82    311.73    415.64
      15-Jan-2018    103.89    207.78    311.67    415.56
      16-Jan-2018    104.44    208.88    313.32    417.76
      17-Jan-2018    104.44    208.88    313.32    417.76
      18-Jan-2018    104.04    208.08    312.12    416.16
      19-Jan-2018    104.94    209.88    314.82    419.76

The corresponding default weekly results representing TT2 (in which all days are business days and
the 'lastvalue' is reported on Fridays) are as follows.

        Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      05-Jan-2018    100.25    200.50    300.75    401.00
      12-Jan-2018    103.35    206.70    310.05    413.40
      19-Jan-2018    104.94    209.88    314.82    419.76

The default 'lastvalue' returns the latest observed in a given week for all variables in TT1.

All methods omit missing data (NaNs) in direct aggregation calculations on each variable. However,
for situations in which missing values appear in the first row of TT1, missing values can also appear
in the aggregated results TT2. To address missing data, write and specify a custom aggregation
method (function handle) that supports missing data.
Data Types: char | string | cell | function_handle

Daily — Intra-day aggregation method for TT1
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles
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Intra-day aggregation method for TT1, specified as an aggregation method, a string vector of
methods, or a length numVariables cell vector of methods. For more details on supported methods
and behaviors, see the 'Aggregation' name-value argument.
Data Types: char | string | cell | function_handle

EndOfWeekDay — Day of week that ends business weeks
"Friday" (weeks end on Friday) (default) | scalar integer with value 1 through 7 | "Sunday" |
"Monday" | "Tuesday" | "Wednesday" | "Thursday" | "Friday" | "Saturday" | character vector

Day of the week that ends business weeks, specified as a value in the table.

Value Day Ending Each Week
"Sunday" or 1 Sunday
"Monday" or 2 Monday
"Tuesday" or 3 Tuesday
"Wednesday" or 4 Wednesday
"Thursday" or 5 Thursday
"Friday" or 6 Friday
"Saturday" or 7 Saturday

If the specified end-of-week day in a given week is not a business day, the preceding business day
ends that week.
Data Types: double | char | string

Output Arguments
TT2 — Weekly data
timetable

Weekly data, returned as a timetable. The time arrangement of TT1 and TT2 are the same.

If a variable of TT1 has no business-day records during an annual period within the sampling time
span, convert2weekly returns a NaN for that variable and annual period in TT2.

If the first week (week1) of TT1 contains at least one business day, the first date in TT2 is the last
business date of week1. Otherwise, the first date in TT2 is the next end-of-week business date of TT1.

If the last week (weekT) of TT1 contains at least one business day, the last date in TT2 is the last
business date of weekT. Otherwise, the last date in TT2 is the previous end-of-week business date of
TT1.

See Also
convert2daily | convert2quarterly | convert2semiannual | convert2monthly |
convert2annual | timetable | addBusinessCalendar

Topics
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Retime and Synchronize Timetable Variables Using Different Methods”
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Introduced in R2021a
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convert2monthly
Aggregate timetable data to monthly periodicity

Syntax
TT2 = convert2monthly(TT1)
TT2 = convert2monthly(TT1,Name,Value)

Description
TT2 = convert2monthly(TT1) aggregates data (for example, data recorded daily or weekly) to
monthly periodicity.

TT2 = convert2monthly(TT1,Name,Value) uses additional options specified by one or more
name-value arguments.

Examples

Aggregate Timetable Data to Monthly Periodicity

Apply separate aggregation methods to related variables in a timetable while maintaining
consistency between aggregated results when converting to a monthly periodicity. You can use
convert2monthly to aggregate both intra-daily data and aggregated daily data. These methods
result in equivalent monthly aggregates. Lastly, you can aggregate results on a specific day of each
month (for example, the 15th), rather than the default end of the month.

Load a timetable (TT) of simulated stock price data and corresponding logarithmic returns. The data
stored in TT is recorded at various times throughout the day on New York Stock Exchange (NYSE)
business days from January 1, 2018, to December 31, 2020. The timetable TT also includes NYSE
business calendar awareness. If your timetable does not account for nonbusiness days (weekends,
holidays, and market closures), add business calendar awareness by using addBusinessCalendar
first.

load('SimulatedStock.mat','TT');
head(TT)

ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051
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First aggregate intra-daily prices and returns to daily periodicity. To maintain consistency between
prices and returns, for any given trading day aggregate prices by reporting the last recorded price
using "lastvalue" and aggregate returns by summing all logarithmic returns using "sum".

TT1 = convert2daily(TT,'Aggregation',["lastvalue" "sum"]);
head(TT1)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    02-Jan-2018    101.37     0.013607 
    03-Jan-2018    100.12    -0.012408 
    04-Jan-2018    106.76     0.064214 
    05-Jan-2018    112.78     0.054856 
    08-Jan-2018    119.07     0.054273 
    09-Jan-2018    119.46      0.00327 
    10-Jan-2018    124.44     0.040842 
    11-Jan-2018    125.63    0.0095174 

Use convert2monthly to aggregate the data to a monthly periodicity and compare the results of
two different approaches. The first approach computes monthly results by aggregating the daily
aggregates and the second approach computes monthly results by directly aggregating the original
intra-daily data. Note that although convert2monthly reports results on the last business day of
each month by default, you can report monthly results on the 15th of each month by using the
optional name-value pair argument 'EndOfMonthDay'.

tt1 = convert2monthly(TT1,'Aggregation',["lastvalue" "sum"],'EndOfMonthDay',15); % Daily to monthly
tt2 = convert2monthly(TT ,'Aggregation',["lastvalue" "sum"],'EndOfMonthDay',15); % Intra-daily to monthly

head(tt1)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    12-Jan-2018    125.93      0.23056 
    15-Feb-2018    120.55    -0.043662 
    15-Mar-2018    113.49     -0.06035 
    13-Apr-2018    112.07    -0.012591 
    15-May-2018    110.47     -0.01438 
    15-Jun-2018     99.06     -0.10902 
    13-Jul-2018     95.74     -0.03409 
    15-Aug-2018     99.94     0.042934 

head(tt2)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    12-Jan-2018    125.93      0.23056 
    15-Feb-2018    120.55    -0.043662 
    15-Mar-2018    113.49     -0.06035 
    13-Apr-2018    112.07    -0.012591 
    15-May-2018    110.47     -0.01438 
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    15-Jun-2018     99.06     -0.10902 
    13-Jul-2018     95.74     -0.03409 
    15-Aug-2018     99.94     0.042934 

Notice that the results of the two approaches are the same. For months in which the 15th is not an
NYSE trading day, the function reports results on the previous business day.

Use Custom Aggregation Method to Convert Timetable Daily Data to Monthly Periodicity

You can apply custom aggregation methods using function handles. Specify a function handle to
aggregate related variables in a timetable while maintaining consistency between aggregated
results when converting from a daily to a monthly periodicity.

Load a timetable (TT) of simulated stock price data and corresponding logarithmic returns. The data
stored in TT is recorded at various times throughout the day on New York Stock Exchange (NYSE)
business days from January 1, 2018, to December 31,2020. The timetable TT also includes NYSE
business calendar awareness. If your timetable does not account for nonbusiness days (weekends,
holidays, and market closures), add business calendar awareness by using addBusinessCalendar
first.

load('SimulatedStock.mat','TT')
head(TT)

ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051

First add another variable to TT that contains the simple (proportional) returns associated with the
prices in TT and examine the first few rows.

TT.Simple_Return = exp(TT.Log_Return) - 1;  % Log returns to simple returns
head(TT)

ans=8×3 timetable
            Time            Price     Log_Return    Simple_Return
    ____________________    ______    __________    _____________

    02-Jan-2018 11:52:11    100.71     0.0070749         0.0071  
    02-Jan-2018 13:23:09    103.11      0.023551       0.023831  
    02-Jan-2018 14:45:30    100.24     -0.028229      -0.027834  
    02-Jan-2018 15:30:48    101.37       0.01121       0.011273  
    03-Jan-2018 10:02:21    101.81     0.0043311      0.0043405  
    03-Jan-2018 11:22:37    100.17      -0.01624      -0.016108  
    03-Jan-2018 14:45:20     99.66    -0.0051043     -0.0050913  
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    03-Jan-2018 14:55:39    100.12     0.0046051      0.0046157  

Create a function to aggregate simple returns and compute the monthly aggregates. To maintain
consistency between prices and returns, for any given month, aggregate prices by reporting the last
recorded price by using "lastvalue" and report logarithmic returns by summing all intervening
logarithmic returns by using "sum".

Notice that the aggregation function for simple returns operates along the first (row) dimension and
omits missing data (NaNs). For more information on custom aggregation functions, see timetable
and retime. When aggregation methods are a mix of supported methods and user-supplied
functions, the 'Aggregation' name-value pair argument must be specified as a cell vector of
methods enclosed in curly braces.

f = @(x)(prod(1 + x,1,'omitnan') - 1);      % Aggregate simple returns
tt = convert2monthly(TT,'Aggregation',{'lastvalue' 'sum' f});
head(tt)

ans=8×3 timetable
       Time        Price     Log_Return    Simple_Return
    ___________    ______    __________    _____________

    31-Jan-2018    122.96      0.20669          0.2296  
    28-Feb-2018    121.92    -0.008494       -0.008458  
    29-Mar-2018     108.9     -0.11294        -0.10679  
    30-Apr-2018    110.38     0.013499         0.01359  
    31-May-2018     99.02     -0.10861        -0.10292  
    29-Jun-2018     96.24    -0.028477       -0.028075  
    31-Jul-2018     97.15    0.0094111       0.0094555  
    31-Aug-2018    101.51     0.043901        0.044879  

Input Arguments
TT1 — Data to aggregate to monthly periodicity
timetable

Data to aggregate to a monthly periodicity, specified as a timetable.

Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).

Note

• NaNs indicate missing values.
• Timestamps must be in ascending or descending order.

By default, all days are business days. If your timetable does not account for nonbusiness days
(weekends, holidays, and market closures), add business calendar awareness by using
addBusinessCalendar first. For example, the following command adds business calendar logic to
include only NYSE business days.

TT = addBusinessCalendar(TT);
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Data Types: timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: TT2 = convert2monthly(TT1,'Aggregation',["lastvalue" "sum"])

Aggregation — Aggregation method for TT1
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Aggregation method for TT1 defining how to aggregate data over business days in an intra-month or
inter-day periodicity, specified as one of the following methods, a string vector of methods, or a length
numVariables cell vector of methods, where numVariables is the number of variables in TT1.

• "sum" — Sum the values in each year or day.
• "mean" — Calculate the mean of the values in each year or day.
• "prod" — Calculate the product of the values in each year or day.
• "min" — Calculate the minimum of the values in each year or day.
• "max" — Calculate the maximum of the values in each year or day.
• "firstvalue" — Use the first value in each year or day.
• "lastvalue" — Use the last value in each year or day.
• @customfcn — A custom aggregation method that accepts a table variable and returns a numeric

scalar (for univariate series) or row vector (for multivariate series). The function must accept
empty inputs [].

If you specify a single method, convert2monthly applies the specified method to all time series in
TT1. If you specify a string vector or cell vector aggregation, convert2monthly applies
aggregation(j) to TT1(:,j); convert2monthly applies each aggregation method one at a time
(for more details, see retime). For example, consider a daily timetable representing TT1 with three
variables.

         Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      01-Jan-2018    100.00    200.00    300.00    400.00
      02-Jan-2018    100.03    200.06    300.09    400.12
      03-Jan-2018    100.07    200.14    300.21    400.28
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      31-Jan-2018    114.65     229.3    343.95    458.60
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      28-Feb-2018    129.19    258.38    387.57    516.76
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      31-Mar-2018    162.93    325.86    488.79    651.72
          .             .         .         .         .

 convert2monthly

19-1535



          .             .         .         .         .
          .             .         .         .         .
      30-Apr-2018    171.72    343.44    515.16    686.88
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      31-May-2018    201.24    402.48    603.72    804.96
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      30-Jun-2018    223.22    446.44    669.66    892.88

The corresponding default monthly results representing TT2 (in which all days are business days and
the 'lastvalue' is reported on the last business day of each month) are as follows.

         Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      31-Jan-2018    114.65    229.30    343.95    458.60
      28-Feb-2018    129.19    258.38    387.57    516.76
      31-Mar-2018    162.93    325.86    488.79    651.72
      30-Apr-2018    171.72    343.44    515.16    686.88
      31-May-2018    201.24    402.48    603.72    804.96
      30-Jun-2018    223.22    446.44    669.66    892.88

All methods omit missing data (NaNs) in direct aggregation calculations on each variable. However,
for situations in which missing values appear in the first row of TT1, missing values can also appear
in the aggregated results TT2. To address missing data, write and specify a custom aggregation
method (function handle) that supports missing data.
Data Types: char | string | cell | function_handle

Daily — Intra-day aggregation method for TT1
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Intra-day aggregation method for TT1, specified as an aggregation method, a string vector of
methods, or a length numVariables cell vector of methods. For more details on supported methods
and behaviors, see the 'Aggregation' name-value argument.
Data Types: char | string | cell | function_handle

EndOfMonthDay — Day of the month that ends months
last business day of month (default) | integer with value 1 to 31

Day of the month that ends months, specified as a scalar integer with value 1 to 31. For months with
fewer days than EndOfMonthDay, convert2monthly reports aggregation results on the last
business day of the month.
Data Types: double

Output Arguments
TT2 — Monthly data
timetable

Monthly data, returned as a timetable. The time arrangement of TT1 and TT2 are the same.
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If a variable of TT1 has no business-day records during a month within the sampling time span,
convert2monthly returns a NaN for that variable and month in TT2.

If the first month (month1) of TT1 contains at least one business day, the first date in TT2 is the last
business date of month1. Otherwise, the first date in TT2 is the next end-of-month business date of
TT1.

If the last month (monthT) of TT1 contains at least one business day, the last date in TT2 is the last
business date of monthT. Otherwise, the last date in TT2 is the previous end-of-month business date
of TT1.

See Also
convert2daily | convert2weekly | convert2quarterly | convert2semiannual |
convert2annual | addBusinessCalendar | timetable

Topics
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Retime and Synchronize Timetable Variables Using Different Methods”

Introduced in R2021a
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convert2quarterly
Aggregate timetable data to quarterly periodicity

Syntax
TT2 = convertquarterly(TT1)
TT2 = convert2quarterly(TT1,Name,Value)

Description
TT2 = convertquarterly(TT1) aggregates data (for example, data recorded daily or weekly) to a
quarterly periodicity.

TT2 = convert2quarterly(TT1,Name,Value) uses additional options specified by one or more
name-value arguments.

Examples

Aggregate Timetable Data to Quarterly Periodicity

Apply separate aggregation methods to related variables in a timetable while maintaining
consistency between aggregated results when converting to a quarterly periodicity. You can use
convert2quarterly to aggregate both intra-daily data and aggregated monthly data. These
methods result in equivalent quarterly aggregates.

Load a timetable (TT) of simulated stock price data and corresponding logarithmic returns. The data
stored in TT is recorded at various times throughout the day on New York Stock Exchange (NYSE)
business days from January 1, 2018, to December 31, 2020. The timetable TT also includes NYSE
business calendar awareness. If your timetable does not account for nonbusiness days (weekends,
holidays, and market closures), add business calendar awareness by using addBusinessCalendar
first.

load('SimulatedStock.mat','TT');
head(TT)

ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051

Use convert2monthly to aggregate intra-daily prices and returns to a monthly periodicity. To
maintain consistency between prices and returns for any given month, aggregate prices by reporting
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the last recorded price using "lastvalue" and aggregate returns by summing all logarithmic
returns using "sum".

TT1 = convert2monthly(TT,'Aggregation',["lastvalue" "sum"]);
head(TT1)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    31-Jan-2018    122.96      0.20669 
    28-Feb-2018    121.92    -0.008494 
    29-Mar-2018     108.9     -0.11294 
    30-Apr-2018    110.38     0.013499 
    31-May-2018     99.02     -0.10861 
    29-Jun-2018     96.24    -0.028477 
    31-Jul-2018     97.15    0.0094111 
    31-Aug-2018    101.51     0.043901 

Use convert2quarterly to aggregate the data to a quarterly periodicity and compare the results of
two different approaches. The first approach computes quarterly results by aggregating the monthly
aggregates and the second approach computes quarterly results by directly aggregating the original
intra-daily data. Note that convert2quaterly reports results on the last business day of each
quarter.

tt1 = convert2quarterly(TT1,'Aggregation',["lastvalue" "sum"]);  % Monthly to quarterly
tt2 = convert2quarterly(TT ,'Aggregation',["lastvalue" "sum"]);  % Intra-daily to quarterly

head(tt1)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    29-Mar-2018     108.9      0.08526 
    29-Jun-2018     96.24     -0.12358 
    28-Sep-2018    111.37      0.14601 
    31-Dec-2018     92.72     -0.18327 
    29-Mar-2019      78.7     -0.16394 
    28-Jun-2019    110.54      0.33973 
    30-Sep-2019    180.13       0.4883 
    31-Dec-2019    163.65    -0.095949 

head(tt2)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    29-Mar-2018     108.9      0.08526 
    29-Jun-2018     96.24     -0.12358 
    28-Sep-2018    111.37      0.14601 
    31-Dec-2018     92.72     -0.18327 
    29-Mar-2019      78.7     -0.16394 
    28-Jun-2019    110.54      0.33973 
    30-Sep-2019    180.13       0.4883 
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    31-Dec-2019    163.65    -0.095949 

The results of the two approaches are the same because each quarter contains exactly three calendar
months.

Input Arguments
TT1 — Data to aggregate to quarterly periodicity
timetable

Data to aggregate to a quarterly periodicity, specified as a timetable.

Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).

Note

• NaNs indicate missing values.
• Timestamps must be in ascending or descending order.

By default, all days are business days. If your timetable does not account for nonbusiness days
(weekends, holidays, and market closures), add business calendar awareness by using
addBusinessCalendar first. For example, the following command adds business calendar logic to
include only NYSE business days.

TT = addBusinessCalendar(TT);

Data Types: timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: TT2 = convert2quarterly(TT1,'Aggregation',["lastvalue" "sum"])

Aggregation — Aggregation method for TT1 data for intra-quarter or inter-day aggregation
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Aggregation method for TT1 data defining how to aggregate data over business days in an intra-
quarter or inter-day periodicity, specified as one of the following methods, a string vector of methods,
or a length numVariables cell vector of methods, where numVariables is the number of variables
in TT1.

• "sum" — Sum the values in each year or day.
• "mean" — Calculate the mean of the values in each year or day.
• "prod" — Calculate the product of the values in each year or day.
• "min" — Calculate the minimum of the values in each year or day.
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• "max" — Calculate the maximum of the values in each year or day.
• "firstvalue" — Use the first value in each year or day.
• "lastvalue" — Use the last value in each year or day.
• @customfcn — A custom aggregation method that accepts a table variable and returns a numeric

scalar (for univariate series) or row vector (for multivariate series). The function must accept
empty inputs [].

If you specify a single method, convert2quarterly applies the specified method to all time series
in TT1. If you specify a string vector or cell vector aggregation, convert2quarterly applies
aggregation(j) to TT1(:,j); convert2quarterly applies each aggregation method one at a
time (for more details, see retime). For example, consider a daily timetable representing TT1 with
three variables.

         Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      01-Jan-2018    100.00    200.00    300.00    400.00
      02-Jan-2018    100.03    200.06    300.09    400.12
      03-Jan-2018    100.07    200.14    300.21    400.28
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      31-Mar-2018    162.93    325.86    488.79    651.72
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      30-Jun-2018    223.22    446.44    669.66    892.88
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      30-Sep-2018    232.17    464.34    696.51    928.68
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      31-Dec-2018    243.17    486.34    729.51    972.68

The corresponding default quarterly results representing TT2 (in which all days are business days
and the 'lastvalue' is reported on the last business day of each quarter) are as follows.

         Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      31-Mar-2018    162.93    325.86    488.79    651.72
      30-Jun-2018    223.22    446.44    669.66    892.88
      30-Sep-2018    232.17    464.34    696.51    928.68
      31-Dec-2018    243.17    486.34    729.51    972.68

All methods omit missing data (NaNs) in direct aggregation calculations on each variable. However,
for situations in which missing values appear in the first row of TT1, missing values can also appear
in the aggregated results TT2. To address missing data, write and specify a custom aggregation
method (function handle) that supports missing data.
Data Types: char | string | cell | function_handle

Daily — Intra-day aggregation method for TT1
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles
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Intra-day aggregation method for TT1, specified as an aggregation method, a string vector of
methods, or a length numVariables cell vector of methods. For more details on supported methods
and behaviors, see the 'Aggregation' name-value argument.
Data Types: char | string | cell | function_handle

Output Arguments
TT2 — Quarterly data
timetable

Quarterly data, returned as a timetable. The time arrangement of TT1 and TT2 are the same.

convert2quarterly reports quarterly aggregation results on the last business day of March, June,
September, and December.

If a variable of TT1 has no business-day records during an quarter within the sampling time span,
convert2quarterly returns a NaN for that variable and quarter in TT2.

If the first quarter (Q1) of TT1 contains at least one business day, the first date in TT2 is the last
business date of Q1. Otherwise, the first date in TT2 is the next end-of-quarter business date of TT1.

If the last quarter (QT) of TT1 contains at least one business day, the last date in TT2 is the last
business date of QT. Otherwise, the last date in TT2 is the previous end-of-quarter business date of
TT1.

See Also
convert2daily | convert2weekly | convert2semiannual | convert2monthly |
convert2annual | timetable | addBusinessCalendar

Topics
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Retime and Synchronize Timetable Variables Using Different Methods”

Introduced in R2021a
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convert2semiannual
Aggregate timetable data to semiannual periodicity

Syntax
TT2 = convert2semiannual(TT1)
TT2 = convert2semiannual(TT1,Name,Value)

Description
TT2 = convert2semiannual(TT1) aggregates data (for example, data recorded daily or weekly)
to a semiannual periodicity.

TT2 = convert2semiannual(TT1,Name,Value) uses additional options specified by one or more
name-value arguments.

Examples

Aggregate Timetable Data to Semiannual Periodicity

Apply separate aggregation methods to related variables in a timetable while maintaining
consistency between aggregated results when converting to a semiannual periodicity. You can use
convert2semiannual to aggregate both intra-daily data and aggregated quarterly data. These
methods result in equivalent semiannual aggregates.

Load a timetable (TT) of simulated stock price data and corresponding logarithmic returns. The data
stored in TT is recorded at various times throughout the day on New York Stock Exchange (NYSE)
business days from January 1, 2018 to December 31,2020. The timetable TT also includes NYSE
business calendar awareness. If your timetable does not account for nonbusiness days (weekends,
holidays, and market closures), add business calendar awareness by using addBusinessCalendar
first.

load('SimulatedStock.mat','TT');
head(TT)

ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051

Use convert2quarterly to aggregate intra-daily prices and returns to a quarterly periodicity. To
maintain consistency between prices and returns, for any given quarter, aggregate prices by
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reporting the last recorded price using "lastvalue" and aggregate returns by summing all
logarithmic returns using "sum".

TT1 = convert2quarterly(TT,'Aggregation',["lastvalue" "sum"])

TT1=12×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    29-Mar-2018     108.9      0.08526 
    29-Jun-2018     96.24     -0.12358 
    28-Sep-2018    111.37      0.14601 
    31-Dec-2018     92.72     -0.18327 
    29-Mar-2019      78.7     -0.16394 
    28-Jun-2019    110.54      0.33973 
    30-Sep-2019    180.13       0.4883 
    31-Dec-2019    163.65    -0.095949 
    31-Mar-2020    177.46     0.081015 
    30-Jun-2020    168.96    -0.049083 
    30-Sep-2020    260.77      0.43398 
    31-Dec-2020    274.75     0.052223 

Use convert2semiannual to aggregate the data to a semiannual periodicity and compare the
results of two different approaches. The first approach computes semiannual results by aggregating
the quarterly aggregates and the second approach computes semiannual results by directly
aggregating the original intra-daily data. Note that convert2semiannual reports results on the last
business day of June and December.

tt1 = convert2semiannual(TT1,'Aggregation',["lastvalue" "sum"])  % Quarterly to semiannual

tt1=6×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    29-Jun-2018     96.24    -0.038325 
    31-Dec-2018     92.72    -0.037261 
    28-Jun-2019    110.54      0.17579 
    31-Dec-2019    163.65      0.39235 
    30-Jun-2020    168.96     0.031932 
    31-Dec-2020    274.75       0.4862 

tt2 = convert2semiannual(TT ,'Aggregation',["lastvalue" "sum"])  % Intra-daily to semiannual

tt2=6×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    29-Jun-2018     96.24    -0.038325 
    31-Dec-2018     92.72    -0.037261 
    28-Jun-2019    110.54      0.17579 
    31-Dec-2019    163.65      0.39235 
    30-Jun-2020    168.96     0.031932 
    31-Dec-2020    274.75       0.4862 

The results of the two approaches are the same because each semiannual period contains exactly two
calendar quarters.
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Input Arguments
TT1 — Data to aggregate to semiannual periodicity
timetable

Data to aggregate to a semiannual periodicity, specified as a timetable.

Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).

Note

• NaNs indicate missing values.
• Timestamps must be in ascending or descending order.

By default, all days are business days. If your timetable does not account for nonbusiness days
(weekends, holidays, and market closures), add business calendar awareness by using
addBusinessCalendar first. For example, the following command adds business calendar logic to
include only NYSE business days.

TT = addBusinessCalendar(TT);

Data Types: timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: TT2 = convert2semiannual(TT1,'Aggregation',["lastvalue" "sum"])

Aggregation — Aggregation method for semiannual period to semiannual periodicity
(inter-day aggregation)
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Aggregation method for TT1 defining how data is aggregated over business days in a semiannual
period to semiannual periodicity aggregation, specified as one of the following methods, a string
vector of methods, or a length numVariables cell vector of methods, where numVariables is the
number of variables in TT1.

• "sum" — Sum the values in each year or day.
• "mean" — Calculate the mean of the values in each year or day.
• "prod" — Calculate the product of the values in each year or day.
• "min" — Calculate the minimum of the values in each year or day.
• "max" — Calculate the maximum of the values in each year or day.
• "firstvalue" — Use the first value in each year or day.
• "lastvalue" — Use the last value in each year or day.
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• @customfcn — A custom aggregation method that accepts a table variable and returns a numeric
scalar (for univariate series) or row vector (for multivariate series). The function must accept
empty inputs [].

If you specify a single method, convert2semiannual applies the specified method to all time series
in TT1. If you specify a string vector or cell vector aggregation, convert2semiannual applies
aggregation(j) to TT1(:,j); convert2semiannual applies each aggregation method one at a
time (for more details, see retime). For example, consider a daily timetable representing TT1 with
three variables.

          Time         AAA       BBB             CCC       
      ___________    ______    ______    _________________
      01-Jan-2018    100.00    200.00    300.00     400.00
      02-Jan-2018    100.02    200.04    300.06     400.08
      03-Jan-2018     99.96    199.92    299.88     399.84
          .             .         .         .          .
          .             .         .         .          .
          .             .         .         .          .
      28-Jun-2018     69.63    139.26    208.89     278.52
      29-Jun-2018     70.15     140.3    210.45     280.60
      30-Jun-2018     75.77    151.54    227.31     303.08
      01-Jul-2018     75.68    151.36    227.04     302.72
      02-Jul-2018     71.34    142.68    214.02     285.36
      03-Jul-2018     69.25    138.50    207.75     277.00
          .             .         .         .          .
          .             .         .         .          .
          .             .         .         .          .
      29-Dec-2018    249.16    498.32    747.48     996.64
      30-Dec-2018    250.21    500.42    750.63    1000.84
      31-Dec-2018    256.75    513.50    770.25    1027.00

The corresponding default semiannual results representing TT2 (in which all days are business days
and the 'lastvalue' is reported on the last business day of each semiannual period) are as follows.

           Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      30-Jun-2018     75.77    151.54    227.31    303.08
      31-Dec-2018    256.75    513.50    770.25   1027.00

All methods omit missing data (NaNs) in direct aggregation calculations on each variable. However,
for situations in which missing values appear in the first row of TT1, missing values can also appear
in the aggregated results TT2. To address missing data, write and specify a custom aggregation
method (function handle) that supports missing data.
Data Types: char | string | cell | function_handle

Daily — Intra-day aggregation method for TT1
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Intra-day aggregation method for TT1, specified as an aggregation method, a string vector of
methods, or a length numVariables cell vector of methods. For more details on supported methods
and behaviors, see the 'Aggregation' name-value argument.
Data Types: char | string | cell | function_handle

19 Functions

19-1546



Output Arguments
TT2 — Semiannual data
timetable

Semiannual data, returned as a timetable. convert2semiannual reports semiannual aggregation
results on the last business day of June and December. The function returns NaNs for variables in TT2
for semiannual periods when no data is recorded on any business days for those variables in TT1. If
TT1 is in ascending order, so too is TT2, and if TT1 is in descending order, so too is TT2.

The first date in TT2 is the last business date of the semiannual period in which the first date in TT1
occurs, provided TT1 has business dates in that semiannual period, otherwise the first date in TT2 is
the next end-of-semiannual-period business date.

The last date in TT2 is the last business date of the semiannual period in which the last date in TT1
occurs, provided TT1 has business dates in that semiannual period, otherwise the last date in TT2 is
the previous end-of-semiannual-period business date.

See Also
convert2daily | convert2weekly | convert2quarterly | convert2monthly |
convert2annual | timetable | addBusinessCalendar

Topics
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Retime and Synchronize Timetable Variables Using Different Methods”

Introduced in R2021a
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convert2annual
Aggregate timetable data to annual periodicity

Syntax
TT2 = convert2annual(TT1)
TT2 = convert2annual(TT1,Name,Value)

Description
TT2 = convert2annual(TT1) aggregates data (for example, recorded daily or weekly data) to
annual periodicity.

TT2 = convert2annual(TT1,Name,Value) uses additional options specified by one or more
name-value arguments.

Examples

Aggregate Timetable Data to Annual Periodicity

Applyseparate aggregation methods to related variables in a timetable while maintaining
consistency between aggregated results when converting to an annual periodicity. You can use
convert2annual to aggregate both intra-daily data and aggregated monthly data. These methods
result in equivalent annual aggregates.

Load a timetable (TT) of simulated stock price data and corresponding logarithmic returns. The data
stored in TT is recorded at various times throughout the day on New York Stock Exchange (NYSE)
business days from January 1, 2018, to December 31, 2020. The timetable TT also includes NYSE
business calendar awareness. If your timetable does not account for nonbusiness days (weekends,
holidays, and market closures), add business calendar awareness by using addBusinessCalendar
first.

load('SimulatedStock.mat','TT');
head(TT)

ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051
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First, aggregate intra-daily prices and returns to a monthly periodicity. To maintain consistency
between prices and returns, for any given month aggregate prices by reporting the last recorded
price using "lastvalue" and aggregate returns by summing all logarithmic returns using "sum".

TT1 = convert2monthly(TT,'Aggregation',["lastvalue" "sum"]);
head(TT1)

ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    31-Jan-2018    122.96      0.20669 
    28-Feb-2018    121.92    -0.008494 
    29-Mar-2018     108.9     -0.11294 
    30-Apr-2018    110.38     0.013499 
    31-May-2018     99.02     -0.10861 
    29-Jun-2018     96.24    -0.028477 
    31-Jul-2018     97.15    0.0094111 
    31-Aug-2018    101.51     0.043901 

Use convert2annual to aggregate the data to an annual periodicity and compare the results of the
two different aggregation approaches. The first approach computes annual results by aggregating the
monthly aggregates and the second approach computes annual results by directly aggregating the
original intra-daily data. Notice that by default, convert2annual reports results on the last business
day of December. To change the month that ends annual periods, use the 'EndOfYearMonth' name-
value pair argument for convert2annual.

tt1 = convert2annual(TT1,'Aggregation',["lastvalue" "sum"])  % Monthly to annual

tt1=3×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    31-Dec-2018     92.72    -0.075586 
    31-Dec-2019    163.65      0.56815 
    31-Dec-2020    274.75      0.51813 

tt2 = convert2annual(TT ,'Aggregation',["lastvalue" "sum"])  % Intra-daily to semiannual

tt2=3×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    31-Dec-2018     92.72    -0.075586 
    31-Dec-2019    163.65      0.56815 
    31-Dec-2020    274.75      0.51813 

The results of the two approaches are the same because each annual period contains exactly 12
calendar months.

Input Arguments
TT1 — Data to aggregate to annual periodicity
timetable
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Data to aggregate to an annual periodicity, specified as a timetable.

Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).

Note

• NaNs indicate missing values.
• Timestamps must be in ascending or descending order.

By default, all days are business days. If your timetable does not account for nonbusiness days
(weekends, holidays, and market closures), add business calendar awareness by using
addBusinessCalendar first. For example, the following command adds business calendar logic to
include only NYSE business days.

TT = addBusinessCalendar(TT);

Data Types: timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: TT2 = convert2annual(TT1,'Aggregation',["lastvalue" "sum"])

Aggregation — Aggregation method for TT1
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Aggregation method for TT1 defining how to aggregate data over business days in a year to an
annual periodicity, specified as one of the following methods, a string vector of methods, or a length
numVariables cell vector of methods, where numVariables is the number of variables in TT1.

• "sum" — Sum the values in each year or day.
• "mean" — Calculate the mean of the values in each year or day.
• "prod" — Calculate the product of the values in each year or day.
• "min" — Calculate the minimum of the values in each year or day.
• "max" — Calculate the maximum of the values in each year or day.
• "firstvalue" — Use the first value in each year or day.
• "lastvalue" — Use the last value in each year or day.
• @customfcn — A custom aggregation method that accepts a table variable and returns a numeric

scalar (for univariate series) or row vector (for multivariate series). The function must accept
empty inputs [].

If you specify a single method, convert2annual applies the specified method to all time series in
TT1. If you specify a string vector or cell vector aggregation, convert2annual applies
aggregation(j) to TT1(:,j); convert2annual applies each aggregation method one at a time
(for more details, see retime). For example, consider an input daily timetable with three variables.
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         Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      01-Jan-2018    100.00    200.00    300.00    400.00
      02-Jan-2018    100.03    200.06    300.09    400.12
      03-Jan-2018    100.07    200.14    300.21    400.28
          .             .         .         .         .
          .             .         .         .         .
          .             .         .         .         .
      29-Dec-2018    249.16    498.32    747.48    996.64
      30-Dec-2018    250.21    500.42    750.63   1000.84
      31-Dec-2018    256.75    513.50    770.25   1027.00

By default, convert2annual applies the aggregation method "lastvalue", which reports for each
variable the values of the last business day of each year. The aggregated annual results are as
follows:

TT2 = convert2annual(TT1)

TT2 =

  1×3 timetable

          Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      31-Dec-2018    256.75    513.50    770.25   1027.00

All methods omit missing data (NaNs) in direct aggregation calculations on each variable. However,
for situations in which missing values appear in the first row of TT1, missing values can also appear
in the aggregated results TT2. To address missing data, write and specify a custom aggregation
method (function handle) that supports missing data.
Data Types: char | string | cell | function_handle

Daily — Intra-day aggregation method for TT1
"lastvalue" (default) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | character
vector | function handle | string vector | cell vector of character vectors or function handles

Intra-day aggregation method for TT1, specified as an aggregation method, a string vector of
methods, or a length numVariables cell vector of methods. For more details on supported methods
and behaviors, see the 'Aggregation' name-value argument.
Data Types: char | string | cell | function_handle

EndOfYearMonth — Month that ends annual periods
"December" (weeks end on Friday) (default) | integer with value 1 to 12 | "January" | "February"
| "March" | "April" | "May" | "June" | "July" | "August" | "September" | "October" |
"November" | "December" | character vector

Month that ends annual periods, specified as a value in this table.

Value Month Ending Each Year
"January" or 1 January
"February" or 2 February
"March" or 3 March
"April" or 4 April
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Value Month Ending Each Year
"May" or 5 May
"June" or 6 June
"July" or 7 July
"August" or 8 August
"September" or 9 September
"October" or 10 October
"November" or 11 November
"December" or 12 December

Data Types: double | char | string

Output Arguments
TT2 — Annual data
timetable

Annual data, returned as a timetable. The time arrangement of TT1 and TT2 are the same.

If a variable of TT1 has no business-day records during an annual period within the sampling time
span, convert2annual returns a NaN for that variable and annual period in TT2.

If the first annual period (year1) of TT1 contains at least one business day, the first date in TT2 is the
last business date of year1. Otherwise, the first date in TT2 is the next end-of-year-period business
date of TT1.

If the last annual period (yearT) of TT1 contains at least one business day, the last date in TT2 is the
last business date of yearT. Otherwise, the last date in TT2 is the previous end-of-year-period
business date of TT1.

See Also
convert2daily | convert2weekly | convert2quarterly | convert2semiannual |
convert2monthly | timetable | addBusinessCalendar

Topics
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Retime and Synchronize Timetable Variables Using Different Methods”

Introduced in R2021a
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totalreturnprice
Total return price time series

Syntax
Return = totalreturnprice(Price,Action,Dividend)

Description
Return = totalreturnprice(Price,Action,Dividend) generates a total return price time
series given price data, action or split data, and dividend data. All input data is unadjusted.

Examples

Compute Return Using datetime Input for Price and Action

Compute Return returned as a table using datetime input in tables for Price and Action.

act = [732313, 2; 732314 ,2];
div = [732313, 0.0800; 732314, 0.0800];
prc = [732313, 12; 732314, 13];

prcTableDateTime=table(datetime(prc(:,1),'ConvertFrom','datenum'),prc(:,2));
acttableString=table(datestr(act(:,1)),act(:,2));
divTableNum = array2table(div);
Return = totalreturnprice(prcTableDateTime,acttableString,divTableNum)

Return=2×2 table
       Date        Return
    ___________    ______

    01-Jan-2005         1
    02-Jan-2005    1.0833

Input Arguments
Price — Price of security
matrix | table

Price of security, specified as a table or an NUMOBS-by-2 matrix. If Price is a table, the dates can
either be serial date numbers, date character vectors, or datetime arrays. If Price is an NUMOBS-by-2
matrix of price data, column 1 contains MATLAB serial date numbers and column 2 contains price
values.
Data Types: double | table

Action — Action or split data
matrix | table
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Action or split data, specified as a table or an NUMOBS-by-2 matrix. If Action is a table, the dates can
either be serial date numbers, date character vectors, or datetime arrays. If Action is an NUMOBS-
by-2 matrix of price data, column 1 contains MATLAB serial date numbers and column 2 contains
split ratios.
Data Types: double | table

Dividend — Dividend payouts
matrix | table

Dividend payouts, specified as a table or an NUMOBS-by-2 matrix. If Dividend is a table, the dates
can either be serial date numbers, date character vectors, or datetime arrays. If Dividend is a
NUMOBS-by-2 matrix of price data, column 1 contains MATLAB serial date numbers and column 2
contains dividend payouts.
Data Types: double | table

Output Arguments
Return — Total return price time series
matrix | table

Total return price time series, returned as a NUMOBS-by-2 matrix (if all inputs are matrices) or table (if
any inputs are tables) of price data, where column 1 is dates and column 2 is total return price
values. Dates in column 1 are in datetime format if any inputs specify dates in datetime format. Dates
in column 1 are in date character vector format if no inputs specify dates in datetime format, but any
of them use date character vector format. Otherwise, dates in column 1 are specified as serial date
numbers.

See Also
periodicreturns | datetime

Topics
“Portfolio Construction Examples” on page 3-5
“Portfolio Optimization Functions” on page 3-3

Introduced before R2006a
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toweekly
Convert to weekly

Note toweekly is not recommended. Use convert2weekly instead.

Syntax
newfts = toweekly(oldfts)

newfts = toweekly(oldfts,'ParameterName',ParameterValue, ...)

Arguments
oldfts Financial time series object.

Description
newfts = toweekly(oldfts) converts a financial time series of any frequency to a weekly
frequency. The default weekly days are Fridays or the last business day of the week. toweekly uses
holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as 00:00 for
those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for toweekly triggers the use of the
defaults.

newfts = toweekly(oldfts,'ParameterName',ParameterValue, ...) accepts parameter
name/parameter value pairs as input, as specified in the following table.

Parameter
Name

Parameter Value Description

CalcMethod CumSum Returns the cumulative sum of the values within each week.
Data for missing dates are given the value 0.

 Exact Returns the exact value at the end-of-week dates. No data
manipulation occurs.

 Nearest (Default) Returns the values located at the end-of-week
dates. If there is missing data, Nearest returns the nearest
data point preceding the end-of-week date.

 SimpAvg Returns an averaged weekly value that only takes into
account dates with data (non-NaN) within each week.
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Parameter
Name

Parameter Value Description

 v21x This mode is compatible with previous versions of this
function (Version 2.1.x and earlier). It returns an averaged
end-of-weekly value using a previous toquarterly
algorithm. This algorithm takes into account all dates and
data. For dates that do not contain any data, the data is
assumed to be 0.

Note If you set CalcMethod to v21x, settings for all the following parameter
name/parameter value pairs are not supported.

BusDays 0 Generates a financial time series that ranges from (or
between) the first date to the last date in oldfts (includes
NYSE nonbusiness days and holidays).

 1 (Default) Generates a financial time series that ranges from
the first date to the last date in oldfts (excludes NYSE
nonbusiness days and holidays and weekends based on
AltHolidays and Weekend). If an end-of-quarter date falls
on a nonbusiness day or NYSE holiday, returns the last
business day of the quarter.

NYSE market closures, holidays, and weekends are observed
if AltHolidays and Weekend are not supplied or empty
([]).

DateFilter Absolute (Default) Returns all weekly dates between the start and end
dates of oldfts. Some dates may be disregarded if
BusDays = 1.

Note The default is to create a time series with every date
at the specified periodicity, which is with DateFilter =
Absolute. If you use DateFilter = Relative, the
endpoint effects do not apply since only your data defines
which dates appear in the output time series object.

 Relative Returns only end-of-week dates that exist in oldfts. Some
dates may be disregarded if BusDays = 1.

19 Functions

19-1556



Parameter
Name

Parameter Value Description

EndPtTol [Begin, End] Denotes the minimum number of days that constitute an odd
week at the endpoints of the time series (before the first
whole period and after the last whole period).

Begin and End must be -1 or any positive integer greater
than or equal to 0.

A single value input for EndPtTol is the same as specifying
that single value for Begin and End.

-1   Do not include odd week dates and data in calculations.

0    (Default) Include all odd week dates and data in
calculations.

n   Number of days (any positive integer) that constitute an
odd week. If there are insufficient days for a complete week,
the odd week dates and data are ignored.

The following diagram is a general depiction of the factors involved in the determination of
endpoints for this function.

EOW 0 - 6 Specifies the end-of-week day:

• 0   Friday (default)
• 1   Saturday
• 2   Sunday
• 3   Monday
• 4   Tuesday
• 5   Wednesday
• 6   Thursday

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

 Last (Default) Returns only the observation that occurs at the last
(latest) time for a specific date.

AltHolidays  Vector of dates specifying an alternate set of market closure
dates.

 toweekly

19-1557



Parameter
Name

Parameter Value Description

 -1 Excludes all holidays.
Weekend  Vector of length 7 containing 0's and 1's. The value 1

indicates a weekend day. The first element of this vector
corresponds to Sunday. For example, when Saturday and
Sunday are weekend days (default) then Weekend = [1 0
0 0 0 0 1].

Examples

Transform Time Series Object from Quarterly to Weekly Values

This example shows how to transform a time series object from quarterly to weekly values.

Load the data from the file predict_ret_data.mat and use the fints function to create a time
series object with a quarterly frequency.

load predict_ret_data.mat
x0 = fints(expdates, expdata, {'Metric'}, 'q', 'Index')

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

 
x0 = 
 
    desc:  Index
    freq:  Quarterly (4)

    {'dates:  (53)'}    {'Metric:  (53)'}
    {'01-Jan-1999' }    {[      97.8872]}
    {'08-Jan-1999' }    {[      97.0847]}
    {'15-Jan-1999' }    {[     109.6312]}
    {'22-Jan-1999' }    {[     105.5743]}
    {'29-Jan-1999' }    {[     108.4028]}
    {'05-Feb-1999' }    {[     134.4882]}
    {'12-Feb-1999' }    {[     117.5581]}
    {'19-Feb-1999' }    {[     106.6683]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'05-Mar-1999' }    {[     105.6835]}
    {'12-Mar-1999' }    {[     128.5836]}
    {'19-Mar-1999' }    {[     115.1746]}
    {'26-Mar-1999' }    {[     131.2854]}
    {'02-Apr-1999' }    {[     130.7116]}
    {'09-Apr-1999' }    {[     123.1684]}
    {'16-Apr-1999' }    {[     107.2975]}
    {'23-Apr-1999' }    {[      91.5625]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'07-May-1999' }    {[      65.2904]}
    {'14-May-1999' }    {[      70.8581]}
    {'21-May-1999' }    {[      72.4807]}
    {'28-May-1999' }    {[      72.9190]}
    {'04-Jun-1999' }    {[      64.3460]}
    {'11-Jun-1999' }    {[      59.8743]}
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    {'18-Jun-1999' }    {[      55.0026]}
    {'25-Jun-1999' }    {[      49.4032]}
    {'02-Jul-1999' }    {[      49.9485]}
    {'09-Jul-1999' }    {[      47.8061]}
    {'16-Jul-1999' }    {[      61.0517]}
    {'23-Jul-1999' }    {[      58.9313]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'06-Aug-1999' }    {[      44.8472]}
    {'13-Aug-1999' }    {[      45.0463]}
    {'20-Aug-1999' }    {[      45.1088]}
    {'27-Aug-1999' }    {[      56.4897]}
    {'03-Sep-1999' }    {[      61.2449]}
    {'10-Sep-1999' }    {[      58.1012]}
    {'17-Sep-1999' }    {[      50.8974]}
    {'24-Sep-1999' }    {[      46.5143]}
    {'01-Oct-1999' }    {[      38.0806]}
    {'08-Oct-1999' }    {[      33.6664]}
    {'15-Oct-1999' }    {[      34.2992]}
    {'22-Oct-1999' }    {[      33.4202]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'05-Nov-1999' }    {[      35.1278]}
    {'12-Nov-1999' }    {[      41.8128]}
    {'19-Nov-1999' }    {[      35.8199]}
    {'26-Nov-1999' }    {[      36.9495]}
    {'03-Dec-1999' }    {[      36.2880]}
    {'10-Dec-1999' }    {[      33.8457]}
    {'17-Dec-1999' }    {[      33.3868]}
    {'24-Dec-1999' }    {[      32.7737]}
    {'31-Dec-1999' }    {[      28.5665]}

Use toweekly to obtain the weekly aggregate for the x0 times series.

x1 = toweekly(x0)

Warning: FINTS is not recommended. Use convert2weekly instead.

 
x1 = 
 
    desc:  TOWEEKLY: Index
    freq:  Weekly (2)

    {'dates:  (53)'}    {'Metric:  (53)'}
    {'31-Dec-1998' }    {[          NaN]}
    {'08-Jan-1999' }    {[      97.0847]}
    {'15-Jan-1999' }    {[     109.6312]}
    {'22-Jan-1999' }    {[     105.5743]}
    {'29-Jan-1999' }    {[     108.4028]}
    {'05-Feb-1999' }    {[     134.4882]}
    {'12-Feb-1999' }    {[     117.5581]}
    {'19-Feb-1999' }    {[     106.6683]}
    {'26-Feb-1999' }    {[     118.2912]}
    {'05-Mar-1999' }    {[     105.6835]}
    {'12-Mar-1999' }    {[     128.5836]}
    {'19-Mar-1999' }    {[     115.1746]}
    {'26-Mar-1999' }    {[     131.2854]}
    {'01-Apr-1999' }    {[          NaN]}
    {'09-Apr-1999' }    {[     123.1684]}
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    {'16-Apr-1999' }    {[     107.2975]}
    {'23-Apr-1999' }    {[      91.5625]}
    {'30-Apr-1999' }    {[      78.5738]}
    {'07-May-1999' }    {[      65.2904]}
    {'14-May-1999' }    {[      70.8581]}
    {'21-May-1999' }    {[      72.4807]}
    {'28-May-1999' }    {[      72.9190]}
    {'04-Jun-1999' }    {[      64.3460]}
    {'11-Jun-1999' }    {[      59.8743]}
    {'18-Jun-1999' }    {[      55.0026]}
    {'25-Jun-1999' }    {[      49.4032]}
    {'02-Jul-1999' }    {[      49.9485]}
    {'09-Jul-1999' }    {[      47.8061]}
    {'16-Jul-1999' }    {[      61.0517]}
    {'23-Jul-1999' }    {[      58.9313]}
    {'30-Jul-1999' }    {[      53.9584]}
    {'06-Aug-1999' }    {[      44.8472]}
    {'13-Aug-1999' }    {[      45.0463]}
    {'20-Aug-1999' }    {[      45.1088]}
    {'27-Aug-1999' }    {[      56.4897]}
    {'03-Sep-1999' }    {[      61.2449]}
    {'10-Sep-1999' }    {[      58.1012]}
    {'17-Sep-1999' }    {[      50.8974]}
    {'24-Sep-1999' }    {[      46.5143]}
    {'01-Oct-1999' }    {[      38.0806]}
    {'08-Oct-1999' }    {[      33.6664]}
    {'15-Oct-1999' }    {[      34.2992]}
    {'22-Oct-1999' }    {[      33.4202]}
    {'29-Oct-1999' }    {[      36.9287]}
    {'05-Nov-1999' }    {[      35.1278]}
    {'12-Nov-1999' }    {[      41.8128]}
    {'19-Nov-1999' }    {[      35.8199]}
    {'26-Nov-1999' }    {[      36.9495]}
    {'03-Dec-1999' }    {[      36.2880]}
    {'10-Dec-1999' }    {[      33.8457]}
    {'17-Dec-1999' }    {[      33.3868]}
    {'23-Dec-1999' }    {[          NaN]}
    {'31-Dec-1999' }    {[      28.5665]}

See Also
convertto | toannual | fints | todaily | tomonthly | toquarterly | tosemi

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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tr2bonds
Term-structure parameters given Treasury bond parameters

Syntax
[Bonds,Prices,Yields] = tr2bonds(TreasuryMatrix,Settle)
[Bonds,Prices,Yields] = tr2bonds( ___ ,Settle)

Description
[Bonds,Prices,Yields] = tr2bonds(TreasuryMatrix,Settle) returns term-structure
parameters (Bonds, Prices, and Yields) sorted by ascending maturity date, given Treasury bond
parameters. The formats of the output matrix and vectors meet requirements for input to the
zbtprice and zbtyield zero-curve bootstrapping functions.

[Bonds,Prices,Yields] = tr2bonds( ___ ,Settle) adds an optional argument for Settle.

Examples

Return Term-Structure Parameters Given Treasury Bond Parameters

This example shows how to return term-structure parameters (bond information, prices, and yields)
sorted by ascending maturity date, given Treasury bond market parameters for December 22, 1997.

Matrix =[0.0650 datenum('15-apr-1999')  101.03125 101.09375 0.0564
         0.05125 datenum('17-dec-1998')  99.4375   99.5     0.0563
         0.0625 datenum('30-jul-1998')  100.3125  100.375   0.0560
         0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];

[Bonds, Prices, Yields] = tr2bonds(Matrix)

Bonds = 4×6
105 ×

    7.2984    0.0000    0.0010    0.0000         0    0.0000
    7.2997    0.0000    0.0010    0.0000         0    0.0000
    7.3011    0.0000    0.0010    0.0000         0    0.0000
    7.3022    0.0000    0.0010    0.0000         0    0.0000

Prices = 4×1

  100.1562
  100.3750
   99.5000
  101.0938

Yields = 4×1

    0.0546
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    0.0560
    0.0563
    0.0564

Return Term-Structure Parameters Given Treasury Bond Parameters Using datetime Input

This example shows how to use datetime input to return term-structure parameters (bond
information, prices, and yields) sorted by ascending maturity date, given Treasury bond market
parameters for December 22, 1997.

Matrix =[0.0650 datenum('15-apr-1999')  101.03125 101.09375 0.0564
         0.05125 datenum('17-dec-1998')  99.4375   99.5     0.0563
         0.0625 datenum('30-jul-1998')  100.3125  100.375   0.0560
         0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];

t=array2table(Matrix);
t.Matrix2=datetime(t{:,2},'ConvertFrom','datenum','Locale','en_US');
[Bonds, Prices, Yields] = tr2bonds(t,datetime('1-Jan-1997','Locale','en_US'))

Bonds=4×6 table
     Maturity      CouponRate    Face    Period    Basis    EndMonthRule
    ___________    __________    ____    ______    _____    ____________

    26-Mar-1998     0.06125      100       2         0           1      
    30-Jul-1998      0.0625      100       2         0           1      
    17-Dec-1998     0.05125      100       2         0           1      
    15-Apr-1999       0.065      100       2         0           1      

Prices = 4×1

  100.1562
  100.3750
   99.5000
  101.0938

Yields = 4×1

    0.0598
    0.0599
    0.0540
    0.0598

Input Arguments
TreasuryMatrix — Treasury bond parameters
table | matrix

Treasury bond parameters, specified as a 5-column table or a NumBonds-by-5 matrix of bond
information where the table columns or matrix columns contains:
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• CouponRate (Required) Coupon rate of the Treasury bond, specified as a decimal indicating the
coupon rates for each bond in the portfolio.

• Maturity (Required) Maturity date of the Treasury bond, specified as a serial date number when
using a matrix. Use datenum to convert date character vectors to serial date numbers. If the input
TreasuryMatrix is a table, the Maturity dates can be serial date numbers, date character
vectors, or datetime arrays.

• Bid (Required) Bid prices, specified using an integer-decimal form for each bond in the portfolio.
• Asked (Required) Asked prices, specified using an integer-decimal form for each bond in the

portfolio.
• AskYield (Required) Quoted ask yield, specified using a decimal form for each bond in the

portfolio.

Data Types: double | table

Settle — Settlement date of Treasury bond
serial date number | date character vector | datetime

(Optional) Settlement date of the Treasury bond, specified as a scalar or a NINST-by-1 vector of serial
date numbers, date character vectors, or datetime arrays. The Settle date must be before the
Maturity date.
Data Types: double | char | datetime

Output Arguments
Bonds — Coupon bond information
numeric

Coupon bond information, returned as a table or matrix depending on the TreasuryMatrix input.

When TreasuryMatrix is a table, Bonds is also a table, and the variable type for the Maturity
dates in Bonds (column 1) matches the variable type for Maturity in TreasuryMatrix.

When TreasuryMatrix input is a n-by-5 matrix, then each row describes a bond.

The parameters or columns returned for Bonds are:

• Maturity (Column 1) Maturity date for each bond in the portfolio as a serial date number. The
format of the dates matches the format used for Maturity in TreasuryMatrix (serial date
number, date character vector, or datetime array).

• CouponRate (Column 2) Coupon rate for each bond in the portfolio in decimal form.
• Face (Column 3, Optional) Face or par value for each bond in the portfolio. The default is 100.
• Period (Column 4, Optional) Number of coupon payments per year for each bond in the portfolio

with allowed values: 1, 2, 3, 4, 6, and 12. The default is 2, unless you are dealing with zero
coupons, then Period is 0 instead of 2.

• Basis (Column 5, Optional) Day-count basis for each bond in the portfolio with possible values:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
• For more information, see “Basis” on page 2-19.

• EndMonthRule (Column 6, Optional) End-of-month rule flag for each bond in the portfolio. This
rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond's coupon payment date is always the same numerical day of
the month. 1 = set rule on, meaning that a bond's coupon payment date is always the last actual
day of the month. The default is 1.

Prices — Bond prices
numeric

Bond prices, returned as a column vector containing the price of each bond in Bonds, respectively.
The number of rows (n) matches the number of rows in Bonds.

Yields — Bond yields
numeric

Bond yields, returned as a column vector containing the yield to maturity of each bond in Bonds,
respectively. The number of rows (n) matches the number of rows in Bonds.

If the optional input argument Settle is used, Yields is computed as a semiannual yield to
maturity. If the input Settle is not used, the quoted input yields are used.

See Also
tbl2bond | zbtprice | zbtyield | datetime

Topics
“Term Structure of Interest Rates” on page 2-32
“Treasury Bills Defined” on page 2-28

Introduced before R2006a
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transprob
Estimate transition probabilities from credit ratings data

Syntax
[transMat,sampleTotals,idTotals] = transprob(data)
[transMat,sampleTotals,idTotals] = transprob( ___ ,Name,Value)

Description
[transMat,sampleTotals,idTotals] = transprob(data) constructs a transition matrix from
historical data of credit ratings.

[transMat,sampleTotals,idTotals] = transprob( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Construct a Transition Matrix From a Table of Historical Data of Credit Ratings

Using the historical credit rating table as input data from Data_TransProb.mat display the first ten
rows and compute the transition matrix:

load Data_TransProb
data(1:10,:)

ans=10×3 table
         ID              Date          Rating 
    ____________    _______________    _______

    {'00010283'}    {'10-Nov-1984'}    {'CCC'}
    {'00010283'}    {'12-May-1986'}    {'B'  }
    {'00010283'}    {'29-Jun-1988'}    {'CCC'}
    {'00010283'}    {'12-Dec-1991'}    {'D'  }
    {'00013326'}    {'09-Feb-1985'}    {'A'  }
    {'00013326'}    {'24-Feb-1994'}    {'AA' }
    {'00013326'}    {'10-Nov-2000'}    {'BBB'}
    {'00014413'}    {'23-Dec-1982'}    {'B'  }
    {'00014413'}    {'20-Apr-1988'}    {'BB' }
    {'00014413'}    {'16-Jan-1998'}    {'B'  }

% Estimate transition probabilities with default settings
transMat = transprob(data)

transMat = 8×8

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
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    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Using the historical credit rating table input data from Data_TransProb.mat, compute the
transition matrix using the cohort algorithm:

%Estimate transition probabilities with 'cohort' algorithm
transMatCoh = transprob(data,'algorithm','cohort')

transMatCoh = 8×8

   93.1345    5.9335    0.7456    0.1553    0.0311         0         0         0
    1.7359   92.9198    4.5446    0.6046    0.1560         0         0    0.0390
    0.1268    2.9716   91.9913    4.3124    0.4711    0.0544         0    0.0725
    0.0210    0.3785    5.0683   89.7792    4.0379    0.4627    0.0421    0.2103
    0.0221    0.1105    0.6851    6.2320   88.3757    3.6464    0.2873    0.6409
         0         0    0.0761    0.7230    7.9909   86.1872    2.7397    2.2831
         0         0         0    0.3094    1.8561    4.5630   80.8971   12.3743
         0         0         0         0         0         0         0  100.0000

Using the historical credit rating data with ratings investment grade ('IG'), speculative grade
('SG'), and default ('D'), from Data_TransProb.mat display the first ten rows and compute the
transition matrix:

dataIGSG(1:10,:)

ans=10×3 table
         ID              Date          Rating
    ____________    _______________    ______

    {'00011253'}    {'04-Apr-1983'}    {'IG'}
    {'00012751'}    {'17-Feb-1985'}    {'SG'}
    {'00012751'}    {'19-May-1986'}    {'D' }
    {'00014690'}    {'17-Jan-1983'}    {'IG'}
    {'00012144'}    {'21-Nov-1984'}    {'IG'}
    {'00012144'}    {'25-Mar-1992'}    {'SG'}
    {'00012144'}    {'07-May-1994'}    {'IG'}
    {'00012144'}    {'23-Jan-2000'}    {'SG'}
    {'00012144'}    {'20-Aug-2001'}    {'IG'}
    {'00012937'}    {'07-Feb-1984'}    {'IG'}

transMatIGSG = transprob(dataIGSG,'labels',{'IG','SG','D'})

transMatIGSG = 3×3

   98.6719    1.2020    0.1261
    3.5781   93.3318    3.0901
         0         0  100.0000

Using the historical credit rating data with numeric ratings for investment grade (1), speculative
grade (2), and default (3), from Data_TransProb.mat display the first ten rows and compute the
transition matrix:
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dataIGSGnum(1:10,:)

ans=10×3 table
         ID              Date          Rating
    ____________    _______________    ______

    {'00011253'}    {'04-Apr-1983'}      1   
    {'00012751'}    {'17-Feb-1985'}      2   
    {'00012751'}    {'19-May-1986'}      3   
    {'00014690'}    {'17-Jan-1983'}      1   
    {'00012144'}    {'21-Nov-1984'}      1   
    {'00012144'}    {'25-Mar-1992'}      2   
    {'00012144'}    {'07-May-1994'}      1   
    {'00012144'}    {'23-Jan-2000'}      2   
    {'00012144'}    {'20-Aug-2001'}      1   
    {'00012937'}    {'07-Feb-1984'}      1   

transMatIGSGnum = transprob(dataIGSGnum,'labels',{1,2,3})

transMatIGSGnum = 3×3

   98.6719    1.2020    0.1261
    3.5781   93.3318    3.0901
         0         0  100.0000

Create a Transition Matrix Using a Cell Array for Historical Data of Credit Ratings

Using a MATLAB® table containing the historical credit rating cell array input data
(dataCellFormat) from Data_TransProb.mat, estimate the transition probabilities with default
settings.

load Data_TransProb
transMat = transprob(dataCellFormat)

transMat = 8×8

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Using the historical credit rating cell array input data (dataCellFormat), compute the transition
matrix using the cohort algorithm:

%Estimate transition probabilities with 'cohort' algorithm
transMatCoh = transprob(dataCellFormat,'algorithm','cohort')

transMatCoh = 8×8
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   93.1345    5.9335    0.7456    0.1553    0.0311         0         0         0
    1.7359   92.9198    4.5446    0.6046    0.1560         0         0    0.0390
    0.1268    2.9716   91.9913    4.3124    0.4711    0.0544         0    0.0725
    0.0210    0.3785    5.0683   89.7792    4.0379    0.4627    0.0421    0.2103
    0.0221    0.1105    0.6851    6.2320   88.3757    3.6464    0.2873    0.6409
         0         0    0.0761    0.7230    7.9909   86.1872    2.7397    2.2831
         0         0         0    0.3094    1.8561    4.5630   80.8971   12.3743
         0         0         0         0         0         0         0  100.0000

Visualize Transitions Data for transprob

This example shows how to visualize credit rating transitions that are used as an input to the
transprob function. The example also describes how the transprob function treats rating
transitions when the company data starts after the start date of the analysis, or when the end date of
the analysis is after the last transition observed.

Sample Data

Set up fictitious sample data for illustration purposes.

data = {'ABC','17-Feb-2015','AA';
    'ABC','6-Jul-2017','A';
    'LMN','12-Aug-2014','B';
    'LMN','9-Nov-2015','CCC';
    'LMN','7-Sep-2016','D';
    'XYZ','14-May-2013','BB';
    'XYZ','21-Jun-2016','BBB'};
data = cell2table(data,'VariableNames',{'ID','Date','Rating'});
disp(data)

      ID            Date          Rating 
    _______    _______________    _______

    {'ABC'}    {'17-Feb-2015'}    {'AA' }
    {'ABC'}    {'6-Jul-2017' }    {'A'  }
    {'LMN'}    {'12-Aug-2014'}    {'B'  }
    {'LMN'}    {'9-Nov-2015' }    {'CCC'}
    {'LMN'}    {'7-Sep-2016' }    {'D'  }
    {'XYZ'}    {'14-May-2013'}    {'BB' }
    {'XYZ'}    {'21-Jun-2016'}    {'BBB'}

The transprob function understands that this panel-data format indicates the dates when a new
rating is assigned to a given company. transprob assumes that such ratings remain unchanged,
unless a subsequent row explicitly indicates a rating change. For example, for company 'ABC',
transprob understands that the 'A' rating is unchanged for any date after '6-Jul-2017'
(indefinitely).

Compute Transition Matrix and Transition Counts

The transprob function returns a transition probability matrix as the primary output. There are also
optional outputs that contain additional information for how many transitions occurred. For more
information, see transprob for information on the optional outputs for both the 'cohort' and the
'duration' methods.
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For illustration purposes, this example allows you to pick the StartYear (limited to 2014 or 2015
for this example) and the EndYear (2016 or 2017). This example also uses the
hDisplayTransitions helper function (see the Local Functions on page 19-0  section) to format
the transitions information for ease of reading.

StartYear = ;

EndYear = ;
startDate = datetime(StartYear,12,31,'Locale','en_US');
endDate = datetime(EndYear,12,31,'Locale','en_US');
RatingLabels = ["AAA","AA","A","BBB","BB","B","CCC","D"];

[tm,st,it] = transprob(data,'startDate',startDate,'endDate',endDate,'algorithm','cohort','labels',RatingLabels);

The transition probabilities of the TransMat output indicate the probability of migrating between
ratings. The probabilities are expressed in %, that is, they are multiplied by 100.

hDisplayTransitions(tm,RatingLabels,"Transition Matrix")

Transition Matrix

           AAA    AA     A     BBB    BB    B    CCC     D 
           ___    __    ___    ___    __    _    ___    ___

    AAA    100     0      0      0     0    0      0      0
    AA       0    50     50      0     0    0      0      0
    A        0     0    100      0     0    0      0      0
    BBB      0     0      0    100     0    0      0      0
    BB       0     0      0     50    50    0      0      0
    B        0     0      0      0     0    0    100      0
    CCC      0     0      0      0     0    0      0    100
    D        0     0      0      0     0    0      0    100

The transition counts are stored in the sampleTotals optional output and indicate how many
transitions occurred between ratings for the entire sample (that is, all companies).

hDisplayTransitions(st.totalsMat,RatingLabels,"Transition counts, all companies")

Transition counts, all companies

           AAA    AA    A    BBB    BB    B    CCC    D
           ___    __    _    ___    __    _    ___    _

    AAA     0     0     0     0     0     0     0     0
    AA      0     1     1     0     0     0     0     0
    A       0     0     0     0     0     0     0     0
    BBB     0     0     0     1     0     0     0     0
    BB      0     0     0     1     1     0     0     0
    B       0     0     0     0     0     0     1     0
    CCC     0     0     0     0     0     0     0     1
    D       0     0     0     0     0     0     0     1

The third output of transprob is idTotals that contains information about transitions at an ID
level, company by company (in the same order that the companies appear in the input data).

Select a company to display the transition counts and a corresponding visualization of the transitions.
The hPlotTransitions helper function (see the Local Functions on page 19-0  section) shows
the transitions history for a company.
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CompanyID = ;
UniqueIDs = unique(data.ID,'stable');
[~,CompanyIndex] = ismember(CompanyID,UniqueIDs);
hDisplayTransitions(it(CompanyIndex).totalsMat,RatingLabels,strcat("Transition counts, company ID: ",CompanyID))

Transition counts, company ID: ABC

           AAA    AA    A    BBB    BB    B    CCC    D
           ___    __    _    ___    __    _    ___    _

    AAA     0     0     0     0     0     0     0     0
    AA      0     1     1     0     0     0     0     0
    A       0     0     0     0     0     0     0     0
    BBB     0     0     0     0     0     0     0     0
    BB      0     0     0     0     0     0     0     0
    B       0     0     0     0     0     0     0     0
    CCC     0     0     0     0     0     0     0     0
    D       0     0     0     0     0     0     0     0

hPlotTransitions(CompanyID,startDate,endDate,data,RatingLabels)

To understand how transprob handles data when the first observed date is after the start date of
the analysis, or whose last observed date occurs before the end date of the analysis, consider the
following example. For company 'ABC' suppose that the analysis has a start date of 31-Dec-2014
and end date of 31-Dec-2017. There are only two transitions reported for this company for that
analysis time window. The first observation for 'ABC' happened on 17-Feb-2015. So the 31-
Dec-2015 snapshot is the first time the company is observed. By 31-Dec-2016, the company
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remained in the original 'AA' rating. By 31-Dec-2017, a downgrade to 'A' is recorded. Consistent
with this, the transition counts show one transition from 'AA' to 'AA' (from the end of 2015 to the
end of 2016), and one transition from 'AA' to 'A' (from the end of 2016 to the end of 2017). The plot
shows the last rating as a dotted red line to emphasize that the last rating in the data is extrapolated
indefinitely into the future. There is no extrapolation into the past; the company's history is ignored
until a company rating is known for an entire transition period (31-Dec-2015 through 31-Dec-2016
in the case of 'ABC').

Compute Transition Matrix Containing NR (Not Rated) Rating

Consider a different sample data containing only a single company 'DEF'. The data contains
transitions of company 'DEF' from 'A' to 'NR' rating and a subsequent transition from 'NR' to
'BBB'.

dataNR = {'DEF','17-Mar-2011','A';
    'DEF','24-Mar-2014','NR';
    'DEF','26-Sep-2016','BBB'};
dataNR = cell2table(dataNR,'VariableNames',{'ID','Date','Rating'});
disp(dataNR)

      ID            Date          Rating 
    _______    _______________    _______

    {'DEF'}    {'17-Mar-2011'}    {'A'  }
    {'DEF'}    {'24-Mar-2014'}    {'NR' }
    {'DEF'}    {'26-Sep-2016'}    {'BBB'}

transprob treats 'NR' as another rating. The transition matrix below shows the estimated
probability of transitioning into and out of 'NR'.

StartYearNR = 2010;
EndYearNR = 2018;
startDateNR = datetime(StartYearNR,12,31,'Locale','en_US');
endDateNR = datetime(EndYearNR,12,31,'Locale','en_US');
CompanyID_NR = "DEF";

RatingLabelsNR = ["AAA","AA","A","BBB","BB","B","CCC","D","NR"];

[tmNR,~,itNR] = transprob(dataNR,'startDate',startDateNR,'endDate',endDateNR,'algorithm','cohort','labels',RatingLabelsNR);
hDisplayTransitions(tmNR,RatingLabelsNR,"Transition Matrix")

Transition Matrix

           AAA    AA       A       BBB    BB      B     CCC     D       NR  
           ___    ___    ______    ___    ___    ___    ___    ___    ______

    AAA    100      0         0      0      0      0      0      0         0
    AA       0    100         0      0      0      0      0      0         0
    A        0      0    66.667      0      0      0      0      0    33.333
    BBB      0      0         0    100      0      0      0      0         0
    BB       0      0         0      0    100      0      0      0         0
    B        0      0         0      0      0    100      0      0         0
    CCC      0      0         0      0      0      0    100      0         0
    D        0      0         0      0      0      0      0    100         0
    NR       0      0         0     50      0      0      0      0        50

Display the transition counts and corresponding visualization of the transitions.
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hDisplayTransitions(itNR.totalsMat,RatingLabelsNR,strcat("Transition counts, company ID: ",CompanyID_NR))

Transition counts, company ID: DEF

           AAA    AA    A    BBB    BB    B    CCC    D    NR
           ___    __    _    ___    __    _    ___    _    __

    AAA     0     0     0     0     0     0     0     0    0 
    AA      0     0     0     0     0     0     0     0    0 
    A       0     0     2     0     0     0     0     0    1 
    BBB     0     0     0     2     0     0     0     0    0 
    BB      0     0     0     0     0     0     0     0    0 
    B       0     0     0     0     0     0     0     0    0 
    CCC     0     0     0     0     0     0     0     0    0 
    D       0     0     0     0     0     0     0     0    0 
    NR      0     0     0     1     0     0     0     0    1 

hPlotTransitions(CompanyID_NR,startDateNR,endDateNR,dataNR,RatingLabelsNR)

To remove the 'NR' from the transition matrix, use the 'excludeLabels' name-value input
argument in transprob. The list of labels to exclude may or may not be specified in the name-value
pair argument labels. For example, both RatingLabels and RatingLabelsNR generate the same
output from transprob.

[tmNR,stNR,itNR] = transprob(dataNR,'startDate',startDateNR,'endDate',endDateNR,'algorithm','cohort','labels',RatingLabelsNR,'excludeLabels','NR');
hDisplayTransitions(tmNR,RatingLabels,"Transition Matrix")
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Transition Matrix

           AAA    AA      A     BBB    BB      B     CCC     D 
           ___    ___    ___    ___    ___    ___    ___    ___

    AAA    100      0      0      0      0      0      0      0
    AA       0    100      0      0      0      0      0      0
    A        0      0    100      0      0      0      0      0
    BBB      0      0      0    100      0      0      0      0
    BB       0      0      0      0    100      0      0      0
    B        0      0      0      0      0    100      0      0
    CCC      0      0      0      0      0      0    100      0
    D        0      0      0      0      0      0      0    100

Display the transition counts and corresponding visualization of the transitions.

hDisplayTransitions(itNR.totalsMat,RatingLabels,strcat("Transition counts, company ID: ",CompanyID_NR))

Transition counts, company ID: DEF

           AAA    AA    A    BBB    BB    B    CCC    D
           ___    __    _    ___    __    _    ___    _

    AAA     0     0     0     0     0     0     0     0
    AA      0     0     0     0     0     0     0     0
    A       0     0     2     0     0     0     0     0
    BBB     0     0     0     2     0     0     0     0
    BB      0     0     0     0     0     0     0     0
    B       0     0     0     0     0     0     0     0
    CCC     0     0     0     0     0     0     0     0
    D       0     0     0     0     0     0     0     0

hPlotTransitions(CompanyID_NR,startDateNR,endDateNR,dataNR,RatingLabels)
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Consistent with the previous plot, the transition counts still show two transitions from 'A' to 'A'
(from the end of 2012 to the end of 2014), and two transitions from 'BBB' to 'BBB' (from the end of
2017 to the end of 2019).

However, different from the previous plot, specifying 'NR' using the 'excludeLabels' name-value
input argument of transprob removes any transitions into and out of the 'NR' rating.

Local Functions

function hDisplayTransitions(TransitionsData,RatingLabels,Title)
% Helper function to format transition information outputs

TransitionsAsTable = array2table(TransitionsData,...
   'VariableNames',RatingLabels,'RowNames',RatingLabels);

fprintf('\n%s\n\n',Title)
disp(TransitionsAsTable)

end

function hPlotTransitions(CompanyID,startDate,endDate,data,RatingLabels)
% Helper function to visualize transitions between ratings

   Ind = string(data.ID)==CompanyID;
   DatesOriginal = datetime(data.Date(Ind),'Locale','en_US');
   RatingsOriginal = categorical(data.Rating(Ind),flipud(RatingLabels(:)),flipud(RatingLabels(:)));
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   stairs(DatesOriginal,RatingsOriginal,'LineWidth',2)
   hold on;

   % Indicate rating extrapolated into the future (arbitrarily select 91
   % days after endDate as the last date on the plot)
   endDateExtrap = endDate+91;
   if endDateExtrap>DatesOriginal(end)
      DatesExtrap = [DatesOriginal(end); endDateExtrap];
      RatingsExtrap = [RatingsOriginal(end); RatingsOriginal(end)];
      stairs(DatesExtrap,RatingsExtrap,'LineWidth',2,'LineStyle',':')
   end
   hold off;

   % Add lines to indicate the snapshot dates
   % transprob uses 1 as the default for 'snapsPerYear', hardcoded here for simplicity
   % The call to cfdates generates the exact same snapshot dates that transprob uses
   snapsPerYear = 1;
   snapDates = cfdates(startDate-1,endDate,snapsPerYear)';
   yLimits = ylim;
   for ii=1:length(snapDates)
      line([snapDates(ii) snapDates(ii)],yLimits,'Color','m')
   end
   title(strcat("Company ID: ",CompanyID))
end

Input Arguments
data — Credit migration data
table | cell array of character vectors | preprocessed data structure

Using transprob to estimate transition probabilities given credit ratings historical data (that is,
credit migration data), the data input can be one of the following:

• An nRecords-by-3 MATLAB table containing the historical credit ratings data of the form:

 ID          Date          Rating
__________  _____________  ______
'00010283'  '10-Nov-1984'  'CCC'
'00010283'  '12-May-1986'  'B'
'00010283'  '29-Jun-1988'  'CCC'
'00010283'  '12-Dec-1991'  'D'
'00013326'  '09-Feb-1985'  'A'
'00013326'  '24-Feb-1994'  'AA'
'00013326'  '10-Nov-2000'  'BBB'
'00014413'  '23-Dec-1982'  'B'

where each row contains an ID (column 1), a date (column 2), and a credit rating (column 3).
Column 3 is the rating assigned to the corresponding ID on the corresponding date. All
information corresponding to the same ID must be stored in contiguous rows. Sorting this
information by date is not required, but recommended for efficiency. When using a MATLAB table
input, the names of the columns are irrelevant, but the ID, date and rating information are
assumed to be in the first, second, and third columns, respectively. Also, when using a table input,
the first and third columns can be categorical arrays, and the second can be a datetime array. The
following summarizes the supported data types for table input:
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Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)
Table • Numeric array

• Cell array of
character vectors

• Categorical array

• Numeric array
• Cell array of

character vectors
• Datetime array

• Numeric array
• Cell array of

character vectors
• Categorical array

• An nRecords-by-3 cell array of character vectors containing the historical credit ratings data of
the form:

'00010283'  '10-Nov-1984'  'CCC'
'00010283'  '12-May-1986'  'B'
'00010283'  '29-Jun-1988'  'CCC'
'00010283'  '12-Dec-1991'  'D'
'00013326'  '09-Feb-1985'  'A'
'00013326'  '24-Feb-1994'  'AA'
'00013326'  '10-Nov-2000'  'BBB'
'00014413'  '23-Dec-1982'  'B'

where each row contains an ID (column 1), a date (column 2), and a credit rating (column 3).
Column 3 is the rating assigned to the corresponding ID on the corresponding date. All
information corresponding to the same ID must be stored in contiguous rows. Sorting this
information by date is not required, but recommended for efficiency. IDs, dates, and ratings are
stored in character vector format, but they can also be entered in numeric format. The following
summarizes the supported data types for cell array input:

Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)
Cell • Numeric elements

• Character vector
elements

• Numeric elements
• Character vector

elements

• Numeric elements
• Character vector

elements

• A preprocessed data structure obtained using transprobprep. This data structure contains the
fields'idStart', 'numericDates', 'numericRatings', and 'ratingsLabels'.

Data Types: table | cell | struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: transMat = transprob(data,'algorithm','cohort')

algorithm — Estimation algorithm
'duration' (default) | character vector with values are 'duration' or 'cohort'

Estimation algorithm, specified as the comma-separated pair consisting of 'algorithm' and a
character vector with a value of 'duration' or 'cohort'.
Data Types: char

endDate — End date of the estimation time window
latest date in data (default) | character vector | serial date number | datetime

19 Functions

19-1576



End date of the estimation time window, specified as the comma-separated pair consisting of
'endDate' and a date character vector, serial date number, or datetime object. The endDate cannot
be a date before the startDate.
Data Types: char | double | datetime

labels — Credit-rating scale
{'AAA','AA','A','BBB','BB','B','CCC','D'} (default) | cell array of character vectors

Credit-rating scale, specified as the comma-separated pair consisting of 'labels' and a nRatings-
by-1, or 1-by-nRatings cell array of character vectors.

labels must be consistent with the ratings labels used in the third column of data. Use a cell array
of numbers for numeric ratings, and a cell array for character vectors for categorical ratings.

Note When the input argument data is a preprocessed data structure obtained from a previous call
to transprobprep, this optional input for 'labels is unused because the labels in the
'ratingsLabels' field of transprobprep take priority.

Data Types: cell

snapsPerYear — Number of credit-rating snapshots per year
1 (default) | numeric values are 1, 2, 3, 4, 6, or 12

Number of credit-rating snapshots per year to be considered for the estimation, specified as the
comma-separated pair consisting of 'snapsPerYear' and a numeric value of 1, 2, 3, 4, 6, or 12.

Note This parameter is only used with the 'cohort' algorithm.

Data Types: double

startDate — Start date of the estimation time window
earliest date in data (default) | character vector | serial date number | datetime

Start date of the estimation time window, specified as the comma-separated pair consisting of
'startDate' and a date character vector, serial date number, or datetime object.
Data Types: char | double | datetime

transInterval — Length of the transition interval in years
1 (one year transition probability) (default) | numeric

Length of the transition interval, in years, specified as the comma-separated pair consisting of
'transInterval' and a numeric value.
Data Types: double

excludeLabels — Label that is excluded from the transition probability computation
'' (do not exclude any label) (default) | numeric | character vector | string

Label that is excluded from the transition probability computation, specified as the comma-separated
pair consisting of 'excludeLabels' and a character vector, string, or numerical rating.
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If multiple labels are to be excluded, 'excludeLabels' must be a cell array containing all of the
labels for exclusion. The type of the labels given in 'excludeLabels' must be consistent with the
data type specified in the labels input.

The list of labels to exclude may or may not be specified in labels.
Data Types: double | char | string

Output Arguments
transMat — Matrix of transition probabilities in percent
matrix

Matrix of transition probabilities in percent, returned as a nRatings-by-nRatings transition matrix.

sampleTotals — Structure with sample totals
structure

Structure with sample totals, returned with fields:

• totalsVec — A vector of size 1-by-nRatings.
• totalsMat — A matrix of size nRatings-by-nRatings.
• algorithm — A character vector with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total transitions observed out of rating i
into ratingj (all the diagonal elements are zero). The total time spent on rating i is stored in
totalsVec(i). For example, if there are three rating categories, Investment Grade (IG), Speculative
Grade (SG), and Default (D), and the following information:

Total time spent    IG       SG       D
in rating:       4859.09  1503.36  1162.05
 
Transitions             IG   SG    D
out of (row)       IG    0   89    7
into (column):     SG  202    0   32
                    D    0    0    0

Then

totals.totalsVec = [4859.09  1503.36  1162.05]
totals.totalsMat = [  0   89    7
                    202    0   32
                      0    0    0]
totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total transitions observed from rating i to
rating j, and totalsVec(i) is the initial count in rating i. For example, given the following
information:

Initial count       IG     SG     D
in rating:        4808   1572   1145
 
Transitions         IG     SG     D
from (row)    IG  4721     80      7
to (column):  SG   193   1347     32
               D     0      0   1145
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Then

totals.totalsVec = [4808   1572   1145]
totals.totalsMat = [4721     80      7
                    193   1347     32
                      0      0   1145
totals.algorithm = 'cohort'

idTotals — IDs totals
struct array

IDs totals, returned as a struct array of size nIDs-by-1, where nIDs is the number of distinct IDs in
column 1 of data when this is a table or cell array or, equivalently, equal to the length of the
idStart field minus 1 when data is a preprocessed data structure from transprobprep. For each
ID in the sample, idTotals contains one structure with the following fields:

• totalsVec — A sparse vector of size 1-by-nRatings.
• totalsMat — A sparse matrix of size nRatings-by-nRatings.
• algorithm — A character vector with values 'duration' or 'cohort'.

These fields contain the same information described for the output sampleTotals, but at an ID
level. For example, for 'duration', idTotals(k).totalsVec contains the total time that the k-th
company spent on each rating.

More About
Cohort Estimation

The cohort algorithm estimates the transition probabilities based on a sequence of snapshots of credit
ratings at regularly spaced points in time.

If the credit rating of a company changes twice between two snapshot dates, the intermediate rating
is overlooked and only the initial and final ratings influence the estimates.

Duration Estimation

Unlike the cohort method, the duration algorithm estimates the transition probabilities based on the
full credit ratings history, looking at the exact dates on which the credit rating migrations occur.

There is no concept of snapshots in this method, and all credit rating migrations influence the
estimates, even when a company's rating changes twice within a short time.

Algorithms
Cohort Estimation

The algorithm first determines a sequence t0,...,tK of snapshot dates. The elapsed time, in years,
between two consecutive snapshot dates tk-1 and tk is equal to 1 / ns, where ns is the number of
snapshots per year. These K +1 dates determine K transition periods.

The algorithm computes Ni
n, the number of transition periods in which obligor n starts at rating i.

These are added up over all obligors to get Ni, the number of obligors in the sample that start a
period at rating i. The number periods in which obligor n starts at rating i and ends at rating j, or
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migrates from i to j, denoted byNi j
n, is also computed. These are also added up to get Ni j, the total

number of migrations from i to j in the sample.

The estimate of the transition probability from i to j in one period, denoted byPi j, is

Pi j = Ni j
Ni

These probabilities are arranged in a one-period transition matrix P0, where the i,j entry in P0 is Pij.

If the number of snapshots per year ns is 4 (quarterly snapshots), the probabilities in P0 are 3-month
(or 0.25-year) transition probabilities. You may, however, be interested in 1-year or 2-year transition
probabilities. The latter time interval is called the transition interval, Δt, and it is used to convert P0
into the final transition matrix, P, according to the formula:

P = P0
ns ∗ △ t

For example, if ns = 4 and Δt = 2, P contains the two-year transition probabilities estimated from
quarterly snapshots.

Note For the cohort algorithm, optional output arguments idTotals and sampleTotals from
transprob contain the following information:

• idTotals(n).totalsVec = (Ni
n)∀i

• idTotals(n).totalsMat = (Ni, j
n )∀i j

• idTotals(n).algorithm = 'cohort'
• sampleTotals.totalsVec = (Ni)∀i

• sampleTotals.totalsMat = (Ni, j)∀i j

• sampleTotals.algorithm = 'cohort'

For efficiency, the vectors and matrices in idTotals are stored as sparse arrays.

When ratings must be excluded (see the excludeLabels name-value input argument), all transitions
involving the excluded ratings are removed from the sample. For example, if the ‘NR’ rating must be
excluded, any transitions into ‘NR’ and out of ‘NR’ are excluded from the sample. The total counts
for all other ratings are adjusted accordingly. For more information, see “Visualize Transitions Data
for transprob” on page 8-111.

Duration Estimation

The algorithm computes Ti
n, the total time that obligor n spends in rating i within the estimation time

window. These quantities are added up over all obligors to get Ti, the total time spent in rating i,
collectively, by all obligors in the sample. The algorithm also computes Ti j

n, the number times that
obligor n migrates from rating i to rating j, with i not equal to j, within the estimation time window.
And it also adds them up to get Ti j, the total number of migrations, by all obligors in the sample, from
the rating i to j, with i not equal to j.
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To estimate the transition probabilities, the duration algorithm first computes a generator matrix Λ.
Each off-diagonal entry of this matrix is an estimate of the transition rate out of rating i into rating j,
and is

λi j =
Ti j
Ti

, i ≠ j

The diagonal entries are computed as:

λii = − ∑
j ≠ i

λi j

With the generator matrix and the transition interval Δt (e.g., Δt = 2 corresponds to two-year
transition probabilities), the transition matrix is obtained as P = exp(ΔtΛ), where exp denotes matrix
exponentiation (expm in MATLAB).

Note For the duration algorithm, optional output arguments idTotals and sampleTotals from
transprob contain the following information:

• idTotals(n).totalsVec = (Ti
n)∀i

• idTotals(n).totalsMat = (Ti, j
n )∀i j

• idTotals(n).algorithm = 'duration'
• sampleTotals.totalsVec = (Ti)∀i
• sampleTotals.totalsMat = (Ti, j)∀i j
• sampleTotals.algorithm = 'duration'

For efficiency, the vectors and matrices in idTotals are stored as sparse arrays.

When ratings must be excluded (see the excludeLabels name-value input argument), all transitions
involving the exclude ratings are removed from the sample. For example, if the ‘NR’ rating must be
excluded, any transitions into ‘NR’ and out of ‘NR’ are excluded from the sample. The total time
spent in ‘NR’ (or any other excluded rating) is also removed.
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See Also
transprobbytotals | transprobprep | table

Topics
“Estimation of Transition Probabilities” on page 8-2
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“Estimate Transition Probabilities for Different Rating Scales” on page 8-4

External Websites
Credit Risk Modeling with MATLAB (53 min 09 sec)
Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

Introduced in R2010b
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transprobbytotals
Estimate transition probabilities using totals structure input

Syntax
[transMat,sampleTotals] = transprobbytotals(totals)
[transMat,sampleTotals] = transprobbytotals( ___ ,Name,Value)

Description
[transMat,sampleTotals] = transprobbytotals(totals) estimates transition probabilities
using a totals structure input. transprobbytotals is useful for removing outlier information,
obtaining bootstrapped confidence intervals, or computing transition probability estimates for
different periodicity parameters (1-year transitions, 2-year transitions, and so on) efficiently.

[transMat,sampleTotals] = transprobbytotals( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Estimate Transition Probabilities Using a totals Structure Input

Use historical credit rating input data from Data_TransProb.mat and transprob to generate input
for transprobbytotals:

load Data_TransProb

% Call TRANSPROB with three output arguments
[transMat, sampleTotals, idTotals] = transprob(data);
transMat

transMat = 8×8

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Suppose companies 4 and 27 are outliers and you want to remove them from the pre-processed
idTotals struct array and estimate the new transition probabilities.

idTotals([4 27]) = [];
[transMat1, sampleTotals1] = transprobbytotals(idTotals);
transMat1

transMat1 = 8×8
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   93.1172    5.8427    0.8231    0.1763    0.0377    0.0012    0.0001    0.0017
    1.6213   93.1501    4.3584    0.6614    0.1631    0.0055    0.0004    0.0397
    0.1239    2.9027   92.2297    4.0628    0.5367    0.0661    0.0028    0.0753
    0.0236    0.2313    5.0070   90.1825    3.7986    0.4734    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7959   88.9866    3.4497    0.2920    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3367   86.7217    2.5171    2.4395
    0.0002    0.0011    0.0120    0.2591    1.4340    4.3034   81.3027   12.6875
         0         0         0         0         0         0         0  100.0000

Obtain the 1-year, 2-year, 3-year, 4-year, and 5-year default probabilities, without the outlier
information (i.e., using sampleTotals1).

DefProb = zeros(7,5);
for t = 1:5
    transMatTemp = transprobbytotals(sampleTotals1,'transInterval',t);
    DefProb(:,t) = transMatTemp(1:7,8);
end
DefProb

DefProb = 7×5

    0.0017    0.0070    0.0159    0.0285    0.0450
    0.0397    0.0828    0.1299    0.1813    0.2377
    0.0753    0.1606    0.2567    0.3640    0.4831
    0.2193    0.4675    0.7430    1.0445    1.3700
    0.7050    1.4668    2.2759    3.1232    4.0000
    2.4395    4.9282    7.4071    9.8351   12.1847
   12.6875   23.1184   31.7177   38.8282   44.7266

Input Arguments
totals — Total transitions observed
structure | struct array

Total transitions observed, specified as a structure, or a struct array of length nTotals, with fields:

• totalsVec — A sparse vector of size 1-by-nRatings1.
• totalsMat — A sparse matrix of size nRatings1-by-nRatings2 with nRatings1 ≤ nRatings2.
• algorithm — A character vector with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total transitions observed out of rating i
into rating j (all the diagonal elements are 0). The total time spent on rating i is stored in
totalsVec(i). For example, you have three rating categories, Investment Grade (IG), Speculative
Grade (SG), and Default (D), and the following information:

Total time spent    IG       SG       D
in rating:       4859.09  1503.36  1162.05
 
Transitions             IG   SG    D
out of (row)       IG    0   89    7
into (column):     SG  202    0   32
                    D    0    0    0

Then:
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totals.totalsVec = [4859.09  1503.36  1162.05]
totals.totalsMat = [  0   89    7
                    202    0   32
                      0    0    0]
totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total transitions observed from rating i to
rating j, and totalsVec(i) is the initial count in rating i. For example, given the following
information:

Initial count       IG     SG     D
in rating:        4808   1572   1145
 
Transitions         IG     SG     D
from (row)    IG  4721     80      7
to (column):  SG   193   1347     32
               D     0      0   1145

Then:

totals.totalsVec = [4808   1572   1145]
totals.totalsMat = [4721     80      7
                    193   1347     32
                      0      0   1145
totals.algorithm = 'cohort'

Common totals structures are the optional output arguments from transprob:

• sampleTotals — A single structure summarizing the totals information for the whole dataset.
• idTotals — A struct array with the totals information at the ID level.

Data Types: struct | structure

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: transMat = transprobbytotals(Totals1,'transInterval',5)

snapsPerYear — Number of credit-rating snapshots per year
1 (default) | numeric values are 1, 2, 3, 4, 6, or 12

Number of credit-rating snapshots per year to be considered for the estimation, specified as the
comma-separated pair consisting of 'snapsPerYear' and a numeric value of 1, 2, 3, 4, 6, or 12.

Note This parameter is only used with the 'cohort' algorithm.

Data Types: double

transInterval — Length of the transition interval in years
1 (one year transition probability) (default) | numeric

Length of the transition interval, in years, specified as the comma-separated pair consisting of
'transInterval' and a numeric value.
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Data Types: double

Output Arguments
transMat — Matrix of transition probabilities in percent
matrix

Matrix of transition probabilities in percent, returned as a nRatings1-by-nRatings2 transition
matrix.

sampleTotals — Structure with sample totals
structure

Structure with sample totals, returned with fields:

• totalsVec — A vector of size 1-by-nRatings1.
• totalsMat — A matrix of size nRatings1-by-nRatings2 with nRatings1 ≤ nRatings2.
• algorithm — A character vector with values 'duration' or 'cohort'.

If totals is a struct array, sampleTotals contains the aggregated information. That is,
sampleTotals.totalsVec is the sum of totals(k).totalsVec over all k, and similarly for
totalsMat. When totals is itself a single structure, sampleTotals and totals are the same.

More About
Cohort Estimation

The cohort algorithm estimates the transition probabilities based on a sequence of snapshots of credit
ratings at regularly spaced points in time.

If the credit rating of a company changes twice between two snapshot dates, the intermediate rating
is overlooked and only the initial and final ratings influence the estimates.

Duration Estimation

Unlike the cohort method, the duration algorithm estimates the transition probabilities based on the
full credit ratings history, looking at the exact dates on which the credit rating migrations occur.

There is no concept of snapshots in this method, and all credit rating migrations influence the
estimates, even when a company's rating changes twice within a short time.

References
[1] Hanson, S., T. Schuermann. "Confidence Intervals for Probabilities of Default." Journal of Banking

& Finance. Vol. 30(8), Elsevier, August 2006, pp. 2281–2301.

[2] Löffler, G., P. N. Posch. Credit Risk Modeling Using Excel and VBA. West Sussex, England: Wiley
Finance, 2007.

[3] Schuermann, T. "Credit Migration Matrices." in E. Melnick, B. Everitt (eds.), Encyclopedia of
Quantitative Risk Analysis and Assessment. Wiley, 2008.
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See Also
transprobgrouptotals | transprob

Topics
“Estimation of Transition Probabilities” on page 8-2
“Estimate Transition Probabilities for Different Rating Scales” on page 8-4

External Websites
Credit Risk Modeling with MATLAB (53 min 09 sec)
Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

Introduced in R2010b
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transprobfromthresholds
Convert from credit quality thresholds to transition probabilities

Syntax
trans = transprobfromthresholds(thresh)

Description
trans = transprobfromthresholds(thresh) transforms credit quality thresholds into
transition probabilities

Examples

Transform Credit Quality Thresholds Into Transition Probabilities

Use historical credit rating input data from Data_TransProb.mat, estimate transition probabilities
with default settings.

load Data_TransProb
  
% Estimate transition probabilities with default settings
transMat = transprob(data)

transMat = 8×8

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Obtain the credit quality thresholds.

thresh = transprobtothresholds(transMat)

thresh = 8×8

       Inf   -1.4846   -2.3115   -2.8523   -3.3480   -4.0083   -4.1276   -4.1413
       Inf    2.1403   -1.6228   -2.3788   -2.8655   -3.3166   -3.3523   -3.3554
       Inf    3.0264    1.8773   -1.6690   -2.4673   -2.9800   -3.1631   -3.1736
       Inf    3.4963    2.8009    1.6201   -1.6897   -2.4291   -2.7663   -2.8490
       Inf    3.5195    2.9999    2.4225    1.5089   -1.7010   -2.3275   -2.4547
       Inf    4.2696    3.8015    3.0477    2.3320    1.3838   -1.6491   -1.9703
       Inf    4.6241    4.2097    3.6472    2.7803    2.1199    1.5556   -1.1399
       Inf       Inf       Inf       Inf       Inf       Inf       Inf       Inf
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Recover the transition probabilities.

trans = transprobfromthresholds(thresh)

trans = 8×8

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Input Arguments
thresh — Credit quality thresholds
matrix

Credit quality thresholds, specified as a M-by-N matrix of credit quality thresholds.

In each row, the first element must be Inf and the entries must satisfy the following monotonicity
condition:

 thresh(i,j) >= thresh(i,j+1), for 1<=j<N

The M-by-N input thresh and the M-by-N output trans are related as follows. The thresholds
thresh(i,j) are critical values of a standard normal distribution z, such that:
trans(i,N) = P[z < thresh(i,N)],
 
trans(i,j) = P[z < thresh(i,j)] - P[z < thresh(i,j+1)], for 1<=j<N

Any given row in the output matrix trans determines a probability distribution over a discrete set of
N ratings 'R1', ..., 'RN', so that for any row i trans(i,j) is the probability of migrating into 'Rj'.
trans can be a standard transition matrix, with M ≤ N, in which case row i contains the transition
probabilities for issuers with rating 'Ri'. But trans does not have to be a standard transition
matrix. trans can contain individual transition probabilities for a set of M-specific issuers, with M > N.

For example, suppose that there are only N=3 ratings, 'High', 'Low', and 'Default', with these
credit quality thresholds:

        High    Low    Default
High    Inf   -2.0814   -3.1214
Low     Inf    2.4044   -1.7530

The matrix of transition probabilities is then:

       High   Low   Default
High  98.13   1.78   0.09
Low    0.81  95.21   3.98

This means the probability of default for 'High' is equivalent to drawing a standard normal random
number smaller than −3.1214, or 0.09%. The probability that a 'High' ends up the period with a

 transprobfromthresholds

19-1589



rating of 'Low' or lower is equivalent to drawing a standard normal random number smaller than
−2.0814, or 1.87%. From here, the probability of ending with a 'Low' rating is:

P[z<-2.0814] - P[z<-3.1214] = 1.87% - 0.09% = 1.78%

And the probability of ending with a 'High' rating is:

100%-1.87% = 98.13%

where 100% is the same as:

P[z<Inf]

Data Types: double

Output Arguments
trans — Matrix of transition probabilities in percent
matrix

Matrix of transition probabilities in percent, returned as a M-by-N matrix.

References
[1] Gupton, G. M., C. C. Finger, and M. Bhatia. “CreditMetrics.” Technical Document, RiskMetrics

Group, Inc., 2007.

See Also
transprobtothresholds | transprob | transprobbytotals

Topics
“Estimation of Transition Probabilities” on page 8-2
“Estimate Transition Probabilities for Different Rating Scales” on page 8-4
“Estimate Probabilities for Different Segments” on page 8-16

External Websites
Credit Risk Modeling with MATLAB (53 min 09 sec)
Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

Introduced in R2011b
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transprobgrouptotals
Aggregate credit ratings information into fewer rating categories

Syntax
totalsGrouped = transprobgrouptotals(totals,groupingEdges)

Description
totalsGrouped = transprobgrouptotals(totals,groupingEdges) aggregates the credit
ratings information stored in the totals input into fewer ratings categories, which are defined by
the groupingEdges argument.

Examples

Aggregate the Credit Ratings Information Stored in the totals Input

Use historical credit rating input data from Data_TransProb.mat. Load input data from file
Data_TransProb.mat.

load Data_TransProb
  
% Call TRANSPROB with two output arguments
[transMat, sampleTotals] = transprob(data);
transMat

transMat = 8×8

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Group into investment grade (ratings 1-4) and speculative grade (ratings 5-7); note, the default is the
last rating (number 8).

edges = [4 7 8];
sampleTotalsGrp = transprobgrouptotals(sampleTotals,edges);

% Transition matrix at investment grade / speculative grade level
transMatIGSG = transprobbytotals(sampleTotalsGrp)

transMatIGSG = 3×3

   98.5336    1.3608    0.1056
    3.9155   92.9692    3.1153
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         0         0  100.0000

Obtain the 1-year, 2-year, 3-year, 4-year, and 5-year default probabilities at investment grade and
speculative grade level.

DefProb = zeros(2,5);
for t = 1:5
transMatTemp = transprobbytotals(sampleTotalsGrp,'transInterval',t);
DefProb(:,t) = transMatTemp(1:2,3);
end
DefProb

DefProb = 2×5

    0.1056    0.2521    0.4359    0.6537    0.9027
    3.1153    6.0157    8.7179   11.2373   13.5881

Input Arguments
totals — Total transitions observed
structure | struct array

Total transitions observed, specified as a structure, or a struct array of length nTotals, with fields:

• totalsVec — A sparse vector of size 1-by-nRatings1.
• totalsMat — A sparse matrix of size nRatings1-by-nRatings2 with nRatings1 ≤ nRatings2.
• algorithm — A character vector with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total transitions observed out of rating i
into rating j (all the diagonal elements are 0). The total time spent on rating i is stored in
totalsVec(i). For example, you have three rating categories, Investment Grade (IG), Speculative
Grade (SG), and Default (D), and the following information:

Total time spent    IG       SG       D
in rating:       4859.09  1503.36  1162.05
 
Transitions             IG   SG    D
out of (row)       IG    0   89    7
into (column):     SG  202    0   32
                    D    0    0    0

Then:

totals.totalsVec = [4859.09  1503.36  1162.05]
totals.totalsMat = [  0   89    7
                    202    0   32
                      0    0    0]
totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total transitions observed from rating i to
rating j, and totalsVec(i) is the initial count in rating i. For example, given the following
information:
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Initial count       IG     SG     D
in rating:        4808   1572   1145
 
Transitions         IG     SG     D
from (row)    IG  4721     80      7
to (column):  SG   193   1347     32
               D     0      0   1145

Then:

totals.totalsVec = [4808   1572   1145]
totals.totalsMat = [4721     80      7
                    193   1347     32
                      0      0   1145
totals.algorithm = 'cohort'

Common totals structures are the optional output arguments from transprob:

• sampleTotals — A single structure summarizing the totals information for the whole dataset.
• idTotals — A struct array with the totals information at the ID level.

Data Types: struct | structure

groupingEdges — Indicator for grouping credit ratings into categories
numeric array

Indicator for grouping credit ratings into categories, specified as a numeric array.

This table illustrates how to group a list of whole ratings into investment grade (IG) and speculative
grade (SG) categories. Eight ratings are in the original list. Ratings 1 to 4 are IG, ratings 5 to 7 are
SG, and rating 8 is a category of its own. In this example, the array of grouping edges is [4 7 8].
Original ratings: 'AAA' 'AA'  'A'   'BBB' | 'BB'  'B'   'CCC' | 'D'
                                          |                   |    
Relative ordering: (1)   (2)   (3)   (4)  |  (5)  (6)    (7)  | (8)
                                          |                   |    
Grouped ratings:           'IG'           |      'SG'         | 'D'
                                          |                   |    
Grouping edges:                      (4)  |              (7)  | (8)

In general, if groupingEdges has K elements edge1 < edge2 < ... <edgeK, ratings 1 to edge1
(inclusive) are grouped in the first category, ratings edge1+1 to edge2 in the second category, and
so forth.

Regarding the last element, edgeK:

• If nRatings1 equals nRatings2, then edgeK must equal nRatings1. This leads to K groups,
and nRatingsGrouped1 = nRatingsGrouped2 = K.

• If nRatings1 < nRatings2, then either:

• edgeK equals nRatings1, in which case ratings edgeK+1,...,nRatings2 are treated as
categories of their own. This results in K+(nRatings2-edgeK) groups, with
nRatingsGrouped1 = K and nRatingsGrouped2 = K + (nRatings2 – edgeK); or

• edgeK equals nRatings2, in which case there must be a jth edge element, edgej, such that
edgej equals nRatings1. This leads to K groups, and nRatingsGrouped1 = j and
nRatingsGrouped2 = K.

Data Types: double
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Output Arguments
totalsGrouped — Aggregated information by categories
structure | struct array

Aggregated information by categories, returned as a structure, or a struct array of length nTotals,
with fields:

• totalsVec — A vector of size 1-by-nRatingsGrouped1.
• totalsMat — A matrix of size nRatingsGrouped1-by-nRatingsGrouped2.
• algorithm — A character vector, 'duration' or 'cohort'.

nRatingsGrouped1 and nRatingsGrouped2 are defined in the description of groupingEdges.
Each structure contains aggregated information by categories, based on the information provided in
the corresponding structure in totals, according to the grouping of ratings defined by
groupingEdges and consistent with the algorithm choice.

Following the examples in the description of the totals input, suppose IG and SG are grouped into a
single ND (Not-Defaulted) category, using the edges[2 3]. For the 'cohort' algorithm, the output
is:

totalsGrouped.totalsVec = [6380   1145]
totalsGrouped.totalsMat = [6341     39
                              0   1145]
totalsGrouped.algorithm = 'cohort'

and for the 'duration' algorithm:

totalsGrouped.totalsVec = [6362.45  1162.05]
totalsGrouped.totalsMat = [0  39
                           0   0]
totalsGrouped.algorithm = 'duration'

More About
Cohort Estimation

The cohort algorithm estimates the transition probabilities based on a sequence of snapshots of
credit ratings at regularly spaced points in time.

If the credit rating of a company changes twice between two snapshot dates, the intermediate rating
is overlooked and only the initial and final ratings influence the estimates. For more information, see
the Algorithms section of transprob.

Duration Estimation

Unlike the cohort algorithm, the duration algorithm estimates the transition probabilities based
on the full credit ratings history, looking at the exact dates on which the credit rating migrations
occur.

There is no concept of snapshots in this method, and all credit rating migrations influence the
estimates, even when a company's rating changes twice within a short time. For more information,
see the Algorithms section of transprob.
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See Also
transprob | transprobbytotals

Topics
“Group Credit Ratings” on page 8-13
“Estimation of Transition Probabilities” on page 8-2
“Estimate Transition Probabilities for Different Rating Scales” on page 8-4
“Estimate Probabilities for Different Segments” on page 8-16

External Websites
Credit Risk Modeling with MATLAB (53 min 09 sec)
Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

Introduced in R2011b
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transprobprep
Preprocess credit ratings data to estimate transition probabilities

Syntax
[prepData] = transprobprep(data)
[prepData] = transprobprep( ___ ,Name,Value)

Description
[prepData] = transprobprep(data) preprocesses credit ratings historical data (that is, credit
migration data) for the subsequent estimation of transition probabilities.

[prepData] = transprobprep( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Aggregate the Credit Ratings Information Stored in the totals Input

Load input data from the file Data_TransProb.mat and display the first ten rows. In this example,
the inputs are provided in character vector format.

load Data_TransProb
  
% Preprocess credit ratings data.
prepData = transprobprep(data)

prepData = struct with fields:
           idStart: [1506x1 double]
      numericDates: [4315x1 double]
    numericRatings: [4315x1 double]
     ratingsLabels: {'AAA'  'AA'  'A'  'BBB'  'BB'  'B'  'CCC'  'D'}

Estimate transition probabilities with the default settings.

transMat = transprob(prepData)

transMat = 8×8

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Estimate transition probabilities with the 'cohort' algorithm.
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transMatCoh = transprob(prepData,'algorithm','cohort')

transMatCoh = 8×8

   93.1345    5.9335    0.7456    0.1553    0.0311         0         0         0
    1.7359   92.9198    4.5446    0.6046    0.1560         0         0    0.0390
    0.1268    2.9716   91.9913    4.3124    0.4711    0.0544         0    0.0725
    0.0210    0.3785    5.0683   89.7792    4.0379    0.4627    0.0421    0.2103
    0.0221    0.1105    0.6851    6.2320   88.3757    3.6464    0.2873    0.6409
         0         0    0.0761    0.7230    7.9909   86.1872    2.7397    2.2831
         0         0         0    0.3094    1.8561    4.5630   80.8971   12.3743
         0         0         0         0         0         0         0  100.0000

Input Arguments
data — Historical data for credit ratings
table | cell array of character vectors

Historical input data for credit ratings, specified as one of the following:

• A MATLAB table of size nRecords-by-3 containing the credit ratings. Each row contains an ID
(column 1), a date (column 2), and a credit rating (column 3). The assigned credit rating
corresponds to the associated ID on the associated date. All information corresponding to the
same ID must be stored in contiguous rows. Sorting this information by date is not required, but
recommended for efficiency. When using a MATLAB table input, the names of the columns are
irrelevant, but the ID, date and rating information are assumed to be in the first, second, and third
columns, respectively. Also, when using a table input, the first and third columns can be
categorical arrays, and the second can be a datetime array. Here is an example with all the
information in table format:

 ID            Date             Rating
__________    _____________    ______
'00010283'    '10-Nov-1984'    'CCC'
'00010283'    '12-May-1986'    'B'  
'00010283'    '29-Jun-1988'    'CCC'
'00010283'    '12-Dec-1991'    'D'  
'00013326'    '09-Feb-1985'    'A'  
'00013326'    '24-Feb-1994'    'AA' 

The following summarizes the supported data types for table input:

Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)
Table • Numeric array

• Cell array of
character vectors

• Categorical array

• Numeric array
• Cell array of

character vectors
• Datetime array

• Numeric array
• Cell array of

character vectors
• Categorical array

• A cell array of size nRecords-by-3 containing the credit ratings. Each row contains an ID (column
1), a date (column 2), and a credit rating (column 3). The assigned credit rating corresponds to the
associated ID on the associated date. All information corresponding to the same ID must be stored
in contiguous rows. Sorting this information by date is not required but is recommended. IDs,
dates, and ratings are stored in character vector format, but they can also be entered in numeric
format. Here is an example with all the information in character vector format:
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 '00010283'    '10-Nov-1984'    'CCC'
 '00010283'    '12-May-1986'    'B'  
 '00010283'    '29-Jun-1988'    'CCC'
 '00010283'    '12-Dec-1991'    'D'  
 '00013326'    '09-Feb-1985'    'A'  
 '00013326'    '24-Feb-1994'    'AA' 

The following summarizes the supported data types for cell array input:

Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)
Cell • Numeric elements

• Character vector
elements

• Numeric elements
• Character vector

elements

• Numeric elements
• Character vector

elements

Data Types: table | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: prepData = transprobprep(data,'labels',
{'AAA','AA','A','BBB','BB','B','CCC','F'})

labels — Credit-rating scale
{'AAA','AA','A','BBB','BB','B','CCC','D'} (default) | cell array of character vectors

Credit-rating scale, specified as the comma-separated pair consisting of 'labels' and a nRatings-
by-1, or 1-by-nRatings cell array of character vectors.

labels must be consistent with the ratings labels used in the third column of data. Use a cell array
of numbers for numeric ratings, and a cell array for character vectors for categorical ratings.
Data Types: cell

Output Arguments
prepData — Summary where credit ratings information corresponding to each company
starts and ends
structure

Summary where the credit ratings information corresponding to each company starts and ends,
returned as a structure with the following fields:

• idStart — Array of size (nIDs+1)-by-1, where nIDs is the number of distinct IDs in column 1 of
data. This array summarizes where the credit ratings information corresponding to each company
starts and ends. The dates and ratings corresponding to company j in data are stored from row
idStart(j) to row idStart(j+1)−1 of numericDates and numericRatings.

• numericDates — Array of size nRecords-by-1, containing the dates in column 2 of data, in
numeric format.

• numericRatings — Array of size nRecords-by-1, containing the ratings in column 3 of data,
mapped into numeric format.
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• ratingsLabels — Cell array of size1-by-nRatings, containing the credit rating scale.

See Also
transprob | transprobbytotals | table

Topics
“Group Credit Ratings” on page 8-13
“Estimation of Transition Probabilities” on page 8-2
“Estimate Transition Probabilities for Different Rating Scales” on page 8-4
“Estimate Probabilities for Different Segments” on page 8-16

External Websites
Credit Risk Modeling with MATLAB (53 min 09 sec)
Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

Introduced in R2011b
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transprobtothresholds
Convert from transition probabilities to credit quality thresholds

Syntax
thresh = transprobtothresholds(trans)

Description
thresh = transprobtothresholds(trans) transforms transition probabilities into credit quality
thresholds.

Examples

Transform Transition Probabilities Into Credit Quality Thresholds

Use historical credit rating input data from Data_TransProb.mat. Load input data from file
Data_TransProb.mat.

load Data_TransProb

% Estimate transition probabilities with default settings
transMat = transprob(data)

transMat = 8×8

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017
    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396
    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753
    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193
    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050
    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399
    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167
         0         0         0         0         0         0         0  100.0000

Obtain the credit quality thresholds.

thresh = transprobtothresholds(transMat)

thresh = 8×8

       Inf   -1.4846   -2.3115   -2.8523   -3.3480   -4.0083   -4.1276   -4.1413
       Inf    2.1403   -1.6228   -2.3788   -2.8655   -3.3166   -3.3523   -3.3554
       Inf    3.0264    1.8773   -1.6690   -2.4673   -2.9800   -3.1631   -3.1736
       Inf    3.4963    2.8009    1.6201   -1.6897   -2.4291   -2.7663   -2.8490
       Inf    3.5195    2.9999    2.4225    1.5089   -1.7010   -2.3275   -2.4547
       Inf    4.2696    3.8015    3.0477    2.3320    1.3838   -1.6491   -1.9703
       Inf    4.6241    4.2097    3.6472    2.7803    2.1199    1.5556   -1.1399
       Inf       Inf       Inf       Inf       Inf       Inf       Inf       Inf
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Input Arguments
trans — Transition probabilities in percent
matrix

Transition probabilities in percent, specified as a M-by-N matrix. Entries cannot be negative and
cannot exceed 100, and all rows must add up to 100.

Any given row in the M-by-N input matrix trans determines a probability distribution over a discrete
set of N ratings. If the ratings are 'R1',...,'RN', then for any row i trans(i,j) is the probability of
migrating into 'Rj'. If trans is a standard transition matrix, then M ≦ N and row i contains the
transition probabilities for issuers with rating 'Ri'. But trans does not have to be a standard
transition matrix. trans can contain individual transition probabilities for a set of M-specific issuers,
with M > N.

The credit quality thresholds thresh(i,j) are critical values of a standard normal distribution z, such
that:
trans(i,N) = P[z < thresh(i,N)],

trans(i,j) = P[z < thresh(i,j)] - P[z < thresh(i,j+1)], for 1<=j<N

This implies that thresh(i,1) = Inf, for all i. For example, suppose that there are only N=3 ratings,
'High', 'Low', and 'Default', with the following transition probabilities:

      High   Low   Default
High  98.13   1.78   0.09
Low    0.81  95.21   3.98

The matrix of credit quality thresholds is:

        High    Low    Default
High    Inf   -2.0814   -3.1214
Low     Inf    2.4044   -1.7530

This means the probability of default for 'High' is equivalent to drawing a standard normal random
number smaller than −3.1214, or 0.09%. The probability that a 'High' ends up the period with a
rating of 'Low' or lower is equivalent to drawing a standard normal random number smaller than
−2.0814, or 1.87%. From here, the probability of ending with a 'Low' rating is:

P[z<-2.0814] - P[z<-3.1214] = 1.87% - 0.09% = 1.78%

And the probability of ending with a 'High' rating is:

100%-1.87% = 98.13% 

where 100% is the same as:

P[z<Inf]

Data Types: double

Output Arguments
thresh — Credit quality thresholds
matrix
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Credit quality thresholds, returned as a M-by-N matrix.

References
[1] Gupton, G. M., C. C. Finger, and M. Bhatia. “CreditMetrics.” Technical Document, RiskMetrics

Group, Inc., 2007.

See Also
transprob | transprobbytotals | transprobfromthresholds

Topics
“Credit Quality Thresholds” on page 8-43
“Group Credit Ratings” on page 8-13
“Estimation of Transition Probabilities” on page 8-2
“Estimate Transition Probabilities for Different Rating Scales” on page 8-4
“Estimate Probabilities for Different Segments” on page 8-16

External Websites
Credit Risk Modeling with MATLAB (53 min 09 sec)
Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

Introduced in R2011b
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tsaccel
Acceleration between times

Note Using a fints object for the Data argument of tsaccel is not recommended. Use a vector,
matrix, timetable, or table instead for financial time series. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
acceleration = tsaccel(Data)
acceleration = tsaccel( ___ ,Name,Value)

Description
acceleration = tsaccel(Data) calculates the acceleration of a data series with time distance of
n periods.

n periods.

acceleration = tsaccel( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Acceleration of a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
TMW.Volume = []; % remove VOLUME field
acceleration = tsaccel(TMW);  
plot(acceleration.Time,acceleration.Variables)
legend('OPEN','HIGH','LOW','CLOSE')
title('Acceleration for TMW')
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Input Arguments
Data — Data with high, low, open, close information
vector | matrix | table | timetable

Data with high, low, open, close information, specified as a vector, matrix, table, or timetable. For
vector input, Data is a column vector of high, low, open, and closing prices stored in the
corresponding columns. For matrix input, Data is an M-by-N column-oriented matrix of high, low,
open, and closing prices stored in the corresponding columns. Timetables and tables with M rows
must contain variables named 'High', 'Low', 'Open', and 'Close' (case insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: accelearation = tsaccel(TMW,'NumPeriods',10,'Datatype',1)

NumPeriods — Period difference for acceleration
12 (default) | positive integer

Period difference for acceleration, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar positive integer.
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Data Types: double

Datatype — Indicates if Data contains the data itself or the momentum of the data
0 (Data contains the data itself) (default) | integer with values 0 or 1

Indicates if Data contains the data itself or the momentum of the data, specified as the comma-
separated pair consisting of 'Datatype' and a scalar integer with a value of:

• 0 – Data contains the data itself.
• 1 – Data contains the momentum of the data.

Data Types: double

Output Arguments
acceleration — Acceleration series
vector | matrix | table | timetable

Acceleration series, returned with the same number of rows (M) and columns (N) and the same type
(vector, matrix, table, or timetable) as the input Data.

More About
Acceleration

Acceleration is defined as the difference of two momentum series separated by n periods.

Acceleration is the difference of the current momentum with the momentum n periods ago. By
default, acceleration is based on 12-period difference.

References
[1] Kaufman, P. J. The New Commodity Trading Systems and Methods. John Wiley and Sons, New

York, 1987.

See Also
timetable | table

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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tsmom
Momentum between times

Note Using a fints object for the Data argument of tsmom is not recommended. Use a vector,
matrix, timetable, or table instead for financial time series. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
momentum = tsmom(Data)
momentum = tsmom( ___ ,Name,Value)

Description
momentum = tsmom(Data) calculates the momentum of a data series with time distance of n
periods.

momentum = tsmom( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Momentum for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
TMW.Volume = []; % remove VOLUME field
momentum = tsmom(TMW);  
plot(momentum.Time,momentum.Variables)
legend('OPEN','HIGH','LOW','CLOSE')
title('Acceleration for TMW')

19 Functions

19-1606



Input Arguments
Data — Data with high, low, open, close information
vector | matrix | table | timetable

Data with high, low, open, close information, specified as a vector, matrix, table, or timetable. For
vector input, Data is a column vector. For matrix input, Data is an M-by-N column oriented matrix.
Timetables and tables with M rows can contain variables named 'High', 'Low', 'Open', and
'Close' (case insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: momentum = tsmom(TMW,'NumPeriods',15)

NumPeriods — Period difference for momentum
12 (default) | positive integer

Period difference for momentum, specified as the comma-separated pair consisting of 'NumPeriods'
and a scalar positive integer.
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Data Types: double

Output Arguments
momentum — Momentum series
matrix | table | timetable

Momentum series, returned with the same number of rows (M) and the same type (matrix, table, or
timetable) as the input Data.

More About
Momentum Series

Momentum series is the difference of the current data with the data n periods ago. By default,
momentum is based on 12-period difference.

References
[1] Kaufman, P. J. The New Commodity Trading Systems and Methods. John Wiley and Sons, New

York, 1987.

See Also
timetable | table | tsaccel

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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tsmovavg
Moving average

Note tsmovavg is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
output = tsmovavg(tsobj,'s',lag)
output = tsmovavg(vector,'s',lag,dim)

output = tsmovavg(tsobj,'e',timeperiod)
output = tsmovavg(vector,'e',timeperiod,dim)

output = tsmovavg(tsobj,'t',numperiod)
output = tsmovavg(vector,'t',numperiod,dim)

output = tsmovavg(tsobj,'w',weights)
output = tsmovavg(vector,'w',weights,dim)

output = tsmovavg(tsobj,'m',numperiod)
output = tsmovavg(vector,'m',numperiod,dim)

Description
tsmovavg calculates the simple, exponential, triangular, weighted, and modified moving average of a
vector or fints object of data. For information on working with financial time series (fints objects)
data, see “Working with Financial Time Series Objects” on page 13-2.

output = tsmovavg(tsobj,'s',lag) returns the simple moving average by for financial time
series object, tsobj. lag indicates the number of previous data points used with the current data
point when calculating the moving average.

output = tsmovavg(vector,'s',lag,dim) returns the simple moving average for a vector. lag
indicates the number of previous data points used with the current data point when calculating the
moving average.

output = tsmovavg(tsobj,'e',timeperiod) returns the exponential weighted moving average
for financial time series object, tsobj. The exponential moving average is a weighted moving
average, where timeperiod specifies the time period. Exponential moving averages reduce the lag
by applying more weight to recent prices. For example, a 10-period exponential moving average
weights the most recent price by 18.18%. Exponential Percentage = 2/(TIMEPER + 1) or
2/(WINDOW_SIZE + 1).

output = tsmovavg(vector,'e',timeperiod,dim) returns the exponential weighted moving
average for a vector. The exponential moving average is a weighted moving average, where
timeperiod specifies the time period. Exponential moving averages reduce the lag by applying more
weight to recent prices. For example, a 10-period exponential moving average weights the most
recent price by 18.18%. (2/(timeperiod + 1)).
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output = tsmovavg(tsobj,'t',numperiod) returns the triangular moving average for financial
time series object, tsobj. The triangular moving average double-smooths the data. tsmovavg
calculates the first simple moving average with window width of ceil(numperiod + 1)/2. Then it
calculates a second simple moving average on the first moving average with the same window size.

output = tsmovavg(vector,'t',numperiod,dim) returns the triangular moving average for a
vector. The triangular moving average double-smooths the data. tsmovavg calculates the first simple
moving average with window width of ceil(numperiod + 1)/2. Then it calculates a second simple
moving average on the first moving average with the same window size.

output = tsmovavg(tsobj,'w',weights) returns the weighted moving average for the financial
time series object, tsobj, by supplying weights for each element in the moving window. The length of
the weight vector determines the size of the window. If larger weight factors are used for more recent
prices and smaller factors for previous prices, the trend is more responsive to recent changes.

output = tsmovavg(vector,'w',weights,dim) returns the weighted moving average for the
vector by supplying weights for each element in the moving window. The length of the weight vector
determines the size of the window. If larger weight factors are used for more recent prices and
smaller factors for previous prices, the trend is more responsive to recent changes.

output = tsmovavg(tsobj,'m',numperiod) returns the modified moving average for the
financial time series object, tsobj. The modified moving average is similar to the simple moving
average. Consider the argument numperiod to be the lag of the simple moving average. The first
modified moving average is calculated like a simple moving average. Subsequent values are
calculated by adding the new price and subtracting the last average from the resulting sum.

output = tsmovavg(vector,'m',numperiod,dim) returns the modified moving average for the
vector. The modified moving average is similar to the simple moving average. Consider the argument
numperiod to be the lag of the simple moving average. The first modified moving average is
calculated like a simple moving average. Subsequent values are calculated by adding the new price
and subtracting the last average from the resulting sum.

Examples

Compute Five Forms of Moving Averages Using a Financial Time Series Object

Load the financial time series object, dis for Disney stock and look at the weekly data for this time
series.

load disney.mat
weekly = toweekly(dis);

Warning: FINTS is not recommended. Use convert2weekly instead.

dates = (weekly.dates);
price = fts2mat(weekly.CLOSE);

Warning: FINTS is not recommended. Use TIMETABLE instead. For more information, see <a href="matlab:web(fullfile(docroot, 'finance/convert-from-fints-to-timetables.html'))">Convert Financial Time Series Objects (fints) to Timetables</a>.

Set the|lag| input argument for the window size for the moving average.

window_size = 12;

Calculate the simple moving average.
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simple = tsmovavg(price,'s',window_size,1);

Warning: TSMOVAVG will be removed in a future release. Use MOVAVG instead.

Calculate the exponential weighted moving average moving average.

exp = tsmovavg(price,'e',window_size,1);

Warning: TSMOVAVG will be removed in a future release. Use MOVAVG instead.

Calculate the triangular moving average moving average.

tri = tsmovavg(price,'t',window_size,1);

Warning: TSMOVAVG will be removed in a future release. Use MOVAVG instead.

Calculate the weighted moving average moving average.

semi_gaussian = [0.026 0.045 0.071 0.1 0.12 0.138];
semi_gaussian = [semi_gaussian fliplr(semi_gaussian)];
weighted = tsmovavg(price,'w',semi_gaussian,1);

Warning: TSMOVAVG will be removed in a future release. Use MOVAVG instead.

Calculate the modified moving average moving average.

modif = tsmovavg(price,'m',window_size,1);

Warning: TSMOVAVG will be removed in a future release. Use MOVAVG instead.

Plot the results for the five moving average calculations for Disney stock.

plot(dates,price,...
    dates,simple,...
    dates,exp,...
    dates,tri,...
    dates,weighted,...
    dates,modif)
datetick
legend('Stock Price','Simple','Exponential','Triangular','Weighted',...
    'Modified','Location','NorthWest')
title('Disney Weekly Price & Moving Averages')
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Input Arguments
tsobj — Financial time series object
object

Financial time series object specified using a time series object created using fints.

's' — Indicator for simple moving average
character vector

lag is the parameter indicating the number of previous data points to be used in conjunction with the
current data point when calculating the simple moving average.

lag — Number of previous data points
nonnegative integer

Number of previous data points specified as a nonnegative integer. Lag indicates the window size or
number of periods of the moving average.

vector — Set of observations
vector or matrix

Set of observations specified as a vector or matrix.
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dim — dimension to operate along
positive integer with value 1 or 2

Dimension to operate along, specified as a positive integer with a value of 1 or 2. dim is an optional
input argument, and if it is not included as an input, the default value 2 is assumed. The default of
dim = 2 indicates a row-oriented matrix, where each row is a variable and each column is an
observation.

If dim = 1, the input is assumed to be a column vector or column-oriented matrix, where each column
is a variable and each row an observation.

'e' — Indicator for exponential moving average
character vector

Exponential moving average is a weighted moving average, where timeperiod is the time period of
the exponential moving average. Exponential moving averages reduce the lag by applying more
weight to recent prices. For example, a 10 period exponential moving average weights the most
recent price by 18.18%.

Exponential Percentage = 2/(TIMEPER + 1) or 2/(WINDOW_SIZE + 1)

timeperiod — Length of time period
nonnegative integer

Length of time period specified as a nonnegative integer.

't' — Indicator for triangular moving average
character vector

Triangular moving average is a double-smoothing of the data. The first simple moving average is
calculated with a window width of ceil(numperiod + 1)/2. Then a second simple moving average
is calculated on the first moving average with the same window size.

'm' — Indicator for modified moving average
character vector

The modified moving average is similar to the simple moving average. Consider the argument
numperiod to be the lag of the simple moving average. The first modified moving average is
calculated like a simple moving average. Subsequent values are calculated by adding the new price
and subtracting the last average from the resulting sum.

numperiod — Number of periods considered
nonnegative integer

Number of periods considered specified as a nonnegative integer.

'w' — Indicator for weighted moving average
character vector

A weighted moving average is calculated with a weight vector, weights. The length of the weight
vector determines the size of the window. If larger weight factors are used for more recent prices and
smaller factors for previous prices, the trend is more responsive to recent changes.

weights — Weights for each element in the moving window
vector of weights
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Weights for each element in the window specified as a vector of weights.

Output Arguments
output — Moving average calculation
vector or matrix

Moving average calculation returned as a vector or matrix. The output returned from tsmovavg is
identical in format to the input.

References
[1] Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 184–

192.

See Also
mean | boxcox | convert2sur | convertto | diff | fillts | filter | lagts | leadts | peravg |
resamplets | smoothts

Topics
“Data Transformation and Frequency Conversion” on page 13-11
“Working with Financial Time Series Objects” on page 13-2
“Creating a Financial Time Series Object” on page 14-9
“Indexing a Financial Time Series Object” on page 13-18
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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typprice
Typical price

Note Using a fints object for the Data argument of typprice is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
TypicalPrice = typprice(Data)

Description
TypicalPrice = typprice(Data) calculates the typical prices from the series of high, low, and
closing prices. The typical price is the average of the high, low, and closing prices for each period.

Examples

Calculate the Typical Price for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
TypicalPrice = typprice(TMW);  
plot(TypicalPrice.Time,TypicalPrice.TypicalPrice)
title('Typical Price for TMW')
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Input Arguments
Data — Data for high, low, and closing prices
matrix | table | timetable

Data for high, low, and closing prices, specified as a matrix, table, or timetable. For matrix input,
Data is an M-by-3 matrix of high, low, and closing prices stored in the corresponding columns.
Timetables and tables with M rows must contain variables named 'High', 'Low', and 'Close' (case
insensitive).
Data Types: double | table | timetable

Output Arguments
TypicalPrice — Typical price series
matrix | table | timetable

Typical price series, returned with the same number of rows (M) and the same type (matrix, table, or
timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 291–292.

19 Functions

19-1616



See Also
timetable | table | medprice | wclose

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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uicalendar
Graphical calendar

Syntax
uicalendar(Name,Value)

Description
uicalendar(Name,Value) supports a customizable graphical calendar that interfaces with one or
more uicontrol. uicalendar populates one or more uicontrol with user-selected dates.

Note As an alternative to uicalendar, you can use uidatepicker.

Examples

Use uicalendar with an uicontrol

Create an uicontrol:

textH1 = uicontrol('style', 'edit', 'position', [10 10 100 20]) 

textH1 = 

  UIControl with properties:

              Style: 'edit'
             String: ''
    BackgroundColor: [0.9400 0.9400 0.9400]
           Callback: ''
              Value: 0
           Position: [10 10 100 20]
              Units: 'pixels'

Call UICalendar:

uicalendar('DestinationUI', {textH1, 'string'})
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Select a date and click OK.

Alternatively, you can use datetime arrays for InitDate and Holiday.
uicalendar('InitDate',datetime('15-Mar-2015','Locale','en_US'),'Holiday',datetime('16-Mar-2015','Locale','en_US'))

Select a date and click OK. For more information on using uicalendar with an application, see
“Example of Using UICalendar with an Application” on page 16-4.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: uicalendar('InitDate',datetime('15-
Mar-2015','Locale','en_US'),'Holiday',datetime('16-
Mar-2015','Locale','en_US'))

BusDays — Flag to indicate nonbusiness days
0 (Standard calendar without nonbusiness day indicators) (default) | numeric values of 0 or 1
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Flag to indicate nonbusiness days, specified using numeric values of 0 or 1. The values are:

• 0 — (Default) Standard calendar without nonbusiness day indicators.

• 1 — Marks NYSE nonbusiness days in red.

Data Types: logical

BusDaySelect — Flag to indicate whether business and nonbusiness days
1 (Allows selections of business and nonbusiness days) (default) | numeric values of 0 or 1

Flag to indicate whether business and nonbusiness days, specified using numeric values of 0 or 1.
The values are:

• 0 — Only allow selection of business days. Nonbusiness days are determined from the following
parameters:

• 'BusDays'
• 'Holiday'
• 'Weekend'

• 1 — (Default) Allows selections of business and nonbusiness days.

Data Types: logical

DateBoxColor — Color of date squares
[date R G B]

Color of date squares, specified using [date R G B], where [R G B] is the color.
Data Types: double

DateStrColor — Color of numeric date number in the date square
[date R G B]

Color of numeric date number in the date square, specified using [date R G B], where [R G B] is
the color.
Data Types: double

DestinationUI — Destination object's handles
'string' (default UI property populated with dates) (default) | values are H or {H, {Prop}}

Destination object's handles, specified with values H or {H, {Prop}}. The values are:

• H — Scalar or vector of the destination object's handles. The default UI property that is populated
with the dates is a character vector.

• {H, {Prop}} — Cell array of handles and the destination object's UI properties. H must be a
scalar or vector and Prop must be a single property character vector or a cell array of property
character vectors.

Data Types: char | cell

Holiday — Holiday dates in calendar
serial date numbers | datetime arrays
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Holiday dates in calendar, specified using a scalar or vector of serial date numbers or datetime
arrays. The corresponding date character vector of the holiday appears Red.
Data Types: double | datetime

InitDate — Initial start date when calendar is initialized
TODAY (default) | serial date number | datetime array | date character vector

Initial start date when calendar is initialized, specified with date values using a serial date number,
datetime array, or date character vector. The values are:

• Datenum — Numeric or datetime array date value specifying the initial start date when the
calendar is initialized. The default date is TODAY.

• Datestr — Date character vector value specifying the initial start date when the calendar is
initialized. Datestr must include a Year, Month, and Day (for example, 01-Jan-2006).

Data Types: double | char | datetime

InputDateFormat — Format of initial start date
character vector

Format of initial start date (InitDate), specified using a character vector. Seedatestr for date
format values.
Data Types: double | datetime

OutputDateFormat — Format of output date
character vector

Format of output date, specified using a character vector. Seedatestr for date format values.
Data Types: double | datetime

OutputDateStyle — Style for output date
0 (default) | numeric value of 0, 1, 2, or 3

Style for output date, specified using a value of 0, 1, 2, or 3. The values are:

• 0 — (Default) Returns a single date character vector or a cell array (row) of date character
vectors. For example, {'01-Jan-2001, 02-Jan-2001, ...'}.

• 1 — Returns a single date character vector or a cell (column) array of date character vectors. For
example, {'01-Jan-2001; 02-Jan-2001; ...'}.

• 2 — Returns a character vector representation of a row vector of datenums. For example,
'[732758, 732759, 732760, 732761]'.

• 3 — Returns a character vector representation of a column vector of datenums. For example,
'[732758; 732759; 732760; 732761]'.

Data Types: double

SelectionType — Flag for date selection
1 (default) | numeric value of 0 or 1

Flag for date selection, specified with using a value of 0 or 1. The values are:
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• 0 — Allows multiple date selections.

• 1 — (Default) Allows only a single date selection.

Data Types: logical

Weekend — Define weekend days
1 (default) | numeric values of 1 through 7

Define weekend days, specified using a value of 1 through 7. Weekend days are marked in red.
DayOfWeek can be a vector containing the following numeric values:

• 1 — Sunday
• 2 — Monday
• 3 — Tuesday
• 4 — Wednesday
• 5 — Thursday
• 6 — Friday
• 7 — Saturday

Also this value can be a vector of length 7 containing 0's and 1's. The value 1 indicates a weekend
day. The first element of this vector corresponds to Sunday. For example, when Saturday and Sunday
are weekend days then WEEKEND = [1 0 0 0 0 0 1].
Data Types: double

WindowStyle — Window figure properties
Normal (default) | character vector with value of Normal or Modal

Window figure properties, specified with using a character vector with a value of Normal or Modal.
The values are:

• Normal — (Default) Standard figure properties.

• Modal — Modal figures remain stacked above all normal figures and the MATLAB Command
Window.

Data Types: char

See Also
holidays | datetime | uidatepicker

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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uminus
Unary minus of financial time series object

Note uminus is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
uminus

Description
uminus implements unary minus for a financial time series object.

See Also
uplus

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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uplus
Unary plus of financial time series object

Note uplus is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
uplus

Description
uplus implements unary plus for a financial time series object.

See Also
uminus

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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var
Variance

Note var is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
y = var(X)

y = var(X,1)

y = var(X,W)

y = var(X,W,DIM)

Arguments

X Financial time series object.
W Weight vector used in calculating variance.
DIM Dimension of X used in calculating variance.

Description
var supports financial time series objects based on the MATLAB var function. See var.

y = var(X), if X is a financial time series object and returns the variance of each series.

var normalizes y by N – 1 if N > 1, where N is the sample size. This is an unbiased estimator of the
variance of the population from which X is drawn, as long as X consists of independent, identically
distributed samples. For N = 1, y is normalized by N.

y = var(X,1) normalizes by N and produces the second moment of the sample about its mean.
var(X, 0) is the same as var(X).

y = var(X,W) computes the variance using the weight vector W. The length of W must equal the
length of the dimension over which var operates, and its elements must be nonnegative. var
normalizes W to sum to 1. Use a value of 0 for W to use the default normalization by N – 1, or use a
value of 1 to use N.

y = var(X,W,DIM) takes the variance along the dimension DIM of X.

Examples
The variance is the square of the standard deviation. Consider if

 f = fints((today:today+1)', [4 -2 1; 9  5 7])
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Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
f = 
 
    desc:  (none)
    freq:  Unknown (0)

    'dates:  (2)'    'series1:  (2)'    'series2:  (2)'    'series3:  (2)'
    '02-Oct-2017'    [            4]    [           -2]    [            1]
    '03-Oct-2017'    [            9]    [            5]    [            7]

then

var(f, 0, 1)

is

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/var (line 49) 
[12.5 24.5 18.0]

and

var(f, 0, 2)

is

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/var (line 49) 
[9.0; 4.0]

See Also
corrcoef | cov | mean | std

Introduced before R2006a
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vertcat
Concatenate financial time series objects vertically

Note vertcat is not recommended. Use timetable instead. For more information, see “Convert
Financial Time Series Objects fints to Timetables”.

Syntax
vertcat

Description
vertcat implements vertical concatenation of financial time series objects. vertcat essentially
adds data points to a time series object. Objects to be vertically concatenated must not have any
duplicate dates and/or times or any overlapping dates and/or times. The description fields are
concatenated as well. They are separated by ||.

Examples
Create two financial time series objects with daily frequencies:
myfts   = fints((today:today+4)', (1:5)', 'DataSeries', 'd')
yourfts = fints((today+5:today+9)', (11:15)', 'DataSeries', 'd')

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
myfts = 
 
    desc:  (none)
    freq:  Daily (1)

    'dates:  (5)'    'DataSeries:  (5)'
    '02-Oct-2017'    [               1]
    '03-Oct-2017'    [               2]
    '04-Oct-2017'    [               3]
    '05-Oct-2017'    [               4]
    '06-Oct-2017'    [               5]

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
yourfts = 
 
    desc:  (none)
    freq:  Daily (1)
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    'dates:  (5)'    'DataSeries:  (5)'
    '07-Oct-2017'    [              11]
    '08-Oct-2017'    [              12]
    '09-Oct-2017'    [              13]
    '10-Oct-2017'    [              14]
    '11-Oct-2017'    [              15]

Use vertcat to concatenate them vertically:

newfts1 = [myfts; yourfts]

Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/vertcat (line 35) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

newfts1 = 
 
    desc:   || 
    freq:  Daily (1)

    'dates:  (10)'    'DataSeries:  (10)'
    '11-Dec-2001'     [                1]
    '12-Dec-2001'     [                2]
    '13-Dec-2001'     [                3]
    '14-Dec-2001'     [                4]
    '15-Dec-2001'     [                5]
    '16-Dec-2001'     [               11]
    '17-Dec-2001'     [               12]
    '18-Dec-2001'     [               13]
    '19-Dec-2001'     [               14]
    '20-Dec-2001'     [               15]

Create two financial time series objects with different frequencies:
myfts   = fints((today:today+4)', (1:5)', 'DataSeries', 'd');
hisfts  = fints((today+5:7:today+34)', (11:15)', 'DataSeries',... 
'w')

 Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints (line 165) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 
 
hisfts = 
 
    desc:  (none)
    freq:  Weekly (2)

    'dates:  (5)'    'DataSeries:  (5)'
    '07-Oct-2017'    [              11]
    '14-Oct-2017'    [              12]
    '21-Oct-2017'    [              13]
    '28-Oct-2017'    [              14]
    '04-Nov-2017'    [              15]

Concatenate these two objects vertically:
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newfts2 = [myfts; hisfts]

 Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/vertcat (line 35) 
Warning: FINTS will be removed in a future release. Use TIMETABLE instead. 
> In fints/display (line 66) 

newfts2 = 
 
    desc:   || 
    freq:  Unknown (0)

    'dates:  (10)'    'DataSeries:  (10)'
    '11-Dec-2001'     [                1]
    '12-Dec-2001'     [                2]
    '13-Dec-2001'     [                3]
    '14-Dec-2001'     [                4]
    '15-Dec-2001'     [                5]
    '16-Dec-2001'     [               11]
    '23-Dec-2001'     [               12]
    '30-Dec-2001'     [               13]
    '06-Jan-2002'     [               14]
    '13-Jan-2002'     [               15]

If all frequency indicators are the same, the new object has the same frequency indicator. However, if
one of the concatenated objects has a different freq from the other(s), the frequency of the resulting
object is set to Unknown (0). In these examples, newfts1 has Daily frequency, while newfts2 has
Unknown (0) frequency.

See Also
horzcat

Topics
“Financial Time Series Operations” on page 13-6

Introduced before R2006a
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volarea
Price and volume chart

Note volarea is updated to accept data input as a matrix, timetable, or table.

The syntax for volarea has changed. Previously, when using table input, the first column of dates
could be serial date numbers, date character vectors, or datetime arrays, and you were required to
have specific number of columns.

When using table input, the new syntax for volarea supports:

• No need for time information. If you want to pass in date information, use timetable input.
• No requirement of specific number of columns. However, you must provide valid column names.

volarea must contain a column named ‘price’ (case insensitive).

Syntax
volarea(Data)
h = volarea(ax,Data)

Description
volarea(Data) plots a chart from a series of price and traded volume of a security.

h = volarea(ax,Data) adds an optional argument for ax.

Examples

Plot Asset Date, Price, and Volume on a Single Axis for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock. This example shows how to plot asset date, price, and volume on a single axis, given asset
TMW containing asset price and volume in most recent 21 days. Note that the variable name of asset
price is be renamed to 'Price' (case insensitive).

load SimulatedStock.mat;
TMW.Properties.VariableNames{'Close'} = 'Price';
volarea(TMW(end-20:end,:))
title('Price and Volume Chart for TMW')
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Input Arguments
Data — Data for prices and traded volume
matrix | table | timetable

Data for prices and traded volume, specified as a matrix, table, or timetable. For matrix input, Data is
an M-by-2 matrix of prices and traded volume. Timetables and tables with M rows must contain
variables named 'Price' and 'Volume' (case insensitive).
Data Types: double | table | timetable

ax — Valid axis object
current axes (ax = gca) (default) | axes object

(Optional) Valid axis object, specified as an axes object. The volarea plot is created in the axes
specified by ax instead of in the current axes (ax = gca). The option ax can precede any of the input
argument combinations.
Data Types: object

Output Arguments
h — Graphic handle of the figure
handle object
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Graphic handle of the figure, returned as a handle object.

See Also
timetable | table | movavg | linebreak | highlow | kagi | candle | pointfig

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced in R2008a
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volroc
Volume rate of change

Note Using a fints object for the Data argument of volroc is not recommended. Use a vector,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
volumeChangeRate = volroc(Data)
volumeChangeRate = volroc( ___ ,Name,Value)

Description
volumeChangeRate = volroc(Data) calculates the volume rate-of-change from a data series of
volume traded. The volume rate-of-change is calculated between the current volume and the volume
n periods ago. By default, the Volume rate of change is based on a 12-period difference.

volumeChangeRate = volroc( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Volume Rate of Change for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
volumeChangeRate = volroc(TMW);
plot(volumeChangeRate.Time,volumeChangeRate.VolumeChangeRate)
title('Volume Rate of Change for TMW')
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Input Arguments
Data — Data for volume traded
vector | table | timetable

Data for volume traded, specified as a vector, table, or timetable. For vector input, Data is an M-by-1
column vector of volume traded. Timetables and tables with M rows must contain a variable named
'Volume' (case insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: volumeChangeRate = volroc(TMW,'NumPeriods',18)

NumPeriods — Period difference for volumeChangeRate
12 (default) | positive integer

Period difference for volumeChangeRate, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar positive integer.
Data Types: double
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Output Arguments
volumeChangeRate — Volume rate of change series
vector | table | timetable

Volume rate of change series, returned with the same number of rows (M) and the same type (vector,
table, or timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 310–311.

See Also
timetable | table | prcroc

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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wclose
Weighted close

Note Using a fints object for the tsobj argument is not recommended. Use a matrix, timetable,
or table instead for financial time series.

Use fts2timetable to convert a fints object to a timetable object.

Syntax
WeightedClose = wclose(Data)

Description
WeightedClose = wclose(Data) calculates the weighted closing prices from the series of high,
low, and closing prices. The weighted closing price is the average of twice the closing price plus the
high and low prices.

Examples

Calculate the Weighted Closing Prices for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
WeightedClose = wclose(TMW);
plot(WeightedClose.Time,WeightedClose.WeightedClose)
title('Weighted Closing Prices for TMW')
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Input Arguments
Data — Data for high, low, and closing prices
matrix | table | timetable

Data for high, low, and closing prices, specified as a matrix, table, or timetable. For matrix input,
Data is an M-by-3 matrix of high, low, and closing prices stored in the corresponding columns.
Timetables and tables with M rows must contain variables named 'High', 'Low', and 'Close' (case
insensitive).
Data Types: double | table | timetable

Output Arguments
WeightedClose — Weighted closing price series
matrix | table | timetable

Weighted closing price series, returned with the same number of rows (M) and the same type (matrix,
table, or timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 312–313.
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See Also
timetable | table | medprice | typprice

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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weeknum
Week in year

Syntax
[N] = weeknum(D)
[N] = weeknum( ___ ,W,E)

Description
[N] = weeknum(D) returns the week in year. The weeknum function considers the week containing
January 1 to be the first week of the year.

[N] = weeknum( ___ ,W,E) returns the week in year using the optional input arguments for W and
E. The weeknum function considers the week containing January 1 to be the first week of the year.

Examples

Determine the Week of the Year

Determine the week of the year using a serial date number.

N = weeknum(728647)

N = 52

Determine the week of the year using a character vector.

N = weeknum('19-Dec-1994')

N = 52

Determine the week of the year using a datetime array.

N = weeknum(datetime('19-Dec-1994','Locale','en_US'))

N = 52

The first week of the year must have at least four days in it. For example, January 8, 2004 was a
Thursday. The European standard is used because the first week of the year is the first week longer
than three days.

weeknum('08-jan-2004',1,1)

ans = 1

You can also use weeknum with datenum.

weeknum(datenum('01-Jan-2004'):datenum('08-Jan-2004'))

ans = 1×8
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     1     1     1     2     2     2     2     2

The default start day of the week is Sunday. Every day after, and including the first Sunday of the year
(04-Jan-2004), returns 2 denoting the second week. In this case, the first of week of the year started
before January 1, 2004. You can also use weeknum with datenum and specify a D value of 5 to
indicate that the weeks start on Thursday.

weeknum(datenum('01-Jan-2004'):datenum('08-Jan-2004'),5)

ans = 1×8

     1     1     1     1     1     1     1     2

The first week of the year that has four or more days, based on the specified start day, is considered
week one (even if this is not the first week in the calendar). Any day falling in (or before) this week is
given a week number of 1.

Input Arguments
D — Date to determine week in year
serial date number | data character vector | datetime array

Date to determine week in year, specified as a serial date number, date character vector, or datetime
array.

Serial date numbers can be a matrix. Date character vectors can be specified as a one-dimensional
cell array of character vectors. All the date character vectors must have the same format.

Use the function datestr to convert serial date numbers to formatted date character vectors.
Data Types: single | double | char | datetime

W — Day a week begins
1 (default) | integer with value 1 through 7 | vector of integers with values 1 through 7

Day a week begins, specified as an integer or a vector of integers from 1 through 7.

• 1 — Sunday (default)
• 2 — Monday
• 3 — Tuesday
• 4 — Wednesday
• 5 — Thursday
• 6 — Friday
• 7 — Saturday

The weeknum function considers the week containing January 1 to be the first week of the year.
Data Types: single | double

E — Flag indicates if week of year display is European standard
0 (default) | numeric with values 1 or 0
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Flag indicates if week of year display is European standard, specified as 1 (to use the European
standard) or 0 (not to use the European standard).

The European standard considers first week of year to be first week longer than three days, offset by
the given week’s start day.
Data Types: logical

Output Arguments
N — Week number of the year, given D
numeric | column vector

Week number of the year, given D, returned as a numeric value, given D, a serial date number, date
character vector, or datetime array. If D is a one-dimensional cell array of character vectors, then
weeknum returns a column vector of M week numbers, where M is the number of character vectors in
D.

If the optional input arguments W and E are defined, the week of the year is in the European standard.

See Also
datenum | datestr | datevec | day | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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weights2holdings
Portfolio values and weights into holdings

Syntax
Holdings = weights2holdings(Values,Weights,Prices)

Arguments
Values Scalar or number of portfolios (NPORTS) vector containing portfolio values.
Weights NPORTS by number of assets (NASSETS) matrix with portfolio weights. The

weights sum to the value of a Budget constraint, which is usually 1. (See
holdings2weights for information about budget constraints.)

Prices NASSETS vector of prices.

Description
Holdings = weights2holdings(Values,Weights,Prices) converts portfolio values and
weights into portfolio holdings.

Holdings is a NPORTS-by-NASSETS matrix containing the holdings of NPORTS portfolios that contain
NASSETS assets.

Note  This function does not create round-lot positions. Holdings are floating-point values.

See Also
holdings2weights

Topics
“Data Transformation and Frequency Conversion” on page 13-11

Introduced before R2006a
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willad
Williams Accumulation/Distribution line

Note Using a fints object for the Data argument of willad is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
WADLine = willad(Data)

Description
WADLine = willad(Data) calculates the Williams Accumulation/Distribution line from the series of
high, low, and closing prices.

Examples

Calculate the Williams Accumulation/Distribution Line for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
WADLine = willad(TMW);
plot(WADLine.Time,WADLine.WillAD)
title('Williams A/D Line for TMW')
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Input Arguments
Data — Data for high, low, and closing prices
matrix | table | timetable

Data for high, low, and closing prices, specified as a matrix, table, or timetable. For matrix input,
Data is an M-by-3 matrix of high, low, and closing prices stored in the corresponding columns.
Timetables and tables with M rows must contain variables named 'High', 'Low', and 'Close' (case
insensitive).
Data Types: double | table | timetable

Output Arguments
WADLine — Williams Accumulation/Distribution line
matrix | table | timetable

Williams Accumulation/Distribution line, returned with the same number of rows (M) and the same
type (matrix, table, or timetable) as the input Data.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 314–315.
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See Also
timetable | table | adline | adosc | willpctr

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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willpctr
Williams %R

Note Using a fints object for the Data argument of willpctr is not recommended. Use a matrix,
timetable, or table instead for financial time series. For more information, see “Convert Financial
Time Series Objects fints to Timetables”.

Syntax
PercentR = willpctr(Data)
PercentR = willpctr( ___ ,Name,Value)

Description
PercentR = willpctr(Data) calculates the Williams PercentR (%R) values for a data series of
with high, low, and closing prices.

PercentR = willpctr( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Williams %R for a Data Series for a Stock

Load the file SimulatedStock.mat, which provides a timetable (TMW) for financial data for TMW
stock.

load SimulatedStock.mat
PercentR = willpctr(TMW);
plot(PercentR.Time,PercentR.WillPercentR)
title('Williams %R for TMW')
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Input Arguments
Data — Data with high, low, and close information
matrix | table | timetable

Data with high, low, open, close information, specified as a matrix, table, or timetable. For matrix
input, Data is an M-by-3 with high, low, and closing prices stored in the corresponding columns.
Timetables and tables with M rows must contain variables named 'High', 'Low', and 'Close' (case
insensitive).
Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: PercentR = willpctr(TMW,'NumPeriods',15)

NumPeriods — Moving window for Williams PercentR
14 (default) | positive integer

Moving window for Williams PercentR, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar positive integer.
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Data Types: double

Output Arguments
PercentR — Williams PercentR series
matrix | table | timetable

Williams PercentR series, returned with the same number of rows (M) and the same type (matrix,
table, or timetable) as the input Data.

More About
Williams %R

Williams %R shows the current closing price in relation to the high and low of the past n days.

By default, Williams %R values are based on 14 periods.

References
[1] Achelis, S. B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995, pp. 316–317.

See Also
timetable | table | willad | stochosc

Topics
“Using Timetables in Finance” on page 12-7
“Convert Financial Time Series Objects fints to Timetables” on page 12-2

Introduced before R2006a
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wrkdydif
Number of working days between dates

Syntax
Days = wrkdydif(StartDate,EndDate,Holidays)

Description
Days = wrkdydif(StartDate,EndDate,Holidays) returns the number of working days
between dates StartDate and EndDate inclusive. Holidays is the number of holidays between the
given dates, an integer.

Examples

Determine the Number of Working Days Between a StartDate and EndDate

Determine Days using date character vectors for StartDate and EndDate.

Days = wrkdydif('9/1/2000', '9/11/2000', 1)

Days = 6

Determine Days using serial date numbers for StartDate and EndDate.

Days = wrkdydif(730730, 730740, 1)

Days = 6

Determine Days using a datetime array for EndDate.

Days = wrkdydif('9/1/2000', datetime('11-Sep-2000','Locale','en_US'), 1)

Days = 6

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date character vectors,
or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date character vectors,
or datetime arrays.
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Data Types: double | char | datetime

Holidays — Holidays between StartDate and EndDate
vector of integers

Holidays between the StartDate and EndDate, specified as an N-by-1 or 1-by-N vector of integers.
Data Types: single | double

Output Arguments
Days — Number of working days between dates StartDate and EndDate inclusive
integer

Number of working days between dates StartDate and EndDate inclusive, returned an N-by-1 or 1-
by-N vector of integers.

See Also
busdate | datewrkdy | days365 | daysact | daysdif | holidays | yearfrac | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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x2mdate
Excel serial date number to MATLAB serial date number or datetime format

Syntax
MATLABDate = x2mdate(ExcelDateNumber,Convention)
MATLABDate = x2mdate( ___ ,outputType)

Description
MATLABDate = x2mdate(ExcelDateNumber,Convention) converts Excel serial date numbers to
MATLAB serial date numbers or datetime format.

MATLAB date numbers start with 1 = January 1, 0000 A.D., hence there is a difference of 693960
relative to the 1900 date system, or 695422 relative to the 1904 date system. This function is useful
with Spreadsheet Link software.

MATLABDate = x2mdate( ___ ,outputType) converts Excel serial date numbers to MATLAB serial
date numbers or datetime format using an optional input argument for outputType.

The type of output is determined by an optional outputType input. If outputType is 'datenum',
then MATLABDate is a serial date number. If outputType is 'datetime', then MATLABDate is a
datetime array. By default, outputType is 'datenum'.

Examples

Convert Excel Serial Date Numbers to MATLAB Dates

Given Excel® date numbers in the 1904 system, convert them to MATLAB® serial date numbers, and
then to date character vectors.

ExDates = [35423  35788  36153];
MATLABDate = x2mdate(ExDates, 1)

MATLABDate = 1×3

      730845      731210      731575

datestr(MATLABDate)

ans = 3x11 char array
    '25-Dec-2000'
    '25-Dec-2001'
    '25-Dec-2002'

Alternatively, use the optional input outputType to specify 'datetime' to return datetime format.

ExDates = [35423  35788  36153];
MATLABDate = x2mdate(ExDates, 1,'datetime')
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MATLABDate = 1x3 datetime
   25-Dec-2000   25-Dec-2001   25-Dec-2002

Input Arguments
ExcelDateNumber — Excel serial date number
serial date number

Excel serial date number, specified as a scalar or vector of Excel serial date numbers.
Data Types: double

Convention — Flag for Excel date system
0 (Excel 1900 date system is in effect) (default) | numeric with value 0 or 1

Flag for Excel date system, specified as a scalar or vector as a numeric with a value 0 or 1.
Convention must be either a scalar or else must be the same size as ExcelDateNumber.

When Convention = 0 (default), the Excel 1900 date system is in effect. When Convention = 1,
the Excel 1904 date system in used.

In the Excel 1900 date system, the Excel serial date number 1 corresponds to January 1, 1900 A.D. In
the Excel 1904 date system, date number 0 is January 1, 1904 A.D.

Due to a software limitation in Excel software, the year 1900 is considered a leap year. As a result, all
DATEVALUE's reported by Excel software between Jan. 1, 1900 and Feb. 28, 1900 (inclusive) differs
from the values reported by 1. For example:

• In Excel software, Jan. 1, 1900 = 1
• In MATLAB, Jan. 1, 1900 – 693960 (for 1900 date system) = 2

datenum('Jan 1, 1900') - 693960

ans =

     2

Data Types: logical

outputType — Output date format
'datenum' (default) | character vector with values 'datenum' or 'datetime'

Output date format, specified as a character vector with values 'datenum' or 'datetime'. The
output MATLABDate is in serial date format if 'datenum' is specified or datetime format if
'datetime' is specified. By default the output is in serial date format.
Data Types: char

Output Arguments
MATLABDate — MATLAB date
serial date numbers | datetime format

MATLAB date, returned as serial date numbers or datetime format.
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The type of output is determined by an optional outputType input argument. If outputType is
'datenum', then MATLABDate is a serial date number. If outputType is 'datetime', then
MATLABDate is a datetime array. By default, outputType is 'datenum'.

See Also
datenum | datestr | m2xdate | datetime

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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xirr
Internal rate of return for nonperiodic cash flow

Syntax
Return = xirr(CashFlow,CashFlowDates)
Return = xirr( ___ ,Guess,MaxIterations,Basis)

Description
Return = xirr(CashFlow,CashFlowDates) returns the internal rate of return for a schedule of
nonperiodic cash flows.

Return = xirr( ___ ,Guess,MaxIterations,Basis) adds optional arguments.

Examples

Find Internal Rate of Return for Nonperiodic Cash Flow

Find the internal rate of return for an investment of $10,000 that returns the following nonperiodic
cash flow. The original investment is the first cash flow and is a negative number.

Cash Flow Dates

-10000 12-Jan-2007

2500 14-Feb-2008

2000 03-Mar-2008

3000 14-Jun-2008

4000 01-Dec-2008

Calculate the internal rate of return for this nonperiodic cash flow:

CashFlow = [-10000, 2500, 2000, 3000, 4000];
CashFlowDates = ['01/12/2007'
                 '02/14/2008'
                 '03/03/2008'
                 '06/14/2008'
                 '12/01/2008'];
Return = xirr(CashFlow, CashFlowDates)

Return = 0.1006

Alternatively, you can use datetime input to calculate the internal rate of return for this nonperiodic
cash flow:

CashFlow = [-10000, 2500, 2000, 3000, 4000];
CashFlowDates = ['01/12/2007'
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                 '02/14/2008'
                 '03/03/2008'
                 '06/14/2008'
                 '12/01/2008'];
CashFlowDates = datetime(CashFlowDates,'Locale','en_US')';
Return = xirr(CashFlow, CashFlowDates)

Return = 0.1006

Input Arguments
CashFlow — Cash flow
vector | matrix

Cash flow, specified as a vector or matrix. The first entry is the initial investment. If CashFlow is a
matrix, each column represents a separate stream of cash flows whose internal rate of return is
calculated. The first cash flow of each stream is the initial investment, usually entered as a negative
number.
Data Types: double

CashFlowDates — Cash flow dates
serial date number | date character vector | datetime

Cash flow dates, specified as a vector or matrix of serial date numbers, cell array of date character
vectors, or datetime arrays. The size of the input date numbers for CashFlowDates must the same
size as CashFlow. Each column of CashFlowDate represents the dates of the corresponding column
of CashFlow.
Data Types: double | char | datetime | cell

Guess — Initial estimate of the internal rate of return
0.1 (10%) (default) | numeric

(Optional) Initial estimate of the internal rate of return, specified as a scalar or vector. If Guess is a
scalar, then it is applied to all streams, and if Guess is a vector, then it is the same length as the
number of streams.
Data Types: double

MaxIterations — Number of iterations used by Newton's method to solve the internal rate
of return
50 (default) | positive integer

(Optional) Number of iterations used by Newton's method to solve the internal rate of return,
specified as a scalar or vector of positive integers. If MaxIterations is a scalar, then it is applied to
all streams, and if MaxIterations is a vector, then it is the same length as the number of streams.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the
set [1...13]
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(Optional) Day-count basis, specified as a positive integer using scalar or a N-by-1 vector. If Basis is
a scalar, then it is applied to all streams, and if Basis is a vector, then it is the same length as the
number of streams.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
Return — Annualized internal rate of return of each cash flow stream
numeric

Annualized internal rate of return of each cash flow stream, returned as a vector. A NaN indicates that
a solution was not found.

References
[1] Brealey and Myers. Principles of Corporate Finance. McGraw-Hill Higher Education, Chapter 5,

2003.

[2] Sharpe, William F., and Gordon J. Alexander. Investments. Englewood Cliffs, NJ: Prentice-Hall. 4th
ed., 1990.

See Also
fvvar | irr | mirr | pvvar | datetime

Topics
“Analyzing and Computing Cash Flows” on page 2-14

Introduced before R2006a
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year
Year of date

Syntax
Year = year(Date)
Year = year( ___ ,F)

Description
Year = year(Date) returns the year of date given a serial date number or a date character vector.

Year = year( ___ ,F) returns the year of date given a serial date number or a date character
vector, Date, using format defined by the optional input F. Date can be a character array where each
row corresponds to one date character vector, or a one-dimensional cell array of character vectors.
All the character vectors in Date must have the same format F. F must designate a supported date
format symbol. For more information on supported date formats, see datestr.

Examples

Determine the Year of the Date for Various Dates

Find the year for Date using a serial date number.

Year = year(731798.776)

Year = 2003

Find the year for Date using a date character vector format.

Year = year('05-Aug-2003')

Year = 2003

Use the optional F argument to designate a country-specific date format for a given Date.

Year = year('1999/05/09','yyyy/dd/mm')

Year = 1999

Input Arguments
Date — Date to determine year
serial date number | date character vector | cell array of date character vectors

Date to determine year, specified as a serial date number or date character vector.

Date can be an array of date character vectors, where each row corresponds to one date character
vector, or a one-dimensional cell array of character vectors. All the character vectors in Date must
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have the same format F. F must designate a supported date format symbol. For more information on
supported date formats, see datestr
Data Types: single | double | char | cell

F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol for input
argument Date. For more information on supported date character vector formats, see datestr.
Note, formats with 'Q' are not accepted.
Data Types: char

Output Arguments
Year — Numeric representation of the year
nonnegative integer

Numeric representation of the year, returned as a nonnegative integer.

See Also
datevec | day | month | yeardays

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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yeardays
Number of days in year

Syntax
Days = yeardays(Year)
Days = yeardays( ___ ,Basis)

Description
Days = yeardays(Year) returns the number of days in the given Year.

Days = yeardays( ___ ,Basis) returns the number of days in the given Year, based on the
optional argument Basis for day-count.

Examples

Determine the Number of Days in a Given Year

Find the number of days in a given Year.

Days = yeardays(2000)

Days = 366

Find the number of days in a given Year using the optional argument Basis.

Days = yeardays(2000, 1)

Days = 360

Input Arguments
Year — Year to determine days
4 digit integer
Data Types: single | double

Basis — Day-count basis
0 (actual/actual) (default) | vector of integers with values 0,1,2,3,4,5,6,7,8,9,10,11,12,13

Day-count basis, specified as a vector of integers with values 0,1,2,3,4,5,6,7,8,9,10,11,12,13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

Output Arguments
Days — Number of days in given Year
nonnegative integer

Number of days in given Year, returned as a nonnegative integer.

See Also
days360 | days365 | daysact | year | yearfrac

Topics
“Handle and Convert Dates” on page 2-2

Introduced before R2006a
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yearfrac
Fraction of year between dates

Syntax
YearFraction = yearfrac(StartDate,EndDate,Basis)

Description
YearFraction = yearfrac(StartDate,EndDate,Basis) returns a fraction, in years, based on
the number of days between dates StartDate and EndDate using the given day-count Basis.

The number of days in a year (365 or 366) is equal to the number of days in the calendar year after
the StartDate. If EndDate is earlier than StartDate, YearFraction is negative.

All specified arguments must be number of instruments (NUMINST-by-1) or (1-by-NUMINST)
conforming vectors or scalar arguments.

Examples

Compute yearfrac When the Calendar Year After the StartDate is Not a Leap Year

Given a Basis of 0 and a Basis of 1, compute yearfrac.

Define the StartDate and EndDate using a Basis of 0.

YearFraction = yearfrac('14 mar 01', '14 sep 01', 0)

YearFraction = 0.5041

Define the StartDate and EndDate using a Basis of 1.

YearFraction = yearfrac('14 mar 01', '14 sep 01', 1)

YearFraction = 0.5000

Compute yearfrac When the Calendar Year After the StartDate is a Leap Year

Given a Basis of 0, compute yearfrac when the calendar after StartDate is in a leap year.

Define the StartDate and EndDate using a Basis of 0.

yearFraction = yearfrac(' 14 mar 03', '14 sep 03', 0)

yearFraction = 0.5027

There are 184 days between March 14 and September 14, and the calendar year after the
StartDate is a leap year, so yearfrac returns 184/366 = 0.5027.
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Compute the Fraction of a Year Using an actual/actual Basis

To get the fraction of a year between '31-Jul-2015' and '30-Sep-2015' using the actual/actual basis:

yearfrac('31-Jul-2015', '30-Sep-2015', 0)*2

ans = 0.3333

For the actual/actual basis, the fraction of a year is calculated as:

(Actual Days between Start Date and End Date)/(Actual Days between Start Date
and exactly one year after Start Date)

There are 61 days between 31-Jul-2015 and 30-Sep-2015. Since the next year is a leap year, there are
366 days between 31-Jul-2015 and 31-Jul-2016. So, there is 61/366 which is exactly 1/6. So given this,
exactly 2/6 is the expected result for the fraction of the six-month period.

Compute yearfrac When the Date Range Spans a Leap Year

Use a Basis of 12 to compute yearfrac when parts of the date range are in leap year and in a non-
leap year. The output YearFraction is a fraction, in years, based on the number of days between
the StartDate and EndDate.

YearFraction = yearfrac('1-Jan-2016','30-Jan-2017',12)

YearFraction = 1.0795

Compute yearfrac When Specifying datetime Arrays

Given a Basis of 9, compute yearfrac when the StartDate and EndDate are specified using
datetime arrays.

yearfrac(datetime('1-Jan-2000','Locale','en_US'), '1/1/2001', 9)

ans = 1.0167

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date character vectors,
or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object
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End date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date character vectors,
or datetime arrays.
Data Types: double | char | datetime

Basis — Day-count basis for each set of dates
0 (actual/actual) (default) | vector of numerics with values 0 through 13

Day-count basis for each set of dates, specified as an N-by-1 or 1-by-N vector of integers with values of
0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: single | double

Output Arguments
YearFraction — Real numbers identifying interval, in years, between StartDate and
EndDate
vector

Real numbers identifying the interval, in years, between StartDate and EndDate, returned an N-
by-1 or 1-by-N vector.

More About
Difference Between yearfrac and date2time

The difference between yearfrac and date2time is that date2time counts full periods as a whole
integer, even if the number of actual days in the periods are different. yearfrac does not count full
periods.

For example,

yearfrac('1/1/2000', '1/1/2001', 9)
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ans =

    1.0167

yearfrac for Basis 9 (ACT/360 ICMA) calculates 366/360 = 1.0167. So, even if the dates have the
same month and date, with a difference of 1 in the year, the returned value may not be exactly 1. On
the other hand, date2time calculates one full year period:

date2time('1/1/2000', '1/1/2001', 1, 9)

ans =

     1

See Also
days360 | date2time | days365 | daysact | year | daysdif | months | wrkdydif | year |
yeardays | datetime

Topics
“Handle and Convert Dates” on page 2-2
“Trading Calendars User Interface” on page 16-2
“UICalendar User Interface” on page 16-4

Introduced before R2006a
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ylddisc
Yield of discounted security

Syntax
Yield = ylddisc(Settle,Maturity,Face,Price)
Yield = ylddisc( ___ ,Basis)

Description
Yield = ylddisc(Settle,Maturity,Face,Price) returns the yield of a discounted security.

Yield = ylddisc( ___ ,Basis) adds optional an argument for Basis.

Examples

Find the Yield of a Discounted Security

This example shows how to find the yield of the following discounted security.

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Price = 96.28;
Basis = 2;

Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

Yield = 0.0903

Find the Yield of a Discounted Security Using datetime Inputs

This example shows how to use datetime inputs to find the yield of the following discounted
security.

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Price = 96.28;
Basis = 2;

Settle = datetime(Settle,'Locale','en_US');
Maturity = datetime(Maturity,'Locale','en_US');

Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

Yield = 0.0903
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Input Arguments
Settle — Settlement date of security
serial date number | date character vector | datetime

Settlement date of the security, specified as serial date numbers, date character vectors, or datetime
arrays. The Settle date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date of security
serial date number | date character vector | datetime

Maturity date of the security, specified as serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Face — Redemption value of security
numeric

Redemption value (par value) of the security, specified as a numeric value.
Data Types: double

Price — Discount price of security
numeric

Discount price of the security, specified as a numeric value.
Data Types: double

Basis — (Optional) Day-count basis
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]

Day-count basis for the security, specified using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
Yield — Yield of discounted security
numeric

Yield of discounted security, returned as a numeric value.

References
[1] Mayle, J. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula 1.

See Also
acrudisc | bndprice | bndyield | prdisc | yldmat | yldtbill | datetime

Topics
“Yield Functions” on page 2-25
“Yield Conventions” on page 2-24

Introduced before R2006a
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yldmat
Yield with interest at maturity

Syntax
Yield = yldmat(Settle,Maturity,Issue,Face,Price,CouponRate)
Yield = yldmat( ___ ,Basis)

Description
Yield = yldmat(Settle,Maturity,Issue,Face,Price,CouponRate) returns the yield of a
security paying interest at maturity.

Yield = yldmat( ___ ,Basis) adds an optional argument for Basis.

Examples

Find the Yield of a Security Paying Interest at Maturity

This example shows how to find the yield of a security paying interest at maturity for the following.

Settle = '02/07/2000';
Maturity = '04/13/2000';
Issue = '10/11/1999';
Face = 100;
Price = 99.98;
CouponRate = 0.0608;
Basis = 1;

Yield = yldmat(Settle, Maturity, Issue, Face, Price,... 
CouponRate, Basis)

Yield = 0.0607

Find the Yield of a Security Paying Interest at Maturity Using datetime Inputs

This example shows how to use datetime inputs find the yield of a security paying interest at
maturity for the following:

Settle = '7-Feb-2000';
Maturity = '13-Apr-2000';
Issue = '11-Oct-1999';
Face = 100;
Price = 99.98;
CouponRate = 0.0608;
Basis = 1;

Settle = datetime(Settle,'Locale','en_US');
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Maturity = datetime(Maturity,'Locale','en_US');
Issue = datetime(Issue,'Locale','en_US');

Yield = yldmat(Settle, Maturity, Issue, Face, Price,...
CouponRate, Basis)

Yield = 0.0607

Input Arguments
Settle — Settlement date of security
serial date number | date character vector | datetime

Settlement date of the security, specified as serial date numbers, date character vectors, or datetime
arrays. The Settle date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date of security
serial date number | date character vector | datetime

Maturity date of the security, specified as serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Issue — Issue date of security
serial date number | date character vector | datetime

Issue date of the security, specified as serial date numbers, date character vectors, or datetime
arrays.
Data Types: double | char | datetime

Face — Redemption value of security
numeric

Redemption value (par value) of the security, specified as a numeric value.
Data Types: double

Price — Price of security
numeric

Price of the security, specified as a numeric value.
Data Types: double

CouponRate — Coupon rate of security
decimal fraction

Coupon rate of the security, specified as a decimal fraction.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integers of the set [0...13] | vector of integers of the set [0...13]
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(Optional) Day-count basis for the security, specified using the following values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
Yield — Yield of a security paying interest at maturity
numeric

Yield of a security paying interest at maturity, returned as a numeric value.

References
[1] Mayle, J. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula 3.

See Also
acrudisc | bndprice | bndyield | prmat | ylddisc | yldtbill | datetime

Topics
“Yield Functions” on page 2-25
“Yield Conventions” on page 2-24

Introduced before R2006a
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yldtbill
Yield of Treasury bill

Syntax
Yield = yldtbill(Settle,Maturity,Face,Price)

Description
Yield = yldtbill(Settle,Maturity,Face,Price)returns the yield for a Treasury bill.

Examples

Find the Yield for a Treasury Bill

This example shows how to return the yield for a Treasury bill, given the settlement date of a
Treasury bill is February 10, 2000, the maturity date is August 6, 2000, the par value is $1000, and
the price is $981.36.

Yield = yldtbill('2/10/2000', '8/6/2000', 1000, 981.36)

Yield = 0.0384

Find the Yield for a Treasury Bill Using datetime Inputs

This example shows how to use datetime inputs to return the yield for a Treasury bill, given the
settlement date of a Treasury bill is February 10, 2000, the maturity date is August 6, 2000, the par
value is $1000, and the price is $981.36.

Yield = yldtbill(datetime('10-Feb-2000','Locale','en_US'), datetime('6-Aug-2000','Locale','en_US'), 1000, 981.36)

Yield = 0.0384

Input Arguments
Settle — Settlement date of Treasury bill
serial date number | date character vector | datetime

Settlement date of the Treasury bill, specified as serial date numbers, date character vectors, or
datetime arrays. The Settle date must be before the Maturity date.
Data Types: double | char | datetime

Maturity — Maturity date of Treasury bill
serial date number | date character vector | datetime
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Maturity date of the Treasury bill, specified as serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Face — Redemption value of Treasury bill
numeric

Redemption value (par value) of the Treasury bill, specified as a numeric value.
Data Types: double

Price — Price of Treasury bill
numeric

Price of the Treasury bill, specified as a numeric value.
Data Types: double

Output Arguments
Yield — Yield for Treasury bill
numeric

Yield for Treasury bill, returned as a numeric value.

References
[1] Bodie, Kane, and Marcus. Investments. McGraw-Hill Education, 2013.

See Also
beytbill | bndyield | prtbill | yldmat | datetime

Topics
“Computing Treasury Bill Price and Yield” on page 2-29
“Yield Functions” on page 2-25
“Treasury Bills Defined” on page 2-28
“Yield Conventions” on page 2-24

Introduced before R2006a
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zbtprice
Zero curve bootstrapping from coupon bond data given price

Syntax
[ZeroRates,CurveDates] = zbtprice(Bonds,Prices,Settle)
ZeroRates,CurveDates = zbtprice( ___ ,OutputCompounding)

Description
[ZeroRates,CurveDates] = zbtprice(Bonds,Prices,Settle) uses the bootstrap method to
return a zero curve given a portfolio of coupon bonds and their prices.

A zero curve consists of the yields to maturity for a portfolio of theoretical zero-coupon bonds that are
derived from the input Bonds portfolio. The bootstrap method that this function uses does not require
alignment among the cash-flow dates of the bonds in the input portfolio. It uses theoretical par bond
arbitrage and yield interpolation to derive all zero rates; specifically, the interest rates for cash flows
are determined using linear interpolation. For best results, use a portfolio of at least 30 bonds evenly
spaced across the investment horizon.

ZeroRates,CurveDates = zbtprice( ___ ,OutputCompounding) adds an optional argument
for OutputCompounding.

Examples

Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Prices

Given data and prices for 12 coupon bonds, two with the same maturity date, and given the common
settlement date.

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;
         datenum('7/1/2000')   0.06     100  2  0  0;
         datenum('7/1/2000')   0.09375  100  6  1  0;
         datenum('6/30/2001')  0.05125  100  1  3  1;
         datenum('4/15/2002')  0.07125  100  4  1  0;
         datenum('1/15/2000')  0.065    100  2  0  0;
         datenum('9/1/1999')   0.08     100  3  3  0;
         datenum('4/30/2001')  0.05875  100  2  0  0;
         datenum('11/15/1999') 0.07125  100  2  0  0;
         datenum('6/30/2000')  0.07     100  2  3  1;
         datenum('7/1/2001')   0.0525   100  2  3  0;
         datenum('4/30/2002')  0.07     100  2  0  0];

Prices = [99.375;
          99.875;
         105.75 ;
          96.875;
         103.625;
         101.125;
         103.125;
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          99.375;
         101.0  ;
         101.25 ;
          96.375;
         102.75 ];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function zbtprice which returns the zero curve at the maturity dates. Note the mean
zero rate for the two bonds with the same maturity date.

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,... 
OutputCompounding)

ZeroRates = 11×1

    0.0616
    0.0609
    0.0658
    0.0590
    0.0647
    0.0655
    0.0606
    0.0601
    0.0642
    0.0621
      ⋮

CurveDates = 11×1

      729907
      730364
      730439
      730500
      730667
      730668
      730971
      731032
      731033
      731321
      ⋮

Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Prices Using datetime
Inputs

Given data and prices for 12 coupon bonds, two with the same maturity date, and given the common
settlement date, use datetime inputs to compute a zero curve.

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;
         datenum('7/1/2000')   0.06     100  2  0  0;
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         datenum('7/1/2000')   0.09375  100  6  1  0;
         datenum('6/30/2001')  0.05125  100  1  3  1;
         datenum('4/15/2002')  0.07125  100  4  1  0;
         datenum('1/15/2000')  0.065    100  2  0  0;
         datenum('9/1/1999')   0.08     100  3  3  0;
         datenum('4/30/2001')  0.05875  100  2  0  0;
         datenum('11/15/1999') 0.07125  100  2  0  0;
         datenum('6/30/2000')  0.07     100  2  3  1;
         datenum('7/1/2001')   0.0525   100  2  3  0;
         datenum('4/30/2002')  0.07     100  2  0  0];

Prices = [99.375;
          99.875;
         105.75 ;
          96.875;
         103.625;
         101.125;
         103.125;
          99.375;
         101.0  ;
         101.25 ;
          96.375;
         102.75 ];

Settle = datenum('12/18/1997');
OutputCompounding = 2;

t=array2table(Bonds);
t.Bonds1=datetime(t.Bonds1,'ConvertFrom','datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
[ZeroRates, CurveDates] = zbtprice(t, Prices, Settle,...
OutputCompounding)

ZeroRates = 11×1

    0.0616
    0.0609
    0.0658
    0.0590
    0.0647
    0.0655
    0.0606
    0.0601
    0.0642
    0.0621
      ⋮

CurveDates = 11x1 datetime
   01-Jun-1998
   01-Sep-1999
   15-Nov-1999
   15-Jan-2000
   30-Jun-2000
   01-Jul-2000
   30-Apr-2001
   30-Jun-2001
   01-Jul-2001
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   15-Apr-2002
   30-Apr-2002

Input Arguments
Bonds — Coupon bond information to generate zero curve
table | matrix

Coupon bond information to generate zero curve, specified as a 6-column table or a n-by-2 to n-by-6
matrix of bond information, where the table columns or matrix columns contains:

• Maturity (Column 1, Required) Maturity date of the bond, as a serial date number. Use datenum
to convert date character vectors to serial date numbers. If the input Bonds is a table, the
Maturity dates can be serial date numbers, date character vectors, or datetime arrays.

• CouponRate (Column 2, Required) Decimal fraction indicating the coupon rate of the bond.
• Face (Column 3, Optional) Redemption or face value of the bond. Default = 100.
• Period (Column 4, Optional) Coupons per year of the bond. Allowed values are 0, 1, 2 (default),

3, 4, 6, and 12.
• Basis (Column 5, Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
• For more information, see “Basis” on page 2-19.

• EndMonthRule (Column 6, Optional) End-of-month rule. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's
coupon payment date is always the same numerical day of the month. 1 = set rule on (default),
meaning that a bond's coupon payment date is always the last actual day of the month

:

Note
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• If Bonds is a table, the Maturity dates can be serial date numbers, date character vectors, or
datetime arrays.

• If Bonds is a matrix, is an n-by-2 to n-by-6 matrix where each row describes a bond, the first two
columns (Maturity and CouponRate) are required. The remainder of the columns are optional
but must be added in order. All rows in Bonds must have the same number of columns.

.
Data Types: double | table

Prices — Clean price (price without accrued interest) of each bond in Bonds
numeric

Clean price (price without accrued interest) of each bond in Bonds, specified as a N-by-1 column
vector. The number of rows (n) must match the number of rows in Bonds.
Data Types: double

Settle — Settlement date representing time zero in derivation of zero curve
serial date number | date character vector | datetime

Settlement date representing time zero in derivation of zero curve, specified as serial date number,
date character vector, or datetime array. Settle represents time zero for deriving the zero curve,
and it is normally the common settlement date for all the bonds.
Data Types: double | char | datetime

OutputCompounding — Compounding frequency of output ZeroRates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

(Optional) Compounding frequency of output ZeroRates, specified using the allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• -1 — Continuous compounding

Data Types: double

Output Arguments
ZeroRates — Implied zero rates for each point along the investment horizon defined by
maturity date
decimal fractions
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Implied zero rates for each point along the investment horizon defined by a maturity date, returned
as a m-by-1 vector of decimal fractions where m is the number of bonds of unique maturity dates. In
aggregate, the rates in ZeroRates constitute a zero curve.

If more than one bond has the same Maturity date, zbtprice returns the mean zero rate for that
Maturity. Any rates before the first Maturity are assumed to be equal to the rate at the first
Maturity, that is, the curve is assumed to be flat before the first Maturity.

CurveDates — Maturity dates that correspond to ZeroRates
serial date number | date character vector | datetime

Maturity dates that correspond to the ZeroRates, returned as a m-by-1 vector of unique maturity
dates, where m is the number of bonds of different maturity dates. These dates begin with the earliest
Maturity date and end with the latest Maturitydate in the Bonds table or matrix.

If either inputs for Bonds or Settle have datetime values, then CurveDates is datetimes.
Otherwise CurveDates is serial date numbers.

References
[1] Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi,

eds. The Handbook of Fixed Income Securities. 4th ed. New York, Irwin Professional
Publishing, 1995.

[2] McEnally, Richard W. and James V. Jordan. “The Term Structure of Interest Rates.” in Ch. 37 in
Fabozzi and Fabozzi, ibid

[3] Das, Satyajit. “Calculating Zero Coupon Rates.” in Swap and Derivative Financing. Appendix to
Ch. 8, pp. 219–225. New York, Irwin Professional Publishing, 1994.

See Also
zbtyield | datetime

Topics
“Term Structure of Interest Rates” on page 2-32
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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zbtyield
Zero curve bootstrapping from coupon bond data given yield

Syntax
[ZeroRates,CurveDates] = zbtyield(Bonds,YieldsSettle)
ZeroRates,CurveDates = zbtyield( ___ ,OutputCompounding)

Description
[ZeroRates,CurveDates] = zbtyield(Bonds,YieldsSettle) uses the bootstrap method to
return a zero curve given a portfolio of coupon bonds and their yields.

A zero curve consists of the yields to maturity for a portfolio of theoretical zero-coupon bonds that are
derived from the input Bonds portfolio. The bootstrap method that this function uses does not require
alignment among the cash-flow dates of the bonds in the input portfolio. It uses theoretical par bond
arbitrage and yield interpolation to derive all zero rates; specifically, the interest rates for cash flows
are determined using linear interpolation. For best results, use a portfolio of at least 30 bonds evenly
spaced across the investment horizon.

ZeroRates,CurveDates = zbtyield( ___ ,OutputCompounding) adds an optional argument
for OutputCompounding.

Examples

Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Yields

Given data and yields to maturity for 12 coupon bonds, two with the same maturity date; and given
the common settlement date.

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;
         datenum('7/1/2000')   0.06     100  2  0  0;
         datenum('7/1/2000')   0.09375  100  6  1  0;
         datenum('6/30/2001')  0.05125  100  1  3  1;
         datenum('4/15/2002')  0.07125  100  4  1  0;
         datenum('1/15/2000')  0.065    100  2  0  0;
         datenum('9/1/1999')   0.08     100  3  3  0;
         datenum('4/30/2001')  0.05875  100  2  0  0;
         datenum('11/15/1999') 0.07125  100  2  0  0;
         datenum('6/30/2000')  0.07     100  2  3  1;
         datenum('7/1/2001')   0.0525   100  2  3  0;
         datenum('4/30/2002')  0.07     100  2  0  0];

Yields = [0.0616
          0.0605
          0.0687
          0.0612
          0.0615
          0.0591
          0.0603
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          0.0608
          0.0655
          0.0646
          0.0641
          0.0627];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function zbtyield which returns the zero curve at the maturity dates. Note the mean
zero rate for the two bonds with the same maturity date.

[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,... 
OutputCompounding)

ZeroRates = 11×1

    0.0616
    0.0603
    0.0657
    0.0590
    0.0649
    0.0650
    0.0606
    0.0611
    0.0643
    0.0614
      ⋮

CurveDates = 11×1

      729907
      730364
      730439
      730500
      730667
      730668
      730971
      731032
      731033
      731321
      ⋮

Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Yields Using datetime
Inputs

Given data and yields to maturity for 12 coupon bonds (two with the same maturity date), and given
the common settlement date, compute the zero curve using datetime inputs.

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;
         datenum('7/1/2000')   0.06     100  2  0  0;
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         datenum('7/1/2000')   0.09375  100  6  1  0;
         datenum('6/30/2001')  0.05125  100  1  3  1;
         datenum('4/15/2002')  0.07125  100  4  1  0;
         datenum('1/15/2000')  0.065    100  2  0  0;
         datenum('9/1/1999')   0.08     100  3  3  0;
         datenum('4/30/2001')  0.05875  100  2  0  0;
         datenum('11/15/1999') 0.07125  100  2  0  0;
         datenum('6/30/2000')  0.07     100  2  3  1;
         datenum('7/1/2001')   0.0525   100  2  3  0;
         datenum('4/30/2002')  0.07     100  2  0  0];

Yields = [0.0616
          0.0605
          0.0687
          0.0612
          0.0615
          0.0591
          0.0603
          0.0608
          0.0655
          0.0646
          0.0641
          0.0627];

Settle = datenum('12/18/1997');
OutputCompounding = 2;
t = array2table(Bonds,'VariableNames',{'Maturity','CouponRate', 'Face' ,'Period', 'Basis', 'EndMonthRule'});
disp(t)

     Maturity     CouponRate    Face    Period    Basis    EndMonthRule
    __________    __________    ____    ______    _____    ____________

    7.2991e+05      0.0475      100       2         0           0      
    7.3067e+05        0.06      100       2         0           0      
    7.3067e+05     0.09375      100       6         1           0      
    7.3103e+05     0.05125      100       1         3           1      
    7.3132e+05     0.07125      100       4         1           0      
     7.305e+05       0.065      100       2         0           0      
    7.3036e+05        0.08      100       3         3           0      
    7.3097e+05     0.05875      100       2         0           0      
    7.3044e+05     0.07125      100       2         0           0      
    7.3067e+05        0.07      100       2         3           1      
    7.3103e+05      0.0525      100       2         3           0      
    7.3134e+05        0.07      100       2         0           0      

t.Maturity = datetime(t.Maturity,'ConvertFrom','datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
[ZeroRates, CurveDates] = zbtyield(t, Yields, Settle,...
OutputCompounding)

ZeroRates = 11×1

    0.0616
    0.0603
    0.0657
    0.0590
    0.0649
    0.0650
    0.0606
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    0.0611
    0.0643
    0.0614
      ⋮

CurveDates = 11x1 datetime
   01-Jun-1998
   01-Sep-1999
   15-Nov-1999
   15-Jan-2000
   30-Jun-2000
   01-Jul-2000
   30-Apr-2001
   30-Jun-2001
   01-Jul-2001
   15-Apr-2002
   30-Apr-2002

Compute the Real Zero Rates From the Real Yields of Inflation-Linked Bonds

Use zbtyield to compute the real zero rates from the real yields of inflation-linked bonds.

% Load the data
load usbond_02Sep2008
Settle = datenum('02-Sep-2008');

Compute the real yields and then compute the real zero rates.

RealYields = bndyield(TIPSPrice,TIPSCoupon,Settle,TIPSMaturity);
TIPSBonds = [TIPSMaturity TIPSCoupon];
[RealZeroRates, CurveDates] = zbtyield(TIPSBonds, RealYields, Settle)

RealZeroRates = 26×1

    0.0069
    0.0094
    0.0092
    0.0111
    0.0110
    0.0119
    0.0116
    0.0128
    0.0126
    0.0136
      ⋮

CurveDates = 26×1

      734153
      734243
      734518
      734608
      734883
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      734974
      735065
      735339
      735430
      735614
      ⋮

Input Arguments
Bonds — Coupon bond information to generate zero curve
table | matrix

Coupon bond information to generate zero curve, specified as a 6-column table or a n-by-2 to n-by-6
matrix of bond information, where the table columns or matrix columns contains:

• Maturity (Column 1, Required) Maturity date of the bond, as a serial date number. Use datenum
to convert date character vectors to serial date numbers. If the input Bonds is a table, the
Maturity dates can be serial date numbers, date character vectors, or datetime arrays.

• CouponRate (Column 2, Required) Decimal fraction indicating the coupon rate of the bond.
• Face (Column 3, Optional) Redemption or face value of the bond. Default = 100.
• Period (Column 4, Optional) Coupons per year of the bond. Allowed values are 0, 1, 2 (default),

3, 4, 6, and 12.
• Basis (Column 5, Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
• For more information, see “Basis” on page 2-19.

• EndMonthRule (Column 6, Optional) End-of-month rule. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's
coupon payment date is always the same numerical day of the month. 1 = set rule on (default),
meaning that a bond's coupon payment date is always the last actual day of the month

:
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Note

• If Bonds is a table, the Maturity dates can be serial date numbers, date character vectors, or
datetime arrays.

• If Bonds is a matrix, is an n-by-2 to n-by-6 matrix where each row describes a bond, the first two
columns (Maturity and CouponRate) are required. The remainder of the columns are optional
but must be added in order. All rows in Bonds must have the same number of columns.

.
Data Types: double | table

Yields — Yield to maturity of each bond in Bonds
numeric

Yield to maturity of each bond in Bonds, specified as a N-by-1 column vector. The number of rows (n)
must match the number of rows in Bonds.

Note Yield to maturity must be compounded semiannually.

Data Types: double

Settle — Settlement date representing time zero in derivation of zero curve
serial date number | date character vector | datetime

Settlement date representing time zero in derivation of zero curve, specified as serial date number,
date character vector, or datetime array. Settle represents time zero for deriving the zero curve,
and it is normally the common settlement date for all the bonds.
Data Types: double | char | datetime

OutputCompounding — Compounding frequency of output ZeroRates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

(Optional) Compounding frequency of output ZeroRates, specified using the allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• -1 — Continuous compounding

Data Types: double
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Output Arguments
ZeroRates — Implied zero rates for each point along the investment horizon defined by
maturity date
decimal fractions

Implied zero rates for each point along the investment horizon defined by a maturity date, returned
as a m-by-1 vector of decimal fractions where m is the number of bonds with unique maturity dates. In
aggregate, the rates in ZeroRates constitute a zero curve.

If more than one bond has the same Maturity date, zbtyield returns the mean zero rate for that
Maturity. Any rates before the first Maturity are assumed to be equal to the rate at the first
Maturity, that is, the curve is assumed to be flat before the first Maturity.

CurveDates — Maturity dates that correspond to ZeroRates
serial date number | date character vector | datetime

Maturity dates that correspond to the ZeroRates, returned as a m-by-1 vector of unique maturity
dates, where m is the number of bonds of different maturity dates. These dates begin with the earliest
Maturity date and end with the latest Maturitydate in the Bonds table or matrix.

If either inputs for Bonds or Settle have datetime values, then CurveDatesCurveDates is
datetimes. Otherwise CurveDates is serial date numbers.

References
[1] Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi,

eds. The Handbook of Fixed Income Securities. 4th ed. New York, Irwin Professional
Publishing, 1995.

[2] McEnally, Richard W. and James V. Jordan. “The Term Structure of Interest Rates.” in Ch. 37 in
Fabozzi and Fabozzi, ibid

[3] Das, Satyajit. “Calculating Zero Coupon Rates.” in Swap and Derivative Financing. Appendix to
Ch. 8, pp. 219–225. New York, Irwin Professional Publishing, 1994.

See Also
zbtprice | datetime

Topics
“Term Structure of Interest Rates” on page 2-32
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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zero2disc
Discount curve given zero curve

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
optional name-value pair inputs: Compounding and Basis.

Syntax
[DiscRates,CurveDates] = zero2disc(ZeroRates,CurveDates,Settle)
[DiscRates,CurveDates] = zero2disc( ___ ,Name,Value)

Description
[DiscRates,CurveDates] = zero2disc(ZeroRates,CurveDates,Settle) returns a discount
curve given a zero curve and its maturity dates. If either inputs for or areCurveDatesSettle a
datetime array, CurveDates is returned as a datetime array. Otherwise, CurveDates is returned as
a serial date number. The DiscRates output is the same for any of these input data types.

[DiscRates,CurveDates] = zero2disc( ___ ,Name,Value) adds optional name-value pair
arguments

Examples

Compute a Discount Curve Given a Zero Curve and Maturity Dates

Given a zero curve over a set of maturity dates and a settlement date.

ZeroRates = [0.0464
             0.0509
             0.0524
             0.0525
             0.0531
             0.0525
             0.0530
             0.0531
             0.0549
             0.0536];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];
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Settle = datenum('03-Nov-2000');

The zero curve is compounded daily on an actual/365 basis.

Compounding = 365;
Basis = 3;

Execute the function zero2disc which returns the discount curve DiscRates at the maturity dates
CurveDates.

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,... 
Settle, Compounding, Basis)

DiscRates = 10×1

    0.9996
    0.9947
    0.9896
    0.9866
    0.9826
    0.9787
    0.9745
    0.9665
    0.9552
    0.9466

CurveDates = 10×1

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

For readability, ZeroRates and DiscRates are shown here only to the basis point. However,
MATLAB® software computed them at full precision. If you enter ZeroRates as shown, DiscRates
may differ due to rounding.

Compute a Discount Curve Given a Zero Curve and Maturity Dates Using datetime Inputs

Given a zero curve over a set of maturity dates and a settlement date, compute a discount curve using
datetime inputs.

ZeroRates = [0.0464
             0.0509
             0.0524
             0.0525
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             0.0531
             0.0525
             0.0530
             0.0531
             0.0549
             0.0536];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
Compounding = 365;
Basis = 3;

CurveDates = datetime(CurveDates, 'ConvertFrom', 'datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...
Settle, Compounding, Basis)

DiscRates = 10×1

    0.9996
    0.9947
    0.9896
    0.9866
    0.9826
    0.9787
    0.9745
    0.9665
    0.9552
    0.9466

CurveDates = 10x1 datetime
   06-Nov-2000
   11-Dec-2000
   15-Jan-2001
   05-Feb-2001
   04-Mar-2001
   02-Apr-2001
   30-Apr-2001
   25-Jun-2001
   04-Sep-2001
   12-Nov-2001
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Input Arguments
ZeroRates — Annualized zero rates
decimal fraction

Annualized zero rates, specified as a NUMBONDS-by-1 vector using decimal fractions. In aggregate, the
zero rates constitute an implied zero curve for the investment horizon represented by CurveDates.
Data Types: double

CurveDates — Maturity dates
serial date number | date character vector | datetime

Maturity dates that correspond to the input ZeroRates, specified as NUMBONDS-by-1 vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | datetime | char

Settle — Common settlement date for ZeroRates
serial date number | date character vector | datetime

Common settlement date for ZeroRates, specified as serial date numbers, date character vectors, or
datetime arrays. Settle is the settlement date for the bonds from which the zero curve was
bootstrapped.
Data Types: double | datetime | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [DiscRates,CurveDates] =
zero2disc(ZeroRates,CurveDates,Settle,'Compounding',4,'Basis',6)

Compounding — Rate at which input ZeroRateszero rates are compounded when annualized
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Rate at which the input ZeroRates are compounded when annualized, specified as the comma-
separated pair consisting of 'Compounding' and allowed numeric values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Data Types: double
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Basis — Day-count basis used for annualizing input ZeroRates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis used for annualizing the input ZeroRates, specified as the comma-separated pair
consisting of 'Basis' and allowed numeric values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.
Data Types: double

Output Arguments
DiscRates — Discount factors
decimal

Discount factors, returned as a NUMBONDS-by-1 vector of decimal fractions. In aggregate, the discount
factors constitute a discount curve for the investment horizon represented by CurveDates.

CurveDates — Maturity dates that correspond to DiscRates
serial date number | date character vector | datetime

Maturity dates that correspond to the DiscRates, returned as a NUMBONDS-by-1 vector of maturity
dates that correspond to the discount factors. This vector is the same as the input vector
CurveDates, but is sorted by ascending maturity.

If either inputs for CurveDates or Settle are a datetime array, CurveDates is returned as a
datetime array. Otherwise, CurveDates is returned as a serial date number.

See Also
disc2zero | datetime | fwd2zero | prbyzero | pyld2zero | zbtprice | zbtyield | zero2fwd |
zero2pyld

Topics
“Term Structure of Interest Rates” on page 2-32
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“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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zero2fwd
Forward curve given zero curve

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
new optional name-value pair inputs: InputCompounding, InputBasis, OutputCompounding, and
OutputBasis.

Syntax
[ForwardRates,CurveDates] = zero2fwd(ZeroRates,CurveDates,Settle)
[ForwardRates,CurveDates] = zero2fwd( ___ ,Name,Value)

Description
[ForwardRates,CurveDates] = zero2fwd(ZeroRates,CurveDates,Settle) returns an
implied forward rate curve given a zero curve and its maturity dates. If either input for CurveDates
or Settle is a datetime array, CurveDates is returned as a datetime array. Otherwise, CurveDates
is returned as a serial date number. ForwardRates is the same for any of these input data types.

[ForwardRates,CurveDates] = zero2fwd( ___ ,Name,Value) adds optional name-value pair
arguments

Examples

Compute an Implied Forward Rate Curve Given a Zero Curve and Maturity Dates

Given a zero curve over a set of maturity dates, a settlement date, and a compounding rate, compute
the forward rate curve.

ZeroRates = [0.0458
             0.0502
             0.0518
             0.0519
             0.0524
             0.0519
             0.0523
             0.0525
             0.0541
             0.0529];

CurveDates = [datenum('06-Nov-2000')
             datenum('11-Dec-2000')
             datenum('15-Jan-2001')
             datenum('05-Feb-2001')
             datenum('04-Mar-2001')
             datenum('02-Apr-2001')
             datenum('30-Apr-2001')
             datenum('25-Jun-2001')
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             datenum('04-Sep-2001')
             datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
InputCompounding = 1;
InputBasis = 2;
OutputCompounding = 1;
OutputBasis = 2;

Execute the function zero2fwd to return the forward rate curve ForwardRates at the maturity
dates CurveDates.

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,...
Settle, 'InputCompounding',1,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ForwardRates = 10×1

    0.0458
    0.0506
    0.0535
    0.0522
    0.0541
    0.0498
    0.0544
    0.0531
    0.0594
    0.0476

CurveDates = 10×1

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

Compute an Implied Forward Rate Curve Given a Zero Curve and Maturity Dates Using
datetime Inputs

Given a zero curve over a set of maturity dates, a settlement date, and a compounding rate, use
datetime compute the forward rate curve.

ZeroRates = [0.0458
             0.0502
             0.0518
             0.0519
             0.0524
             0.0519
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             0.0523
             0.0525
             0.0541
             0.0529];

CurveDates = [datenum('06-Nov-2000')
             datenum('11-Dec-2000')
             datenum('15-Jan-2001')
             datenum('05-Feb-2001')
             datenum('04-Mar-2001')
             datenum('02-Apr-2001')
             datenum('30-Apr-2001')
             datenum('25-Jun-2001')
             datenum('04-Sep-2001')
             datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
InputCompounding = 1;
InputBasis = 2;
OutputCompounding = 1;
OutputBasis = 2;   

CurveDates = datetime(CurveDates, 'ConvertFrom', 'datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,...
Settle,'InputCompounding',1,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ForwardRates = 10×1

    0.0458
    0.0506
    0.0535
    0.0522
    0.0541
    0.0498
    0.0544
    0.0531
    0.0594
    0.0476

CurveDates = 10x1 datetime
   06-Nov-2000
   11-Dec-2000
   15-Jan-2001
   05-Feb-2001
   04-Mar-2001
   02-Apr-2001
   30-Apr-2001
   25-Jun-2001
   04-Sep-2001
   12-Nov-2001
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Input Arguments
ZeroRates — Annualized zero rates
decimal fraction

Annualized zero rates, specified as a NUMBONDS-by-1 vector using decimal fractions. In aggregate, the
rates constitute an implied zero curve for the investment horizon represented by CurveDates. The
first element pertains to forward rates from the settlement date to the first curve date.
Data Types: double

CurveDates — Maturity dates
serial date number | date character vector | datetime

Maturity dates, specified as a NUMBONDS-by-1 vector using serial date numbers, date character
vectors, or datetime arrays, that correspond to the ZeroRates.
Data Types: double | datetime | char

Settle — Common settlement date for ZeroRates
serial date number | date character vector | datetime

Common settlement date for input ZeroRates, specified as serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | datetime | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [ForwardRates,CurveDates] =
zero2fwd(ZeroRates,CurveDates,Settle,'InputCompounding',3,'InputBasis',5,'Out
putCompounding',4,'OutputBasis',5)

InputCompounding — Compounding frequency of input zero rates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Compounding frequency of input zero rates, specified as the comma-separated pair consisting of
'InputCompounding' and allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding
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Note If InputCompounding is not specified, then InputCompounding is assigned the value
specified for OutputCompounding. If either InputCompounding or OutputCompounding are not
specified, the default is 2 (semiannual) for both.

Data Types: double

InputBasis — Day-count basis of input zero rates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day count basis of input zero rates, specified as the comma-separated pair consisting of
'InputBasis' and allowed values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If InputBasis is not specified, then InputBasis is assigned the value specified for
OutputBasis. If either InputBasis or Outputbasis are not specified, the default is 0 (actual/
actual) for both.

Data Types: double

OutputCompounding — Compounding frequency of output forward rates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Compounding frequency of output forward rates, specified as the comma-separated pair consisting of
'OutputCompounding' and allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
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• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Note If OutputCompounding is not specified, then OutputCompounding is assigned the value
specified for InputCompounding. If either InputCompounding or OutputCompounding are not
specified, the default is 2 (semiannual) for both.

Data Types: double

OutputBasis — Day-count basis of output forward rates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day count basis of output forward rates, specified as the comma-separated pair consisting of
'OutputBasis' and allowed values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If OutputBasis is not specified, then OutputBasis is assigned the value specified for
InputBasis. If either InputBasis or OutputBasis are not specified, the default is 0 (actual/
actual) for both.

Data Types: double

Output Arguments
ForwardRates — Forward curve for investment horizon represented by CurveDates
numeric

 zero2fwd

19-1697



Forward curve for the investment horizon represented by CurveDates, returned as a NUMBONDS-by-1
vector of decimal fractions. In aggregate, the rates in ForwardRates constitute a forward curve over
the dates in CurveDates. ForwardRates are ordered by ascending maturity.

CurveDates — Maturity dates that correspond to ForwardRates
serial date number | date character vector | datetime

Maturity dates that correspond to the ForwardRates, returned as a NUMBONDS-by-1 vector of
maturity dates that correspond to the ForwardRates.

ForwardRates are expressed as serial date numbers (default) or datetimes (if CurveDates or
Settle are datetime arrays), representing the maturity dates for each rate in ForwardRates. These
dates are the same dates as those associated with the input ZeroRates, but are ordered by
ascending maturity.

See Also
fwd2zero | getForwardRates | datetime | disc2zero | zero2disc | zero2pyld | pyld2zero |
zbtprice | zbtyield

Topics
“Term Structure of Interest Rates” on page 2-32
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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zero2pyld
Par yield curve given zero curve

Note In R2017b, the specification of optional input arguments has changed. While the previous
ordered inputs syntax is still supported, it may no longer be supported in a future release. Use the
new optional name-value pair inputs: InputCompounding, InputBasis, OutputCompounding, and
OutputBasis.

Syntax
[ParRates,CurveDates] = zero2pyld(ZeroRates,CurveDates,Settle)
[ParRates,CurveDates] = zero2pyld( ___ ,Name,Value)

Description
[ParRates,CurveDates] = zero2pyld(ZeroRates,CurveDates,Settle) returns a par yield
curve given a zero curve and its maturity dates. If either input for CurveDates or Settle is a
datetime array, CurveDates is returned as a datetime array. Otherwise, CurveDates is returned as
a serial date number. ParRates is the same for any of these input data types.

[ParRates,CurveDates] = zero2pyld( ___ ,Name,Value) adds optional name-value pair
arguments

Examples

Compute Par Yield Curve Given a Zero Curve and Maturity Dates

Given a zero curve over a set of maturity dates, a settlement date, and annual compounding for the
input zero curve and monthly compounding for the output par rates, compute a par yield curve.

ZeroRates = [0.0457
             0.0487
             0.0506
             0.0507
             0.0505
             0.0504
             0.0506
             0.0516
             0.0539
             0.0530];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
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              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
InputCompounding = 12;
InputBasis = 2;
OutputCompounding = 1;
OutputBasis = 2;

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...  
Settle, 'InputCompounding',1,'InputBasis',1,'OutputCompounding',12,'OutputBasis',1)

ParRates = 10×1

    0.0448
    0.0477
    0.0495
    0.0496
    0.0494
    0.0493
    0.0495
    0.0504
    0.0526
    0.0517

CurveDates = 10×1

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

Compute Par Yield Curve Given a Zero Curve and Maturity Dates Using datetime Inputs

Given a zero curve over a set of maturity dates, a settlement date, and annual compounding for the
input zero curve and monthly compounding for the output par rates, use datetime inputs to
compute a par yield curve.

ZeroRates = [0.0457
0.0487
0.0506
0.0507
0.0505
0.0504
0.0506
0.0516
0.0539
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0.0530];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];
Settle = datenum('03-Nov-2000');
InputCompounding = 12;
InputBasis = 2;
OutputCompounding = 1;
OutputBasis = 2;

CurveDates = datetime(CurveDates, 'ConvertFrom', 'datenum','Locale','en_US');
Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle, 'InputCompounding',12,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ParRates = 10×1

   -0.0436
    0.0611
    0.0579
    0.0567
    0.0550
    0.0543
    0.0541
    0.0546
    0.0565
    0.0561

CurveDates = 10x1 datetime
   06-Nov-2000
   11-Dec-2000
   15-Jan-2001
   05-Feb-2001
   04-Mar-2001
   02-Apr-2001
   30-Apr-2001
   25-Jun-2001
   04-Sep-2001
   12-Nov-2001

Demonstrate a Roundtrip From zero2pyld to pyld2zero

Given the following zero curve and its maturity dates, return the ParRates.

Settle = datenum('01-Feb-2013');

CurveDates = [datenum('01-Feb-2014')
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    datenum('01-Feb-2015')
    datenum('01-Feb-2016')
    datenum('01-Feb-2018')
    datenum('01-Feb-2020')
    datenum('01-Feb-2023')
    datenum('01-Feb-2033')
    datenum('01-Feb-2043')];

OriginalZeroRates = [.11 0.30 0.64 1.44 2.07 2.61 3.29 3.55]'/100;

OutputCompounding = 1;
OutputBasis = 0;
InputCompounding = 1;
InputBasis = 0;

ParRates = zero2pyld(OriginalZeroRates, CurveDates, Settle, ...
'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...
'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

ParRates = 8×1

    0.0011
    0.0030
    0.0064
    0.0142
    0.0202
    0.0251
    0.0310
    0.0331

For the ParRates, use the pyld2zero function to return the ZeroRatesOut and determine the
roundtrip error.

ZeroRatesOut = pyld2zero(ParRates, CurveDates, Settle, ...
'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...
'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

ZeroRatesOut = 8×1

    0.0011
    0.0030
    0.0064
    0.0144
    0.0207
    0.0261
    0.0329
    0.0355

max(abs(OriginalZeroRates - ZeroRatesOut)) % Roundtrip error

ans = 1.4919e-16
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Input Arguments
ZeroRates — Annualized zero rates
decimal fraction

Annualized zero rates, specified as a NUMBONDS-by-1 vector using decimal fractions. In aggregate, the
rates constitute an implied zero curve for the investment horizon represented by CurveDates.
Data Types: double

CurveDates — Maturity dates
serial date number | date character vector | datetime

Maturity dates which correspond to the input ZeroRates, specified as a NUMBONDS-by-1 vector using
serial date numbers, date character vectors, or datetime arrays.
Data Types: double | datetime | char

Settle — Common settlement date for ZeroRates
serial date number | date character vector | datetime

Common settlement date for input ZeroRates, specified as serial date numbers, date character
vectors, or datetime arrays.
Data Types: double | datetime | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [ParRates,CurveDates] = zero2pyld(ZeroRates,CurveDates,
Settle,'OutputCompounding',3,'OutputBasis',5,'InputCompounding',4,'InputBasis
',5)

OutputCompounding — Compounding frequency of output ParRates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Compounding frequency of output ParRates, specified as the comma-separated pair consisting of
'OutputCompounding' and allowed values:

• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Note

• If InputCompounding is 1, 2, 3, 4, 6, or 12 and OutputCompounding is not specified, the value
of InputCompounding is used.
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• If InputCompounding is 0 (simple), -1 (continuous), or 365 (daily), a valid OutputCompounding
value must also be specified.

• If either InputCompounding or OutputCompounding are not specified, the default is 2
(semiannual) for both.

Data Types: double

OutputBasis — Day-count basis of output ParRates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day count basis of output ParRates, specified as the comma-separated pair consisting of
'OutputBasis' and allowed values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If OutputBasis is not specified, then OutputBasis is assigned the value specified for
InputBasis. If either InputBasis or OutputBasis are not specified, the default is 0 (actual/
actual) for both.

Data Types: double

InputCompounding — Compounding frequency of input ZeroRates
2 (default) | numeric values: 0,1, 2, 3, 4, 6, 12, 365, -1

Compounding frequency of input ZeroRates, specified as the comma-separated pair consisting of
'InputCompounding' and allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
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• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Note

• If InputCompounding is set to 0 (simple), -1 (continuous), or 365 (daily), the
OutputCompounding must also be specified using a valid value.

• If InputCompounding is not specified, then InputCompounding is assigned the value specified
for OutputCompounding.

• If either InputCompounding or OutputCompounding are not specified, the default is 2
(semiannual) for both.

Data Types: double

InputBasis — Day-count basis of input ZeroRates
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day count basis of the input ZeroRates, specified as the comma-separated pair consisting of
'InputBasis' and allowed values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see “Basis” on page 2-19.

Note If InputBasis is not specified, then InputBasis is assigned the value specified for
OutputBasis. If either InputBasis or Outputbasis are not specified, the default is 0 (actual/
actual) for both.
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Data Types: double

Output Arguments
ParRates — Par bond coupon rates
numeric

Par bond coupon rates, returned as a NUMBONDS-by-1 numeric vector. ParRates are ordered by
ascending maturity.

CurveDates — Maturity dates that correspond to ParRates
serial date number | date character vector | datetime

Maturity dates that correspond to the ParRates, returned as a NUMBONDS-by-1 vector of maturity
dates that correspond to each par rate contained in ParRates.

ParRates are expressed as serial date numbers (default) or datetimes (if CurveDates or Settle
are datetime arrays). CurveDates are ordered by ascending maturity.

See Also
fwd2zero | zero2fwd | getForwardRates | datetime | disc2zero | zero2disc | pyld2zero |
zbtprice | zbtyield | datetime

Topics
“Term Structure of Interest Rates” on page 2-32
“Fixed-Income Terminology” on page 2-18

Introduced before R2006a
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compact
Create compact credit scorecard

Syntax
csc = compact(sc)

Description
csc = compact(sc) converts an existing creditscorecard object to a
compactCreditScorecard object (csc).

Note To use this function, you must have a license for Risk Management Toolbox.

Examples

Convert creditscorecard Object into compactCreditScorecard Object

Convert a creditscorecard object into a compactCreditScorecard object to use
displaypoints (Risk Management Toolbox), score (Risk Management Toolbox), and probdefault
(Risk Management Toolbox) from Risk Management Toolbox™ with the object.

First, create a creditscorecard object using the CreditCardData.mat file to load the data
(using a dataset from Refaat 2011).

load CreditCardData.mat 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel
with the creditscorecard object.

sc = autobinning(sc);
sc = fitmodel(sc);

 compact
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1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Convert the creditscorecard object into a compactCreditScorecard object by using the
compact function. To use compact, you must have a Risk Management Toolbox™ license.

csc = compact(sc)

csc = 
  compactCreditScorecard with properties:

              Description: ''
                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
        NumericPredictors: {'CustAge'  'CustIncome'  'TmWBank'  'AMBalance'}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
            PredictorVars: {1x7 cell}

You can then use displaypoints (Risk Management Toolbox), score (Risk Management Toolbox),
and probdefault (Risk Management Toolbox) from Risk Management Toolbox™ with the
compactCreditScorecard object.

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object.
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Note You must use a creditscorecard object (sc) for input that has been previously processed
with autobinning and fitmodel, or fitConstrainedModel. Optionally, you can use
formatpoints in addition to these functions.

Output Arguments
csc — Compact credit scorecard
compactCreditScorecard object

Compact credit scorecard, returned as a compactCreditScorecard object. You can then use
displaypoints, score, and probdefault from the Risk Management Toolbox with this csc
object.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | compactCreditScorecard | autobinning | bininfo | predictorinfo |
modifypredictor | plotbins | modifybins | bindata | fitmodel | formatpoints |
displaypoints | setmodel | probdefault | validatemodel | table

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“compactCreditScorecard Object Workflow” (Risk Management Toolbox)
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47

Introduced in R2019a
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score
Compute credit scores for given data

Syntax
Scores = score(sc)
Scores = score(sc, data)

[Scores,Points] = score(sc)
[Scores,Points] = score(sc,data)

Description
Scores = score(sc) computes the credit scores for the creditscorecard object’s training data.
This data can be a “training” or a “live” dataset. If the data input argument is not explicitly provided,
the score function determines scores for the existing creditscorecard object’s data.

formatpoints supports multiple alternatives to modify the scaling of the scores and can also be
used to control the rounding of points and scores, and whether the base points are reported
separately or spread across predictors. Missing data translates into NaN values for the corresponding
points, and therefore for the total score. Use formatpoints to modify the score behavior for rows
with missing data.

Scores = score(sc, data) computes the credit scores for the given input data. This data can be
a “training” or a “live” dataset.

formatpoints supports multiple alternatives to modify the scaling of the scores and can also be
used to control the rounding of points and scores, and whether the base points are reported
separately or spread across predictors. Missing data translates into NaN values for the corresponding
points, and therefore for the total score. Use formatpoints to modify the score behavior for rows
with missing data.

[Scores,Points] = score(sc) computes the credit scores and points for the given data. If the
data input argument is not explicitly provided, the score function determines scores for the existing
creditscorecard object’s data.

formatpoints supports multiple alternatives to modify the scaling of the scores and can also be
used to control the rounding of points and scores, and whether the base points are reported
separately or spread across predictors. Missing data translates into NaN values for the corresponding
points, and therefore for the total score. Use formatpoints to modify the score behavior for rows
with missing data.

[Scores,Points] = score(sc,data) computes the credit scores and points for the given input
data. This data can be a “training” or a “live” dataset.

formatpoints supports multiple alternatives to modify the scaling of the scores and can also be
used to control the rounding of points and scores, and whether the base points are reported
separately or spread across predictors. Missing data translates into NaN values for the corresponding
points, and therefore for the total score. Use formatpoints to modify the score behavior for rows
with missing data.
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Examples

Obtain Scores for Training Data

This example shows how to use score to obtain scores for the training data.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Score training data using the score function without an optional input for data. By default, it
returns unscaled scores. For brevity, only the first ten scores are displayed.

Scores = score(sc);
disp(Scores(1:10))
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    1.0968
    1.4646
    0.7662
    1.5779
    1.4535
    1.8944
   -0.0872
    0.9207
    1.0399
    0.8252

Scale scores and display both points and scores for each individual in the training data (for brevity,
only the first ten rows are displayed). For other scaling methods, and other options for formatting
points and scores, use the formatpoints function.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);
[Scores,Points] = score(sc);
disp(Scores(1:10))

  602.0394
  648.1988
  560.5569
  662.4189
  646.8109
  702.1398
  453.4572
  579.9475
  594.9064
  567.9533

disp(Points(1:10,:))

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    95.256      62.421       56.765        121.18      116.05     86.224       64.15  
    126.46      82.276       105.81        121.18      62.107     86.224       64.15  
    93.256      62.421       105.81        76.585      116.05     42.287       64.15  
    95.256      82.276       105.81        121.18      60.719     86.224      110.96  
    126.46      82.276       105.81        121.18      60.719     86.224       64.15  
    126.46      82.276       105.81        121.18      116.05     86.224       64.15  
    48.727      82.276       56.765        53.208      62.107     86.224       64.15  
    95.256      113.58       105.81        121.18      62.107     42.287      39.729  
    95.256      62.421       56.765        121.18      62.107     86.224      110.96  
    95.256      82.276       56.765        121.18      62.107     86.224       64.15  

Scores for Missing or Out-of-Range Data When Using the 'BinMissingData' Option

This example describes the assignment of points for missing data when the 'BinMissingData'
option is set to true.

• Predictors that have missing data in the training set have an explicit bin for <missing> with
corresponding points in the final scorecard. These points are computed from the Weight-of-
Evidence (WOE) value for the <missing> bin and the logistic model coefficients. For scoring
purposes, these points are assigned to missing values and to out-of-range values.
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• Predictors with no missing data in the training set have no <missing> bin, therefore no WOE can
be estimated from the training data. By default, the points for missing and out-of-range values are
set to NaN, and this leads to a score of NaN when running score. For predictors that have no
explicit <missing> bin, use the name-value argument 'Missing' in formatpoints to indicate
how missing data should be treated for scoring purposes.

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))

Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]
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Set a minimum value of zero for CustAge and CustIncome. With this, any negative age or income
information becomes invalid or "out-of-range". For scoring purposes, out-of-range values are given the
same points as missing values.

sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);

Display and plot bin information for numeric data for 'CustAge' that includes missing data in a
separate bin labelled <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[0,33)'   }     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')
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Display and plot bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus')

For the 'CustAge' and 'ResStatus' predictors, there is missing data (NaNs and <undefined>) in
the training data, and the binning process estimates a WOE value of -0.15787 and 0.026469
respectively for missing data in these predictors, as shown above.

For EmpStatus and CustIncome there is no explicit bin for missing values because the training data
has no missing values for these predictors.

bi = bininfo(sc,'EmpStatus');
disp(bi)

        Bin         Good    Bad     Odds       WOE       InfoValue
    ____________    ____    ___    ______    ________    _________
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    {'Unknown' }    396     239    1.6569    -0.19947    0.021715 
    {'Employed'}    407     158    2.5759      0.2418    0.026323 
    {'Totals'  }    803     397    2.0227         NaN    0.048038 

bi = bininfo(sc,'CustIncome');
disp(bi)

           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[0,29000)'    }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default). For predictors that have missing data, there is an explicit <missing> bin, with a
corresponding WOE value computed from the data. When using fitmodel, the corresponding WOE
value for the <missing> bin is applied when performing the WOE transformation.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16
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Scale the scorecard points by the "points, odds, and points to double the odds (PDO)" method using
the 'PointsOddsAndPDO' argument of formatpoints. Suppose that you want a score of 500
points to have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50
points (so that 550 points would have odds of 4).

Display the scorecard showing the scaled points for predictors retained in the fitting model.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
     Predictors           Bin          Points
    _____________    ______________    ______

    {'CustAge'  }    {'[0,33)'    }    54.062
    {'CustAge'  }    {'[33,37)'   }    56.282
    {'CustAge'  }    {'[37,40)'   }    60.012
    {'CustAge'  }    {'[40,46)'   }    69.636
    {'CustAge'  }    {'[46,48)'   }    77.912
    {'CustAge'  }    {'[48,51)'   }     78.86
    {'CustAge'  }    {'[51,58)'   }     80.83
    {'CustAge'  }    {'[58,Inf]'  }     96.76
    {'CustAge'  }    {'<missing>' }    64.984
    {'ResStatus'}    {'Tenant'    }    62.138
    {'ResStatus'}    {'Home Owner'}    73.248
    {'ResStatus'}    {'Other'     }    90.828
    {'ResStatus'}    {'<missing>' }    74.125
    {'EmpStatus'}    {'Unknown'   }    58.807
    {'EmpStatus'}    {'Employed'  }    86.937
    {'EmpStatus'}    {'<missing>' }       NaN
      ⋮

Notice that points for the <missing> bin for CustAge and ResStatus are explicitly shown (as
64.9836 and 74.1250, respectively). These points are computed from the WOE value for the
<missing> bin, and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit <missing> bin. By
default the points are set to NaN for missing data and they lead to a score of NaN when running
score. For predictors that have no explicit <missing> bin, use the name-value argument
'Missing' in formatpoints to indicate how missing data should be treated for scoring purposes.

For the purpose of illustration, take a few rows from the original data as test data and introduce some
missing data. Also introduce some invalid, or out-of-range values. For numeric data, values below the
minimum (or above the maximum) allowed are considered invalid, such as a negative value for age
(recall 'MinValue' was earlier set to 0 for CustAge and CustIncome). For categorical data, invalid
values are categories not explicitly included in the scorecard, for example, a residential status not
previously mapped to scorecard categories, such as "House", or a meaningless string such as
"abc123".

tdata = dataMissing(11:18,mdl.PredictorNames); % Keep only the predictors retained in the model
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
% Set some invalid values
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tdata.CustAge(5) = -100;
tdata.ResStatus(6) = 'House';
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
disp(tdata)

    CustAge     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance
    _______    ___________    ___________    __________    _______    _______    _________

      NaN      Tenant         Unknown          34000         44         Yes        119.8  
       48      <undefined>    Unknown          44000         14         Yes       403.62  
       65      Home Owner     <undefined>      48000          6         No        111.88  
       44      Other          Unknown            NaN         35         No        436.41  
     -100      Other          Employed         46000         16         Yes       162.21  
       33      House          Employed         36000         36         Yes       845.02  
       39      Tenant         Freelancer       34000         40         Yes       756.26  
       24      Home Owner     Employed            -1         19         Yes       449.61  

Score the new data and see how points are assigned for missing CustAge and ResStatus, because
we have an explicit bin with points for <missing>. However, for EmpStatus and CustIncome the
score function sets the points to NaN.

[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
       NaN
       NaN
  551.7922
  487.9588
       NaN
       NaN

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248          NaN        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807           NaN      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138          NaN        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937           NaN      61.061     75.622      89.922  

Use the name-value argument 'Missing' in formatpoints to choose how to assign points to
missing values for predictors that do not have an explicit <missing> bin. In this example, use the
'MinPoints' option for the 'Missing' argument. The minimum points for EmpStatus in the
scorecard displayed above are 58.8072, and for CustIncome the minimum points are 29.3753.

sc = formatpoints(sc,'Missing','MinPoints');
[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
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  517.7532
  451.3405
  551.7922
  487.9588
  449.3577
  470.2267

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248       58.807        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807        29.375      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138       58.807        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937        29.375      61.061     75.622      89.922  

Score a New Dataset

This example shows how to use score to obtain scores for a new dataset (for example, a validation or
a test dataset) using the optional 'data' input in the score function.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________
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    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

For the purpose of illustration, suppose that a few rows from the original data are our "new" data.
Use the optional data input argument in the score function to obtain the scores for the newdata.

newdata = data(10:20,:);
Scores = score(sc,newdata)

Scores = 11×1

    0.8252
    0.6553
    1.2443
    0.9478
    0.5690
    1.6192
    0.4899
    0.3824
    0.2945
    1.4401
      ⋮

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

data — Dataset to be scored
table

(Optional) Dataset to be scored, specified as a MATLAB table where each row corresponds to
individual observations. The data must contain columns for each of the predictors in the
creditscorecard object.

Output Arguments
Scores — Scores for each observation
vector
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Scores for each observation, returned as a vector.

Points — Points per predictor for each observation
table

Points per predictor for each observation, returned as a table.

Algorithms
The score of an individual i is given by the formula
Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i))

where bj is the coefficient of the j-th variable in the model, and WOEj(i) is the Weight of Evidence
(WOE) value for the i-th individual corresponding to the j-th model variable. Shift and Slope are
scaling constants that can be controlled with formatpoints.

If the data for individual i is in the i-th row of a given dataset, to compute a score, the data(i,j) is
binned using existing binning maps, and converted into a corresponding Weight of Evidence value
WOEj(i). Using the model coefficients, the unscaled score is computed as

 s = b0 + b1*WOE1(i) + ... +bp*WOEp(i).

For simplicity, assume in the description above that the j-th variable in the model is the j-th column in
the data input, although, in general, the order of variables in a given dataset does not have to match
the order of variables in the model, and the dataset could have additional variables that are not used
in the model.

The formatting options can be controlled using formatpoints.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor | plotbins |
modifybins | bindata | fitmodel | formatpoints | displaypoints | setmodel | probdefault
| validatemodel | table

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47
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formatpoints
Format scorecard points and scaling

Syntax
sc = formatpoints(sc,Name,Value)

Description
sc = formatpoints(sc,Name,Value) modifies the scorecard points and scaling using optional
name-value pair arguments. For example, use optional name-value pair arguments to change the
scaling of the scores or the rounding of the points.

Examples

Scale Points Using Points, Odds Levels, and PDO

This example shows how to use formatpoints to scale by providing the points, odds levels, and PDO
(points to double the odds). By using formatpoints to scale, you can put points and scores in a
desired range that is more meaningful for practical purposes. Technically, this involves a linear
transformation from the unscaled to the scaled points by the formatpoints function.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
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                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the minimum and
maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100

MaxScore = 3.0726

Scale by providing the points, odds levels, and PDO (points to double the odds). Suppose that you
want a score of 500 points to have odds of 2 (twice as likely to be good than to be bad) and that the
odds double every 50 points (so that 550 points would have odds of 4).

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin           Points
    ______________    ________________    ______
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    {'CustAge'   }    {'[-Inf,33)'   }    52.821
    {'CustAge'   }    {'[33,37)'     }    54.161
    {'CustAge'   }    {'[37,40)'     }    59.934
    {'CustAge'   }    {'[40,46)'     }    67.633
    {'CustAge'   }    {'[46,48)'     }    79.755
    {'CustAge'   }    {'[48,58)'     }    80.905
    {'CustAge'   }    {'[58,Inf]'    }    98.838
    {'CustAge'   }    {'<missing>'   }       NaN
    {'ResStatus' }    {'Tenant'      }    62.031
    {'ResStatus' }    {'Home Owner'  }    73.444
    {'ResStatus' }    {'Other'       }    91.438
    {'ResStatus' }    {'<missing>'   }       NaN
    {'EmpStatus' }    {'Unknown'     }    58.781
    {'EmpStatus' }    {'Employed'    }    86.971
    {'EmpStatus' }    {'<missing>'   }       NaN
    {'CustIncome'}    {'[-Inf,29000)'}    31.309
      ⋮

MinScore = 355.5051

MaxScore = 671.6403

Scale Points Using Worst and Best Scores

This example shows how to use formatpoints to scale by providing the Worst and Best score
values. By using formatpoints to scale, you can put points and scores in a desired range that is
more meaningful for practical purposes. Technically, this involves a linear transformation from the
unscaled to the scaled points.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]

19 Functions

19-1724



    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the minimum and
maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100

MaxScore = 3.0726

Scale by providing the 'Worst' and 'Best' score values. The range provided below is a common
score range. Display the points information again to verify that they are now scaled and also display
the scaled minimum and maximum scores.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);
[PointsInfo,MinScore,MaxScore] = displaypoints(sc)
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PointsInfo=37×3 table
      Predictors            Bin           Points
    ______________    ________________    ______

    {'CustAge'   }    {'[-Inf,33)'   }    46.396
    {'CustAge'   }    {'[33,37)'     }    48.727
    {'CustAge'   }    {'[37,40)'     }    58.772
    {'CustAge'   }    {'[40,46)'     }    72.167
    {'CustAge'   }    {'[46,48)'     }    93.256
    {'CustAge'   }    {'[48,58)'     }    95.256
    {'CustAge'   }    {'[58,Inf]'    }    126.46
    {'CustAge'   }    {'<missing>'   }       NaN
    {'ResStatus' }    {'Tenant'      }    62.421
    {'ResStatus' }    {'Home Owner'  }    82.276
    {'ResStatus' }    {'Other'       }    113.58
    {'ResStatus' }    {'<missing>'   }       NaN
    {'EmpStatus' }    {'Unknown'     }    56.765
    {'EmpStatus' }    {'Employed'    }    105.81
    {'EmpStatus' }    {'<missing>'   }       NaN
    {'CustIncome'}    {'[-Inf,29000)'}    8.9706
      ⋮

MinScore = 300.0000

MaxScore = 850

As expected, the values of MinScore and MaxScore correspond to the desired worst and best scores.

Scale Points Using Shift and Slope

This example shows how to use formatpoints to scale by providing the Shift and Slope values.
By using formatpoints to scale, you can put points and scores in a desired range that is more
meaningful for practical purposes. Technically, this involves a linear transformation from the unscaled
to the scaled points by the formatpoints function.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
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5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the minimum and
maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100

MaxScore = 3.0726
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Scale by providing the 'Shift' and 'Slope' values. In this example, there is an arbitrary choice of
shift and slope. Display the points information again to verify that they are now scaled and also
display the scaled minimum and maximum scores.

sc = formatpoints(sc,'ShiftAndSlope',[300 6]);
[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin           Points
    ______________    ________________    ______

    {'CustAge'   }    {'[-Inf,33)'   }    41.904
    {'CustAge'   }    {'[33,37)'     }    42.015
    {'CustAge'   }    {'[37,40)'     }    42.495
    {'CustAge'   }    {'[40,46)'     }    43.136
    {'CustAge'   }    {'[46,48)'     }    44.144
    {'CustAge'   }    {'[48,58)'     }    44.239
    {'CustAge'   }    {'[58,Inf]'    }    45.731
    {'CustAge'   }    {'<missing>'   }       NaN
    {'ResStatus' }    {'Tenant'      }     42.67
    {'ResStatus' }    {'Home Owner'  }    43.619
    {'ResStatus' }    {'Other'       }    45.116
    {'ResStatus' }    {'<missing>'   }       NaN
    {'EmpStatus' }    {'Unknown'     }    42.399
    {'EmpStatus' }    {'Employed'    }    44.744
    {'EmpStatus' }    {'<missing>'   }       NaN
    {'CustIncome'}    {'[-Inf,29000)'}    40.114
      ⋮

MinScore = 292.1401

MaxScore = 318.4355

Report Base Points Separately

This example shows how to use formatpoints to separate the base points from the rest of the
points assigned to each predictor variable. The formatpoints name-value pair argument
'BasePoints' serves this purpose.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
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3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the minimum and
maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100

MaxScore = 3.0726
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By setting the name-value pair argument BasePoints to true, the points information table reports
the base points separately in the first row. The minimum and maximum possible scores are not
affected by this option.

sc = formatpoints(sc,'BasePoints',true);
[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=38×3 table
      Predictors           Bin           Points  
    ______________    ______________    _________

    {'BasePoints'}    {'BasePoints'}      0.70239
    {'CustAge'   }    {'[-Inf,33)' }     -0.25928
    {'CustAge'   }    {'[33,37)'   }     -0.24071
    {'CustAge'   }    {'[37,40)'   }     -0.16066
    {'CustAge'   }    {'[40,46)'   }    -0.053933
    {'CustAge'   }    {'[46,48)'   }      0.11411
    {'CustAge'   }    {'[48,58)'   }      0.13005
    {'CustAge'   }    {'[58,Inf]'  }      0.37866
    {'CustAge'   }    {'<missing>' }          NaN
    {'ResStatus' }    {'Tenant'    }     -0.13159
    {'ResStatus' }    {'Home Owner'}     0.026616
    {'ResStatus' }    {'Other'     }      0.27607
    {'ResStatus' }    {'<missing>' }          NaN
    {'EmpStatus' }    {'Unknown'   }     -0.17666
    {'EmpStatus' }    {'Employed'  }      0.21415
    {'EmpStatus' }    {'<missing>' }          NaN
      ⋮

MinScore = -1.3100

MaxScore = 3.0726

Round Points

This example shows how to use formatpoints to round points. Rounding is usually applied after
scaling, otherwise, if the points for a particular predictor are all in a small range, rounding could
cause the rounded points for different bins to be the same. Also, rounding all the points may slightly
change the minimum and maximum total points.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);
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1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the minimum and
maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100
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MaxScore = 3.0726

Scale points, and display the points information. By default, no rounding is applied.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);
PointsInfo = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin           Points
    ______________    ________________    ______

    {'CustAge'   }    {'[-Inf,33)'   }    46.396
    {'CustAge'   }    {'[33,37)'     }    48.727
    {'CustAge'   }    {'[37,40)'     }    58.772
    {'CustAge'   }    {'[40,46)'     }    72.167
    {'CustAge'   }    {'[46,48)'     }    93.256
    {'CustAge'   }    {'[48,58)'     }    95.256
    {'CustAge'   }    {'[58,Inf]'    }    126.46
    {'CustAge'   }    {'<missing>'   }       NaN
    {'ResStatus' }    {'Tenant'      }    62.421
    {'ResStatus' }    {'Home Owner'  }    82.276
    {'ResStatus' }    {'Other'       }    113.58
    {'ResStatus' }    {'<missing>'   }       NaN
    {'EmpStatus' }    {'Unknown'     }    56.765
    {'EmpStatus' }    {'Employed'    }    105.81
    {'EmpStatus' }    {'<missing>'   }       NaN
    {'CustIncome'}    {'[-Inf,29000)'}    8.9706
      ⋮

Use the name-value pair argument Round to apply rounding for all points and then display the points
information again.

sc = formatpoints(sc,'Round','AllPoints');
PointsInfo = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin           Points
    ______________    ________________    ______

    {'CustAge'   }    {'[-Inf,33)'   }      46  
    {'CustAge'   }    {'[33,37)'     }      49  
    {'CustAge'   }    {'[37,40)'     }      59  
    {'CustAge'   }    {'[40,46)'     }      72  
    {'CustAge'   }    {'[46,48)'     }      93  
    {'CustAge'   }    {'[48,58)'     }      95  
    {'CustAge'   }    {'[58,Inf]'    }     126  
    {'CustAge'   }    {'<missing>'   }     NaN  
    {'ResStatus' }    {'Tenant'      }      62  
    {'ResStatus' }    {'Home Owner'  }      82  
    {'ResStatus' }    {'Other'       }     114  
    {'ResStatus' }    {'<missing>'   }     NaN  
    {'EmpStatus' }    {'Unknown'     }      57  
    {'EmpStatus' }    {'Employed'    }     106  
    {'EmpStatus' }    {'<missing>'   }     NaN  
    {'CustIncome'}    {'[-Inf,29000)'}       9  
      ⋮
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Rounding and Default Probabilities

This example shows that rounding scorecard points can modify the original risk ranking of a credit
scorecard. You can control rounding by using formatpoints with the optional name-value pair
argument for 'Rounding'.

Credit scores rank customers by risk. If higher scores are given to better, less risky customers, then
higher scores must correspond to lower default probabilities. When you use the name-value pair
argument for 'Rounding', depending on the value for 'Rounding', the rounding behavior is:

• When 'Rounding' is set to 'None' (default option), no rounding is applied to points or scores,
and the risk ranking is completely consistent with the calibrated model.

• When 'Rounding' is set to 'FinalScore', rounding is only applied to the final scores. In this
case: a) Customers with different scores (different risk) may have the same rounded score. b)
Customers with the same rounded score may have different default probabilities. c) Customer with
higher rounded scores will always have lower default probability than customers with lower
scores.

• When 'Rounding' is set to 'AllPoints', rounding is applied to all points in the scorecard (all
bins, all predictors). In this case: a) Customers with different scores (different risk) may have the
same rounded score, or their ranking may even be reversed (the customer with the lower original
score may have a higher rounded score). b) Customers with the same rounded score may have
different default probabilities. c) Customer with higher rounded scores may in some cases have
higher default probabilities than customers with lower scores.

Create a creditscorecard

To demonstrate the rounding behavior, first create a creditscorecard object.

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID','ResponseVar','status');
sc = autobinning(sc);
sc = modifybins(sc,'CustIncome','CutPoints',20000:5000:60000);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1487.9719, Chi2Stat = 35.469392, PValue = 2.5909009e-09
2. Adding TmWBank, Deviance = 1465.7998, Chi2Stat = 22.172089, PValue = 2.4927133e-06
3. Adding AMBalance, Deviance = 1455.206, Chi2Stat = 10.593833, PValue = 0.0011346548
4. Adding EmpStatus, Deviance = 1446.3918, Chi2Stat = 8.8142314, PValue = 0.0029889009
5. Adding CustAge, Deviance = 1440.6825, Chi2Stat = 5.709236, PValue = 0.016875883
6. Adding ResStatus, Deviance = 1436.1363, Chi2Stat = 4.5462043, PValue = 0.032991806
7. Adding OtherCC, Deviance = 1431.9546, Chi2Stat = 4.1817827, PValue = 0.040860699

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70247     0.064046    10.968    5.4345e-28
    CustAge        0.60579      0.24405    2.4822      0.013058
    ResStatus       1.4463      0.65427    2.2105       0.02707
    EmpStatus      0.90501      0.29262    3.0928     0.0019828
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    CustIncome     0.70869      0.20535    3.4512    0.00055815
    TmWBank         1.0839      0.23244    4.6631    3.1145e-06
    OtherCC         1.0906      0.52936    2.0602      0.039377
    AMBalance       1.0148      0.32273    3.1445     0.0016636

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.5, p-value = 6.12e-17

Apply the 'Rounding' Options

Apply each of the three 'Rounding' options to the creditscorecard object.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]); % No Rounding
points1  = displaypoints(sc);
[S1,P1]  = score(sc);
defProb1 = probdefault(sc);

sc = formatpoints(sc,'Round','AllPoints'); % 'AllPoints' Rounding
points2  = displaypoints(sc);
[S2,P2]  = score(sc);
defProb2 = probdefault(sc);

sc = formatpoints(sc,'Round','FinalScore'); % 'FinalScore' Rounding
points3  = displaypoints(sc);
[S3,P3]  = score(sc);
defProb3 = probdefault(sc);

Compare the 'Rounding' Options

Visualize the default probabilities versus the scores.

figure
hold on
scatter(S1, defProb1, 'g*')
scatter(S2, defProb2, 'ro')
scatter(S3, defProb3, 'b+')
legend('No Rounding','AllPoints','FinalScore')
axis([388 394 0.695 0.705])
xlabel('Credit score')
ylabel('Default probability')
title('Default probabilities and Credit scores')
grid
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Inspect the points and total scores for each 'Rounding' option, in table format.

ind = [208 363 694 886];
ProbDefault = defProb1(ind)

ProbDefault = 4×1

    0.6997
    0.6989
    0.6982
    0.6972

% ScoreNoRounding = S1(ind)
PointsNoRounding = P1(ind,:);
PointsNoRounding.Total = S1(ind)

PointsNoRounding=4×8 table
    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    Total 
    _______    _________    _________    __________    _______    _______    _________    ______

      52.9      61.555       58.503        24.647      51.551     50.416        89.4      388.97
     67.65      61.555       58.503        24.647      51.551     75.723       49.64      389.27
    54.234      61.555       58.503        24.647      51.551     75.723      63.271      389.48
      52.9      92.441       58.503        24.647      61.277     50.416       49.64      389.82
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% ScoreAllPoints = S2(ind)
PointsAllPoints = P2(ind,:);
PointsAllPoints.Total = S2(ind)

PointsAllPoints=4×8 table
    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    Total
    _______    _________    _________    __________    _______    _______    _________    _____

      53          62           59            25          52         50          89         390 
      68          62           59            25          52         76          50         392 
      54          62           59            25          52         76          63         391 
      53          92           59            25          61         50          50         390 

% ScoreFinalScore = S3(ind)
PointsFinalScore = P3(ind,:);
PointsFinalScore.Total = S3(ind)

PointsFinalScore=4×8 table
    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    Total
    _______    _________    _________    __________    _______    _______    _________    _____

      52.9      61.555       58.503        24.647      51.551     50.416        89.4       389 
     67.65      61.555       58.503        24.647      51.551     75.723       49.64       389 
    54.234      61.555       58.503        24.647      51.551     75.723      63.271       389 
      52.9      92.441       58.503        24.647      61.277     50.416       49.64       390 

The original creditscorecard model, without rounding, was calibrated to the data with a logistic
regression. The ranking and probabilities have a statistical foundation.

Rounding, however, effectively modifies the creditscorecard model. When only the final score is
rounded, this leads to some "ties" in rounded scores, but at least the risk ranking across scores is
preserved (because if s1 <= s2, then round(s1) <= round(s2)).

However, when you round all points, a score may gain extra points by chance. For example, in the
second row in the table (row 363 of original data), the points for all predictors are rounded up by
almost 0.5. The original score is 389.27. Rounding the final score makes it 389. However, rounding
all points makes it 392, that is three points higher than rounding the final score.

Scores for Missing or Out-of-Range Data

This example shows how to use formatpoints to score missing or out-of-range data. When data is
scored, some observations can be either missing (NaN, or undefined) or out of range. You will need
to decide whether or not points are assigned to these cases. Use the name-value pair argument
Missing to do so.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in creditscorecard to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');
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Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Indicate that the minimum allowed value for 'CustAge' is zero. This makes any negative values for
age invalid or out-of-range.

sc = modifybins(sc,'CustAge','MinValue',0);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Suppose there are missing or out of range observations in the data that you want to score. Notice
that by default, the points and score assigned to the missing value is NaN.

% Set up a data set with missing and out of range data for illustration purposes
newdata = data(1:5,:);
newdata.CustAge(1) = NaN; % missing
newdata.CustAge(2) = -100; % invalid
newdata.ResStatus(3) = '<undefined>'; % missing
newdata.ResStatus(4) = 'House'; % invalid
disp(newdata)

    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1         NaN          62         Tenant         Unknown        50000         55         Yes       1055.9        0.22        0   
      2        -100          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
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      3          47          30         <undefined>    Employed       37000         61         No        877.23        0.29        0   
      4          50          75         House          Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

[Scores,Points] = score(sc,newdata);
disp(Scores)

       NaN
       NaN
       NaN
       NaN
    1.4535

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance
    _______    _________    _________    __________    _________    ________    _________

        NaN    -0.031252    -0.076317      0.43693       0.39607     0.15842    -0.017472
        NaN      0.12696      0.31449      0.43693     -0.033752     0.15842    -0.017472
    0.21445          NaN      0.31449     0.081611       0.39607    -0.19168    -0.017472
    0.23039          NaN      0.31449      0.43693     -0.044811     0.15842      0.35551
      0.479      0.12696      0.31449      0.43693     -0.044811     0.15842    -0.017472

Use the name-value pair argument Missing to replace NaN with points corresponding to a zero
Weight-of-Evidence (WOE).

sc = formatpoints(sc,'Missing','ZeroWOE');
[Scores,Points] = score(sc,newdata);
disp(Scores)

    0.9667
    1.0859
    0.8978
    1.5513
    1.4535

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance
    _______    _________    _________    __________    _________    ________    _________

    0.10034    -0.031252    -0.076317      0.43693       0.39607     0.15842    -0.017472
    0.10034      0.12696      0.31449      0.43693     -0.033752     0.15842    -0.017472
    0.21445      0.10034      0.31449     0.081611       0.39607    -0.19168    -0.017472
    0.23039      0.10034      0.31449      0.43693     -0.044811     0.15842      0.35551
      0.479      0.12696      0.31449      0.43693     -0.044811     0.15842    -0.017472

Alternatively, use the name-value pair argument Missing to replace the missing value with the
minimum points for the predictors that have the missing values.

sc = formatpoints(sc,'Missing','MinPoints');
[Scores,Points] = score(sc,newdata);
disp(Scores)

    0.7074
    0.8266
    0.7662
    1.4197
    1.4535
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disp(Points)

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance
    ________    _________    _________    __________    _________    ________    _________

    -0.15894    -0.031252    -0.076317      0.43693       0.39607     0.15842    -0.017472
    -0.15894      0.12696      0.31449      0.43693     -0.033752     0.15842    -0.017472
     0.21445    -0.031252      0.31449     0.081611       0.39607    -0.19168    -0.017472
     0.23039    -0.031252      0.31449      0.43693     -0.044811     0.15842      0.35551
       0.479      0.12696      0.31449      0.43693     -0.044811     0.15842    -0.017472

As a third alternative, use the name-value pair argument Missing to replace the missing value with
the maximum points for the predictors that have the missing values.

sc = formatpoints(sc,'Missing','MaxPoints');
[Scores,Points] = score(sc,newdata);
disp(Scores)

    1.3454
    1.4646
    1.1739
    1.8273
    1.4535

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance
    _______    _________    _________    __________    _________    ________    _________

      0.479    -0.031252    -0.076317      0.43693       0.39607     0.15842    -0.017472
      0.479      0.12696      0.31449      0.43693     -0.033752     0.15842    -0.017472
    0.21445      0.37641      0.31449     0.081611       0.39607    -0.19168    -0.017472
    0.23039      0.37641      0.31449      0.43693     -0.044811     0.15842      0.35551
      0.479      0.12696      0.31449      0.43693     -0.044811     0.15842    -0.017472

Verify that the minimum and maximum points assigned to the missing data correspond to the
minimum and maximum points for the corresponding predictors. The points for 'CustAge' are
reported in the first seven rows of the points information table. For 'ResStatus' the points are in
rows 8 through 10.

PointsInfo = displaypoints(sc);
PointsInfo(1:7,:)

ans=7×3 table
    Predictors         Bin          Points  
    ___________    ____________    _________

    {'CustAge'}    {'[0,33)'  }     -0.15894
    {'CustAge'}    {'[33,37)' }     -0.14036
    {'CustAge'}    {'[37,40)' }    -0.060323
    {'CustAge'}    {'[40,46)' }     0.046408
    {'CustAge'}    {'[46,48)' }      0.21445
    {'CustAge'}    {'[48,58)' }      0.23039
    {'CustAge'}    {'[58,Inf]'}        0.479

min(PointsInfo.Points(1:7))

ans = -0.1589
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max(PointsInfo.Points(1:7))

ans = 0.4790

PointsInfo(8:10,:)

ans=3×3 table
     Predictors           Bin           Points  
    _____________    ______________    _________

    {'CustAge'  }    {'<missing>' }        0.479
    {'ResStatus'}    {'Tenant'    }    -0.031252
    {'ResStatus'}    {'Home Owner'}      0.12696

min(PointsInfo.Points(8:10))

ans = -0.0313

max(PointsInfo.Points(8:10))

ans = 0.4790

Scores for Missing or Out-of-Range Data When Using the 'BinMissingData' Option

This example describes the assignment of points for missing data when the 'BinMissingData'
option is set to true.

• Predictors that have missing data in the training set have an explicit bin for <missing> with
corresponding points in the final scorecard. These points are computed from the Weight-of-
Evidence (WOE) value for the <missing> bin and the logistic model coefficients. For scoring
purposes, these points are assigned to missing values and to out-of-range values.

• Predictors with no missing data in the training set have no <missing> bin, therefore no WOE can
be estimated from the training data. By default, the points for missing and out-of-range values are
set to NaN, and this leads to a score of NaN when running score. For predictors that have no
explicit <missing> bin, use the name-value argument 'Missing' in formatpoints to indicate
how missing data should be treated for scoring purposes.

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   
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fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))

Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Set a minimum value of zero for CustAge and CustIncome. With this, any negative age or income
information becomes invalid or "out-of-range". For scoring purposes, out-of-range values are given the
same points as missing values.

sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);

Display and plot bin information for numeric data for 'CustAge' that includes missing data in a
separate bin labelled <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[0,33)'   }     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112
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plotbins(sc,'CustAge')

Display and plot bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus')
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For the 'CustAge' and 'ResStatus' predictors, there is missing data (NaNs and <undefined>) in
the training data, and the binning process estimates a WOE value of -0.15787 and 0.026469
respectively for missing data in these predictors, as shown above.

For EmpStatus and CustIncome there is no explicit bin for missing values because the training data
has no missing values for these predictors.

bi = bininfo(sc,'EmpStatus');
disp(bi)

        Bin         Good    Bad     Odds       WOE       InfoValue
    ____________    ____    ___    ______    ________    _________

    {'Unknown' }    396     239    1.6569    -0.19947    0.021715 
    {'Employed'}    407     158    2.5759      0.2418    0.026323 
    {'Totals'  }    803     397    2.0227         NaN    0.048038 

bi = bininfo(sc,'CustIncome');
disp(bi)

           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[0,29000)'    }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
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    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default). For predictors that have missing data, there is an explicit <missing> bin, with a
corresponding WOE value computed from the data. When using fitmodel, the corresponding WOE
value for the <missing> bin is applied when performing the WOE transformation.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Scale the scorecard points by the "points, odds, and points to double the odds (PDO)" method using
the 'PointsOddsAndPDO' argument of formatpoints. Suppose that you want a score of 500
points to have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50
points (so that 550 points would have odds of 4).

Display the scorecard showing the scaled points for predictors retained in the fitting model.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
     Predictors           Bin          Points
    _____________    ______________    ______

    {'CustAge'  }    {'[0,33)'    }    54.062
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    {'CustAge'  }    {'[33,37)'   }    56.282
    {'CustAge'  }    {'[37,40)'   }    60.012
    {'CustAge'  }    {'[40,46)'   }    69.636
    {'CustAge'  }    {'[46,48)'   }    77.912
    {'CustAge'  }    {'[48,51)'   }     78.86
    {'CustAge'  }    {'[51,58)'   }     80.83
    {'CustAge'  }    {'[58,Inf]'  }     96.76
    {'CustAge'  }    {'<missing>' }    64.984
    {'ResStatus'}    {'Tenant'    }    62.138
    {'ResStatus'}    {'Home Owner'}    73.248
    {'ResStatus'}    {'Other'     }    90.828
    {'ResStatus'}    {'<missing>' }    74.125
    {'EmpStatus'}    {'Unknown'   }    58.807
    {'EmpStatus'}    {'Employed'  }    86.937
    {'EmpStatus'}    {'<missing>' }       NaN
      ⋮

Notice that points for the <missing> bin for CustAge and ResStatus are explicitly shown (as
64.9836 and 74.1250, respectively). These points are computed from the WOE value for the
<missing> bin, and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit <missing> bin. By
default the points are set to NaN for missing data and they lead to a score of NaN when running
score. For predictors that have no explicit <missing> bin, use the name-value argument
'Missing' in formatpoints to indicate how missing data should be treated for scoring purposes.

For the purpose of illustration, take a few rows from the original data as test data and introduce some
missing data. Also introduce some invalid, or out-of-range values. For numeric data, values below the
minimum (or above the maximum) allowed are considered invalid, such as a negative value for age
(recall 'MinValue' was earlier set to 0 for CustAge and CustIncome). For categorical data, invalid
values are categories not explicitly included in the scorecard, for example, a residential status not
previously mapped to scorecard categories, such as "House", or a meaningless string such as
"abc123".

tdata = dataMissing(11:18,mdl.PredictorNames); % Keep only the predictors retained in the model
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
% Set some invalid values
tdata.CustAge(5) = -100;
tdata.ResStatus(6) = 'House';
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
disp(tdata)

    CustAge     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance
    _______    ___________    ___________    __________    _______    _______    _________

      NaN      Tenant         Unknown          34000         44         Yes        119.8  
       48      <undefined>    Unknown          44000         14         Yes       403.62  
       65      Home Owner     <undefined>      48000          6         No        111.88  
       44      Other          Unknown            NaN         35         No        436.41  
     -100      Other          Employed         46000         16         Yes       162.21  
       33      House          Employed         36000         36         Yes       845.02  
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       39      Tenant         Freelancer       34000         40         Yes       756.26  
       24      Home Owner     Employed            -1         19         Yes       449.61  

Score the new data and see how points are assigned for missing CustAge and ResStatus, because
we have an explicit bin with points for <missing>. However, for EmpStatus and CustIncome the
score function sets the points to NaN.

[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
       NaN
       NaN
  551.7922
  487.9588
       NaN
       NaN

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248          NaN        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807           NaN      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138          NaN        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937           NaN      61.061     75.622      89.922  

Use the name-value argument 'Missing' in formatpoints to choose how to assign points to
missing values for predictors that do not have an explicit <missing> bin. In this example, use the
'MinPoints' option for the 'Missing' argument. The minimum points for EmpStatus in the
scorecard displayed above are 58.8072, and for CustIncome the minimum points are 29.3753.

sc = formatpoints(sc,'Missing','MinPoints');
[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
  517.7532
  451.3405
  551.7922
  487.9588
  449.3577
  470.2267

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248       58.807        96.969      51.132     50.914      89.922  
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    69.636      90.828       58.807        29.375      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138       58.807        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937        29.375      61.061     75.622      89.922  

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: sc =
formatpoints(sc,'BasePoints',true,'Round','AllPoints','WorstAndBestScores',
[100, 700])

Note ShiftAndSlope, PointsOddsAndPDO, and WorstAndBestScores are scaling methods and
you can use only one of these name-value pair arguments at one time. The other three name-value
pair arguments (BasePoints, Missing, and Round) are not scaling methods and can be used
together or with any one of the three scaling methods.

BasePoints — Indicator for separating base points
false (default) | logical scalar

Indicator for separating base points, specified as the comma-separated pair consisting of
'BasePoints' and a logical scalar. If true, the scorecard explicitly separates base points. If false,
the base points are spread across all variables in the creditscorecard object.
Data Types: char

Missing — Indicator for points assigned to missing or out-of-range information when
scoring
NoScore (default) | character vector with values NoScore, ZeroWOE, MinPoints, and MaxPoints

Indicator for points assigned to missing or out-of-range information when scoring, specified as the
comma-separated pair consisting of 'Missing' and a character vector with a value for NoScore,
ZeroWOE, MinPoints, or MaxPoints, where:

• NoScore — Missing and out-of-range data do not get points assigned and points are set to NaN.
Also, the total score is set to NaN.

• ZeroWOE — Missing or out-of-range data get assigned a zero Weight-of-Evidence (WOE) value.
• MinPoints — Missing or out-of-range data get the minimum possible points for that predictor.

This penalizes the score if higher scores are better.
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• MaxPoints — Missing or out-of-range data get the maximum possible points for that predictor.
This penalizes the score if lower scores are better.

Note When using the creditscorecard name-value argument 'BinMissingData' with a
value of true, missing data for numeric and categorical predictors is binned in a separate bin
labeled <missing>. The <missing> bin only contains missing values for a predictor and does not
contain invalid or out-of-range values for a predictor.

Data Types: char

Round — Indicator whether to round points or scores
'None' (default) | character vector with values'AllPoints', 'FinalScore'

Indicator whether to round points or scores, specified as the comma-separated pair consisting of
'Round' and a character vector with values 'AllPoints', 'FinalScore' or 'None', where:

• None — No rounding is applied.
• AllPoints — Apply rounding to each predictor's points before adding up the total score.
• FinalScore — Round the final score only (rounding is applied after all points are added up).

For more information and an example of using the 'Round' name-value pair argument, see
“Rounding and Default Probabilities” on page 19-1733.
Data Types: char

ShiftAndSlope — Indicator for shift and slope scaling parameters
[0,1] (default) | numeric array with two elements [Shift,Slope]

Indicator for shift and slope scaling parameters for the credit scorecard, specified as the comma-
separated pair consisting of 'ShiftAndSlope' and a numeric array with two elements [Shift,
Slope]. Slope cannot be zero. The ShiftAndSlope values are used scale the scoring model.

Note ShiftAndSlope, PointsOddsAndPDO, and WorstAndBestScores are scaling methods and
you can use only one of these name-value pair arguments at one time. The other three name-value
pair arguments (BasePoints, Missing, and Round) are not scaling methods and can be used
together or with any one of the three scaling methods.

To remove a previous scaling and revert to unscaled scores, set ShiftAndSlope to[0,1].

Data Types: double

PointsOddsAndPDO — Indicator for target points for given odds and double odds level
numeric array with three elements [Points,Odds,PDO]

Indicator for target points (Points) for a given odds level (Odds) and the desired number of points to
double the odds (PDO), specified as the comma-separated pair consisting of 'PointsOddsAndPDO'
and a numeric array with three elements [Points,Odds,PDO]. Odds must be a positive number.
The PointsOddsAndPDO values are used to find scaling parameters for the scoring model.

Note The points to double the odds (PDO) may be positive or negative, depending on whether higher
scores mean lower risk, or vice versa.
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ShiftAndSlope, PointsOddsAndPDO, and WorstAndBestScores are scaling methods and you can
use only one of these name-value pair arguments at one time. The other three name-value pair
arguments (BasePoints, Missing, and Round) are not scaling methods and can be used together or
with any one of the three scaling methods.

To remove a previous scaling and revert to unscaled scores, set ShiftAndSlope to[0,1].

Data Types: double

WorstAndBestScores — Indicator for worst (highest risk) and best (lowest risk) scores in
scorecard
numeric array with two elements [WorstScore,BestScore]

Indicator for worst (highest risk) and best (lowest risk) scores in the scorecard, specified as the
comma-separated pair consisting of 'WorstAndBestScores' and a numeric array with two
elements [WorstScore,BestScore]. WorstScore and BestScore must be different values. These
WorstAndBestScores values are used to find scaling parameters for the scoring model.

Note WorstScore means the riskiest score, and its value could be lower or higher than the ‘best’
score. In other words, the ‘minimum’ score may be the ‘worst‘ score or the 'best' score, depending on
the desired scoring scale.

ShiftAndSlope, PointsOddsAndPDO, and WorstAndBestScores are scaling methods and you can
use only one of these name-value pair arguments at one time. The other three name-value pair
arguments (BasePoints, Missing, and Round) are not scaling methods and can be used together or
with any one of the three scaling methods.

To remove a previous scaling and revert to unscaled scores, set ShiftAndSlope to[0,1].

Data Types: double

Output Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model returned as an updated creditscorecard object. For more information on
using the creditscorecard object, see creditscorecard.

Algorithms
The score of an individual i is given by the formula
Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i))

where bj is the coefficient of the jth variable in the model, and WOEj(i) is the Weight of Evidence
(WOE) value for the ith individual corresponding to the jth model variable. Shift and Slope are
scaling constants further discussed below. The scaling constant can be controlled with
formatpoints.
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If the data for individual i is in the i-th row of a given dataset, to compute a score, the data(i,j) is
binned using existing binning maps, and converted into a corresponding Weight of Evidence value
WOEj(i). Using the model coefficients, the unscaled score is computed as

 s = b0 + b1*WOE1(i) + ... +bp*WOEp(i).

For simplicity, assume in the description above that the j-th variable in the model is the j-th column in
the data input, although, in general, the order of variables in a given dataset does not have to match
the order of variables in the model, and the dataset could have additional variables that are not used
in the model.

The formatting options can be controlled using formatpoints. When the base points are reported
separately (see the formatpoints parameter BasePoints), the base points are given by

Base Points = Shift + Slope*b0,

and the points for the j-th predictor, i-th row are given by

Points_ji = Slope*(bj*WOEj(i))).

By default, the base points are not reported separately, in which case

Points_ji = (Shift + Slope*b0)/p + Slope*(bj*WOEj(i)),

where p is the number of predictors in the scorecard model.

By default, no rounding is applied to the points by the score function (Round is None). If Round is
set to AllPoints using formatpoints, then the points for individual i for variable j are given by

 points if rounding is 'AllPoints': round( Points_ji )

and, if base points are reported separately, the are also rounded. This yields integer-valued points per
predictor, hence also integer-valued scores. If Round is set to FinalScore using formatpoints,
then the points per predictor are not rounded, and only the final score is rounded

 score if rounding is 'FinalScore': round(Score(i)).

Regarding the scaling parameters, the Shift parameter, and the Slope parameter can be set
directly with the ShiftAndSlope parameter of formatpoints. Alternatively, you can use the
formatpoints parameter for WorstAndBestScores. In this case, the parameters Shift and
Slope are found internally by solving the system

Shift + Slope*smin = WorstScore,
Shift + Slope*smax = BestScore,

where WorstScore and BestScore are the first and second elements in the formatpoints
parameter for WorstAndBestScores and smin and smax are the minimum and maximum possible
unscaled scores:

smin = b0 + min(b1*WOE1) + ... +min(bp*WOEp),
smax = b0 + max(b1*WOE1) + ... +max(bp*WOEp).

A third alternative to scale scores is the PointsOddsAndPDO parameter in formatpoints. In this
case, assume that the unscaled score s gives the log-odds for a row, and the Shift and Slope
parameters are found by solving the following system

Points = Shift + Slope*log(Odds)
Points + PDO = Shift + Slope*log(2*Odds)

19 Functions

19-1750



where Points, Odds, and PDO ("points to double the odds") are the first, second, and third elements
in the PointsOddsAndPDO parameter.

Whenever a given dataset has a missing or out-of-range value data (i,j), the points for predictor j, for
individual i, are set to NaN by default, which results in a missing score for that row (a NaN score).
Using the Missing parameter for formatpoints, you can modify this behavior and set the
corresponding Weight-of-Evidence (WOE) value to zero, or set the points to the minimum points, or
the maximum points for that predictor.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor | plotbins |
modifybins | bindata | fitmodel | displaypoints | score | setmodel | probdefault |
validatemodel

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47
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displaypoints
Return points per predictor per bin

Syntax
PointsInfo = displaypoints(sc)
[PointsInfo,MinScore,MaxScore] = displaypoints(sc)
[PointsInfo,MinScore,MaxScore] = displaypoints( ___ ,Name,Value)

Description
PointsInfo = displaypoints(sc) returns a table of points for all bins of all predictor variables
used in the creditscorecard object after a linear logistic regression model is fit using fitmodel
to the Weight of Evidence data. The PointsInfo table displays information on the predictor name,
bin labels, and the corresponding points per bin.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc) returns a table of points for all bins
of all predictor variables used in the creditscorecard object after a linear logistic regression
model is fit (fitmodel) to the Weight of Evidence data. The PointsInfo table displays information
on the predictor name, bin labels, and the corresponding points per bin and displaypoints. In
addition, the optional MinScore and MaxScore values are returned.

[PointsInfo,MinScore,MaxScore] = displaypoints( ___ ,Name,Value) specifies options
using one or more name-value pair arguments in addition to the input arguments in the previous
syntax.

Examples

Display Unscaled Points

This example shows how to use displaypoints after a model is fitted to compute the unscaled
points per bin, for a given predictor in the creditscorecard model.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in the creditscorecard function to indicate
that 'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

19 Functions

19-1752



3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model.

PointsInfo = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

displaypoints always displays a '<missing>' bin for each predictor. The value of the
'<missing>' bin comes from the initial creditscorecard object, and the '<missing>' bin is set
to NaN whenever the scorecard model has no information on how to assign points to missing data.
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To configure the points for the '<missing>' bin, you must use the initial creditscorecard object.
For predictors that have missing values in the training set, the points for the '<missing>' bin are
estimated from the data if the 'BinMissingData' name-value pair argument is set to true using
creditscorecard. When the 'BinMissingData' parameter is set to false, or when the data
contains no missing values in the training set, use the 'Missing' name-value pair argument in
formatpoints to indicate how to assign points to the missing data.

Display Unscaled Points When Using Missing Data

Create a creditscorecard object using the CreditCardData.mat file to load the data with
missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))

Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
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                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Display and plot bin information for numeric data for 'CustAge' that includes missing data in a
separate bin labelled <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')

Display and plot bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.
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[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus')

For the 'CustAge' and 'ResStatus' predictors, there is missing data (NaNs and <undefined>) in
the training data, and the binning process estimates a WOE value of -0.15787 and 0.026469
respectively for missing data in these predictors, as shown above.

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default). For predictors that have missing data, there is an explicit <missing> bin, with a
corresponding WOE value computed from the data. When using fitmodel, the corresponding WOE
value for the <missing> bin is applied when performing the WOE transformation.

[sc,mdl] = fitmodel(sc);
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1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Display unscaled points for predictors retained in the fitting model (to scale points use
formatpoints).

PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
     Predictors           Bin           Points  
    _____________    ______________    _________

    {'CustAge'  }    {'[-Inf,33)' }     -0.14173
    {'CustAge'  }    {'[33,37)'   }     -0.11095
    {'CustAge'  }    {'[37,40)'   }    -0.059244
    {'CustAge'  }    {'[40,46)'   }     0.074167
    {'CustAge'  }    {'[46,48)'   }       0.1889
    {'CustAge'  }    {'[48,51)'   }      0.20204
    {'CustAge'  }    {'[51,58)'   }      0.22935
    {'CustAge'  }    {'[58,Inf]'  }      0.45019
    {'CustAge'  }    {'<missing>' }    0.0096749
    {'ResStatus'}    {'Tenant'    }    -0.029778
    {'ResStatus'}    {'Home Owner'}      0.12425
    {'ResStatus'}    {'Other'     }      0.36796
    {'ResStatus'}    {'<missing>' }       0.1364
    {'EmpStatus'}    {'Unknown'   }    -0.075948
    {'EmpStatus'}    {'Employed'  }      0.31401
    {'EmpStatus'}    {'<missing>' }          NaN
      ⋮
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Notice that points for the <missing> bin for CustAge and ResStatus are explicitly shown. These
points are computed from the WOE value for the <missing> bin and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit <missing> bin, and
by default the points are set to NaN for missing data, and they lead to a score of NaN when running
score. For predictors that have no explicit <missing> bin, use the name-value argument
'Missing' in formatpoints to indicate how missing data should be treated for scoring purposes.

Display Scaled Points

This example shows how to use formatpoints after a model is fitted to format scaled points, and
then use displaypoints to display the scaled points per bin, for a given predictor in the
creditscorecard model.

Points become scaled when a range is defined. Specifically, a linear transformation from the unscaled
to the scaled points is necessary. This transformation is defined either by supplying a shift and slope
or by specifying the worst and best scores possible. (For more information, see formatpoints.)

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in the creditscorecard function to indicate
that 'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
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    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the formatpoints function to scale providing the 'Worst' and 'Best' score values. The
range provided below is a common score range.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);

Display the points information again to verify that the points are now scaled and also display the
scaled minimum and maximum scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin           Points
    ______________    ________________    ______

    {'CustAge'   }    {'[-Inf,33)'   }    46.396
    {'CustAge'   }    {'[33,37)'     }    48.727
    {'CustAge'   }    {'[37,40)'     }    58.772
    {'CustAge'   }    {'[40,46)'     }    72.167
    {'CustAge'   }    {'[46,48)'     }    93.256
    {'CustAge'   }    {'[48,58)'     }    95.256
    {'CustAge'   }    {'[58,Inf]'    }    126.46
    {'CustAge'   }    {'<missing>'   }       NaN
    {'ResStatus' }    {'Tenant'      }    62.421
    {'ResStatus' }    {'Home Owner'  }    82.276
    {'ResStatus' }    {'Other'       }    113.58
    {'ResStatus' }    {'<missing>'   }       NaN
    {'EmpStatus' }    {'Unknown'     }    56.765
    {'EmpStatus' }    {'Employed'    }    105.81
    {'EmpStatus' }    {'<missing>'   }       NaN
    {'CustIncome'}    {'[-Inf,29000)'}    8.9706
      ⋮

MinScore = 300.0000

MaxScore = 850

Notice that, as expected, the values of MinScore and MaxScore correspond to the worst and best
possible scores.

Separate the Base Points From the Total Points

This example shows how to use displaypoints after a model is fitted to separate the base points
from the rest of the points assigned to each predictor variable. The name-value pair argument
'BasePoints' in the formatpoints function is a boolean that serves this purpose. By default, the
base points are spread across all variables in the scorecard.
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Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in the creditscorecard function to indicate
that 'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the formatpoints function to separate the base points by providing the 'BasePoints' name-
value pair argument.

sc = formatpoints(sc,'BasePoints',true);

Display the base points, separated out from the other points, for predictors retained in the fitting
model.

PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
      Predictors           Bin           Points  
    ______________    ______________    _________
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    {'BasePoints'}    {'BasePoints'}      0.70239
    {'CustAge'   }    {'[-Inf,33)' }     -0.25928
    {'CustAge'   }    {'[33,37)'   }     -0.24071
    {'CustAge'   }    {'[37,40)'   }     -0.16066
    {'CustAge'   }    {'[40,46)'   }    -0.053933
    {'CustAge'   }    {'[46,48)'   }      0.11411
    {'CustAge'   }    {'[48,58)'   }      0.13005
    {'CustAge'   }    {'[58,Inf]'  }      0.37866
    {'CustAge'   }    {'<missing>' }          NaN
    {'ResStatus' }    {'Tenant'    }     -0.13159
    {'ResStatus' }    {'Home Owner'}     0.026616
    {'ResStatus' }    {'Other'     }      0.27607
    {'ResStatus' }    {'<missing>' }          NaN
    {'EmpStatus' }    {'Unknown'   }     -0.17666
    {'EmpStatus' }    {'Employed'  }      0.21415
    {'EmpStatus' }    {'<missing>' }          NaN
      ⋮

Display Points After Modifying Bin Labels

This example shows how to use displaypoints after a model is fitted and the modifybins function
is used to provide user-defined bin labels for a numeric predictor.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument in the creditscorecard function to indicate
that 'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________
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    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the displaypoints function to display point information.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100

MaxScore = 3.0726

Use the modifybins function to specify user-defined bin labels for 'CustAge' so that the bin
ranges are described in natural language.

labels = {'Up to 32','33 to 36','37 to 39','40 to 45','46 to 47','48 to 57','At least 58'};
sc = modifybins(sc,'CustAge','BinLabels',labels);

Rerun displaypoints to verify the updated bin labels.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________
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    {'CustAge'   }    {'Up to 32'    }     -0.15894
    {'CustAge'   }    {'33 to 36'    }     -0.14036
    {'CustAge'   }    {'37 to 39'    }    -0.060323
    {'CustAge'   }    {'40 to 45'    }     0.046408
    {'CustAge'   }    {'46 to 47'    }      0.21445
    {'CustAge'   }    {'48 to 57'    }      0.23039
    {'CustAge'   }    {'At least 58' }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100

MaxScore = 3.0726

Compute the Predictor Weights

This example shows how to use a credit scorecard to compute the weights of the predictors. The
weights of the predictors are determined from the range of points of each predictor, divided by the
total range of points for the scorecard. The points for the scorecard not only take into consideration
the betas, but also implicitly the binning of the predictor values and the corresponding weights of
evidence.

Create a scorecard.

load CreditCardData.mat
sc = creditscorecard(data,'IDVar','CustID');
sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________
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    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Compute scorecard points and the MinPts and MaxPts scores.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
[PointsTable,MinPts,MaxPts] = displaypoints(sc);
PtsRange = MaxPts-MinPts;
disp(PointsTable(1:10,:)); 

     Predictors           Bin          Points
    _____________    ______________    ______

    {'CustAge'  }    {'[-Inf,33)' }    52.821
    {'CustAge'  }    {'[33,37)'   }    54.161
    {'CustAge'  }    {'[37,40)'   }    59.934
    {'CustAge'  }    {'[40,46)'   }    67.633
    {'CustAge'  }    {'[46,48)'   }    79.755
    {'CustAge'  }    {'[48,58)'   }    80.905
    {'CustAge'  }    {'[58,Inf]'  }    98.838
    {'CustAge'  }    {'<missing>' }       NaN
    {'ResStatus'}    {'Tenant'    }    62.031
    {'ResStatus'}    {'Home Owner'}    73.444

 fprintf('Min points: %g, Max points: %g\n',MinPts,MaxPts); 

Min points: 355.505, Max points: 671.64

Compute the predictor weights.

Predictor = unique(PointsTable.Predictors,'stable');
NumPred = length(Predictor);
Weight = zeros(NumPred,1);
for ii=1:NumPred
   Ind = cellfun(@(x)strcmpi(Predictor{ii},x),PointsTable.Predictors);
   MaxPtsPred = max(PointsTable.Points(Ind));
   MinPtsPred = min(PointsTable.Points(Ind));
   Weight(ii) = 100*(MaxPtsPred-MinPtsPred)/PtsRange;
end

PredictorWeights = table(Predictor,Weight);
PredictorWeights(end+1,:) = PredictorWeights(end,:);
PredictorWeights.Predictor{end} = 'Total';
PredictorWeights.Weight(end) = sum(Weight);
disp(PredictorWeights)

      Predictor       Weight
    ______________    ______
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    {'CustAge'   }    14.556
    {'ResStatus' }     9.302
    {'EmpStatus' }    8.9174
    {'CustIncome'}    20.401
    {'TmWBank'   }    25.884
    {'OtherCC'   }    7.9885
    {'AMBalance' }    12.951
    {'Total'     }       100

The weights are defined as the range of points for the predictor divided by the range of points for the
scorecard.

Display Points for creditscorecard Object That Contains Missing Data

To create a creditscorecard object using the CreditCardData.mat file, load the data (using a
dataset from Refaat 2011). Using the dataMissing dataset, set the 'BinMissingData' indicator to
true.

load CreditCardData.mat 
sc = creditscorecard(dataMissing,'BinMissingData',true); 

Use autobinning with the creditscorecard object.

sc = autobinning(sc);

The binning map or rules for categorical data are summarized in a "category grouping" table,
returned as an optional output. By default, each category is placed in a separate bin. Here is the
information for the predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi=5×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Tenant'    }        1    
    {'Home Owner'}        2    
    {'Other'     }        3    

To group categories 'Tenant' and 'Other', modify the category grouping table cg, so the bin
number for 'Other' is the same as the bin number for 'Tenant'. Then use modifybins to update
the creditscorecard object.
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cg.BinNumber(3) = 2; 
sc = modifybins(sc,'ResStatus','Catg',cg); 

Display the updated bin information using bininfo. Note that the bin labels has been updated and
that the bin membership information is contained in the category grouping cg.

[bi,cg] = bininfo(sc,'ResStatus')

bi=4×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'Group1'   }    296     161    1.8385    -0.095463     0.0035249
    {'Group2'   }    480     223    2.1525     0.062196     0.0022419
    {'<missing>'}     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'   }    803     397    2.0227          NaN       0.00579

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Tenant'    }        1    
    {'Home Owner'}        2    
    {'Other'     }        2    

Use formatpoints with the 'Missing' name-value pair argument to indicate that missing data is
assigned 'maxpoints'.

sc = formatpoints(sc,'BasePoints',true,'Missing','maxpoints','WorstAndBest',[300 800]); 

Use fitmodel to fit the model.

sc = fitmodel(sc,'VariableSelection','fullmodel','Display','Off'); 

Then use displaypoints (Risk Management Toolbox) with the creditscorecard object to return
a table of points for all bins of all predictor variables used in the compactCreditScorecard object.
By setting the displaypoints (Risk Management Toolbox) name-value pair argument for
'ShowCategoricalMembers' to true, all the members contained in each individual group are
displayed.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc,'ShowCategoricalMembers',true)

PointsInfo=51×3 table
      Predictors            Bin          Points 
    _______________    ______________    _______

    {'BasePoints' }    {'BasePoints'}     535.25
    {'CustID'     }    {'[-Inf,121)'}     12.085
    {'CustID'     }    {'[121,241)' }     5.4738
    {'CustID'     }    {'[241,1081)'}    -1.4061
    {'CustID'     }    {'[1081,Inf]'}    -7.2217
    {'CustID'     }    {'<missing>' }     12.085
    {'CustAge'    }    {'[-Inf,33)' }    -25.973
    {'CustAge'    }    {'[33,37)'   }     -22.67
    {'CustAge'    }    {'[37,40)'   }    -17.122
    {'CustAge'    }    {'[40,46)'   }    -2.8071
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    {'CustAge'    }    {'[46,48)'   }     9.5034
    {'CustAge'    }    {'[48,51)'   }     10.913
    {'CustAge'    }    {'[51,58)'   }     13.844
    {'CustAge'    }    {'[58,Inf]'  }     37.541
    {'CustAge'    }    {'<missing>' }    -9.7271
    {'TmAtAddress'}    {'[-Inf,23)' }    -9.3683
      ⋮

MinScore = 300.0000

MaxScore = 800.0000

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [PointsInfo,MinScore,MaxScore] = displaypoints(sc,
‘ShowCategoricalMembers’,true)

ShowCategoricalMembers — Indicator for how to display bins labels of categories that were
grouped together
false (default) | true or false

Indicator for how to display bins labels of categories that were grouped together, specified as the
comma-separated pair consisting of 'ShowCategoricalMembers' and a logical scalar with a value
of true or false.

By default, when 'ShowCategoricalMembers' is false, bin labels are displayed as Group1,
Group2,…,Groupn, or if the bin labels were modified in creditscorecard, then the user-defined
bin label names are displayed.

If 'ShowCategoricalMembers' is true, all the members contained in each individual group are
displayed.
Data Types: logical

Output Arguments
PointsInfo — One row per bin, per predictor, with the corresponding points
table

One row per bin, per predictor, with the corresponding points, returned as a table. For example:
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Predictors Bin Points
Predictor_1 Bin_11 Points_11
Predictor_1 Bin_12 Points_12
Predictor_1 Bin_13 Points_13
 ... ...
Predictor_1 '<missing>' NaN (Default)
Predictor_2 Bin_21 Points_21
Predictor_2 Bin_22 Points_22
Predictor_2 Bin_23 Points_23
 ... ...
Predictor_2 '<missing>' NaN (Default)
Predictor_j Bin_ji Points_ji
 ... ...
Predictor_j '<missing>' NaN (Default)

displaypoints always displays a '<missing>' bin for each predictor. The value of the
'<missing>' bin comes from the initial creditscorecard object, and the '<missing>' bin is set
to NaN whenever the scorecard model has no information on how to assign points to missing data.

To configure the points for the '<missing>' bin, you must use the initial creditscorecard object.
For predictors that have missing values in the training set, the points for the '<missing>' bin are
estimated from the data if the 'BinMissingData' name-value pair argument for is set to true
using creditscorecard. When the 'BinMissingData' parameter is set to false, or when the
data contains no missing values in the training set, use the 'Missing' name-value pair argument in
formatpoints to indicate how to assign points to the missing data.

Another option is to use fillmissing to specify replacement "fill" values for predictors with a NaN
or <undefined> value. If you use fillmissing, then the displaypoints '<missing>' row has
the same points as the bin associated with the fill value.

When base points are reported separately (see formatpoints), the first row of the returned
PointsInfo table contains the base points.

MinScore — Minimum possible total score
scalar

Minimum possible total score, returned as a scalar.

Note Minimum score is the lowest possible total score in the mathematical sense, independently of
whether a low score means high risk or low risk.

MaxScore — Maximum possible total score
scalar

Maximum possible total score, returned as a scalar.

19 Functions

19-1768



Note Maximum score is the highest possible total score in the mathematical sense, independently of
whether a high score means high risk or low risk.

Algorithms
The points for predictor j and bin i are, by default, given by

Points_ji = (Shift + Slope*b0)/p + Slope*(bj*WOEj(i))

where bj is the model coefficient of predictor j, p is the number of predictors in the model, and
WOEj(i) is the Weight of Evidence (WOE) value for the i-th bin corresponding to the j-th model
predictor. Shift and Slope are scaling constants.

When the base points are reported separately (see the formatpoints name-value pair argument
BasePoints), the base points are given by

Base Points = Shift + Slope*b0,

and the points for the j-th predictor, i-th row are given by

Points_ji = Slope*(bj*WOEj(i))).

By default, the base points are not reported separately.

The minimum and maximum scores are:
MinScore = Shift + Slope*b0 + min(Slope*b1*WOE1) + ... +min(Slope*bp*WOEp)),
MaxScore = Shift + Slope*b0 + max(Slope*b1*WOE1) + ... +max(Slope*bp*WOEp)).

Use formatpoints to control the way points are scaled, rounded, and whether the base points are
reported separately. See formatpoints for more information on format parameters and for details
and formulas on these formatting options.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor | plotbins |
fillmissing | modifybins | bindata | fitmodel | formatpoints | score | setmodel |
probdefault | validatemodel

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47

Introduced in R2014b
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fitmodel
Fit logistic regression model to Weight of Evidence (WOE) data

Syntax
sc = fitmodel(sc)

[sc,mdl] = fitmodel(sc)
[sc,mdl] = fitmodel( ___ ,Name,Value)

Description
sc = fitmodel(sc) fits a logistic regression model to the Weight of Evidence (WOE) data and
stores the model predictor names and corresponding coefficients in the creditscorecard object.

fitmodel internally transforms all the predictor variables into WOE values, using the bins found
with the automatic or manual binning process. The response variable is mapped so that "Good" is 1,
and "Bad" is 0. This implies that higher (unscaled) scores correspond to better (less risky) individuals
(smaller probability of default).

Alternatively, you can use setmodel to provide names of the predictors that you want in the logistic
regression model, along with their corresponding coefficients.

[sc,mdl] = fitmodel(sc) fits a logistic regression model to the Weight of Evidence (WOE) data
and stores the model predictor names and corresponding coefficients in the creditscorecard
object. fitmodel returns an updated creditscorecard object and a GeneralizedLinearModel
object containing the fitted model.

fitmodel internally transforms all the predictor variables into WOE values, using the bins found
with the automatic or manual binning process. The response variable is mapped so that "Good" is 1,
and "Bad" is 0. This implies that higher (unscaled) scores correspond to better (less risky) individuals
(smaller probability of default).

Alternatively, you can use setmodel to provide names of the predictors that you want in the logistic
regression model, along with their corresponding coefficients.

[sc,mdl] = fitmodel( ___ ,Name,Value) fits a logistic regression model to the Weight of
Evidence (WOE) data using optional name-value pair arguments and stores the model predictor
names and corresponding coefficients in the creditscorecard object. Using name-value pair
arguments, you can select which Generalized Linear Model to fit the data. fitmodel returns an
updated creditscorecard object and a GeneralizedLinearModel object containing the fitted
model.

Examples

Fit a Stepwise Logistic Model

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).
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load CreditCardData
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform automatic binning.

sc = autobinning(sc)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default).

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
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                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Fit a Stepwise Logistic Model For a creditscorecard Object Containing Weights

Use the CreditCardData.mat file to load the data (dataWeights) that contains a column
(RowWeights) for the weights (using a dataset from Refaat 2011).

load CreditCardData

Create a creditscorecard object using the optional name-value pair argument for 'WeightsVar'.

sc = creditscorecard(dataWeights,'IDVar','CustID','WeightsVar','RowWeights')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x12 table]

Perform automatic binning.

sc = autobinning(sc)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
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                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x12 table]

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default). When the optional name-value pair argument 'WeightsVar' is used to specify
observation (sample) weights, the mdl output uses the weighted counts with stepwiseglm and
fitglm.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 764.3187, Chi2Stat = 15.81927, PValue = 6.968927e-05
2. Adding TmWBank, Deviance = 751.0215, Chi2Stat = 13.29726, PValue = 0.0002657942
3. Adding AMBalance, Deviance = 743.7581, Chi2Stat = 7.263384, PValue = 0.007037455

Generalized linear regression model:
    logit(status) ~ 1 + CustIncome + TmWBank + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70642     0.088702     7.964    1.6653e-15
    CustIncome      1.0268      0.25758    3.9862    6.7132e-05
    TmWBank         1.0973      0.31294    3.5063     0.0004543
    AMBalance       1.0039      0.37576    2.6717     0.0075464

1200 observations, 1196 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 36.4, p-value = 6.22e-08

Fit a Logistic Model with All Predictors

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'

 fitmodel
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            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform automatic binning.

sc = autobinning(sc,'Algorithm','EqualFrequency')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. Set the VariableSelection name-value pair argument to FullModel
to specify that all predictors must be included in the fitted logistic regression model.

sc = fitmodel(sc,'VariableSelection','FullModel');

Generalized linear regression model:
    status ~ [Linear formula with 10 terms in 9 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE        tStat      pValue  
                   ________    ________    _______    _________

    (Intercept)    0.70262     0.063862     11.002    3.734e-28
    CustAge        0.57683      0.27064     2.1313     0.033062
    TmAtAddress     1.0653      0.55233     1.9287     0.053762
    ResStatus       1.4189      0.65162     2.1775     0.029441
    EmpStatus      0.89916      0.29217     3.0776     0.002087
    CustIncome     0.77506      0.21942     3.5323    0.0004119
    TmWBank         1.0826      0.26583     4.0727    4.648e-05
    OtherCC         1.1354      0.52827     2.1493     0.031612
    AMBalance      0.99315      0.32642     3.0425    0.0023459
    UtilRate       0.16723      0.55745    0.29999      0.76419

1200 observations, 1190 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 85.6, p-value = 1.25e-14
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Fit a Stepwise Logistic Model When Using Missing Data

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))

Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);
disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1×11 cell}
        NumericPredictors: {'CustAge'  'TmAtAddress'  'CustIncome'  'TmWBank'  'AMBalance'  'UtilRate'}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1×9 cell}
                     Data: [1200×11 table]

Display and plot bin information for numeric data for 'CustAge' that includes missing data in a
separate bin labelled <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

 fitmodel

19-1775



    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')

Display and plot bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627
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plotbins(sc,'ResStatus')

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default). For predictors that have missing data, there is an explicit <missing> bin, with a
corresponding WOE value computed from the data. When using fitmodel, the corresponding WOE
value for the <missing> bin is applied when performing the WOE transformation. For example, a
missing value for customer age (CustAge) is replaced with -0.15787 which is the WOE value for the
<missing> bin for the CustAge predictor. However, when 'BinMissingData' is false, a missing
value for CustAge remains as missing (NaN) when applying the WOE transformation.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
    Distribution = Binomial

Estimated Coefficients:

 fitmodel
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                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [sc,mdl] = fitmodel(sc,'VariableSelection','FullModel')

PredictorVars — Predictor variables for fitting creditscorecard object
all predictors in the creditscorecard object (default) | cell array of character vectors

Predictor variables for fitting the creditscorecard object, specified as the comma-separated pair
consisting of 'PredictorVars' and a cell array of character vectors. When provided, the
creditscorecard object property PredictorsVars is updated. Note that the order of predictors
in the original dataset is enforced, regardless of the order in which 'PredictorVars' is provided.
When not provided, the predictors used to create the creditscorecard object (by using
creditscorecard) are used.
Data Types: cell

VariableSelection — Variable selection method to fit logistic regression model
'Stepwise' (default) | character vector with values 'Stepwise', 'FullModel'

The variable selection method to fit the logistic regression model, specified as the comma-separated
pair consisting of 'VariableSelection' and a character vector with values 'Stepwise' or
'FullModel':

• Stepwise — Uses a stepwise selection method which calls the Statistics and Machine Learning
Toolbox function stepwiseglm. Only variables in PredictorVars can potentially become part of
the model and uses the StartingModel name-value pair argument to select the starting model.
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• FullModel — Fits a model with all predictor variables in the PredictorVars name-value pair
argument and calls fitglm.

Note Only variables in the PredictorVars property of the creditscorecard object can
potentially become part of the logistic regression model and only linear terms are included in this
model with no interactions or any other higher-order terms.

The response variable is mapped so that “Good” is 1 and “Bad” is 0.

Data Types: char

StartingModel — Initial model for Stepwise variable selection
'Constant' (default) | character vector with values 'Constant', 'Linear'

Initial model for the Stepwise variable selection method, specified as the comma-separated pair
consisting of 'StartingModel' and a character vector with values 'Constant' or 'Linear'. This
option determines the initial model (constant or linear) that the Statistics and Machine Learning
Toolbox function stepwiseglm starts with.

• Constant — Starts the stepwise method with an empty (constant only) model.
• Linear — Starts the stepwise method from a full (all predictors in) model.

Note StartingModel is used only for the Stepwise option of VariableSelection and has no
effect for the FullModel option of VariableSelection.

Data Types: char

Display — Indicator to display model information at command line
'On' (default) | character vector with values 'On', 'Off'

Indicator to display model information at command line, specified as the comma-separated pair
consisting of 'Display' and a character vector with value 'On' or 'Off'.
Data Types: char

Output Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object. The creditscorecard
object contains information about the model predictors and coefficients used to fit the WOE data. For
more information on using the creditscorecard object, see creditscorecard.

mdl — Fitted logistic model
GeneralizedLinearModel object

Fitted logistic model, retuned as an object of type GeneralizedLinearModel containing the fitted
model. For more information on a GeneralizedLinearModel object, see
GeneralizedLinearModel.

 fitmodel
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Note When creating the creditscorecard object with creditscorecard, if the optional name-
value pair argument WeightsVar was used to specify observation (sample) weights, then mdl uses
the weighted counts with stepwiseglm and fitglm.

More About
Using fitmodel with Weights

When observation weights are provided in the credit scorecard data, the weights are used to
calibrate the model coefficients.

The underlying Statistics and Machine Learning Toolbox functionality for stepwiseglm and fitglm
supports observation weights. The weights also affect the logistic model through the WOE values. The
WOE transformation is applied to all predictors before fitting the logistic model. The observation
weights directly impact the WOE values. For more information, see “Using bininfo with Weights” on
page 19-1866 and “Credit Scorecard Modeling Using Observation Weights” on page 8-54.

Therefore, the credit scorecard points and final score depend on the observation weights through
both the logistic model coefficients and the WOE values.

Models

A logistic regression model is used in the creditscorecard object.

For the model, the probability of being “Bad” is defined as: ProbBad = exp(-s) / (1 + exp(-
s)).

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
fitConstrainedModel | creditscorecard | autobinning | bininfo | predictorinfo |
modifypredictor | plotbins | modifybins | bindata | displaypoints | formatpoints |
score | stepwiseglm | fitglm | setmodel | probdefault | validatemodel |
GeneralizedLinearModel

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47
“Credit Scorecard Modeling Using Observation Weights” on page 8-54
“What Are Generalized Linear Models?”

Introduced in R2014b
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fitConstrainedModel
Fit logistic regression model to Weight of Evidence (WOE) data subject to constraints on model
coefficients

Syntax
[sc,mdl] = fitConstrainedModel(sc)

[sc,mdl] = fitConstrainedModel( ___ ,Name,Value)

Description
[sc,mdl] = fitConstrainedModel(sc) fits a logistic regression model to the Weight of
Evidence (WOE) data subject to equality, inequality, or bound constraints on the model coefficients.
fitConstrainedModel stores the model predictor names and corresponding coefficients in an
updated creditscorecard object sc and returns the GeneralizedLinearModel object mdl which
contains the fitted model.

[sc,mdl] = fitConstrainedModel( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Credit Scorecards with Constrained Logistic Regression Coefficients

To compute scores for a creditscorecard object with constraints for equality, inequality, or bounds
on the coefficients of the logistic regression model, use fitConstrainedModel. Unlike fitmodel,
fitConstrainedModel solves for both the unconstrained and constrained problem. The current
solver used to minimize an objective function for fitConstrainedModel is fmincon, from the
Optimization Toolbox™.

This example has three main sections. First, fitConstrainedModel is used to solve for the
coefficients in the unconstrained model. Then, fitConstrainedModel demonstrates how to use
several types of constraints. Finally, fitConstrainedModel uses bootstrapping for the significance
analysis to determine which predictors to reject from the model.

Create the creditscorecard Object and Bin data
load CreditCardData.mat
sc = creditscorecard(data,'IDVar','CustID');
sc = autobinning(sc);

Unconstrained Model Using fitConstrainedModel

Solve for the unconstrained coefficients using fitConstrainedModel with default values for the
input parameters. fitConstrainedModel uses the internal optimization solver fmincon from the
Optimization Toolbox™. If you do not set any constraints, fmincon treats the model as an
unconstrained optimization problem. The default parameters for the LowerBound and UpperBound
are -Inf and +Inf, respectively. For the equality and inequality constraints, the default is an empty
numeric array.

 fitConstrainedModel
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[sc1,mdl1] = fitConstrainedModel(sc);
coeff1 = mdl1.Coefficients.Estimate;
disp(mdl1.Coefficients);

                   Estimate 
                   _________

    (Intercept)      0.70246
    CustAge           0.6057
    TmAtAddress       1.0381
    ResStatus         1.3794
    EmpStatus        0.89648
    CustIncome       0.70179
    TmWBank           1.1132
    OtherCC           1.0598
    AMBalance         1.0572
    UtilRate       -0.047597

Unlike fitmodel which gives p-values, when using fitConstrainedModel, you must use
bootstrapping to find out which predictors are rejected from the model, when subject to constraints.
This is illustrated in the "Significance Bootstrapping" section.

Using fitmodel to Compare the Results and Calibrate the Model

fitmodel fits a logistic regression model to the Weight-of-Evidence (WOE) data and there are no
constraints. You can compare the results from the "Unconstrained Model Using fitConstrainedModel"
section with those of fitmodel to verify that the model is well calibrated.

Now, solve the unconstrained problem by using fitmodel. Note that fitmodel and
fitConstrainedModel use different solvers. While fitConstrainedModel uses fmincon,
fitmodel uses stepwiseglm by default. To include all predictors from the start, set the
'VariableSelection' name-value pair argument of fitmodel to 'fullmodel'.

[sc2,mdl2] = fitmodel(sc,'VariableSelection','fullmodel','Display','off');
coeff2 = mdl2.Coefficients.Estimate;
disp(mdl2.Coefficients);

                   Estimate        SE         tStat        pValue  
                   _________    ________    _________    __________

    (Intercept)      0.70246    0.064039       10.969    5.3719e-28
    CustAge           0.6057     0.24934       2.4292      0.015131
    TmAtAddress       1.0381     0.94042       1.1039       0.26963
    ResStatus         1.3794      0.6526       2.1137      0.034538
    EmpStatus        0.89648     0.29339       3.0556     0.0022458
    CustIncome       0.70179     0.21866       3.2095     0.0013295
    TmWBank           1.1132     0.23346       4.7683    1.8579e-06
    OtherCC           1.0598     0.53005       1.9994      0.045568
    AMBalance         1.0572     0.36601       2.8884     0.0038718
    UtilRate       -0.047597     0.61133    -0.077858       0.93794

figure
plot(coeff1,'*')
hold on
plot(coeff2,'s')
xticklabels(mdl1.Coefficients.Properties.RowNames)
ylabel('Model Coefficients')
title('Unconstrained Model Coefficients')
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legend({'Calculated by fitConstrainedModel with defaults','Calculated by fimodel'},'Location','best')
grid on

As both the tables and the plot show, the model coefficients match. You can be confident that this
implementation of fitConstrainedModel is well calibrated.

Constrained Model

In the constrained model approach, you solve for the values of the coefficients bi of the logistic model,
subject to constraints. The supported constraints are bound, equality, or inequality. The coefficients
maximize the likelihood-of-default function defined, for observation i, as:

Li = p Defaulti
yi × 1− p Defaulti

1− yi

where:

•
p Defaulti = 1

1 + e−bxi

• b = b1 b2 . . . bK  is an unknown model coefficient
• xi = xi1 x2 . . . xiK  is the predictor values at observation i
• yi is the response value; a value of 1 represents default and a value of 0 represents non-default
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This formula is for non-weighted data. When observation i has weight wi, it means that there are wi as
many observations i. Therefore, the probability that default occurs at observation i is the product of
the probabilities of default:

pi = p Defaulti
yi * p Defaulti

yi * . . . * p Defaulti
yi

wi times
= p Defaulti

wi * yi

Likewise, the probability of non-default for weighted observation i is:

pi = p Defaulti
1− yi * p Defaulti

1− yi * . . . * p Defaulti
1− yi

wi times
= 1− p Defaulti

wi * 1− yi

For weighted data, if there is default at a given observation i whose weight is wi, it is as if there was a
wi count of that one observation, and all of them either all default, or all non-default. wi may or may
not be an integer.

Therefore, for the weighted data, the likelihood-of-default function for observation i in the first
equation becomes

Li = p Defaulti
wi * yi × 1− p Defaulti

wi * 1− yi

By assumption, all defaults are independent events, so the objective function is

L = L1 × L2 × . . . × LN

or, in more convenient logarithmic terms:

log L = ∑i = 1
N wi * yilog p Defaulti + 1− yi log 1− p Defaulti

Apply Constraints on the Coefficients

After calibrating the unconstrained model as described in the "Unconstrained Model Using
fitConstrainedModel" section, you can solve for the model coefficients subject to constraints. You can
choose lower and upper bounds such that 0 ≤ bi ≤ 1, ∀i = 1 . . . K, except for the intercept. Also, since
the customer age and customer income are somewhat correlated, you can also use additional
constraints on their coefficients, for example, |bCusAge− bCustIncome | < 0 . 1. The coefficients
corresponding to the predictors 'CustAge' and 'CustIncome' in this example are b2 and b6,
respectively.

K  = length(sc.PredictorVars);
lb = [-Inf;zeros(K,1)];
ub = [Inf;ones(K,1)];
AIneq = [0 -1 0 0 0 1 0 0 0 0;0 -1 0 0 0 -1 0 0 0 0];
bIneq = [0.05;0.05];
Options = optimoptions('fmincon','SpecifyObjectiveGradient',true,'Display','off');
[sc3,mdl] = fitConstrainedModel(sc,'AInequality',AIneq,'bInequality',bIneq,...
    'LowerBound',lb,'UpperBound',ub,'Options',Options);

figure
plot(coeff1,'*','MarkerSize',8)
hold on
plot(mdl.Coefficients.Estimate,'.','MarkerSize',12)
line(xlim,[0 0],'color','k','linestyle',':')
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line(xlim,[1 1],'color','k','linestyle',':')
text(1.1,0.1,'Lower bound')
text(1.1,1.1,'Upper bound')
grid on

xticklabels(mdl.Coefficients.Properties.RowNames)
ylabel('Model Coefficients')
title('Comparison Between Unconstrained and Constrained Solutions')
legend({'Unconstrained','Constrained'},'Location','best')

Significance Bootstrapping

For the unconstrained problem, standard formulas are available for computing p-values, which you
use to evaluate which coefficients are significant and which are to be rejected. However, for the
constrained problem, standard formulas are not available, and the derivation of formulas for
significance analysis is complicated. A practical alternative is to perform significance analysis
through bootstrapping.

In the bootstrapping approach, when using fitConstrainedModel, you set the name-value
argument 'Bootstrap' to true and chose a value for the name-value argument
'BootstrapIter'. Bootstrapping means that NIter samples (with replacement) from the original
observations are selected. In each iteration, fitConstrainedModel solves for the same constrained
problem as the "Constrained Model" section. fitConstrainedModel obtains several values
(solutions) for each coefficient bi and you can plot these as a boxplot or histogram. Using the
boxplot or histogram, you can examine the median values to evaluate whether the coefficients are
away from zero and how much the coefficients deviate from their means.
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lb = [-Inf;zeros(K,1)];
ub = [Inf;ones(K,1)];
AIneq = [0 -1 0 0 0 1 0 0 0 0;0 1 0 0 0 -1 0 0 0 0];
bIneq = [0.05;0.05];
c0 = zeros(K,1);
NIter = 100;
Options = optimoptions('fmincon','SpecifyObjectiveGradient',true,'Display','off');
rng('default')

[sc,mdl] = fitConstrainedModel(sc,'AInequality',AIneq,'bInequality',bIneq,...
    'LowerBound',lb,'UpperBound',ub,'Bootstrap',true,'BootstrapIter',NIter,'Options',Options);

figure
boxplot(mdl.Bootstrap.Matrix,mdl.Coefficients.Properties.RowNames)
hold on
line(xlim,[0 0],'color','k','linestyle',':')
line(xlim,[1 1],'color','k','linestyle',':')
title('Bootstrapping with N = 100 Iterations')
ylabel('Model Coefficients')

The solid red lines in the boxplot indicate that the median values and the bottom and top edges are
for the 25th and 75th percentiles. The "whiskers" are the minimum and maximum values, not
including outliers. The dotted lines represent the lower and upper bound constraints on the
coefficients. In this example, the coefficients cannot be negative, by construction.

To help decide which predictors to keep in the model, assess the proportion of times each coefficient
is zero.
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Tol = 1e-6;
figure
bar(100*sum(mdl.Bootstrap.Matrix<= Tol)/NIter)
ylabel('% of Zeros')
title('Percentage of Zeros Over Bootstrap Iterations')
xticklabels(mdl.Coefficients.Properties.RowNames)
grid on

Based on the plot, you can reject 'UtilRate' since it has the highest number of zero values. You can
also decide to reject 'TmAtAddress' since it shows a peak, albeit small.

Set the Corresponding Coefficients to Zero

To set the corresponding coefficients to zero, set their upper bound to zero and solve the model again
using the original data set.

ub(3) = 0;
ub(end) = 0;
[sc,mdl] = fitConstrainedModel(sc,'AInequality',AIneq,'bInequality',bIneq,'LowerBound',lb,'UpperBound',ub,'Options',Options);
Ind = (abs(mdl.Coefficients.Estimate) <= Tol);
ModelCoeff = mdl.Coefficients.Estimate(~Ind);
ModelPreds = mdl.Coefficients.Properties.RowNames(~Ind)';

figure
hold on
plot(ModelCoeff,'.','MarkerSize',12)
ylim([0.2 1.2])
ylabel('Model Coefficients')
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xticklabels(ModelPreds)
title('Selected Model Coefficients After Bootstrapping')
grid on

Set Constrained Coefficients Back Into the creditscorecard

Now that you have solved for the constrained coefficients, use setmodel to set the model's
coefficients and predictors. Then you can compute the (unscaled) points.

ModelPreds = ModelPreds(2:end);
sc = setmodel(sc,ModelPreds,ModelCoeff);
p = displaypoints(sc);

disp(p)

      Predictors               Bin              Points  
    ______________    _____________________    _________

    {'CustAge'   }    {'[-Inf,33)'        }     -0.16725
    {'CustAge'   }    {'[33,37)'          }     -0.14811
    {'CustAge'   }    {'[37,40)'          }    -0.065607
    {'CustAge'   }    {'[40,46)'          }     0.044404
    {'CustAge'   }    {'[46,48)'          }      0.21761
    {'CustAge'   }    {'[48,58)'          }      0.23404
    {'CustAge'   }    {'[58,Inf]'         }      0.49029
    {'CustAge'   }    {'<missing>'        }          NaN
    {'ResStatus' }    {'Tenant'           }    0.0044307
    {'ResStatus' }    {'Home Owner'       }      0.11932
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    {'ResStatus' }    {'Other'            }      0.30048
    {'ResStatus' }    {'<missing>'        }          NaN
    {'EmpStatus' }    {'Unknown'          }    -0.077028
    {'EmpStatus' }    {'Employed'         }      0.31459
    {'EmpStatus' }    {'<missing>'        }          NaN
    {'CustIncome'}    {'[-Inf,29000)'     }     -0.43795
    {'CustIncome'}    {'[29000,33000)'    }    -0.097814
    {'CustIncome'}    {'[33000,35000)'    }     0.053667
    {'CustIncome'}    {'[35000,40000)'    }     0.081921
    {'CustIncome'}    {'[40000,42000)'    }     0.092364
    {'CustIncome'}    {'[42000,47000)'    }      0.23932
    {'CustIncome'}    {'[47000,Inf]'      }      0.42477
    {'CustIncome'}    {'<missing>'        }          NaN
    {'TmWBank'   }    {'[-Inf,12)'        }     -0.15547
    {'TmWBank'   }    {'[12,23)'          }    -0.031077
    {'TmWBank'   }    {'[23,45)'          }    -0.021091
    {'TmWBank'   }    {'[45,71)'          }      0.36703
    {'TmWBank'   }    {'[71,Inf]'         }      0.86888
    {'TmWBank'   }    {'<missing>'        }          NaN
    {'OtherCC'   }    {'No'               }     -0.16832
    {'OtherCC'   }    {'Yes'              }      0.15336
    {'OtherCC'   }    {'<missing>'        }          NaN
    {'AMBalance' }    {'[-Inf,558.88)'    }      0.34418
    {'AMBalance' }    {'[558.88,1254.28)' }    -0.012745
    {'AMBalance' }    {'[1254.28,1597.44)'}    -0.057879
    {'AMBalance' }    {'[1597.44,Inf]'    }     -0.19896
    {'AMBalance' }    {'<missing>'        }          NaN

Using the unscaled points, you can follow the remainder of the “Credit Scorecard Modeling
Workflow” on page 8-51 to compute scores and probabilities of default and to validate the model.

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [sc,mdl] = fitConstrainedModel(sc,'LowerBound',2,'UpperBound',100)

PredictorVars — Predictor variables for fitting creditscorecard object
all predictors in the creditscorecard object (default) | cell array of character vectors

Predictor variables for fitting the creditscorecard object, specified as the comma-separated pair
consisting of 'PredictorVars' and a cell array of character vectors. If you provide predictor
variables, then the function updates the creditscorecard object property PredictorsVars. The
order of predictors in the original dataset is enforced, regardless of the order in which
'PredictorVars' is provided. When not provided, the predictors used to create the
creditscorecard object (by using creditscorecard) are used.
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Data Types: cell

LowerBound — Lower bound
-Inf (default) | scalar | vector

Lower bound, specified as the comma-separated pair consisting of 'LowerBound' and a scalar or a
real vector of length N+1, where N is the number of model coefficients in the creditscorecard
object.
Data Types: double

UpperBound — Upper bound
Inf (default) | scalar | vector

Upper bound, specified as the comma-separated pair consisting of 'UpperBound' and a scalar or a
real vector of length N+1, where N is the number of model coefficients in the creditscorecard
object.
Data Types: double

AInequality — Matrix of linear inequality constraints
[] (default) | matrix

Matrix of linear inequality constraints, specified as the comma-separated pair consisting of
'AInequality' and a real M-by-N+1 matrix, where M is the number of constraints and N is the
number of model coefficients in the creditscorecard object.
Data Types: double

bInequality — Vector of linear inequality constraints
[] (default) | vector

Vector of linear inequality constraints, specified as the comma-separated pair consisting of
'bInequality' and a real M-by-1 vector, where M is the number of constraints.
Data Types: double

AEquality — Matrix of linear equality constraints
[] (default) | matrix

Matrix of linear equality constraints, specified as the comma-separated pair consisting of
'AEquality' and a real M-by-N+1 matrix, where M is the number of constraints and N is the number
of model coefficients in the creditscorecard object.
Data Types: double

bEquality — Vector of linear equality constraints
[] (default) | vector

Vector of linear equality constraints, specified as the comma-separated pair consisting of
'bEquality' and a real M-by-1 vector, where M is the number of constraints.
Data Types: double

Bootstrap — Indicator that bootstrapping defines the solution accuracy
false (default) | logical with a value of true or false
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Indicator that bootstrapping defines the solution accuracy, specified as the comma-separated pair
consisting of 'Bootstrap' and a logical with a value of true or false.
Data Types: logical

BootstrapIter — Number of bootstrapping iterations
100 (default) | positive integer

Number of bootstrapping iterations, specified as the comma-separated pair consisting of
'BootstrapIter' and a positive integer.
Data Types: double

Options — optimoptions object
optimoptions('fmincon','SpecifiedObjectiveGradient',true,'Display','off')
(default) | object

optimoptions object, specified as the comma-separated pair consisting of 'Options' and an
optimoptions object. You can create the object by using optimoptions from Optimization Toolbox.
Data Types: object

Output Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object. The creditscorecard
object contains information about the model predictors and coefficients that fit the WOE data. For
more information on using the creditscorecard object, see creditscorecard.

mdl — Fitted logistic model
GeneralizedLinearModel object

Fitted logistic model, retuned as a GeneralizedLinearModel object containing the fitted model.
For more information on a GeneralizedLinearModel object, see GeneralizedLinearModel.

Note If you specify the optional WeightsVar argument when creating a creditscorecard object,
then mdl uses the weighted counts with stepwiseglm and fitglm.

The mdl structure has the following fields:

• Coefficients is a table in which the RowNames property contains the names of the model
coefficients and has a single column, 'Estimate', containing the solution.

• Bootstrap exists when 'Bootstrap' is set to true, and has two fields:

• CI contains the 95% confidence interval for the solution.

• Matrix an NIter-by-N matrix of coefficients, where NIter is the number of bootstrap iterations
and N is the number of model coefficients.

• Solver has three fields:

• Options additional information on the algorithm and solution.
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• ExitFlag contains an integer that codes the reason why the solver stopped. For more
information, see fmincon.

• Output is a structure with additional information on the optimization process.

More About
Model Coefficients

When you use fitConstrainedModel to solve for the model coefficients, the function solves for the
same number of parameters as predictor variables you specify, plus one additional coefficient for the
intercept.

The first coefficient corresponds to the intercept. If you provide predictor variables using the
'PredictorVars' optional input argument, then fitConstrainedModel updates the
creditscorecard object property PredictorsVars. The order of predictors in the original dataset
is enforced, regardless of the order in which 'PredictorVars' is provided. When not provided, the
predictors used to create the creditscorecard object (by using creditscorecard) are used.

Calibration

The constrained model is first calibrated such that, when unconstrained, the solution is identical,
within a certain tolerance, to the solution given by fitmodel, with the'fullmodel' choice for the
name-value argument 'VariableSelection'.

As an exercise, you can test the calibration by leaving all name-value parameters of
fitConstrainedModel to their default values. The solutions are identical to within a 10-6 to 10-5

tolerance.

Calibration with Weights and Missing Data

If the credit scorecard data contains observation weights, the fitConstrainedModel function uses
the weights to calibrate the model coefficients.

For credit scorecard data with no missing data and no weights, the likelihood function for
observation i is

Li = p(Defaulti × (1

where p(Defaulti) = 1
(1 + e−bxi)

where:

• b = [b1 b2...bK] is for unknown model coefficients
• xi = [xi1 xi2...xiK] is the predictor values at observation i
• yi is the response value of 1 (the default) or a value of 0.

When observation i has weight wi, it means that there are wi observations. Because of the
independence of defaults between observations, the probability that there is default at observation i
is the product of the probabilities of default

pi = p(Defaulti ∗ p(Defaulti ∗ ... ∗ p(Defaulti = p(Defaulti  
                                                    wi times
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Likewise, the probability of non-default for weighted observation i is

p i = p( ∗ p( ∗ ... ∗ p( = (1− p(Defaulti  
                                                    wi times

For weighted data, if there is default at a given observation i whose weight is wi, it is as if there was
wi defaults of that one observation, and all of them either all default, or all non-default. wi may or may
not be an integer. Therefore, the likelihood function for observation i becomes

Li = p(Defaulti)
wi ∗ yi × (1− p(Defaulti))

wi ∗ (1− yi)

Likewise, for data with missing observations (NaN, <undefined>, or “Missing”), the model is
calibrated by comparing the unconstrained case with results given by fitglm. Where the data
contains missing observations, the WOE input matrix has NaN values. The NaN values do not pose any
issue for fitglm (unconstrained), or fmincon (constrained). The only edge case is if all observations
of a given predictor are missing, in which case, that predictor is discarded from the model.

Bootstrapping

Bootstrapping is a method for estimating the accuracy of the solution obtained after iterating the
objective function NIter times.

When 'Bootstrap' is set to true, the fitConstrainedModel function performs sampling with
replacement of the WOE values and is passed to the objective function. At the end of the iterative
process, the solutions are stored in a NIter-by-N+1 matrix, where N is the number of model
coefficients.

The 95% confidence interval (CI) returned in the output structure mdl.Bootstrap contains the
values of the coefficients at the 25th and 97.5th percentiles.

Models

A logistic regression model is used in the creditscorecard object.

For the model, the probability of being “Bad” is given by ProbBad = exp(-s) / (1 + exp(-s)).

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
fitmodel | creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor |
plotbins | modifybins | bindata | displaypoints | formatpoints | score | stepwiseglm |
fitglm | fmincon | setmodel | probdefault | validatemodel | GeneralizedLinearModel

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
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“About Credit Scorecards” on page 8-47
“Credit Scorecard Modeling Using Observation Weights” on page 8-54
“What Are Generalized Linear Models?”

Introduced in R2019a
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setmodel
Set model predictors and coefficients

Syntax
sc = setmodel(sc,ModelPredictors,ModelCoefficients)

Description
sc = setmodel(sc,ModelPredictors,ModelCoefficients) sets the predictors and
coefficients of a linear logistic regression model fitted outside the creditscorecard object and
returns an updated creditscorecard object. The predictors and coefficients are used for the
computation of scorecard points. Use setmodel in lieu of fitmodel, which fits a linear logistic
regression model, because setmodel offers increased flexibility. For example, when a model fitted
with fitmodel needs to be modified, you can use setmodel. For more information, see “Workflows
for Using setmodel” on page 19-1802.

Note When using setmodel, the following assumptions apply:

• The model coefficients correspond to a linear logistic regression model (where only linear terms
are included in the model and there are no interactions or any other higher-order terms).

• The model was previously fitted using Weight of Evidence (WOE) data with the response mapped
so that ‘Good’ is 1 and ‘Bad’ is 0.

Examples

Modify a GLM Model Fitted with fitmodel

This example shows how to use setmodel to make modifications to a logistic regression model
initially fitted using the fitmodel function, and then set the new logistic regression model predictors
and coefficients back into the creditscorecard object.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
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           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform automatic binning.

sc = autobinning(sc);

The standard workflow is to use the fitmodel function to fit a logistic regression model using a
stepwise method. However, fitmodel only supports limited options regarding the stepwise
procedure. You can use the optional mdl output argument from fitmodel to get a copy of the fitted
GeneralizedLinearModel object, to later modify.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Suppose you want to include, or "force," the predictor 'UtilRate' in the logistic regression model,
even though the stepwise method did not include it in the fitted model. You can add 'UtilRate' to
the logistic regression model using the GeneralizedLinearModel object mdl directly.

mdl = mdl.addTerms('UtilRate')

mdl = 
Generalized linear regression model:
    status ~ [Linear formula with 9 terms in 8 predictors]
    Distribution = Binomial
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Estimated Coefficients:
                   Estimate       SE        tStat        pValue  
                   ________    ________    ________    __________

    (Intercept)     0.70239    0.064001      10.975    5.0538e-28
    CustAge         0.60843     0.24936        2.44      0.014687
    ResStatus        1.3773      0.6529      2.1096      0.034896
    EmpStatus       0.88556     0.29303      3.0221     0.0025103
    CustIncome      0.70146      0.2186      3.2089     0.0013324
    TmWBank          1.1071     0.23307      4.7503    2.0316e-06
    OtherCC          1.0882     0.52918      2.0563       0.03975
    AMBalance        1.0413     0.36557      2.8483      0.004395
    UtilRate       0.013157     0.60864    0.021618       0.98275

1200 observations, 1191 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 5.26e-16

Use setmodel to update the model predictors and model coefficients in the creditscorecard
object. The ModelPredictors input argument does not explicitly include a string for the intercept.
However, the ModelCoefficients input argument does have the intercept information as its first
element.

ModelPredictors = mdl.PredictorNames

ModelPredictors = 8x1 cell
    {'CustAge'   }
    {'ResStatus' }
    {'EmpStatus' }
    {'CustIncome'}
    {'TmWBank'   }
    {'OtherCC'   }
    {'AMBalance' }
    {'UtilRate'  }

ModelCoefficients = mdl.Coefficients.Estimate

ModelCoefficients = 9×1

    0.7024
    0.6084
    1.3773
    0.8856
    0.7015
    1.1071
    1.0882
    1.0413
    0.0132

sc = setmodel(sc,ModelPredictors,ModelCoefficients);

Verify that 'UtilRate' is part of the scorecard predictors by displaying the scorecard points.

pi = displaypoints(sc)
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pi=41×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.17152
    {'CustAge'   }    {'[33,37)'     }     -0.15295
    {'CustAge'   }    {'[37,40)'     }    -0.072892
    {'CustAge'   }    {'[40,46)'     }     0.033856
    {'CustAge'   }    {'[46,48)'     }      0.20193
    {'CustAge'   }    {'[48,58)'     }      0.21787
    {'CustAge'   }    {'[58,Inf]'    }      0.46652
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.043826
    {'ResStatus' }    {'Home Owner'  }      0.11442
    {'ResStatus' }    {'Other'       }      0.36394
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.088843
    {'EmpStatus' }    {'Employed'    }      0.30193
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.46956
      ⋮

Fit a Logistic Regression Model Outside of the creditscorecard Object

This example shows how to use setmodel to fit a logistic regression model directly, without using the
fitmodel function, and then set the new model predictors and coefficients back into the
creditscorecard object. This approach gives more flexibility regarding options to control the
stepwise procedure. This example fits a logistic regression model with a nondefault value for the
'PEnter' parameter, the criterion to admit a new predictor in the logistic regression model during
the stepwise procedure.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument to indicate that 'CustID' contains ID
information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform automatic binning.
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sc = autobinning(sc);

The logistic regression model needs to be fit with Weight of Evidence (WOE) data. The WOE
transformation is a special case of binning, since the data first needs to be binned, and then the
binned information is mapped to the corresponding WOE values. This transformation is done using
the bindata function. bindata has an argument that prepares the data for the model fitting step. By
setting the bindata name-value pair argument for 'OutputType' to WOEModelInput':

• All predictors are converted to WOE values.
• The output contains only predictors and response (no 'IDVar' or any unused variables).
• Predictors with infinite or undefined (NaN) WOE values are discarded.
• The response values are mapped so that "Good" is 1 and "Bad" is 0 (this implies that higher

unscaled scores correspond to better, less risky customers).

bd = bindata(sc,'OutputType','WOEModelInput');

For example, the first ten rows in the original data for the variables 'CustAge', 'ResStatus',
'CustIncome', and 'status' (response variable) look like this:

data(1:10,{'CustAge' 'ResStatus' 'CustIncome' 'status'})

ans=10×4 table
    CustAge    ResStatus     CustIncome    status
    _______    __________    __________    ______

      53       Tenant          50000         0   
      61       Home Owner      52000         0   
      47       Tenant          37000         0   
      50       Home Owner      53000         0   
      68       Home Owner      53000         0   
      65       Home Owner      48000         0   
      34       Home Owner      32000         1   
      50       Other           51000         0   
      50       Tenant          52000         1   
      49       Home Owner      53000         1   

Here is how the same ten rows look after calling bindata with the name-value pair argument
'OutputType' set to 'WOEModelInput':

bd(1:10,{'CustAge' 'ResStatus' 'CustIncome' 'status'})

ans=10×4 table
    CustAge     ResStatus    CustIncome    status
    ________    _________    __________    ______

     0.21378    -0.095564      0.47972       1   
     0.62245     0.019329      0.47972       1   
     0.18758    -0.095564    -0.026696       1   
     0.21378     0.019329      0.47972       1   
     0.62245     0.019329      0.47972       1   
     0.62245     0.019329      0.47972       1   
    -0.39568     0.019329     -0.29217       0   
     0.21378      0.20049      0.47972       1   
     0.21378    -0.095564      0.47972       0   
     0.21378     0.019329      0.47972       0   
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Fit a logistic linear regression model using a stepwise method with the Statistics and Machine
Learning Toolbox™ function stepwiseglm, but use a nondefault value for the 'PEnter' and
'PRemove' optional arguments. The predictors 'ResStatus' and 'OtherCC' would normally be
included in the logistic linear regression model using default options for the stepwise procedure.

mdl = stepwiseglm(bd,'constant','Distribution','binomial',...
'Upper','linear','PEnter',0.025,'PRemove',0.05)

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

mdl = 
Generalized linear regression model:
    logit(status) ~ 1 + CustAge + EmpStatus + CustIncome + TmWBank + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70263     0.063759     11.02    3.0544e-28
    CustAge        0.57265       0.2482    2.3072      0.021043
    EmpStatus      0.88356      0.29193    3.0266      0.002473
    CustIncome     0.70399      0.21781    3.2321      0.001229
    TmWBank            1.1      0.23185    4.7443    2.0924e-06
    AMBalance       1.0313      0.32007    3.2221     0.0012724

1200 observations, 1194 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 81.4, p-value = 4.18e-16

Use setmodel to update the model predictors and model coefficients in the creditscorecard
object. The ModelPredictors input argument does not explicitly include a string for the intercept.
However, the ModelCoefficients input argument does have the intercept information as its first
element.

ModelPredictors = mdl.PredictorNames

ModelPredictors = 5x1 cell
    {'CustAge'   }
    {'EmpStatus' }
    {'CustIncome'}
    {'TmWBank'   }
    {'AMBalance' }

ModelCoefficients = mdl.Coefficients.Estimate

ModelCoefficients = 6×1

    0.7026
    0.5726
    0.8836
    0.7040
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    1.1000
    1.0313

sc = setmodel(sc,ModelPredictors,ModelCoefficients);

Verify that the desired model predictors are part of the scorecard predictors by displaying the
scorecard points.

pi = displaypoints(sc)

pi=30×3 table
      Predictors             Bin            Points  
    ______________    _________________    _________

    {'CustAge'   }    {'[-Inf,33)'    }     -0.10354
    {'CustAge'   }    {'[33,37)'      }    -0.086059
    {'CustAge'   }    {'[37,40)'      }    -0.010713
    {'CustAge'   }    {'[40,46)'      }     0.089757
    {'CustAge'   }    {'[46,48)'      }      0.24794
    {'CustAge'   }    {'[48,58)'      }      0.26294
    {'CustAge'   }    {'[58,Inf]'     }      0.49697
    {'CustAge'   }    {'<missing>'    }          NaN
    {'EmpStatus' }    {'Unknown'      }    -0.035716
    {'EmpStatus' }    {'Employed'     }      0.35417
    {'EmpStatus' }    {'<missing>'    }          NaN
    {'CustIncome'}    {'[-Inf,29000)' }     -0.41884
    {'CustIncome'}    {'[29000,33000)'}    -0.065161
    {'CustIncome'}    {'[33000,35000)'}     0.092353
    {'CustIncome'}    {'[35000,40000)'}      0.12173
    {'CustIncome'}    {'[40000,42000)'}      0.13259
      ⋮

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

ModelPredictors — Predictor names included in fitted model
cell array of character vectors with predictor values
{'PredictorName1','PredictorName2',...}

Predictor names included in the fitted model, specified as a cell array of character vectors as
{'PredictorName1','PredictorName2',...}. The predictor names must match predictor
variable names in the creditscorecard object.

Note Do not include a character vector for the constant term in ModelPredictors, setmodel
internally handles the '(Intercept)' term based on the number of model coefficients (see
ModelCoefficients).

 setmodel

19-1801



Data Types: cell

ModelCoefficients — Model coefficients corresponding to model predictors
numeric array with values [coeff1,coeff2,..]

Model coefficients corresponding to the model predictors, specified as a numeric array of model
coefficients, [coeff1,coeff2,..]. If N is the number of predictor names provided in
ModelPredictors, the size of ModelCoefficients can be N or N+1. If ModelCoefficients has
N+1 elements, then the first coefficient is used as the '(Intercept)' of the fitted model.
Otherwise, the '(Intercept)' is set to 0.
Data Types: double

Output Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object. The creditscorecard
object contains information about the model predictors and coefficients of the fitted model. For more
information on using the creditscorecard object, see creditscorecard.

More About
Workflows for Using setmodel

When using setmodel, there are two possible workflows to set the final model predictors and model
coefficients into a creditscorecard object.

The first workflow is:

• Use fitmodel to get the optional output argument mdl. This is a GeneralizedLinearModel
object and you can add and remove terms, or modify the parameters of the stepwise procedure.
Only linear terms can be in the model (no interactions or any other higher-order terms).

• Once the GeneralizedLinearModel object is satisfactory, set the final model predictors and
model coefficients into the creditscorecard object using the setmodel input arguments for
ModelPredictors and ModelCoefficients.

An alternate workflow is:

• Obtain the Weight of Evidence (WOE) data using bindata. Use the 'WOEModelInput' option for
the 'OutputType' name-value pair argument in bindata to ensure that:

• The predictors data is transformed to WOE.
• Only predictors whose bins have finite WOE values are included.
• The response variable is placed in the last column.
• The response variable is mapped (“Good” is 1 and “Bad” is 0).

• Use the data from the previous step to fit a linear logistic regression model (only linear terms in
the model, no interactions, or any other higher-order terms). See, for example, stepwiseglm.

• Once the GeneralizedLinearModel object is satisfactory, set the final model predictors and
model coefficients into the creditscorecard object using the setmodel input arguments for
ModelPredictors and ModelCoefficients.
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bindata
Binned predictor variables

Syntax
bdata = bindata(sc)
bdata = bindata(sc,data)
bdata = bindata(sc,Name,Value)

Description
bdata = bindata(sc) binned predictor variables returned as a table. This is a table of the same
size as the data input, but only the predictors specified in the creditscorecard object's
PredictorVars property are binned and the remaining ones are unchanged.

bdata = bindata(sc,data) returns a table of binned predictor variables. bindata returns a
table of the same size as the creditscorecard data, but only the predictors specified in the
creditscorecard object's PredictorVars property are binned and the remaining ones are
unchanged.

bdata = bindata(sc,Name,Value) binned predictor variables returned as a table using optional
name-value pair arguments. This is a table of the same size as the data input, but only the predictors
specified in the creditscorecard object's PredictorVars property are binned and the remaining
ones are unchanged.

Examples

Bin creditscorecard Data as Bin Numbers, Categories, or WOE Values

This example shows how to use the bindata function to simply bin or discretize data.

Suppose bin ranges of

• '0 to 30'
• '31 to 50'
• '51 and up'

are determined for the age variable (via manual or automatic binning). If a data point with age 41 is
given, binning this data point means placing it in the bin for 41 years old, which is the second bin, or
the '31 to 50' bin. Binning is then the mapping from the original data, into discrete groups or bins. In
this example, you can say that a 41-year old is mapped into bin number 2, or that it is binned into the
'31 to 50' category. If you know the Weight of Evidence (WOE) value for each of the three bins, you
could also replace the data point 41 with the WOE value corresponding to the second bin. bindata
supports the three binning formats just mentioned:

• Bin number (where the 'OutputType' name-value pair argument is set to 'BinNumber'); this is
the default option, and in this case, 41 is mapped to bin 2.

19 Functions

19-1804



• Categorical (where the 'OutputType' name-value pair argument is set to 'Categorical'); in
this case, 41 is mapped to the '31 to 50' bin.

• WOE value (where the 'OutputType' name-value pair argument is set to 'WOE'); in this case, 41
is mapped to the WOE value of bin number 2.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument to indicate that 'CustID' contains ID
information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform automatic binning.

sc = autobinning(sc);

Show the bin information for 'CustAge'.

bininfo(sc,'CustAge')

ans=8×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue
    _____________    ____    ___    ______    _________    _________

    {'[-Inf,33)'}     70      53    1.3208     -0.42622     0.019746
    {'[33,37)'  }     64      47    1.3617     -0.39568     0.015308
    {'[37,40)'  }     73      47    1.5532     -0.26411    0.0072573
    {'[40,46)'  }    174      94    1.8511    -0.088658     0.001781
    {'[46,48)'  }     61      25      2.44      0.18758    0.0024372
    {'[48,58)'  }    263     105    2.5048      0.21378     0.013476
    {'[58,Inf]' }     98      26    3.7692      0.62245       0.0352
    {'Totals'   }    803     397    2.0227          NaN     0.095205

These are the first 10 age values in the original data, used to create the creditscorecard object.

data(1:10,'CustAge')

ans=10×1 table
    CustAge
    _______

      53   
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      61   
      47   
      50   
      68   
      65   
      34   
      50   
      50   
      49   

Bin scorecard data into bin numbers (default behavior).

bdata = bindata(sc);

According to the bin information, the first age should be mapped into the fourth bin, the second age
into the fifth bin, etc. These are the first 10 binned ages, in bin-number format.

bdata(1:10,'CustAge')

ans=10×1 table
    CustAge
    _______

       6   
       7   
       5   
       6   
       7   
       7   
       2   
       6   
       6   
       6   

Bin the scorecard data and show their bin labels. To do this, set the bindata name-value pair
argument for 'OutputType' to 'Categorical'.

bdata = bindata(sc,'OutputType','Categorical');

These are the first 10 binned ages, in categorical format.

bdata(1:10,'CustAge')

ans=10×1 table
    CustAge 
    ________

    [48,58) 
    [58,Inf]
    [46,48) 
    [48,58) 
    [58,Inf]
    [58,Inf]
    [33,37) 
    [48,58) 
    [48,58) 
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    [48,58) 

Convert the scorecard data to WOE values. To do this, set the bindata name-value pair argument for
'OutputType' to 'WOE'.

bdata = bindata(sc,'OutputType','WOE');

These are the first 10 binned ages, in WOE format. The ages are mapped to the WOE values that are
internally displayed using the bininfo function.

bdata(1:10,'CustAge')

ans=10×1 table
    CustAge 
    ________

     0.21378
     0.62245
     0.18758
     0.21378
     0.62245
     0.62245
    -0.39568
     0.21378
     0.21378
     0.21378

Bin Additional "Test" Data

This example shows how to use the bindata function's optional input for the data to bin. If not
provided, bindata bins the creditscorecard training data. However, if a different dataset needs
to be binned, for example, some "test" data, this can be passed into bindata as an optional input.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument to indicate that 'CustID' contains ID
information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]
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Perform automatic binning.

sc = autobinning(sc);

Show the bin information for 'CustAge'.

bininfo(sc,'CustAge')

ans=8×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue
    _____________    ____    ___    ______    _________    _________

    {'[-Inf,33)'}     70      53    1.3208     -0.42622     0.019746
    {'[33,37)'  }     64      47    1.3617     -0.39568     0.015308
    {'[37,40)'  }     73      47    1.5532     -0.26411    0.0072573
    {'[40,46)'  }    174      94    1.8511    -0.088658     0.001781
    {'[46,48)'  }     61      25      2.44      0.18758    0.0024372
    {'[48,58)'  }    263     105    2.5048      0.21378     0.013476
    {'[58,Inf]' }     98      26    3.7692      0.62245       0.0352
    {'Totals'   }    803     397    2.0227          NaN     0.095205

For the purpose of illustration, take a few rows from the original data as "test" data and display the
first 10 age values in the test data.

tdata = data(101:110,:);
tdata(1:10,'CustAge')

ans=10×1 table
    CustAge
    _______

      34   
      59   
      64   
      61   
      28   
      65   
      55   
      37   
      49   
      51   

Convert the test data to WOE values. To do this, set the bindata name-value pair argument for
'OutputType' to 'WOE', passing the test data (tdata) as an optional input.

bdata = bindata(sc,tdata,'OutputType','WOE')

bdata=10×11 table
    CustID    CustAge     TmAtAddress    ResStatus    EmpStatus    CustIncome    TmWBank     OtherCC     AMBalance    UtilRate    status
    ______    ________    ___________    _________    _________    __________    ________    ________    _________    ________    ______

     101      -0.39568     -0.087767     -0.095564      0.2418     -0.011271      0.76889    0.053364    -0.11274     0.048576      0   
     102       0.62245       0.14288      0.019329    -0.19947       0.20579     -0.13107    -0.26832    -0.11274     0.048576      1   
     103       0.62245       0.02263      0.019329      0.2418       0.47972     -0.12109    0.053364     0.24418     0.092164      0   
     104       0.62245       0.02263     -0.095564      0.2418       0.47972     -0.12109    0.053364     0.24418     0.048576      0   
     105      -0.42622       0.02263      0.019329      0.2418      -0.06843      0.76889    0.053364    -0.11274     0.092164      0   
     106       0.62245       0.02263      0.019329    -0.19947       0.20579     -0.13107    0.053364    -0.11274     -0.22899      0   
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     107       0.21378     -0.087767     -0.095564      0.2418       0.47972      0.26704    0.053364    -0.11274     0.048576      0   
     108      -0.26411     -0.087767      0.019329    -0.19947      -0.29217     -0.13107    0.053364    -0.11274     0.048576      0   
     109       0.21378     -0.087767     -0.095564      0.2418     -0.026696     -0.13107    0.053364     0.24418     0.048576      0   
     110       0.21378     -0.087767      0.019329      0.2418       0.20579     -0.13107    0.053364    -0.29895     -0.22899      0   

These are the first 10 binned ages, in WOE format. The ages are mapped to the WOE values displayed
internally by bininfo.

bdata(1:10,'CustAge')

ans=10×1 table
    CustAge 
    ________

    -0.39568
     0.62245
     0.62245
     0.62245
    -0.42622
     0.62245
     0.21378
    -0.26411
     0.21378
     0.21378

Bin Additional "Test" Data When Using the 'BinMissingData' Option

Create a creditscorecard object using the CreditCardData.mat file to load the data with
missing values. The variables CustAge and ResStatus have missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:
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                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Display and plot bin information for numeric data for 'CustAge' that includes missing data in a
separate bin labelled <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')
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Display and plot bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus')
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For the 'CustAge' and 'ResStatus' predictors, there is missing data (NaNs and <undefined>) in
the training data, and the binning process estimates a WOE value of -0.15787 and 0.026469
respectively for missing data in these predictors, as shown above.

For the purpose of illustration, take a few rows from the original data as test data and introduce some
missing data.

tdata = dataMissing(11:14,:);
tdata.CustAge(1) = NaN;
tdata.TmAtAddress(2) = NaN;
tdata.ResStatus(3) = '<undefined>';
tdata.EmpStatus(4) = '<undefined>';
disp(tdata)

    CustID    CustAge    TmAtAddress     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    ___________    __________    _______    _______    _________    ________    ______

      11        NaN           24        Tenant         Unknown          34000         44         Yes        119.8        0.07        1   
      12         48          NaN        Other          Unknown          44000         14         Yes       403.62        0.03        0   
      13         65           63        <undefined>    Unknown          48000          6         No        111.88        0.02        0   
      14         44           75        Other          <undefined>      41000         35         No        436.41        0.18        0   

Convert the test data to WOE values. To do this, set the bindata name-value pair argument for
'OutputType' to 'WOE', passing the test data tdata as an optional input.

bdata = bindata(sc,tdata,'OutputType','WOE');
disp(bdata)
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    CustID    CustAge     TmAtAddress    ResStatus    EmpStatus    CustIncome    TmWBank     OtherCC     AMBalance    UtilRate    status
    ______    ________    ___________    _________    _________    __________    ________    ________    _________    ________    ______

      11      -0.15787      0.02263      -0.095463    -0.19947      -0.06843     -0.12109    0.053364     0.24418     0.048576      1   
      12       0.17713          NaN        0.19637    -0.19947       0.20579     -0.13107    0.053364     0.24418     0.092164      0   
      13       0.60931      0.02263       0.026469    -0.19947       0.47972     -0.25547    -0.26832     0.24418     0.092164      0   
      14      -0.04556      0.02263        0.19637         NaN     -0.011271     -0.12109    -0.26832     0.24418     0.048576      0   

For the 'CustAge' and 'ResStatus' predictors, because there is missing data in the training data,
the missing values in the test data get mapped to the WOE value estimated for the <missing> bin.
Therefore, a missing value for 'CustAge' is replaced with -0.15787, and a missing value for
'ResStatus' is replaced with 0.026469.

For 'TmAtAddress' and 'EmpStatus', the training data has no missing values, therefore there is
no bin for missing data, and there is no way to estimate a WOE value for missing data. Therefore, for
these predictors, the WOE transformation leaves missing values as missing (that is, sets a WOE value
of NaN).

These rules apply when 'OutputType' is set to 'WOE' or 'WOEModelInput'. The rationale is that if
a data-based WOE value exists for missing data, it should be used for the WOE transformation and for
subsequent steps (for example, fitting a logistic model or scoring).

On the other hand, when 'OutputType' is set to 'BinNumber' or 'Categorical', bindata
leaves missing values as missing, since this allows you to subsequently treat the missing data as you
see fit.

For example, when 'OutputType' is set to 'BinNumber', missing values are set to NaN:

bdata = bindata(sc,tdata,'OutputType','BinNumber');
disp(bdata)

    CustID    CustAge    TmAtAddress    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    _________    _________    __________    _______    _______    _________    ________    ______

      11        NaN            2             1            1           3            3          2           1           2          1   
      12          6          NaN             3            1           6            2          2           1           1          0   
      13          8            2           NaN            1           7            1          1           1           1          0   
      14          4            2             3          NaN           5            3          1           1           2          0   

And when 'OutputType' is set to 'Categorical', missing values are set to '<undefined>':

bdata = bindata(sc,tdata,'OutputType','Categorical');
disp(bdata)

    CustID      CustAge      TmAtAddress     ResStatus      EmpStatus      CustIncome       TmWBank     OtherCC      AMBalance       UtilRate      status
    ______    ___________    ___________    ___________    ___________    _____________    _________    _______    _____________    ___________    ______

      11      <undefined>    [23,83)        Tenant         Unknown        [33000,35000)    [23,45)        Yes      [-Inf,558.88)    [0.04,0.36)      1   
      12      [48,51)        <undefined>    Other          Unknown        [42000,47000)    [12,23)        Yes      [-Inf,558.88)    [-Inf,0.04)      0   
      13      [58,Inf]       [23,83)        <undefined>    Unknown        [47000,Inf]      [-Inf,12)      No       [-Inf,558.88)    [-Inf,0.04)      0   
      14      [40,46)        [23,83)        Other          <undefined>    [40000,42000)    [23,45)        No       [-Inf,558.88)    [0.04,0.36)      0   

Apply a Weight of Evidence (WOE) Transformation to Data

bindata supports the following types of WOE transformation:
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• When the 'OutputType' name-value argument is set to 'WOE', bindata simply applies the WOE
transformation to all predictors and keeps the rest of the variables in the original data in place
and unchanged.

• When the 'OutputType' name-value pair argument is set to 'WOEModelInput', bindata
returns a table that can be used directly as an input for fitting a logistic regression model for the
scorecard. In this case, bindata:

• Applies WOE transformation to all predictors.
• Returns predictor variables, but no IDVar or unused variables are included in the output.
• Includes the mapped response variable as the last column.
• The fitmodel function calls bindata internally using the 'WOEModelInput' option to fit the

logistic regression model for the creditscorecard model.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Use the 'IDVar' argument to indicate that 'CustID' contains ID
information and should not be included as a predictor variable.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform automatic binning.

sc = autobinning(sc);

Show the bin information for 'CustAge'.

bininfo(sc,'CustAge')

ans=8×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue
    _____________    ____    ___    ______    _________    _________

    {'[-Inf,33)'}     70      53    1.3208     -0.42622     0.019746
    {'[33,37)'  }     64      47    1.3617     -0.39568     0.015308
    {'[37,40)'  }     73      47    1.5532     -0.26411    0.0072573
    {'[40,46)'  }    174      94    1.8511    -0.088658     0.001781
    {'[46,48)'  }     61      25      2.44      0.18758    0.0024372
    {'[48,58)'  }    263     105    2.5048      0.21378     0.013476
    {'[58,Inf]' }     98      26    3.7692      0.62245       0.0352
    {'Totals'   }    803     397    2.0227          NaN     0.095205
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These are the first 10 age values in the original data, used to create the creditscorecard object.

data(1:10,'CustAge')

ans=10×1 table
    CustAge
    _______

      53   
      61   
      47   
      50   
      68   
      65   
      34   
      50   
      50   
      49   

Convert the test data to WOE values. To do this, set the bindata name-value pair argument for
'OutputType' to 'WOE'.

bdata = bindata(sc,'OutputType','WOE');

These are the first 10 binned ages, in WOE format. The ages are mapped to the WOE values displayed
internally by bininfo.

bdata(1:10,'CustAge')

ans=10×1 table
    CustAge 
    ________

     0.21378
     0.62245
     0.18758
     0.21378
     0.62245
     0.62245
    -0.39568
     0.21378
     0.21378
     0.21378

These are the first 10 binned ages, in WOE format. The ages are mapped to the WOE values displayed
internally by bininfo.

bdata(1:10,'CustAge')

ans=10×1 table
    CustAge 
    ________

     0.21378
     0.62245
     0.18758
     0.21378
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     0.62245
     0.62245
    -0.39568
     0.21378
     0.21378
     0.21378

The size of the original data and the size of bdata output are the same because bindata leaves
unused variables (such as 'IDVar') unchanged and in place.

whos data bdata

  Name          Size             Bytes  Class    Attributes

  bdata      1200x11            108987  table              
  data       1200x11             84603  table              

The response values are the same in the original data and in the binned data because, by default,
bindata does not modify response values.

disp([data.status(1:10) bdata.status(1:10)])

     0     0
     0     0
     0     0
     0     0
     0     0
     0     0
     1     1
     0     0
     1     1
     1     1

When fitting a logistic regression model with WOE data, set the 'OutputType' name-value pair
argument to 'WOEModelInput'.

bdata = bindata(sc,'OutputType','WOEModelInput');

The binned predictor data is the same as when the 'OutputType' name-value pair argument is set
to 'WOE'.

bdata(1:10,'CustAge')

ans=10×1 table
    CustAge 
    ________

     0.21378
     0.62245
     0.18758
     0.21378
     0.62245
     0.62245
    -0.39568
     0.21378
     0.21378
     0.21378
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However, the size of the original data and the size of bdata output are different. This is because
bindata removes unused variables (such as 'IDVar').

whos data bdata

  Name          Size            Bytes  Class    Attributes

  bdata      1200x10            99167  table              
  data       1200x11            84603  table              

The response values are also modified in this case and are mapped so that "Good" is 1 and "Bad" is 0.

disp([data.status(1:10) bdata.status(1:10)])

     0     1
     0     1
     0     1
     0     1
     0     1
     0     1
     1     0
     0     1
     1     0
     1     0

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

data — Data to bin given the rules set in creditscorecard object
table

Data to bin given the rules set in the creditscorecard object, specified using a table. By default,
data is set to the creditscorecard object's raw data.

Before creating a creditscorecard object, perform a data preparation task to have an
appropriately structured data as input to a creditscorecard object.
Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: bdata = bindata(sc,'OutputType','WOE','ResponseFormat','Mapped')

OutputType — Output format
'BinNumber' (default) | character vector with values 'BinNumber', 'Categorical', 'WOE'

Output format, specified as the comma-separated pair consisting of 'OutputType' and a character
vector with the following values:

 bindata
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• BinNumber — Returns the bin numbers corresponding to each observation.
• Categorical — Returns the bin label corresponding to each observation.
• WOE — Returns the Weight of Evidence (WOE) corresponding to each observation.
• WOEModelInput — Use this option when fitting a model. This option:

• Returns the Weight of Evidence (WOE) corresponding to each observation.
• Returns predictor variables, but no IDVar or unused variables are included in the output.
• Discards any predictors whose bins have Inf or NaN WOE values.
• Includes the mapped response variable as the last column.

Note When the bindata name-value pair argument 'OutputType' is set to 'WOEModelInput',
the bdata output only contains the columns corresponding to predictors whose bins do not have
Inf or NaN Weight of Evidence (WOE) values, and bdata includes the mapped response as the
last column.

Missing data (if any) are included in the bdata output as missing data as well, and do not
influence the rules to discard predictors when 'OutputType' is set to 'WOEModelInput'.

Data Types: char

ResponseFormat — Response values format
'RawData' (default) | character vector with values 'RawData', 'Mapped'

Response values format, specified as the comma-separated pair consisting of 'ResponseFormat'
and a character vector with the following values:

• RawData — The response variable is copied unchanged into the bdata output.
• Mapped — The response values are modified (if necessary) so that "Good" is mapped to 1, and

"Bad" is mapped to 0.

Data Types: char

Output Arguments
bdata — Binned predictor variables
table

Binned predictor variables, returned as a table. This is a table of the same size (see exception in the
following Note) as the data input, but only the predictors specified in the creditscorecard object's
PredictorVars property are binned and the remaining ones are unchanged.

Note When the bindata name-value pair argument 'OutputType' is set to 'WOEModelInput',
the bdata output only contains the columns corresponding to predictors whose bins do not have Inf
or NaN Weight of Evidence (WOE) values, and bdata includes the mapped response as the last
column.

Missing data (if any) are included in the bdata output as missing data as well, and do not influence
the rules to discard predictors when 'OutputType' is set to 'WOEModelInput'.

19 Functions

19-1818



References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor | plotbins |
modifybins | fitmodel | displaypoints | formatpoints | score | setmodel | probdefault |
validatemodel

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47

Introduced in R2014b
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plotbins
Plot histogram counts for predictor variables

Syntax
plotbins(sc,PredictorName)
hFigure = plotbins(sc,PredictorName)
hFigure = plotbins( ___ ,Name,Value)

Description
plotbins(sc,PredictorName) plots histogram counts for given predictor variables. When a
predictor’s bins are modified using modifybins or autobinning, rerun plotbins to update the
figure to reflect the change.

hFigure = plotbins(sc,PredictorName) returns a handle to the figure. plotbins plots
histogram counts for given predictor variables. When a predictor’s bins are modified using
modifybins or autobinning, rerun plotbins to update the figure to reflect the change.

hFigure = plotbins( ___ ,Name,Value) returns a handle to the figure. plotbins plots
histogram counts for given predictor variables using optional name-value pair arguments. When a
predictor’s bins are modified using modifybins or autobinning, rerun plotbins to update the
figure to reflect the change.

Examples

Plot a Histogram for Bin Information

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

Perform automatic binning for the PredictorName input argument for CustIncome using the
defaults for the algorithm Monotone.

sc = autobinning(sc, 'CustIncome')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
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            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

Use bininfo to display the autobinned data.

[bi, cp] = bininfo(sc, 'CustIncome')

bi=8×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,29000)' }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

cp = 6×1

       29000
       33000
       35000
       40000
       42000
       47000

Manually remove the second cut point (the boundary between the second and third bins) to merge
bins two and three. Use the modifybins function to update the scorecard and then display updated
bin information.

cp(2) = [];
sc = modifybins(sc,'CustIncome','CutPoints',cp);
bi = bininfo(sc,'CustIncome')

bi=7×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,29000)' }     53      58    0.91379     -0.79457       0.06364
    {'[29000,35000)'}    142      85     1.6706     -0.19124     0.0071274
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12043

Plot the histogram count for updated bin information for the PredictorName called CustIncome.

plotbins(sc,'CustIncome')
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Plot a Histogram for Bin Information Using Name-Value Pair Arguments

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

Perform automatic binning for the PredictorName input argument for CustIncome using the
defaults for the algorithm Monotone.

sc = autobinning(sc, 'CustIncome')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
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                     Data: [1200x11 table]

Use bininfo to display the autobinned data.

[bi, cp] = bininfo(sc, 'CustIncome')

bi=8×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,29000)' }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

cp = 6×1

       29000
       33000
       35000
       40000
       42000
       47000

Plot the bin information for CustIncome without the Weight of Evidence (WOE) line and without a
legend by setting the 'WOE' and 'Legend' name-value arguments to 'Off'. Also, set the
'BinText' name-value pair argument to 'PercentRows' to show as text over the plot bars for the
proportion of "Good" and "Bad" within each bin, that is, the probability of "Good" and "Bad" within
each bin.

plotbins(sc,'CustIncome','WOE','Off','Legend','Off','BinText','PercentRows')
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Plot Bin Information When Using Missing Data

Create a creditscorecard object using the CreditCardData.mat file to load the data with
missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

19 Functions

19-1824



Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))

Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Display and plot bin information for numeric data for 'CustAge' that includes missing data in a
separate bin labelled <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')
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Display and plot bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus')
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Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

PredictorName — Name of one or more predictors to plot
character vector with predictor name | cell array of character vectors with predictor names

Name of one or more predictors to plot, specified using a character vector or cell array of character
vectors containing one or more names of the predictors.
Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: plotbins(sc,PredictorName,'BinText','Count','WOE','On')
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BinText — Information to display on top of plotted bin counts
'None' (default) | character vector with values 'None', 'Count', 'PercentRows',
'PercentCols', 'PercentTotal'

Information to display on top of plotted bin counts, specified as the comma-separated pair consisting
of 'BinText' and a character vector with values:

• None — No text is displayed on top of the bins.
• Count — For each bin, displays the count for “Good” and “Bad.”
• PercentRows — For each bin, displays the count for “Good” and “Bad” as a percentage of the

number of observations in the bin.
• PercentCols — For each bin, displays the count for “Good” and “Bad” as a percentage of the

total “Good” and total “Bad” in the entire sample.
• PercentTotal — For each bin, displays the count for “Good” and “Bad” as a percentage of the

total number of observations in the entire sample.

Data Types: char

WOE — Indicator for Weight of Evidence (WOE)
'On' (default) | character vector with values 'On', 'Off'

Indicator for Weight of Evidence (WOE) line, specified as the comma-separated pair consisting of
'WOE' and a character vector with values On or Off. When set to On, the WOE line is plotted on top
of the histogram.
Data Types: char

Legend — Indicator for legend on plot
'On' (default) | character vector with values 'On', 'Off'

Indicator for legend on the plot, specified as the comma-separated pair consisting of 'Legend' and a
character vector with values On or Off.
Data Types: char

Output Arguments
hFigure — Figure handle for histogram plot for predictor variables
figure object

Figure handle for histogram plot for predictor variables, returned as figure object or array of figure
objects if more than one PredictorName is specified as an input.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor | bindata |
modifybins | fitmodel | displaypoints | formatpoints | score | setmodel | probdefault |
validatemodel
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Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47

Introduced in R2014b
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modifybins
Modify predictor’s bins

Syntax
sc = modifybins(sc,PredictorName,Name,Value)

Description
sc = modifybins(sc,PredictorName,Name,Value) manually modifies predictor bins for
numeric predictors or categorical predictors using optional name-value pair arguments. For numeric
predictors, minimum value, maximum value, and cut points can be specified. For categorical
predictors, category groupings can be specified. Bin labels can be specified for both types of
predictors.

Examples

Modify Predictor Bins for Numeric Data

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

The predictor CustIncome is numeric. By default, each value of a predictor is placed in a separate
bin.

bi = bininfo(sc,'CustIncome')

bi=46×6 table
       Bin       Good    Bad     Odds         WOE       InfoValue 
    _________    ____    ___    _______    _________    __________

    {'18000'}      2      3     0.66667      -1.1099     0.0056227
    {'19000'}      1      2         0.5      -1.3976     0.0053002
    {'20000'}      4      2           2    -0.011271    6.3641e-07
    {'21000'}      6      3           2    -0.011271    9.5462e-07
    {'22000'}      4      2           2    -0.011271    6.3641e-07
    {'23000'}      4      4           1     -0.70442     0.0035885
    {'24000'}      5      5           1     -0.70442     0.0044856
    {'25000'}      4      9     0.44444      -1.5153      0.026805
    {'26000'}      4     11     0.36364       -1.716      0.038999
    {'27000'}      6      6           1     -0.70442     0.0053827
    {'28000'}     13     11      1.1818     -0.53736     0.0061896
    {'29000'}     11     10         1.1     -0.60911     0.0069988
    {'30000'}     18     16       1.125     -0.58664      0.010493
    {'31000'}     24      8           3      0.39419     0.0038382
    {'32000'}     21     15         1.4     -0.36795     0.0042797
    {'33000'}     35     19      1.8421    -0.093509    0.00039951
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      ⋮

Use modifybins to set a minimum value of 0, and cut points every 10000, from 20000 to 60000.
Display updated bin information, including cut points.

sc = modifybins(sc,'CustIncome','MinValue',0,'CutPoints',20000:10000:60000);
[bi,cp] = bininfo(sc,'CustIncome')

bi=7×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue
    _________________    ____    ___    _______    _________    _________

    {'[0,20000)'    }      3       5        0.6      -1.2152     0.010765
    {'[20000,30000)'}     61      63    0.96825     -0.73668     0.060942
    {'[30000,40000)'}    324     173     1.8728    -0.076967    0.0024846
    {'[40000,50000)'}    304     123     2.4715      0.20042     0.013781
    {'[50000,60000)'}    103      32     3.2188      0.46457     0.022144
    {'[60000,Inf]'  }      8       1          8        1.375     0.010235
    {'Totals'       }    803     397     2.0227          NaN      0.12035

cp = 5×1

       20000
       30000
       40000
       50000
       60000

The first and last bins contain very few points. To merge the first bin into the second one, remove the
first cut point. Similarly, to merge the last bin into the second-to-last one, remove the last cut point.
Then use modifybins to update the scorecard, and display updated bin information.

cp(1)=[];
cp(end)=[];
sc = modifybins(sc,'CustIncome','CutPoints',cp);
bi = bininfo(sc,'CustIncome')

bi=5×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue
    _________________    ____    ___    _______    _________    _________

    {'[0,30000)'    }     64      68    0.94118     -0.76504     0.070065
    {'[30000,40000)'}    324     173     1.8728    -0.076967    0.0024846
    {'[40000,50000)'}    304     123     2.4715      0.20042     0.013781
    {'[50000,Inf]'  }    111      33     3.3636       0.5086     0.028028
    {'Totals'       }    803     397     2.0227          NaN      0.11436

Modify Predictor Bins for Categorical Data

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

 modifybins
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load CreditCardData 
sc = creditscorecard(data);

The binning map or rules for categorical data are summarized in a "category grouping" table,
returned as an optional output. By default, each category is placed in a separate bin. Here is the
information for the predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi=4×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        3    

To group categories 'Tenant' and 'Other', modify the category grouping table cg, so the bin
number for 'Other' is the same as the bin number for 'Tenant'. Then use modifybins to update
the scorecard.

cg.BinNumber(3) = 2;
sc = modifybins(sc,'ResStatus','CatGrouping',cg);

Display the updated bin information. Note that the bin labels has been updated and that the bin
membership information is contained in the category grouping cg.

[bi,cg] = bininfo(sc,'ResStatus')

bi=3×6 table
       Bin        Good    Bad     Odds        WOE       InfoValue 
    __________    ____    ___    ______    _________    __________

    {'Group1'}    365     177    2.0621     0.019329     0.0001682
    {'Group2'}    438     220    1.9909    -0.015827    0.00013772
    {'Totals'}    803     397    2.0227          NaN    0.00030592

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        2    
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Merge Bins for Numerical and Categorical Predictors

Create a creditscorecard object (using a dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);

For the numerical predictor CustAge, use the modifybins function to set the following cut points:

cp = [25 37 49 65];
sc = modifybins(sc,'CustAge','CutPoints',cp,'MinValue',0,'MaxValue',75);
bininfo(sc,'CustAge')

ans=6×6 table
        Bin        Good    Bad     Odds        WOE       InfoValue
    ___________    ____    ___    ______    _________    _________

    {'[0,25)' }      9       8     1.125     -0.58664    0.0052464
    {'[25,37)'}    125      92    1.3587     -0.39789     0.030268
    {'[37,49)'}    340     183    1.8579    -0.084959    0.0031898
    {'[49,65)'}    298     108    2.7593      0.31054     0.030765
    {'[65,75]'}     31       6    5.1667      0.93781     0.022031
    {'Totals' }    803     397    2.0227          NaN       0.0915

Use the modifybins function to merge the 2nd and 3rd bins.

sc = modifybins(sc,'CustAge','CutPoints',cp([1 3 4]));
bininfo(sc,'CustAge')

ans=5×6 table
        Bin        Good    Bad     Odds       WOE       InfoValue
    ___________    ____    ___    ______    ________    _________

    {'[0,25)' }      9       8     1.125    -0.58664    0.0052464
    {'[25,49)'}    465     275    1.6909    -0.17915     0.020355
    {'[49,65)'}    298     108    2.7593     0.31054     0.030765
    {'[65,75]'}     31       6    5.1667     0.93781     0.022031
    {'Totals' }    803     397    2.0227         NaN     0.078397

Display bin information for the categorical predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

Use the modifybins function to merge categories 2 and 3.
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cg.BinNumber(3) = 2;
sc = modifybins(sc,'ResStatus','CatGrouping',cg);
bininfo(sc,'ResStatus')

ans=3×6 table
       Bin        Good    Bad     Odds        WOE       InfoValue 
    __________    ____    ___    ______    _________    __________

    {'Group1'}    365     177    2.0621     0.019329     0.0001682
    {'Group2'}    438     220    1.9909    -0.015827    0.00013772
    {'Totals'}    803     397    2.0227          NaN    0.00030592

Split Bins for Numerical and Categorical Predictors

Create a creditscorecard object (using a dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

For the numerical predictor TmAtAddress, use the modifybins function to set the following cut
points:

cp = [30 80 120];
sc = modifybins(sc,'TmAtAddress','CutPoints',cp,'MinValue',0,'MaxValue',210);
bininfo(sc,'TmAtAddress')

ans=5×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'[0,30)'   }    330     154    2.1429     0.057722     0.0013305
    {'[30,80)'  }    379     201    1.8856    -0.070187     0.0024086
    {'[80,120)' }     78      36    2.1667     0.068771    0.00044396
    {'[120,210]'}     16       6    2.6667      0.27641     0.0013301
    {'Totals'   }    803     397    2.0227          NaN     0.0055131

Use the modifybins function to split the 2nd bin.
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sc = modifybins(sc,'TmAtAddress','CutPoints',[cp(1) 50 cp(2:end)]);
bininfo(sc,'TmAtAddress')

ans=6×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'[0,30)'   }    330     154    2.1429     0.057722     0.0013305
    {'[30,50)'  }    211     104    2.0288    0.0030488    2.4387e-06
    {'[50,80)'  }    168      97     1.732     -0.15517      0.005449
    {'[80,120)' }     78      36    2.1667     0.068771    0.00044396
    {'[120,210]'}     16       6    2.6667      0.27641     0.0013301
    {'Totals'   }    803     397    2.0227          NaN     0.0085559

Display bin information for the categorical predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi=4×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        3    

Use the modifybins function to merge categories 2 and 3.

cg.BinNumber(3) = 2;
sc = modifybins(sc,'ResStatus','CatGrouping',cg);
bininfo(sc,'ResStatus')

ans=3×6 table
       Bin        Good    Bad     Odds        WOE       InfoValue 
    __________    ____    ___    ______    _________    __________

    {'Group1'}    365     177    2.0621     0.019329     0.0001682
    {'Group2'}    438     220    1.9909    -0.015827    0.00013772
    {'Totals'}    803     397    2.0227          NaN    0.00030592

Use the modifybins function to split bin 2 and put Other under bin 3.

cg.BinNumber(3) = 3;
sc = modifybins(sc,'ResStatus','CatGrouping',cg);
[bi,cg] = bininfo(sc,'ResStatus')
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bi=4×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        3    

Modify Bin Labels

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

Use modifybins to reset the minimum value and create three bins for the predictor CustIncome
and display updated bin information.

sc = modifybins(sc,'CustIncome','MinValue',0,'CutPoints',[30000 50000]);
bi = bininfo(sc,'CustIncome')

bi=4×6 table
           Bin           Good    Bad     Odds        WOE       InfoValue
    _________________    ____    ___    _______    ________    _________

    {'[0,30000)'    }     64      68    0.94118    -0.76504     0.070065
    {'[30000,50000)'}    628     296     2.1216    0.047762    0.0017421
    {'[50000,Inf]'  }    111      33     3.3636      0.5086     0.028028
    {'Totals'       }    803     397     2.0227         NaN     0.099836

Modify the bin labels and display updated bin information.

NewLabels = {'Up to 30k','30k to 50k','50k and more'};
sc = modifybins(sc,'CustIncome','BinLabels',NewLabels);
bi = bininfo(sc,'CustIncome')

bi=4×6 table
          Bin           Good    Bad     Odds        WOE       InfoValue
    ________________    ____    ___    _______    ________    _________

    {'Up to 30k'   }     64      68    0.94118    -0.76504     0.070065
    {'30k to 50k'  }    628     296     2.1216    0.047762    0.0017421
    {'50k and more'}    111      33     3.3636      0.5086     0.028028
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    {'Totals'      }    803     397     2.0227         NaN     0.099836

Bin labels should be the last bin-modification step. As in this example, user-defined bin labels often
contain information about the cut points, minimum, or maximum values for numeric data, or
information about category groupings for categorical data. To prevent situations where user-defined
labels and cut points are inconsistent (and labels are misleading), the creditscorecard object
overrides user-defined labels every time the bins are modified using modifybins.

To illustrate modifybins overriding user-defined labels every time the bins are modified, reset the
first cut point to 31000 and display updated bin information. Note that the bin labels are reset to
their default format and accurately reflect the change in the cut points.

sc = modifybins(sc,'CustIncome','CutPoints',[31000 50000]);
bi = bininfo(sc,'CustIncome')

bi=4×6 table
           Bin           Good    Bad     Odds        WOE       InfoValue
    _________________    ____    ___    _______    ________    _________

    {'[0,31000)'    }     82      84    0.97619    -0.72852     0.079751
    {'[31000,50000)'}    610     280     2.1786    0.074251    0.0040364
    {'[50000,Inf]'  }    111      33     3.3636      0.5086     0.028028
    {'Totals'       }    803     397     2.0227         NaN      0.11182

Modify Bin Information When Using Missing Data

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))
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Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing data in a separate bin.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin
labelled <missing>.

[bi,cp] = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')
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For the numeric predictor CustAge, remove cut points 48 and 51 and then use modifybins to
define a 'MinValue'of 0 to manually change the binning and notice that this does not affect the data
in the <missing> bin and the <missing> bin remains at the end.

cp(cp==48) = [];
cp(cp==51) = []; 
sc = modifybins(sc,'CustAge','CutPoints',cp,'MinValue',0); 
bi = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[0,33)'   }     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,58)'  }    315     128    2.4609     0.19612      0.013701
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.086808

plotbins(sc,'CustAge')
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Display bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus')
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For the categorical predictor ResStatus, use modifybins to manually merge 'HomeOwner' and
'Other' into a single group by assigning the same bin number to these categories. Notice that this
does not affect the data in the <missing> bin and the <missing> bin remains at the end.

cg.BinNumber(3) = 2; 
sc = modifybins(sc,'ResStatus','CatGrouping',cg);
[bi,cg] = bininfo(sc,'ResStatus'); 
disp(bi) 

         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'Group1'   }    296     161    1.8385    -0.095463     0.0035249
    {'Group2'   }    480     223    2.1525     0.062196     0.0022419
    {'<missing>'}     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'   }    803     397    2.0227          NaN       0.00579

disp(cg) 

       Category       BinNumber
    ______________    _________

    {'Tenant'    }        1    
    {'Home Owner'}        2    
    {'Other'     }        2    
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Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

PredictorName — Name of predictor
character vector

Name of predictor, specified as a character vector containing the name of the predictor.
PredictorName is case-sensitive.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: sc = modifybins(sc,PredictorName,'MinValue',10,'CutPoints',[23, 44,
66, 88])

MinValue — Minimum acceptable value (numeric predictors only)
-Inf (default) | numeric

Minimum acceptable value, specified as the comma-separated pair consisting of 'MinValue' and a
numeric value (for numeric predictors only). Values below this number are considered out of range.
Data Types: double

MaxValue — Maximum acceptable value (numeric predictors only)
Inf (default) | numeric

Maximum acceptable value, specified as the comma-separated pair consisting of 'MaxValue' and a
numeric value (for numeric predictors only). Values above this number are considered out of range.
Data Types: double

CutPoints — Split points between bins
each observed value of the predictor is placed in a separate bin (default) | nondecreasing numeric
array

Split points between bins, specified as the comma-separated pair consisting of 'CutPoints' and a
nondecreasing numeric array. If there are NumBins bins, there are n = NumBins – 1 cut points so
that C1, C2,..., Cn describe the bin boundaries with the following convention:

• The first bin includes any values >= MinValue, but < C1.
• The second bin includes any values >= C1, but < C2.
• The last bin includes any values >= Cn, and <= MaxValue.

Note Cut points do not include MinValue or MaxValue.
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By default, cut points are defined so that each observed value of the predictor is placed in a separate
bin. If the sorted observed values are V1, …, VM, the default cut points are V2, …, VM, which define
M bins.
Data Types: double

CatGrouping — Table with two columns named Category and BinNumber
each category is placed in a separate bin (default) | table with two columns named Category and
BinNumber

Table with two columns named Category and BinNumber, specified as the comma-separated pair
consisting of 'CatGrouping' and a table, where the first column contains an exhaustive list of
categories for the predictor, and the second column contains the bin number to which each category
belongs.

By default, each category is placed in a separate bin. If the observed categories are
'Cat1'…,'CatM', the default category grouping is as follows.

Category BinNumber
'Cat1' 1
'Cat2' 2
... ...
'CatM’' M

Data Types: double

BinLabels — Bin labels for each bin
automatically generated bin labels depending on the predictor’s type (default) | cell array of
character vectors

Bin labels for each bin, specified as the comma-separated pair consisting of 'BinLabels' and a cell
array of character vectors with bin label names.

Note 'BinLabels' does not support a value of <missing>.

Bin labels are used to tag the bins in different object functions such as bininfo, plotbins, and
displaypoints. A creditscorecard object automatically sets default bins whenever bins are
modified. The default format for bin labels depends on the predictor’s type.

The format for BinLabels is:

• Numeric data — Before any manual or automatic modification of the predictor bins, there is a bin
for each observed predictor value by default. In that case, the bin labels simply show the predictor
values. Once the predictor bins have been modified, there are nondefault values for MinValue or
MaxValue, or nondefault cut points C1, C2,..., Cn. In that case, the bin labels are:

• Bin 1 label: '[MinValue, C1)'
• Bin 2 label: '[C1, C2)'
• Last bin label: '[Cn, MaxValue]'
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For example, if there are three bins, MinValue is 0 and MaxValue is 40, and cut point 1 is 20 and
cut point 2 is 30, then the corresponding three bin labels are:

'[0,20)'
'[20,30)'
'[30,40]'

• Categorical data — For categorical data, before any modification of the predictor bins, there is one
bin per category. In that case, the bin labels simply show the predictor categories. Once the bins
have been modified, the labels are set to 'Group1', 'Group2', and so on, for bin 1, bin 2, and so
on, respectively. For example, suppose that we have the following category grouping

Category BinNumber
'Cat1' 1
'Cat2' 2
'Cat3' 2

Bin 1 contains 'Cat1' only and its bin label is set to 'Group1'. Bin 2 contains 'Cat2' and
'Cat3' and its bin label is set to 'Group2'.

Tip Using BinLabels should be the last step (if needed) in modifying bins. BinLabels definitions
are overridden each time that the bins are modified using the modifybins or autobinning
functions.

Data Types: cell

Output Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object. For more information on
using the creditscorecard object, see creditscorecard.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | autobinning | bininfo | predictorinfo | modifypredictor | bindata |
plotbins | fitmodel | displaypoints | formatpoints | score | setmodel | probdefault |
validatemodel

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
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“About Credit Scorecards” on page 8-47

Introduced in R2014b
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modifypredictor
Set properties of credit scorecard predictors

Syntax
sc = modifypredictor(sc,PredictorName)
sc = modifypredictor( ___ ,Name,Value)

Description
sc = modifypredictor(sc,PredictorName) sets the properties of the credit scorecard
predictors.

sc = modifypredictor( ___ ,Name,Value) sets the properties of the credit scorecard predictors
using optional name-value pair arguments.

Examples

Modify a Predictor to Change the Predictor Type from Numeric to Categorical

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). In practice, categorical data many times is represented with numeric
values. To show the case where categorical data is given as numeric data, the data for the variable
'ResStatus' is intentionally converted to numeric values.

load CreditCardData
data.ResStatus = double(data.ResStatus);
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

[T,Stats] = predictorinfo(sc,'ResStatus')

T=1×4 table
                 PredictorType      LatestBinning      LatestFillMissingType    LatestFillMissingValue
                 _____________    _________________    _____________________    ______________________
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    ResStatus     {'Numeric'}     {'Original Data'}        {'Original'}              {0x0 double}     

Stats=4×1 table
             Value 
            _______

    Min           1
    Max           3
    Mean     1.7017
    Std     0.71833

Note that 'ResStatus' appears as part of the NumericPredictors property. Assume that you
want 'ResStatus' to be treated as categorical data. For example, you may want to allow automatic
binning algorithms to reorder the categories. Use modifypredictor to change the
'PredictorType' of the PredictorName 'ResStatus' from numeric to categorical.

sc = modifypredictor(sc,'ResStatus','PredictorType','Categorical')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

[T,Stats] = predictorinfo(sc,'ResStatus')

T=1×5 table
                  PredictorType     Ordinal      LatestBinning      LatestFillMissingType    LatestFillMissingValue
                 _______________    _______    _________________    _____________________    ______________________

    ResStatus    {'Categorical'}     false     {'Original Data'}        {'Original'}              {0x0 double}     

Stats=3×1 table
          Count
          _____

    C1     542 
    C2     474 
    C3     184 

Notice that 'ResStatus' now appears as part of the 'Categorical' predictors.
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Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

PredictorName — Predictor name
character vector | cell array of character vectors

Predictor name, specified using a character vector or cell array of character vectors containing the
names of the credit scorecard predictors. PredictorName is case-sensitive.
Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: sc = modifypredictor(sc,
{'CustAge','CustIncome'},'PredictorType','Categorical','Ordinal',true)

PredictorType — Predictor type that one or more predictors are converted to
'' no conversion occurs (default) | character vector with values 'Numeric', 'Categorical'

Predictor type that one or more predictors are converted to, specified as the comma-separated pair
consisting of 'PredictorType' and a character vector. Possible values are:

• '' — No conversion occurs.
• 'Numeric' — The predictor data specified by PredictorName is converted to numeric.
• 'Categorical' — The predictor data specified by PredictorName is converted to categorical.

Data Types: char

Ordinal — Indicator for whether predictors being converted to categorical are ordinal
false (default) | logical with values true, false

Indicator for whether predictors being converted to categorical or existing categorical predictors are
treated as ordinal data, specified as the comma-separated pair consisting of 'Ordinal' and a logical
with values true or false.

Note This optional input parameter is only used for predictors of type 'Categorical'.

Data Types: logical

Output Arguments
sc — Credit scorecard model
creditscorecard object
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Credit scorecard model, returned as an updated creditscorecard object.

See Also
creditscorecard | modifybins | predictorinfo | bininfo

Introduced in R2015b
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predictorinfo
Summary of credit scorecard predictor properties

Syntax
[T,Stats] = predictorinfo(sc,PredictorName)

Description
[T,Stats] = predictorinfo(sc,PredictorName) returns a summary of credit scorecard
predictor properties and some basic predictor statistics.

Examples

Obtain Information for a Specified PredictorName

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Obtain the predictor statistics for the PredictorName of CustAge.

[T,Stats] = predictorinfo(sc,'CustAge')

T=1×4 table
               PredictorType      LatestBinning      LatestFillMissingType    LatestFillMissingValue
               _____________    _________________    _____________________    ______________________

    CustAge     {'Numeric'}     {'Original Data'}        {'Original'}              {0x0 double}     

Stats=4×1 table
            Value 
            ______
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    Min         21
    Max         74
    Mean    45.174
    Std     9.8302

Obtain the predictor statistics for the PredictorName of ResStatus.

[T,Stats] = predictorinfo(sc,'ResStatus')

T=1×5 table
                  PredictorType     Ordinal      LatestBinning      LatestFillMissingType    LatestFillMissingValue
                 _______________    _______    _________________    _____________________    ______________________

    ResStatus    {'Categorical'}     false     {'Original Data'}        {'Original'}              {0x0 double}     

Stats=3×1 table
                  Count
                  _____

    Home Owner     542 
    Tenant         474 
    Other          184 

Obtain Information for a Specified PredictorName After Using fillmissing

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(dataMissing,'BinMissingData',true,'IDVar','CustID');
sc = autobinning(sc);

Use fillmissing to replace missing values for the CustAge predictor with a value of 38.

sc = fillmissing(sc,'CustAge','constant',38);

Obtain the predictor statistics for the PredictorName of CustAge.

[T,Stats] = predictorinfo(sc,'CustAge')

T=1×4 table
               PredictorType         LatestBinning          LatestFillMissingType    LatestFillMissingValue
               _____________    ________________________    _____________________    ______________________

    CustAge     {'Numeric'}     {'Automatic / Monotone'}        {'Constant'}                 {[38]}        

Stats=4×1 table
            Value 
            ______

    Min         21
    Max         74
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    Mean    44.932
    Std     9.7436

Use fillmissing to replace missing values for the ResStatus predictor with a mode value.

sc = fillmissing(sc,'ResStatus','mode');

Obtain the predictor statistics for the PredictorName of ResStatus.

[T,Stats] = predictorinfo(sc,'ResStatus')

T=1×5 table
                  PredictorType     Ordinal         LatestBinning          LatestFillMissingType    LatestFillMissingValue
                 _______________    _______    ________________________    _____________________    ______________________

    ResStatus    {'Categorical'}     false     {'Automatic / Monotone'}          {'Mode'}               {'Home Owner'}    

Stats=3×1 table
                  Count
                  _____

    Tenant         457 
    Home Owner     563 
    Other          180 

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

PredictorName — Predictor name
character vector

Predictor name, specified using a character vector containing the names of the credit scorecard
predictor of interest. PredictorName is case-sensitive.
Data Types: char

Output Arguments
T — Summary information for specified predictor
table

Summary information for specified predictor, returned as table with the following columns:

• 'PredictorType' — 'Numeric' or 'Categorical'.
• 'Ordinal' — For categorical predictors, a boolean indicating whether it is ordinal.
• 'LatestBinning' — Character vector indicating the last applied algorithm for the input

argument PredictorName. The values are:
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• 'Original Data' — When no binning is applied to the predictor.
• 'Automatic / BinningName' — Where 'BinningName' is one of the following: Monotone,

Equal Width, or Equal Frequency.
• 'Manual' — After each call of modifybins, where either 'CutPoints', 'CatGrouping',

'MinValue', or 'MaxValue' are modified.
• 'LatestFillMissingType' — If fillmissing has been applied to the predictor, the value of

the Statistics argument for fillmissing is displayed. If the predictor does not have any
missing data, then the fill type is 'Original'.

• 'LatestFillMissingValue' — If fillmissing has been applied to the predictor, the fill value
is displayed. If the predictor does not have any missing data, then the fill value is [ ].

The predictor’s name is used as a row name in the table that is returned.

Stats — Summary statistics for the input PredictorName
table

Summary statistics for the input PredictorName, returned as a table. The corresponding value is
stored in the 'Value' column.

The table’s row names indicate the relevant statistics for numeric predictors:

• 'Min' — Minimum value in the sample.
• 'Max' — Maximum value in the sample.
• 'Mean' — Mean value in the sample.
• 'Std' — Standard deviation of the sample.

Note For data types other than 'double' or 'single', numeric precision may be lost for the standard
deviation. Data types other than 'double' or 'single' are cast as 'double' before computing the
standard deviation.

For categorical predictors, the row names contain the names of the categories, with corresponding
total count in the 'Count' column.

See Also
creditscorecard | modifybins | modifypredictor | bininfo | fillmissing

Introduced in R2015b
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bininfo
Return predictor’s bin information

Syntax
bi = bininfo(sc,PredictorName)
bi = bininfo( ___ ,Name,Value)

[bi,bm] = bininfo(sc,PredictorName,Name,Value)

[bi,bm,mv] = bininfo(sc,PredictorName,Name,Value)

Description
bi = bininfo(sc,PredictorName) returns information at bin level, such as frequencies of
“Good,” “Bad,” and bin statistics for the predictor specified in PredictorName.

bi = bininfo( ___ ,Name,Value) adds optional name-value arguments.

[bi,bm] = bininfo(sc,PredictorName,Name,Value) adds optional name-value
arguments.bininfo also optionally returns the binning map (bm) or bin rules in the form of a vector
of cut points for numeric predictors, or a table of category groupings for categorical predictors.

[bi,bm,mv] = bininfo(sc,PredictorName,Name,Value) returns information at bin level,
such as frequencies of “Good,” “Bad," and bin statistics for the predictor specified in
PredictorName using optional name-value pair arguments. bininfo optionally returns the binning
map or bin rules in the form of a vector of cut points for numeric predictors, or a table of category
groupings for categorical predictors. In addition, optional name-value pair arguments mv returns a
numeric array containing the minimum and maximum values, as set (or defined) by the user. The mv
output argument is set to an empty array for categorical predictors.

Examples

Display Bin Information Using Default Options

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

Display bin information for the categorical predictor ResStatus.

bi = bininfo(sc,'ResStatus')

bi=4×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
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    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

Display Bin Information For a creditscorecard Object Containing Weights

Use the CreditCardData.mat file to load the data (dataWeights) that contains a column
(RowWeights) for the weights (using a dataset from Refaat 2011).

load CreditCardData

Create a creditscorecard object using the optional name-value pair argument for 'WeightsVar'.

sc = creditscorecard(dataWeights,'WeightsVar','RowWeights')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x12 table]

Display bin information for the numerical predictor 'CustIncome'. When the optional name-value
pair argument 'WeightsVar' is used to specify observation (sample) weights, the bi table contains
weighted counts.

bi = bininfo(sc,'CustIncome');
bi(1:10,:)

ans=10×6 table
       Bin        Good        Bad       Odds        WOE       InfoValue 
    _________    _______    _______    _______    ________    __________

    {'18000'}    0.94515      1.496    0.63179     -1.1667     0.0059198
    {'19000'}    0.47588    0.80569    0.59065     -1.2341     0.0034716
    {'20000'}     2.1671     1.4636     1.4806    -0.31509    0.00061392
    {'21000'}     3.2522    0.88064      3.693     0.59889     0.0021303
    {'22000'}     1.5438     1.2714     1.2142    -0.51346     0.0012913
    {'23000'}      1.787     2.7529    0.64913     -1.1397      0.010509
    {'24000'}     3.4111     2.2538     1.5135    -0.29311    0.00082663
    {'25000'}     2.2333     6.1383    0.36383     -1.7186      0.042642
    {'26000'}     2.1246     4.4754    0.47474     -1.4525      0.024526
    {'27000'}     3.1058      3.528    0.88032    -0.83501     0.0082144
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Display Bin Information Using Name-Value Arguments

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

Display customized bin information for the categorical predictor ResStatus, keeping only the WOE
column. The Weight-of-Evidence (WOE) is defined bin by bin, but there is no concept of "total WOE",
therefore the last element in the 'Totals' row is set to NaN.

bi = bininfo(sc,'ResStatus','Statistics','WOE');
disp(bi)

         Bin          Good    Bad       WOE   
    ______________    ____    ___    _________

    {'Home Owner'}    365     177     0.019329
    {'Tenant'    }    307     167    -0.095564
    {'Other'     }    131      53      0.20049
    {'Totals'    }    803     397          NaN

Display customized bin information for the categorical predictor ResStatus, keeping only the Odds
and WOE columns, without the Totals row.

bi = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE'},'Totals','Off');
disp(bi)

         Bin          Good    Bad     Odds        WOE   
    ______________    ____    ___    ______    _________

    {'Home Owner'}    365     177    2.0621     0.019329
    {'Tenant'    }    307     167    1.8383    -0.095564
    {'Other'     }    131      53    2.4717      0.20049

Display information value, entropy, Gini, and chi square statistics. For more information on these
statistics, see “Statistics for a Credit Scorecard” on page 19-1864.

For information value, entropy and Gini, the value reported at a bin level is the contribution of the bin
to the total value. The total information value, entropy, and Gini measures are in the 'Totals' row.

For chi square, if there are N bins, the first N-1 values in the 'Chi2' column report pairwise chi
square statistics for contiguous bins. For example, this pairwise measure is also used by the 'Merge'
algorithm in autobinning to determine if two contiguous bins should be merged. In this example,
the first value in the 'Chi2' column (1.0331) is the chi square statistic of bins 1 and 2 ('Home
Owner' and 'Tenant'), and the second value in the column (2.5103) is the chi square statistic of
bins 2 and 3 ('Tenant' and 'Other'). There are no more pairwise chi square values to compute in
this example, so the third element of the 'Chi2' column is set to NaN. The chi square value reported
in the 'Totals' row is the chi square statistic computed over all bins.

bi = bininfo(sc,'ResStatus','Statistics',{'InfoValue','Entropy','Gini','Chi2'});
disp(bi)

         Bin          Good    Bad    InfoValue    Entropy     Gini       Chi2 
    ______________    ____    ___    _________    _______    _______    ______
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    {'Home Owner'}    365     177    0.0001682    0.91138    0.43984    1.0331
    {'Tenant'    }    307     167    0.0036638    0.93612    0.45638    2.5103
    {'Other'     }    131      53    0.0059418    0.86618    0.41015       NaN
    {'Totals'    }    803     397    0.0097738    0.91422    0.44182    2.5549

Display Bin Information and Binning Map for Categorical Data

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

The binning map or rules for categorical data are summarized in a "category grouping" table,
returned as an optional output. By default, each category is placed in a separate bin. Here is the
information for the predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi=4×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        3    

To group categories Tenant and Other, modify the category grouping table cg so that the bin
number for Other is the same as the bin number for Tenant. Then use the modifybins function to
update the scorecard.

cg.BinNumber(3) = 2;
sc = modifybins(sc,'ResStatus','CatGrouping',cg);

Display the updated bin information. The bin labels have been updated and that the bin membership
information is contained in the category grouping cg.

[bi,cg] = bininfo(sc,'ResStatus')

bi=3×6 table
       Bin        Good    Bad     Odds        WOE       InfoValue 
    __________    ____    ___    ______    _________    __________

    {'Group1'}    365     177    2.0621     0.019329     0.0001682
    {'Group2'}    438     220    1.9909    -0.015827    0.00013772
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    {'Totals'}    803     397    2.0227          NaN    0.00030592

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        2    

Display Bin Information and Binning Map for Numeric Data

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

The predictor CustIncome is numeric. By default, each value of the predictor is placed in a separate
bin.

bi = bininfo(sc,'CustIncome')

bi=46×6 table
       Bin       Good    Bad     Odds         WOE       InfoValue 
    _________    ____    ___    _______    _________    __________

    {'18000'}      2      3     0.66667      -1.1099     0.0056227
    {'19000'}      1      2         0.5      -1.3976     0.0053002
    {'20000'}      4      2           2    -0.011271    6.3641e-07
    {'21000'}      6      3           2    -0.011271    9.5462e-07
    {'22000'}      4      2           2    -0.011271    6.3641e-07
    {'23000'}      4      4           1     -0.70442     0.0035885
    {'24000'}      5      5           1     -0.70442     0.0044856
    {'25000'}      4      9     0.44444      -1.5153      0.026805
    {'26000'}      4     11     0.36364       -1.716      0.038999
    {'27000'}      6      6           1     -0.70442     0.0053827
    {'28000'}     13     11      1.1818     -0.53736     0.0061896
    {'29000'}     11     10         1.1     -0.60911     0.0069988
    {'30000'}     18     16       1.125     -0.58664      0.010493
    {'31000'}     24      8           3      0.39419     0.0038382
    {'32000'}     21     15         1.4     -0.36795     0.0042797
    {'33000'}     35     19      1.8421    -0.093509    0.00039951
      ⋮

Reduce the number of bins using the autobinning function (the modifybins function can also be
used).

sc = autobinning(sc,'CustIncome');

Display the updated bin information. The binning map or rules for numeric data are summarized as
"cut points," returned as an optional output (cp).
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[bi,cp] = bininfo(sc,'CustIncome')

bi=8×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,29000)' }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

cp = 6×1

       29000
       33000
       35000
       40000
       42000
       47000

Manually remove the second cut point (the boundary between the second and third bins) to merge
bins two and three. Use the modifybins function to update the scorecard.

cp(2) = [];
sc = modifybins(sc,'CustIncome','CutPoints',cp,'MinValue',0);

Display the updated bin information.

[bi,cp,mv] = bininfo(sc,'CustIncome')

bi=7×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[0,29000)'    }     53      58    0.91379     -0.79457       0.06364
    {'[29000,35000)'}    142      85     1.6706     -0.19124     0.0071274
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12043

cp = 5×1

       29000
       35000
       40000
       42000
       47000

mv = 1×2
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     0   Inf

Note, it is recommended to avoid having bins with frequencies of zero because they lead to infinite or
undefined (NaN) statistics. Use the modifybins or autobinning functions to modify bins.

Display Bin Information for Missing Data

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))

Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing data in a separate bin.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
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            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin
labelled <missing>.

bi = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')

Display bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.
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[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

disp(cg)

       Category       BinNumber
    ______________    _________

    {'Tenant'    }        1    
    {'Home Owner'}        2    
    {'Other'     }        3    

Note that the category grouping table does not include <missing> because this is a reserved bin
and users cannot interact directly with the <missing> bin.

plotbins(sc,'ResStatus')
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Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

PredictorName — Predictor name
character vector

Predictor name, specified using a character vector containing the name of the predictor.
PredictorName is case-sensitive.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: bi = bininfo(sc, PredictorName,'Statistics','WOE','Totals','On')

Statistics — List of statistics to include for bin information
{'Odds','WOE','InfoValue'} (default) | character vector with values 'Odds', 'WOE',
'InfoValue','Entropy', 'Gini', 'Chi2' | cell array of character vectors with values 'Odds',
'WOE', 'InfoValue', 'Entropy','Gini', 'Chi2'

List of statistics to include in the bin information, specified as the comma-separated pair consisting of
'Statistics' and a character vector or a cell array of character vectors. For more information, see
“Statistics for a Credit Scorecard” on page 19-1864. Possible values are:

• 'Odds' — Odds information is the ratio of “Goods” over “Bads.”
• 'WOE' — Weight of Evidence. The WOE Statistic measures the deviation between the distribution

of “Goods” and “Bads.”
• 'InfoValue' — Information value. Closely tied to the WOE, it is a statistic used to determine

how strong a predictor is to use in the fitting model. It measures how strong the deviation is
between the distributions of “Goods” and “Bads.” However, bins with only “Good” or only “Bad”
observations do lead to an infinite Information Value. Consider modifying the bins in those cases
by using modifybins or autobinning.

• 'Entropy' — Entropy is a measure of unpredictability contained in the bins. The more the
number of “Goods” and “Bads” differ within the bins, the lower the entropy.

• 'Gini' — Measure of statistical dispersion or inequality within a sample of data.
• 'Chi2' — Measure of statistical difference and independence between groups.

Note  Avoid having bins with frequencies of zero because they lead to infinite or undefined (NaN)
statistics. Use modifybins or autobinning to modify bins.

Data Types: char | cell
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Totals — Indicator to include row of totals at bottom information table
'On' (default) | character vector with values 'On', 'Off'

Indicator to include a row of totals at the bottom of the information table, specified as the comma-
separated pair consisting of 'Totals' and a character vector with values On or Off.
Data Types: char

Output Arguments
bi — Bin information
table

Bin information, returned as a table. The bin information table contains one row per bin and a row of
totals. The columns contain bin descriptions, frequencies of “Good” and “Bad,” and bin statistics.
Avoid having bins with frequencies of zero because they lead to infinite or undefined (NaN) statistics.
Use modifybins or autobinning to modify bins.

Note When creating the creditscorecard object with creditscorecard, if the optional name-
value pair argument WeightsVar was used to specify observation (sample) weights, then the bi
table contains weighted counts.

bm — Binning map or rules
vector of cut points for numeric predictors | table of category groupings for categorical predictors

Binning map or rules, returned as a vector of cut points for numeric predictors, or a table of category
groupings for categorical predictors. For more information, see modifybins.

mv — Binning minimum and maximum values
numeric array

Binning minimum and maximum values (as set or defined by the user), returned as a numeric array.
The mv output argument is set to an empty array for categorical predictors.

More About
Statistics for a Credit Scorecard

Weight of Evidence (WOE) is a measure of the difference of the distribution of “Goods” and “Bads”
within a bin.

Suppose the predictor's data takes on M possible values b1, ..., bM. For binned data, M is a small
number. The response takes on two values, “Good” and “Bad.” The frequency table of the data is
given by:

 Good Bad Total
b1: n11 n12 n1
b2: n21 n22 n2
bM: nM1 nM2 nM
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 Good Bad Total
Total: nGood nBad nTotal

The Weight of Evidence (WOE) is defined for each data value bi as

 WOE(i) = log((ni1/nGood)/(ni2/nBad)).

If you define

 pGood(i) = ni1/nGood, pBad(i) = ni2/nBad

then pGood(i) is the proportion of “Good” observations that take on the value bi, and similarly for
pBad(i). In other words, pGood(i) gives the distribution of good observations over the M observed
values of the predictor, and similarly for pBad(i). With this, an equivalent formula for the WOE is

WOE(i) = log(pGood(i)/pBad(i)).

Using the same frequency table, the odds for row i are defined as

Odds(i) = ni1 / ni2,

and the odds for the sample are defined as

OddsTotal = nGood / nBad.

For each row i, you can also compute its contribution to the total Information Value, given by

InfoValue(i) = (pGood(i) - pBad(i)) * WOE(i),

and the total Information Value is simply the sum of all the InfoValuel(i) terms. (A nansum is
returned to discard contributions from rows with no observations at all.)

Likewise, for each row i, we can compute its contribution to the total Entropy, given by

 Entropy(i) = -1/log(2)*(ni1/ni*log(ni1/ni)+ni2/ni*log(ni2/ni),

and the total Entropy is simply the weighted sum of the row entropies,

Entropy = sum(ni/nTotal * Entropy(i)), i = 1...M.

Chi2 is computed pairwise for each pair of bins and measures the statistical difference between two
groups when splitting or merging bins and is defined as:

 Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=m,m+1).

For more information on splitting and merging bins, see Split on page 19-1888 and Merge on page
19-1891.

Gini ratio is a measure of the parent node, that is, of the given bins/categories prior to splitting or
merging. The Gini ratio is defined as:

Gr = 1-G_hat/Gp

G_hat is the weighted Gini measure for the current split or merge:

G_hat = Sum((nj/N) * Gj, j=1..m).

For more information on splitting and merging bins, see Split on page 19-1888 and Merge on page
19-1891.
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Using bininfo with Weights

When observation weights are defined using the optional WeightsVar argument when creating a
creditscorecard object, instead of counting the rows that are good or bad in each bin, the
bininfo function accumulates the weight of the rows that are good or bad in each bin.

The “frequencies” reported are no longer the basic “count” of rows, but the “cumulative weight” of
the rows that are good or bad and fall in a particular bin. Once these “weighted frequencies” are
known, all other relevant statistics (Good, Bad, Odds, WOE, and InfoValue) are computed with the
usual formulas. For more information, see “Credit Scorecard Modeling Using Observation Weights”
on page 8-54.
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autobinning
Perform automatic binning of given predictors

Syntax
sc = autobinning(sc)
sc = autobinning(sc,PredictorNames)
sc = autobinning( ___ ,Name,Value)

Description
sc = autobinning(sc) performs automatic binning of all predictors.

Automatic binning finds binning maps or rules to bin numeric data and to group categories of
categorical data. The binning rules are stored in the creditscorecard object. To apply the binning
rules to the creditscorecard object data, or to a new dataset, use bindata.

sc = autobinning(sc,PredictorNames) performs automatic binning of the predictors given in
PredictorNames.

Automatic binning finds binning maps or rules to bin numeric data and to group categories of
categorical data. The binning rules are stored in the creditscorecard object. To apply the binning
rules to the creditscorecard object data, or to a new dataset, use bindata.

sc = autobinning( ___ ,Name,Value) performs automatic binning of the predictors given in
PredictorNames using optional name-value pair arguments. See the name-value argument
Algorithm for a description of the supported binning algorithms.

Automatic binning finds binning maps or rules to bin numeric data and to group categories of
categorical data. The binning rules are stored in the creditscorecard object. To apply the binning
rules to the creditscorecard object data, or to a new dataset, use bindata.

Examples

Perform Automatic Binning Using the Defaults

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning using the default options. By default, autobinning bins all predictors
and uses the Monotone algorithm.

sc = autobinning(sc);

Use bininfo to display the binned data for the predictor CustAge.

bi = bininfo(sc, 'CustAge')
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bi=8×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue
    _____________    ____    ___    ______    _________    _________

    {'[-Inf,33)'}     70      53    1.3208     -0.42622     0.019746
    {'[33,37)'  }     64      47    1.3617     -0.39568     0.015308
    {'[37,40)'  }     73      47    1.5532     -0.26411    0.0072573
    {'[40,46)'  }    174      94    1.8511    -0.088658     0.001781
    {'[46,48)'  }     61      25      2.44      0.18758    0.0024372
    {'[48,58)'  }    263     105    2.5048      0.21378     0.013476
    {'[58,Inf]' }     98      26    3.7692      0.62245       0.0352
    {'Totals'   }    803     397    2.0227          NaN     0.095205

Use plotbins to display the histogram and WOE curve for the predictor CustAge.

plotbins(sc,'CustAge')

Perform Automatic Binning with a Named Predictor Using the Defaults

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);
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Perform automatic binning for the predictor CustIncome using the default options. By default,
autobinning uses the Monotone algorithm.

sc = autobinning(sc,'CustIncome');

Use bininfo to display the binned data.

bi = bininfo(sc, 'CustIncome')

bi=8×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,29000)' }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

Perform Automatic Binning Using Two Name-Value Pair Arguments

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

Perform automatic binning for the predictor CustIncome using the Monotone algorithm with the
initial number of bins set to 20. This example explicitly sets both the Algorithm and the
AlgorithmOptions name-value arguments.

AlgoOptions = {'InitialNumBins',20}; 
sc = autobinning(sc,'CustIncome','Algorithm','Monotone','AlgorithmOptions',...
     AlgoOptions);

Use bininfo to display the binned data. Here, the cut points, which delimit the bins, are also
displayed.

[bi,cp] = bininfo(sc,'CustIncome')

bi=11×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,19000)' }      2       3    0.66667      -1.1099     0.0056227
    {'[19000,29000)'}     51      55    0.92727     -0.77993      0.058516
    {'[29000,31000)'}     29      26     1.1154     -0.59522      0.017486
    {'[31000,34000)'}     80      42     1.9048    -0.060061     0.0003704
    {'[34000,35000)'}     33      17     1.9412    -0.041124     7.095e-05
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,43000)'}     39      16     2.4375      0.18655      0.001542
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    {'[43000,47000)'}    125      50        2.5      0.21187     0.0062972
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.13175

cp = 9×1

       19000
       29000
       31000
       34000
       35000
       40000
       42000
       43000
       47000

Perform Automatic Binning Using Multiple Name-Value Pair Arguments

This example shows how to use the autobinning default Monotone algorithm and the
AlgorithmOptions name-value pair arguments associated with the Monotone algorithm. The
AlgorithmOptions for the Monotone algorithm are three name-value pair parameters:
‘InitialNumBins', 'Trend', and 'SortCategories'. 'InitialNumBins' and 'Trend' are
applicable for numeric predictors and 'Trend' and 'SortCategories' are applicable for
categorical predictors.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning for the numeric predictor CustIncome using the Monotone algorithm
with 20 bins. This example explicitly sets both the Algorithm argument and the
AlgorithmOptions name-value arguments for 'InitialNumBins' and 'Trend'.

AlgoOptions = {'InitialNumBins',20,'Trend','Increasing'};

sc = autobinning(sc,'CustIncome','Algorithm','Monotone',...
    'AlgorithmOptions',AlgoOptions);

Use bininfo to display the binned data.

bi = bininfo(sc,'CustIncome')

bi=11×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,19000)' }      2       3    0.66667      -1.1099     0.0056227
    {'[19000,29000)'}     51      55    0.92727     -0.77993      0.058516
    {'[29000,31000)'}     29      26     1.1154     -0.59522      0.017486
    {'[31000,34000)'}     80      42     1.9048    -0.060061     0.0003704
    {'[34000,35000)'}     33      17     1.9412    -0.041124     7.095e-05
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    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,43000)'}     39      16     2.4375      0.18655      0.001542
    {'[43000,47000)'}    125      50        2.5      0.21187     0.0062972
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.13175

Perform Automatic Binning for Multiple Predictors

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning for the predictor CustIncome and CustAge using the default Monotone
algorithm with AlgorithmOptions for InitialNumBins and Trend.

AlgoOptions = {'InitialNumBins',20,'Trend','Increasing'};

sc = autobinning(sc,{'CustAge','CustIncome'},'Algorithm','Monotone',...
    'AlgorithmOptions',AlgoOptions);

Use bininfo to display the binned data.

bi1 = bininfo(sc, 'CustIncome')

bi1=11×6 table
           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[-Inf,19000)' }      2       3    0.66667      -1.1099     0.0056227
    {'[19000,29000)'}     51      55    0.92727     -0.77993      0.058516
    {'[29000,31000)'}     29      26     1.1154     -0.59522      0.017486
    {'[31000,34000)'}     80      42     1.9048    -0.060061     0.0003704
    {'[34000,35000)'}     33      17     1.9412    -0.041124     7.095e-05
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,43000)'}     39      16     2.4375      0.18655      0.001542
    {'[43000,47000)'}    125      50        2.5      0.21187     0.0062972
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.13175

bi2 = bininfo(sc, 'CustAge')

bi2=8×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'[-Inf,35)'}     93      76    1.2237     -0.50255      0.038003
    {'[35,40)'  }    114      71    1.6056      -0.2309     0.0085141
    {'[40,42)'  }     52      30    1.7333     -0.15437     0.0016687
    {'[42,44)'  }     58      32    1.8125     -0.10971    0.00091888
    {'[44,47)'  }     97      51     1.902    -0.061533    0.00047174
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    {'[47,62)'  }    333     130    2.5615      0.23619      0.020605
    {'[62,Inf]' }     56       7         8        1.375      0.071647
    {'Totals'   }    803     397    2.0227          NaN       0.14183

Perform Automatic Binning for a Categorical Predictor Using the Defaults

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data);

Perform automatic binning for the predictor that is a categorical predictor called ResStatus using
the default options. By default, autobinning uses the Monotone algorithm.

sc = autobinning(sc,'ResStatus');

Use bininfo to display the binned data.

bi = bininfo(sc, 'ResStatus')

bi=4×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

Perform Automatic Binning for a Categorical Predictor Using Name-Value Pair Arguments

This example shows how to modify the data (for this example only) to illustrate binning categorical
predictors using the Monotone algorithm.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData

Add two new categories and updating the response variable.

newdata = data;
rng('default'); %for reproducibility
Predictor = 'ResStatus';
Status    = newdata.status;
NumObs    = length(newdata.(Predictor));
Ind1 = randi(NumObs,100,1);
Ind2 = randi(NumObs,100,1);
newdata.(Predictor)(Ind1) = 'Subtenant';
newdata.(Predictor)(Ind2) = 'CoOwner';
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Status(Ind1) = randi(2,100,1)-1;
Status(Ind2) = randi(2,100,1)-1;

newdata.status = Status;

Update the creditscorecard object using the newdata and plot the bins for a later comparison.

scnew = creditscorecard(newdata,'IDVar','CustID');
[bi,cg] = bininfo(scnew,Predictor)

bi=6×6 table
         Bin          Good    Bad     Odds       WOE       InfoValue
    ______________    ____    ___    ______    ________    _________

    {'Home Owner'}    308     154         2    0.092373    0.0032392
    {'Tenant'    }    264     136    1.9412     0.06252    0.0012907
    {'Other'     }    109      49    2.2245     0.19875    0.0050386
    {'Subtenant' }     42      42         1    -0.60077     0.026813
    {'CoOwner'   }     52      44    1.1818    -0.43372     0.015802
    {'Totals'    }    775     425    1.8235         NaN     0.052183

cg=5×2 table
       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        3    
    {'Subtenant' }        4    
    {'CoOwner'   }        5    

plotbins(scnew,Predictor)
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Perform automatic binning for the categorical Predictor using the default Monotone algorithm
with the AlgorithmOptions name-value pair arguments for 'SortCategories' and 'Trend'.

AlgoOptions = {'SortCategories','Goods','Trend','Increasing'};

scnew = autobinning(scnew,Predictor,'Algorithm','Monotone',...
    'AlgorithmOptions',AlgoOptions);

Use bininfo to display the bin information. The second output parameter 'cg' captures the bin
membership, which is the bin number that each group belongs to.

[bi,cg] = bininfo(scnew,Predictor)

bi=4×6 table
       Bin        Good    Bad     Odds       WOE       InfoValue
    __________    ____    ___    ______    ________    _________

    {'Group1'}     42      42         1    -0.60077     0.026813
    {'Group2'}     52      44    1.1818    -0.43372     0.015802
    {'Group3'}    681     339    2.0088    0.096788    0.0078459
    {'Totals'}    775     425    1.8235         NaN      0.05046

cg=5×2 table
       Category       BinNumber
    ______________    _________

    {'Subtenant' }        1    
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    {'CoOwner'   }        2    
    {'Other'     }        3    
    {'Tenant'    }        3    
    {'Home Owner'}        3    

Plot bins and compare with the histogram plotted pre-binning.

plotbins(scnew,Predictor)

Perform Automatic Binning When Using Missing Data

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
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      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))

Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric and categorical data in a separate bin.

sc = creditscorecard(dataMissing,'BinMissingData',true);
disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

Perform automatic binning using the Merge algorithm.

sc = autobinning(sc,'Algorithm','Merge'); 

Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin
labelled <missing> and this is the last bin. No matter what binning algorithm is used in
autobinning, the algorithm operates on the non-missing data and the bin for the <missing>
numeric values for a predictor is always the last bin.

[bi,cp] = bininfo(sc,'CustAge'); 
disp(bi) 

         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    _______    ________    __________

    {'[-Inf,32)'}     56      39     1.4359    -0.34263     0.0097643
    {'[32,33)'  }     13      13          1    -0.70442      0.011663
    {'[33,34)'  }      9      11    0.81818    -0.90509      0.014934
    {'[34,65)'  }    677     317     2.1356    0.054351      0.002424
    {'[65,Inf]' }     29       6     4.8333     0.87112      0.018295
    {'<missing>'}     19      11     1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397     2.0227         NaN      0.057718

plotbins(sc,'CustAge')
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Display bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing> and this is the last bin. No matter what binning algorithm is used
in autobinning, the algorithm operates on the non-missing data and the bin for the <missing>
categorical values for a predictor is always the last bin.

[bi,cg] = bininfo(sc,'ResStatus');
disp(bi)

         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'Group1'   }    648     332    1.9518    -0.035663     0.0010449
    {'Group2'   }    128      52    2.4615      0.19637     0.0055808
    {'<missing>'}     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'   }    803     397    2.0227          NaN     0.0066489

plotbins(sc,'ResStatus')
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Perform Automatic Binning Using the Split Algorithm

This example demonstrates using the 'Split' algorithm with categorical and numeric predictors.
Load the CreditCardData.mat dataset and modify so that it contains four categories for the
predictor 'ResStatus' to demonstrate how the split algorithm works.

load CreditCardData.mat
x = data.ResStatus;
Ind = find(x == 'Tenant');
Nx  = length(Ind);
x(Ind(1:floor(Nx/3))) = 'Subletter';
data.ResStatus = x;

Create a creditscorecard and use bininfo to display the 'Statistics'.

sc = creditscorecard(data,'IDVar','CustID');
[bi1,cg1] = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE','InfoValue'});
disp(bi1)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Home Owner'}    365     177    2.0621     0.019329     0.0001682
    {'Tenant'    }    204     112    1.8214      -0.1048     0.0029415
    {'Other'     }    131      53    2.4717      0.20049     0.0059418
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    {'Subletter' }    103      55    1.8727    -0.077023    0.00079103
    {'Totals'    }    803     397    2.0227          NaN     0.0098426

disp(cg1)

       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        3    
    {'Subletter' }        4    

Using the Split Algorithm with a Categorical Predictor

Apply presorting to the 'ResStatus' category using the default sorting by 'Odds' and specify the
'Split' algorithm.

sc = autobinning(sc,'ResStatus', 'Algorithm', 'split','AlgorithmOptions',...
    {'Measure','gini','SortCategories','odds','Tolerance',1e-4});
[bi2,cg2] = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE','InfoValue'});
disp(bi2)

       Bin        Good    Bad     Odds        WOE       InfoValue
    __________    ____    ___    ______    _________    _________

    {'Group1'}    307     167    1.8383    -0.095564    0.0036638
    {'Group2'}    365     177    2.0621     0.019329    0.0001682
    {'Group3'}    131      53    2.4717      0.20049    0.0059418
    {'Totals'}    803     397    2.0227          NaN    0.0097738

disp(cg2)

       Category       BinNumber
    ______________    _________

    {'Tenant'    }        1    
    {'Subletter' }        1    
    {'Home Owner'}        2    
    {'Other'     }        3    

Using the Split Algorithm with a Numeric Predictor

To demonstrate a split for the numeric predictor, 'TmAtAddress', first use autobinning with the
default 'Monotone' algorithm.

sc = autobinning(sc,'TmAtAddress');
bi3 = bininfo(sc,'TmAtAddress','Statistics',{'Odds','WOE','InfoValue'});
disp(bi3)

         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'[-Inf,23)'}    239     129    1.8527    -0.087767     0.0023963
    {'[23,83)'  }    480     232     2.069      0.02263    0.00030269
    {'[83,Inf]' }     84      36    2.3333      0.14288       0.00199
    {'Totals'   }    803     397    2.0227          NaN      0.004689

Then use autobinning with the 'Split' algorithm.
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sc = autobinning(sc,'TmAtAddress','Algorithm', 'Split');
bi4 = bininfo(sc,'TmAtAddress','Statistics',{'Odds','WOE','InfoValue'});
disp(bi4)

        Bin         Good    Bad     Odds         WOE       InfoValue 
    ____________    ____    ___    _______    _________    __________

    {'[-Inf,4)'}     20      12     1.6667     -0.19359     0.0010299
    {'[4,5)'   }      4       7    0.57143       -1.264      0.015991
    {'[5,23)'  }    215     110     1.9545    -0.034261    0.00031973
    {'[23,33)' }    130      39     3.3333      0.49955        0.0318
    {'[33,Inf]'}    434     229     1.8952    -0.065096     0.0023664
    {'Totals'  }    803     397     2.0227          NaN      0.051507

Perform Automatic Binning Using the Merge Algorithm

Load the CreditCardData.mat dataset. This example demonstrates using the 'Merge' algorithm
with categorical and numeric predictors.

load CreditCardData.mat

Using the Merge Algorithm with a Categorical Predictor

To merge a categorical predictor, create a creditscorecard using default sorting by 'Odds' and
then use bininfo on the categorical predictor 'ResStatus'.

sc = creditscorecard(data,'IDVar','CustID');
[bi1,cg1] = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE','InfoValue'});
disp(bi1);

         Bin          Good    Bad     Odds        WOE       InfoValue
    ______________    ____    ___    ______    _________    _________

    {'Home Owner'}    365     177    2.0621     0.019329    0.0001682
    {'Tenant'    }    307     167    1.8383    -0.095564    0.0036638
    {'Other'     }    131      53    2.4717      0.20049    0.0059418
    {'Totals'    }    803     397    2.0227          NaN    0.0097738

disp(cg1);

       Category       BinNumber
    ______________    _________

    {'Home Owner'}        1    
    {'Tenant'    }        2    
    {'Other'     }        3    

Use autobinning and specify the 'Merge' algorithm.

sc = autobinning(sc,'ResStatus','Algorithm', 'Merge');
[bi2,cg2] = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE','InfoValue'});
disp(bi2)

       Bin        Good    Bad     Odds        WOE       InfoValue
    __________    ____    ___    ______    _________    _________

    {'Group1'}    672     344    1.9535    -0.034802    0.0010314
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    {'Group2'}    131      53    2.4717      0.20049    0.0059418
    {'Totals'}    803     397    2.0227          NaN    0.0069732

disp(cg2)

       Category       BinNumber
    ______________    _________

    {'Tenant'    }        1    
    {'Home Owner'}        1    
    {'Other'     }        2    

Using the Merge Algorithm with a Numeric Predictor

To demonstrate a merge for the numeric predictor, 'TmAtAddress', first use autobinning with the
default 'Monotone' algorithm.

sc = autobinning(sc,'TmAtAddress');
bi3 = bininfo(sc,'TmAtAddress','Statistics',{'Odds','WOE','InfoValue'});
disp(bi3)

         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'[-Inf,23)'}    239     129    1.8527    -0.087767     0.0023963
    {'[23,83)'  }    480     232     2.069      0.02263    0.00030269
    {'[83,Inf]' }     84      36    2.3333      0.14288       0.00199
    {'Totals'   }    803     397    2.0227          NaN      0.004689

Then use autobinning with the 'Merge' algorithm.

sc = autobinning(sc,'TmAtAddress','Algorithm', 'Merge');
bi4 = bininfo(sc,'TmAtAddress','Statistics',{'Odds','WOE','InfoValue'});
disp(bi4)

         Bin         Good    Bad     Odds         WOE       InfoValue 
    _____________    ____    ___    _______    _________    __________

    {'[-Inf,28)'}    303     152     1.9934    -0.014566    8.0646e-05
    {'[28,30)'  }     27       2       13.5       1.8983      0.054264
    {'[30,98)'  }    428     216     1.9815    -0.020574    0.00022794
    {'[98,106)' }     11      13    0.84615     -0.87147      0.016599
    {'[106,Inf]'}     34      14     2.4286      0.18288     0.0012942
    {'Totals'   }    803     397     2.0227          NaN      0.072466

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. Use creditscorecard to create a
creditscorecard object.

PredictorNames — Predictor or predictors names to automatically bin
character vector | cell array of character vectors

Predictor or predictors names to automatically bin, specified as a character vector or a cell array of
character vectors containing the name of the predictor or predictors. PredictorNames are case-
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sensitive and when no PredictorNames are defined, all predictors in the PredictorVars property
of the creditscorecard object are binned.
Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: sc = autobinning(sc,'Algorithm','EqualFrequency')

Algorithm — Algorithm selection
'Monotone' (default) | character vector with values 'Monotone', 'Split', 'Merge',
'EqualFrequency', 'EqualWidth'

Algorithm selection, specified as the comma-separated pair consisting of 'Algorithm' and a
character vector indicating which algorithm to use. The same algorithm is used for all predictors in
PredictorNames. Possible values are:

• 'Monotone' — (default) Monotone Adjacent Pooling Algorithm (MAPA), also known as Maximum
Likelihood Monotone Coarse Classifier (MLMCC). Supervised optimal binning algorithm that aims
to find bins with a monotone Weight-Of-Evidence (WOE) trend. This algorithm assumes that only
neighboring attributes can be grouped. Thus, for categorical predictors, categories are sorted
before applying the algorithm (see 'SortCategories' option for AlgorithmOptions). For
more information, see “Monotone” on page 19-1886.

• 'Split' — Supervised binning algorithm, where a measure is used to split the data into bins. The
measures supported by 'Split' are gini, chi2, infovalue, and entropy. The resulting split
must be such that the gain in the information function is maximized. For more information on
these measures, see AlgorithmOptions and “Split” on page 19-1888.

• 'Merge' — Supervised automatic binning algorithm, where a measure is used to merge bins into
buckets. The measures supported by 'Merge' are chi2, gini, infovalue, and entropy. The
resulting merging must be such that any pair of adjacent bins is statistically different from each
other, according to the chosen measure. For more information on these measures, see
AlgorithmOptions and “Merge” on page 19-1891.

• 'EqualFrequency' — Unsupervised algorithm that divides the data into a predetermined
number of bins that contain approximately the same number of observations. This algorithm is
also known as “equal height” or “equal depth.” For categorical predictors, categories are sorted
before applying the algorithm (see 'SortCategories' option for AlgorithmOptions). For
more information, see “Equal Frequency” on page 19-1893.

• 'EqualWidth' — Unsupervised algorithm that divides the range of values in the domain of the
predictor variable into a predetermined number of bins of “equal width.” For numeric data, the
width is measured as the distance between bin edges. For categorical data, width is measured as
the number of categories within a bin. For categorical predictors, categories are sorted before
applying the algorithm (see 'SortCategories' option for AlgorithmOptions). For more
information, see “Equal Width” on page 19-1894.

Data Types: char

AlgorithmOptions — Algorithm options for selected Algorithm
{'InitialNumBins',10,'Trend','Auto','SortCategories','Odds'} for Monotone
(default) | cell array with {'OptionName',OptionValue} for Algorithm options
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Algorithm options for the selected Algorithm, specified as the comma-separated pair consisting of
'AlgorithmOptions' and a cell array. Possible values are:

• For Monotone algorithm:

• {'InitialNumBins',n} — Initial number (n) of bins (default is 10). 'InitialNumBins'
must be an integer > 2. Used for numeric predictors only.

• {'Trend','TrendOption'} — Determines whether the Weight-Of-Evidence (WOE)
monotonic trend is expected to be increasing or decreasing. The values for 'TrendOption'
are:

• 'Auto' — (Default) Automatically determines if the WOE trend is increasing or decreasing.
• 'Increasing' — Look for an increasing WOE trend.
• 'Decreasing' — Look for a decreasing WOE trend.

The value of the optional input parameter 'Trend' does not necessarily reflect that of the
resulting WOE curve. The parameter 'Trend' tells the algorithm to “look for” an increasing or
decreasing trend, but the outcome may not show the desired trend. For example, the algorithm
cannot find a decreasing trend when the data actually has an increasing WOE trend. For more
information on the 'Trend' option, see “Monotone” on page 19-1886.

• {'SortCategories','SortOption'} — Used for categorical predictors only. Used to
determine how the predictor categories are sorted as a preprocessing step before applying the
algorithm. The values of 'SortOption' are:

• 'Odds' — (default) The categories are sorted by order of increasing values of odds, defined
as the ratio of “Good” to “Bad” observations, for the given category.

• 'Goods' — The categories are sorted by order of increasing values of “Good.”
• 'Bads' — The categories are sorted by order of increasing values of “Bad.”
• 'Totals' — The categories are sorted by order of increasing values of total number of

observations (“Good” plus “Bad”).
• 'None' — No sorting is applied. The existing order of the categories is unchanged before

applying the algorithm. (The existing order of the categories can be seen in the category
grouping optional output from bininfo.)

For more information, see Sort Categories on page 19-1894
• For Split algorithm:

• {'InitialNumBins',n} — Specifies an integer that determines the number (n >0) of bins
that the predictor is initially binned into before splitting. Valid for numeric predictors only.
Default is 50.

• {'Measure',MeasureName} — Specifies the measure where 'MeasureName' is one of the
following:'Gini' (default), 'Chi2', 'InfoValue', or 'Entropy'.

• {'MinBad',n} — Specifies the minimum number n (n>=0) of Bads per bin. The default value
is 1, to avoid pure bins.

• {'MaxBad',n} — Specifies the maximum number n (n>=0) of Bads per bin. The default value
is Inf.

• {'MinGood',n} — Specifies the minimum number n (n>=0) of Goods per bin. The default
value is 1, to avoid pure bins.

• {'MaxGood',n} — Specifies the maximum number n (n>=0) of Goods per bin. The default
value is Inf.
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• {'MinCount',n} — Specifies the minimum number n (n>=0) of observations per bin. The
default value is 1, to avoid empty bins.

• {'MaxCount',n} — Specifies the maximum number n (n>=0) of observations per bin. The
default value is Inf.

• {'MaxNumBins',n} — Specifies the maximum number n (n>=2) of bins resulting from the
splitting. The default value is 5.

• {'Tolerance',Tol} — Specifies the minimum gain (>0) in the information function, during
the iteration scheme, to select the cut-point that maximizes the gain. The default is 1e-4.

• {'Significance',n} — Significance level threshold for the chi-square statistic, above which
splitting happens. Values are in the interval [0,1]. Default is 0.9 (90% significance level).

• {'SortCategories','SortOption'} — Used for categorical predictors only. Used to
determine how the predictor categories are sorted as a preprocessing step before applying the
algorithm. The values of 'SortOption' are:

• 'Goods' — The categories are sorted by order of increasing values of “Good.”
• 'Bads' — The categories are sorted by order of increasing values of “Bad.”
• 'Odds' — (default) The categories are sorted by order of increasing values of odds, defined

as the ratio of “Good” to “Bad” observations, for the given category.
• 'Totals' — The categories are sorted by order of increasing values of total number of

observations (“Good” plus “Bad”).
• 'None' — No sorting is applied. The existing order of the categories is unchanged before

applying the algorithm. (The existing order of the categories can be seen in the category
grouping optional output from bininfo.)

For more information, see Sort Categories on page 19-1894
• For Merge algorithm:

• {'InitialNumBins',n} — Specifies an integer that determines the number (n >0) of bins
that the predictor is initially binned into before merging. Valid for numeric predictors only.
Default is 50.

• {'Measure',MeasureName} — Specifies the measure where 'MeasureName' is one of the
following:'Chi2' (default), 'Gini', 'InfoValue', or 'Entropy'.

• {'MinNumBins',n} — Specifies the minimum number n (n>=2) of bins that result from
merging. The default value is 2.

• {'MaxNumBins',n} — Specifies the maximum number n (n>=2) of bins that result from
merging. The default value is 5.

• {'Tolerance',n} — Specifies the minimum threshold below which merging happens for the
information value and entropy statistics. Valid values are in the interval (0.1). Default is
1e-3.

• {'Significance',n} — Significance level threshold for the chi-square statistic, below which
merging happens. Values are in the interval [0,1]. Default is 0.9 (90% significance level).

• {'SortCategories','SortOption'} — Used for categorical predictors only. Used to
determine how the predictor categories are sorted as a preprocessing step before applying the
algorithm. The values of 'SortOption' are:

• 'Goods' — The categories are sorted by order of increasing values of “Good.”
• 'Bads' — The categories are sorted by order of increasing values of “Bad.”
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• 'Odds' — (default) The categories are sorted by order of increasing values of odds, defined
as the ratio of “Good” to “Bad” observations, for the given category.

• 'Totals' — The categories are sorted by order of increasing values of total number of
observations (“Good” plus “Bad”).

• 'None' — No sorting is applied. The existing order of the categories is unchanged before
applying the algorithm. (The existing order of the categories can be seen in the category
grouping optional output from bininfo.)

For more information, see Sort Categories on page 19-1894
• For EqualFrequency algorithm:

• {'NumBins',n} — Specifies the desired number (n) of bins. The default is {'NumBins',5}
and the number of bins must be a positive number.

• {'SortCategories','SortOption'} — Used for categorical predictors only. Used to
determine how the predictor categories are sorted as a preprocessing step before applying the
algorithm. The values of 'SortOption' are:

• 'Odds' — (default) The categories are sorted by order of increasing values of odds, defined
as the ratio of “Good” to “Bad” observations, for the given category.

• 'Goods' — The categories are sorted by order of increasing values of “Good.”
• 'Bads' — The categories are sorted by order of increasing values of “Bad.”
• 'Totals' — The categories are sorted by order of increasing values of total number of

observations (“Good” plus “Bad”).
• 'None' — No sorting is applied. The existing order of the categories is unchanged before

applying the algorithm. (The existing order of the categories can be seen in the category
grouping optional output from bininfo.)

For more information, see Sort Categories on page 19-1894
• For EqualWidth algorithm:

• {'NumBins',n} — Specifies the desired number (n) of bins. The default is {'NumBins',5}
and the number of bins must be a positive number.

• {'SortCategories','SortOption'} — Used for categorical predictors only. Used to
determine how the predictor categories are sorted as a preprocessing step before applying the
algorithm. The values of 'SortOption' are:

• 'Odds' — (default) The categories are sorted by order of increasing values of odds, defined
as the ratio of “Good” to “Bad” observations, for the given category.

• 'Goods' — The categories are sorted by order of increasing values of “Good.”
• 'Bads' — The categories are sorted by order of increasing values of “Bad.”
• 'Totals' — The categories are sorted by order of increasing values of total number of

observations (“Good” plus “Bad”).
• 'None' — No sorting is applied. The existing order of the categories is unchanged before

applying the algorithm. (The existing order of the categories can be seen in the category
grouping optional output from bininfo.)

For more information, see Sort Categories on page 19-1894
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Example: sc =
autobinning(sc,'CustAge','Algorithm','Monotone','AlgorithmOptions',
{'Trend','Increasing'})

Data Types: cell

Display — Indicator to display information on status of the binning process at command
line
'Off' (default) | character vector with values 'On', 'Off'

Indicator to display the information on status of the binning process at command line, specified as the
comma-separated pair consisting of 'Display' and a character vector with a value of 'On' or
'Off'.
Data Types: char

Output Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object containing the
automatically determined binning maps or rules (cut points or category groupings) for one or more
predictors. For more information on using the creditscorecard object, see creditscorecard.

Note If you have previously used the modifybins function to manually modify bins, these changes
are lost when running autobinning because all the data is automatically binned based on internal
autobinning rules.

More About
Monotone

The 'Monotone' algorithm is an implementation of the Monotone Adjacent Pooling Algorithm
(MAPA), also known as Maximum Likelihood Monotone Coarse Classifier (MLMCC); see Anderson or
Thomas in the “References” on page 19-1895.

Preprocessing

During the preprocessing phase, preprocessing of numeric predictors consists in applying equal
frequency binning, with the number of bins determined by the 'InitialNumBins' parameter (the
default is 10 bins). The preprocessing of categorical predictors consists in sorting the categories
according to the 'SortCategories' criterion (the default is to sort by odds in increasing order).
Sorting is not applied to ordinal predictors. See the “Sort Categories” on page 19-1894 definition or
the description of AlgorithmOptions option for 'SortCategories' for more information.

Main Algorithm

The following example illustrates how the 'Monotone' algorithm arrives at cut points for numeric
data.
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Bin Good Bad Iteration1 Iteration2 Iteration3 Iteration4
'[-
Inf,33000)
'

127 107 0.543    

'[33000,38
000)'

194 90 0.620 0.683   

'[38000,42
000)'

135 78 0.624 0.662   

'[42000,47
000)'

164 66 0.645 0.678 0.713  

'[47000,In
f]'

183 56 0.669 0.700 0.740 0.766

Initially, the numeric data is preprocessed with an equal frequency binning. In this example, for
simplicity, only the five initial bins are used. The first column indicates the equal frequency bin
ranges, and the second and third columns have the “Good” and “Bad” counts per bin. (The number of
observations is 1,200, so a perfect equal frequency binning would result in five bins with 240
observations each. In this case, the observations per bin do not match 240 exactly. This is a common
situation when the data has repeated values.)

Monotone finds break points based on the cumulative proportion of “Good” observations. In
the'Iteration1' column, the first value (0.543) is the number of “Good” observations in the first
bin (127), divided by the total number of observations in the bin (127+107). The second value (0.620)
is the number of “Good” observations in bins 1 and 2, divided by the total number of observations in
bins 1 and 2. And so forth. The first cut point is set where the minimum of this cumulative ratio is
found, which is in the first bin in this example. This is the end of iteration 1.

Starting from the second bin (the first bin after the location of the minimum value in the previous
iteration), cumulative proportions of “Good” observations are computed again. The second cut point
is set where the minimum of this cumulative ratio is found. In this case, it happens to be in bin
number 3, therefore bins 2 and 3 are merged.

The algorithm proceeds the same way for two more iterations. In this particular example, in the end it
only merges bins 2 and 3. The final binning has four bins with cut points at 33,000, 42,000, and
47,000.

For categorical data, the only difference is that the preprocessing step consists in reordering the
categories. Consider the following categorical data:

Bin Good Bad Odds
'Home Owner' 365 177 2.062
'Tenant' 307 167 1.838
'Other' 131 53 2.474

The preprocessing step, by default, sorts the categories by 'Odds'. (See the “Sort Categories” on
page 19-1894 definition or the description of AlgorithmOptions option for 'SortCategories' for
more information.) Then, it applies the same steps described above, shown in the following table:
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Bin Good Bad Odds Iteration1 Iteration2 Iteration3
'Tenant' 307 167 1.838 0.648   
'Home
Owner'

365 177 2.062 0.661 0.673  

'Other' 131 53 2.472 0.669 0.683 0.712

In this case, the Monotone algorithm would not merge any categories. The only difference, compared
with the data before the application of the algorithm, is that the categories are now sorted by
'Odds'.

In both the numeric and categorical examples above, the implicit 'Trend' choice is 'Increasing'.
(See the description of AlgorithmOptions option for the 'Monotone' 'Trend' option.) If you set
the trend to 'Decreasing', the algorithm looks for the maximum (instead of the minimum)
cumulative ratios to determine the cut points. In that case, at iteration 1, the maximum would be in
the last bin, which would imply that all bins should be merged into a single bin. Binning into a single
bin is a total loss of information and has no practical use. Therefore, when the chosen trend leads to a
single bin, the Monotone implementation rejects it, and the algorithm returns the bins found after the
preprocessing step. This state is the initial equal frequency binning for numeric data and the sorted
categories for categorical data. The implementation of the Monotone algorithm by default uses a
heuristic to identify the trend ('Auto' option for 'Trend').

Split

Split is a supervised automatic binning algorithm, where a measure is used to split the data into
buckets. The supported measures are gini, chi2, infovalue, and entropy.

Internally, the split algorithm proceeds as follows:

1 All categories are merged into a single bin.
2 At the first iteration, all potential cutpoint indices are tested to see which one results in the

maximum increase in the information function (Gini, InfoValue, Entropy, or Chi2). That
cutpoint is then selected, and the bin is split.

3 The same procedure is reiterated for the next sub-bins.
4 The algorithm stops when the maximum number of bins is reached or when the splitting does not

result in any additional change in the information change function.

The following table for a categorical predictor summarizes the values of the change function at each
iteration. In this example, 'Gini' is the measure of choice, such that the goal is to see a decrease of
the Gini measure at each iteration.

Iteration
0 Bin
Number

Member Gini Iteration
1 Bin
Number

Member Gini Iteration
2 Bin
Number

Member Gini

1 'Tenant'  1 'Tenant'  1 'Tenant' 0.45638
1 'Subletter

'
 1 'Subletter

'
0.44789 1 'Subletter

'
 

1 'Home
Owner'

 1 'Home
Owner'

 2 'Home
Owner'

0.43984

1 'Other'  2 'Other' 0.41015 3 'Other' 0.41015

19 Functions

19-1888



Iteration
0 Bin
Number

Member Gini Iteration
1 Bin
Number

Member Gini Iteration
2 Bin
Number

Member Gini

Total Gini  0.442765   0.442102   0.441822
Relative
Change

 0   0.001498   0.002128

The relative change at iteration i is with respect to the Gini measure of the entire bins at iteration i-1.
The final result corresponds to that from the last iteration which, in this example, is iteration 2.

The following table for a numeric predictor summarizes the values of the change function at each
iteration. In this example, 'Gini' is the measure of choice, such that the goal is to see a decrease of
the Gini measure at each iteration. Since most numeric predictors in datasets contain many bins,
there is a preprocessing step where the data is pre-binned into 50 equal-frequency bins. This makes
the pool of valid cutpoints to choose from for splitting smaller and more manageable.

Iteration
0 Bin
Number

Member Gini Iteration
1 Bin
Number

Gini Iteration
2 Bin
Number

Gini Iteration
3 Bin
Number

Gini

1 '21'  '[-
Inf,47]
'

0.473897 '[-
Inf,47]
'

0.473897 '[-
Inf,35]
'

0.494941

1 '22'  '[47,In
f]'

0.385238 '[47,61
]'

0.407072 '[35,
47]'

0.463201

1 '23'    '[61,In
f]'

0.208795 '[47,
61]'

0.407072

1 '74'   0   '[61,In
f]'

0.208795

Total Gini  0.442765  0.435035  0.432048  0.430511
Relative
Change

 0  0.01746  0.006867  0.0356

The resulting split must be such that the information function (content) increases. As such, the best
split is the one that results in the maximum information gain. The information functions supported
are:

• Gini: Each split results in an increase in the Gini Ratio, defined as:

G_r = 1- G_hat/G_p

G_p is the Gini measure of the parent node, that is, of the given bins/categories prior to splitting.
G_hat is the weighted Gini measure for the current split:

G_hat = Sum((nj/N) * Gini(j), j=1..m)

where

nj is the total number of observations in the jth bin.

N is the total number of observations in the dataset.
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m is the number of splits for the given variable.

Gini(j) is the Gini measure for the jth bin.

The Gini measure for the split/node j is:

Gini(j) = 1 - (Gj^2+Bj^2) / (nj)^2

where Gj, Bj = Number of Goods and Bads for bin j.
• InfoValue: The information value for each split results in an increase in the total information.

The split that is retained is the one which results in the maximum gain, within the acceptable gain
tolerance. The Information Value (IV) for a given observation j is defined as:

IV = sum( (pG_i-pB_i) * log(pG_i/pB_i), i=1..n)

where

pG_i is the distribution of Goods at observation i, that is Goods(i)/Total_Goods.

pB_i is the distribution of Bads at observation i, that is Bads(i)/Total_Bads.

n is the total number of bins.
• Entropy: Each split results in a decrease in entropy variance defined as:

 E = -sum(ni * Ei, i=1..n)  

where

ni is the total count for bin i, that is (ni = Gi + Bi).

Ei is the entropy for row (or bin) i, defined as:

 Ei = -sum(Gi*log2(Gi/ni) + Bi*log2(Bi/ni))/N, 
i=1..n

• Chi2: Chi2 is computed pairwise for each pair of bins and measures the statistical difference
between two groups. Splitting is selected at a point (cutpoint or category indexing) where the
maximum Chi2 value is:

 Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=m,m+1)

where

m takes values from 1 ... n-1, where n is the number of bins.

k is the number of classes. Here k = 2 for the (Goods, Bads).

Aij is the number of observations in bin i, jth class.

Eij is the expected frequency of Aij, which is equal to (Ri*Cj)/N.

Ri is the number of observations in bin i, which is equal to sum(Aij, j=1..k).

Cj is the number of observations in the jth class, which is equal to sum(Aij, I = m,m+1).

N is the total number of observations, which is equal to sum(Cj, j=1..k).
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The Chi2 measure for the entire sample (as opposed to the pairwise Chi2 measure for adjacent bins)
is:

 Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=1..n)

Merge

Merge is a supervised automatic binning algorithm, where a measure is used to merge bins into
buckets. The supported measures are chi2, gini, infovalue, and entropy.

Internally, the merge algorithm proceeds as follows:

1 All categories are initially in separate bins.
2 The user selected information function (Chi2, Gini, InfoValue or Entropy) is computed for

any pair of adjacent bins.
3 At each iteration, the pair with the smallest information change measured by the selected

information function is merged.
4 The merging continues until either:

a All pairwise information values are greater than the threshold set by the significance level or
the relative change is smaller than the tolerance.

b If at the end, the number of bins is still greater than the MaxNumBins allowed, merging is
forced until there are at most MaxNumBins bins. Similarly, merging stops when there are
only MinNumBins bins.

5 For categorical, original bins/categories are pre-sorted according to the sorting of choice set by
the user. For numeric data, the data is preprocessed to get IntialNumBins bins of equal
frequency before the merging algorithm starts.

The following table for a categorical predictor summarizes the values of the change function at each
iteration. In this example, 'Chi2' is the measure of choice. The default sorting by Odds is applied as
a preprocessing step. The Chi2 value reported below at row i is for bins i and i+1. The significance
level is 0.9 (90%), so that the inverse Chi2 value is 2.705543. This is the threshold below which
adjacent pairs of bins are merged. The minimum number of bins is 2.

Iteration
0 Bin
Number

Member Chi2 Iteration
1 Bin
Number

Member Chi2 Iteration
2 Bin
Number

Member Chi2

1 'Tenant' 1.007613 1 'Tenant' 0.795920 1 'Tenant'  
2 'Subletter

'
0.257347 2 'Subletter

'
 1 'Subletter

'
 

3 'Home
Owner'

1.566330 2 'Home
Owner'

1.522914 1 'Home
Owner'

1.797395

4 'Other'  3 'Other'  2 'Other'  
Total Chi2  2.573943   2.317717   1.797395

The following table for a numeric predictor summarizes the values of the change function at each
iteration. In this example, 'Chi2' is the measure of choice.
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Iteration 0
Bin Number

Chi2 Iteration 1
Bins

Chi2  Final
Iteration
Bins

Chi2

'[-
Inf,22]'

0.11814 '[-
Inf,22]'

0.11814  '[-
Inf,33]'

8.4876

'[22,23]' 1.6464 '[22,23]' 1.6464  '[33, 48]' 7.9369
...  ...   '[48,64]' 9.956
'[58,59]' 0.311578 '[58,59]' 0.27489  '[64,65]' 9.6988
'[59,60]' 0.068978 '[59,61]' 1.8403  '[65,Inf]' NaN
'[60,61]' 1.8709 '[61,62]' 5.7946 ...   
'[61,62]' 5.7946 ...     
...  '[69,70]' 6.4271    
'[69,70]' 6.4271 '[70,Inf]' NaN    
'[70,Inf]' NaN      
       
Total Chi2 67.467  67.399   23.198

The resulting merging must be such that any pair of adjacent bins is statistically different from each
other, according to the chosen measure. The measures supported for Merge are:

• Chi2: Chi2 is computed pairwise for each pair of bins and measures the statistical difference
between two groups. Merging is selected at a point (cutpoint or category indexing) where the
maximum Chi2 value is:

 Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=m,m+1)

where

m takes values from 1 ... n-1, and n is the number of bins.

k is the number of classes. Here k = 2 for the (Goods, Bads).

Aij is the number of observations in bin i, jth class.

Eij is the expected frequency of Aij, which is equal to (Ri*Cj)/N.

Ri is the number of observations in bin i, which is equal to sum(Aij, j=1..k).

Cj is the number of observations in the jth class, which is equal to sum(Aij, I = m,m+1).

N is the total number of observations, which is equal to sum(Cj, j=1..k).

The Chi2 measure for the entire sample (as opposed to the pairwise Chi2 measure for adjacent
bins) is:

 Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=1..n)

• Gini: Each merge results in a decrease in the Gini Ratio, defined as:

G_r = 1- G_hat/G_p
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G_p is the Gini measure of the parent node, that is, of the given bins/categories prior to merging.
G_hat is the weighted Gini measure for the current merge:

G_hat = Sum((nj/N) * Gini(j), j=1..m)

where

nj is the total number of observations in the jth bin.

N is the total number of observations in the dataset.

m is the number of merges for the given variable.

Gini(j) is the Gini measure for the jth bin.

The Gini measure for the merge/node j is:

Gini(j) = 1 - (Gj^2+Bj^2) / (nj)^2

where Gj, Bj = Number of Goods and Bads for bin j.
• InfoValue: The information value for each merge will result in a decrease in the total

information. The merge that is retained is the one which results in the minimum gain, within the
acceptable gain tolerance. The Information Value (IV) for a given observation j is defined as:

IV = sum( (pG_i-pB_i) * log(pG_i/pB_i), i=1..n)

where

pG_i is the distribution of Goods at observation i, that is Goods(i)/Total_Goods.

pB_i is the distribution of Bads at observation i, that is Bads(i)/Total_Bads.

n is the total number of bins.
• Entropy: Each merge results in an increase in entropy variance defined as:

 E = -sum(ni * Ei, i=1..n)  

where

ni is the total count for bin i, that is (ni = Gi + Bi).

Ei is the entropy for row (or bin) i, defined as:

 Ei = -sum(Gi*log2(Gi/ni) + Bi*log2(Bi/ni))/N, 
i=1..n

Note When using the Merge algorithm, if there are pure bins (bins that have either zero count of
Goods or zero count of Bads), the statistics such as Information Value and Entropy have non-finite
values. To account for this, a frequency shift of .5 is applied for computing various statistics
whenever the algorithm finds pure bins.

Equal Frequency

Unsupervised algorithm that divides the data into a predetermined number of bins that contain
approximately the same number of observations.
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EqualFrequency is defined as:

Let v[1], v[2],..., v[N] be the sorted list of different values or categories observed in the data. Let f[i]
be the frequency of v[i]. Let F[k] = f[1]+...+f[k] be the cumulative sum of frequencies up to the kth
sorted value. Then F[N] is the same as the total number of observations.

Define AvgFreq = F[N] / NumBins, which is the ideal average frequency per bin after binning. The
nth cut point index is the index k such that the distance abs(F[k] - n*AvgFreq) is minimized.

This rule attempts to match the cumulative frequency up to the nth bin. If a single value contains too
many observations, equal frequency bins are not possible, and the above rule yields less than
NumBins total bins. In that case, the algorithm determines NumBins bins by breaking up bins, in the
order in which the bins were constructed.

The preprocessing of categorical predictors consists in sorting the categories according to the
'SortCategories' criterion (the default is to sort by odds in increasing order). Sorting is not
applied to ordinal predictors. See the “Sort Categories” on page 19-1894 definition or the description
of AlgorithmOptions option for 'SortCategories' for more information.

Equal Width

Unsupervised algorithm that divides the range of values in the domain of the predictor variable into a
predetermined number of bins of “equal width.” For numeric data, the width is measured as the
distance between bin edges. For categorical data, width is measured as the number of categories
within a bin.

The EqualWidth option is defined as:

For numeric data, if MinValue and MaxValue are the minimum and maximum data values, then

Width = (MaxValue - MinValue)/NumBins

and the CutPoints are set to MinValue + Width, MinValue + 2*Width, ... MaxValue – Width. If a
MinValue or MaxValue have not been specified using the modifybins function, the EqualWidth
option sets MinValue and MaxValue to the minimum and maximum values observed in the data.

For categorical data, if there are NumCats numbers of original categories, then

Width = NumCats / NumBins,

and set cut point indices to the rounded values of Width, 2*Width, ..., NumCats – Width, plus 1.

The preprocessing of categorical predictors consists in sorting the categories according to the
'SortCategories' criterion (the default is to sort by odds in increasing order). Sorting is not
applied to ordinal predictors. See the “Sort Categories” on page 19-1894 definition or the description
of AlgorithmOptions option for 'SortCategories' for more information.

Sort Categories

As a preprocessing step for categorical data, 'Monotone', 'EqualFrequency', and 'EqualWidth'
support the 'SortCategories' input. This serves the purpose of reordering the categories before
applying the main algorithm. The default sorting criterion is to sort by 'Odds'. For example, suppose
that the data originally looks like this:
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Bin Good Bad Odds
'Home Owner' 365 177 2.062
'Tenant' 307 167 1.838
'Other' 131 53 2.472

After the preprocessing step, the rows would be sorted by 'Odds' and the table looks like this:

Bin Good Bad Odds
'Tenant' 307 167 1.838
'Home Owner' 365 177 2.062
'Other' 131 53 2.472

The three algorithms only merge adjacent bins, so the initial order of the categories makes a
difference for the final binning. The 'None' option for 'SortCategories' would leave the original
table unchanged. For a description of the sorting criteria supported, see the description of the
AlgorithmOptions option for 'SortCategories'.

Upon the construction of a scorecard, the initial order of the categories, before any algorithm or any
binning modifications are applied, is the order shown in the first output of bininfo. If the bins have
been modified (either manually with modifybins or automatically with autobinning), use the
optional output (cg,'category grouping') from bininfo to get the current order of the
categories.

The 'SortCategories' option has no effect on categorical predictors for which the 'Ordinal'
parameter is set to true (see the 'Ordinal' input parameter in MATLAB categorical arrays for
categorical. Ordinal data has a natural order, which is honored in the preprocessing step of the
algorithms by leaving the order of the categories unchanged. Only categorical predictors whose
'Ordinal' parameter is false (default option) are subject to reordering of categories according to
the 'SortCategories' criterion.

Using autobinning with Weights

When observation weights are defined using the optional WeightsVar argument when creating a
creditscorecard object, instead of counting the rows that are good or bad in each bin, the
autobinning function accumulates the weight of the rows that are good or bad in each bin.

The “frequencies” reported are no longer the basic “count” of rows, but the “cumulative weight” of
the rows that are good or bad and fall in a particular bin. Once these “weighted frequencies” are
known, all other relevant statistics (Good, Bad, Odds, WOE, and InfoValue) are computed with the
usual formulas. For more information, see “Credit Scorecard Modeling Using Observation Weights”
on page 8-54.
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plotbins | fitmodel | displaypoints | formatpoints | score | setmodel | probdefault |
validatemodel
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“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47
“Credit Scorecard Modeling Using Observation Weights” on page 8-54
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probdefault
Likelihood of default for given data set

Syntax
pd = probdefault(sc)
pd = probdefault(sc,data)

Description
pd = probdefault(sc) computes the probability of default for sc, the data used to build the
creditscorecard object.

pd = probdefault(sc,data) computes the probability of default for a given data set specified
using the optional argument data.

By default, the data used to build the creditscorecard object are used. You can also supply input
data, to which the same computation of probability of default is applied.

Examples

Compute Probability for Default Using Credit ScoreCard Data

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(data,'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform automatic binning using the default options. By default, autobinning uses the Monotone
algorithm.

sc = autobinning(sc);

Fit the model.
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sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Compute the probability of default.

pd = probdefault(sc);
disp(pd(1:15,:))

    0.2503
    0.1878
    0.3173
    0.1711
    0.1895
    0.1307
    0.5218
    0.2848
    0.2612
    0.3047
    0.3418
    0.2237
    0.2793
    0.3615
    0.1653
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Compute Probability for Default Using Credit ScoreCard Data When Using the
'BinMissingData' Option

This example describes both the assignment of points for missing data when the 'BinMissingData'
option is set to true, and the corresponding computation of probabilities of default.

• Predictors that have missing data in the training set have an explicit bin for <missing> with
corresponding points in the final scorecard. These points are computed from the Weight-of-
Evidence (WOE) value for the <missing> bin and the logistic model coefficients. For scoring
purposes, these points are assigned to missing values and to out-of-range values, and the final
score is mapped to a probability of default when using probdefault.

• Predictors with no missing data in the training set have no <missing> bin, therefore no WOE can
be estimated from the training data. By default, the points for missing and out-of-range values are
set to NaN, and this leads to a score of NaN when running score. For predictors that have no
explicit <missing> bin, use the name-value argument 'Missing' in formatpoints to indicate
how missing data should be treated for scoring purposes. The final score is then mapped to a
probability of default when using probdefault.

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]
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Set a minimum value of 0 for CustAge and CustIncome. With this, any negative age or income
information becomes invalid or "out-of-range". For scoring and probability of default computations,
out-of-range values are given the same points as missing values.

sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);

Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin
labelled <missing>.

bi = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[0,33)'   }     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

Display bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

bi = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

For the 'CustAge' and 'ResStatus' predictors, there is missing data (NaNs and <undefined>) in
the training data, and the binning process estimates a WOE value of -0.15787 and 0.026469
respectively for missing data in these predictors, as shown above.

For EmpStatus and CustIncome there is no explicit bin for missing values because the training data
has no missing values for these predictors.

bi = bininfo(sc,'EmpStatus');
disp(bi)

        Bin         Good    Bad     Odds       WOE       InfoValue
    ____________    ____    ___    ______    ________    _________

    {'Unknown' }    396     239    1.6569    -0.19947    0.021715 
    {'Employed'}    407     158    2.5759      0.2418    0.026323 
    {'Totals'  }    803     397    2.0227         NaN    0.048038 
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bi = bininfo(sc,'CustIncome');
disp(bi)

           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[0,29000)'    }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default). For predictors that have missing data, there is an explicit <missing> bin, with a
corresponding WOE value computed from the data. When using fitmodel, the corresponding WOE
value for the <missing> bin is applied when performing the WOE transformation.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Scale the scorecard points by the "points, odds, and points to double the odds (PDO)" method using
the 'PointsOddsAndPDO' argument of formatpoints. Suppose that you want a score of 500
points to have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50
points (so that 550 points would have odds of 4).

 probdefault

19-1901



Display the scorecard showing the scaled points for predictors retained in the fitting model.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
     Predictors           Bin          Points
    _____________    ______________    ______

    {'CustAge'  }    {'[0,33)'    }    54.062
    {'CustAge'  }    {'[33,37)'   }    56.282
    {'CustAge'  }    {'[37,40)'   }    60.012
    {'CustAge'  }    {'[40,46)'   }    69.636
    {'CustAge'  }    {'[46,48)'   }    77.912
    {'CustAge'  }    {'[48,51)'   }     78.86
    {'CustAge'  }    {'[51,58)'   }     80.83
    {'CustAge'  }    {'[58,Inf]'  }     96.76
    {'CustAge'  }    {'<missing>' }    64.984
    {'ResStatus'}    {'Tenant'    }    62.138
    {'ResStatus'}    {'Home Owner'}    73.248
    {'ResStatus'}    {'Other'     }    90.828
    {'ResStatus'}    {'<missing>' }    74.125
    {'EmpStatus'}    {'Unknown'   }    58.807
    {'EmpStatus'}    {'Employed'  }    86.937
    {'EmpStatus'}    {'<missing>' }       NaN
      ⋮

Notice that points for the <missing> bin for CustAge and ResStatus are explicitly shown (as
64.9836 and 74.1250, respectively). These points are computed from the WOE value for the
<missing> bin and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit <missing> bin. By
default the points are set to NaN for missing data, and they lead to a score of NaN when running
score. For predictors that have no explicit <missing> bin, use the name-value argument 'Missing'
in formatpoints to indicate how missing data should be treated for scoring purposes.

For the purpose of illustration, take a few rows from the original data as test data and introduce some
missing data. Also introduce some invalid, or out-of-range, values. For numeric data, values below the
minimum (or above the maximum) allowed are considered invalid, such as a negative value for age
(recall 'MinValue' was earlier set to 0 for CustAge and CustIncome). For categorical data, invalid
values are categories not explicitly included in the scorecard, for example, a residential status not
previously mapped to scorecard categories, such as "House", or a meaningless string such as
"abc123".

tdata = dataMissing(11:18,mdl.PredictorNames); % Keep only the predictors retained in the model
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
% Set some invalid values
tdata.CustAge(5) = -100;
tdata.ResStatus(6) = 'House';
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
disp(tdata)
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    CustAge     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance
    _______    ___________    ___________    __________    _______    _______    _________

      NaN      Tenant         Unknown          34000         44         Yes        119.8  
       48      <undefined>    Unknown          44000         14         Yes       403.62  
       65      Home Owner     <undefined>      48000          6         No        111.88  
       44      Other          Unknown            NaN         35         No        436.41  
     -100      Other          Employed         46000         16         Yes       162.21  
       33      House          Employed         36000         36         Yes       845.02  
       39      Tenant         Freelancer       34000         40         Yes       756.26  
       24      Home Owner     Employed            -1         19         Yes       449.61  

Score the new data and see how points are assigned for missing CustAge and ResStatus, because
we have an explicit bin with points for <missing>. However, for EmpStatus and CustIncome the
score function sets the points to NaN. The corresponding probabilities of default are also set to NaN.

[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
       NaN
       NaN
  551.7922
  487.9588
       NaN
       NaN

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248          NaN        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807           NaN      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138          NaN        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937           NaN      61.061     75.622      89.922  

pd = probdefault(sc,tdata);
disp(pd)

    0.3934
    0.2725
       NaN
       NaN
    0.1961
    0.3714
       NaN
       NaN

Use the name-value argument 'Missing' in formatpoints to choose how to assign points to
missing values for predictors that do not have an explicit <missing> bin. In this example, use the
'MinPoints' option for the 'Missing' argument. The minimum points for EmpStatus in the
scorecard displayed above are 58.8072, and for CustIncome the minimum points are 29.3753. All
rows now have a score and a corresponding probability of default.
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sc = formatpoints(sc,'Missing','MinPoints');
[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
  517.7532
  451.3405
  551.7922
  487.9588
  449.3577
  470.2267

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248       58.807        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807        29.375      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138       58.807        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937        29.375      61.061     75.622      89.922  

pd = probdefault(sc,tdata);
disp(pd)

    0.3934
    0.2725
    0.2810
    0.4954
    0.1961
    0.3714
    0.5022
    0.4304

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. To create this object, use
creditscorecard.

data — Dataset to apply probability of default rules
table

(Optional) Dataset to apply probability of default rules, specified as a MATLAB table, where each row
corresponds to individual observations. The data must contain columns for each of the predictors in
the creditscorecard object.
Data Types: table
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Output Arguments
pd — Probability of default
array

Probability of default, returned as a NumObs-by-1 numerical array of default probabilities.

More About
Default Probability

After the unscaled scores are computed (see “Algorithms for Computing and Scaling Scores” on page
19-1721), the probability of the points being “Good” is represented by the following formula:

ProbGood = 1./(1 + exp(-UnscaledScores))

Thus, the probability of default is

pd = 1 - ProbGood

References
[1] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | bininfo | predictorinfo | modifypredictor | modifybins | bindata |
plotbins | fitmodel | displaypoints | formatpoints | score | setmodel | validatemodel |
table

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47

Introduced in R2015a
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validatemodel
Validate quality of credit scorecard model

Syntax
Stats = validatemodel(sc)
Stats = validatemodel(sc,data)
[Stats,T] = validatemodel(sc,Name,Value)
[Stats,T,hf] = validatemodel(sc,Name,Value)

Description
Stats = validatemodel(sc) validates the quality of the creditscorecard model.

By default, the data used to build the creditscorecard object is used. You can also supply input
data to which the validation is applied.

Stats = validatemodel(sc,data) validates the quality of the creditscorecard model for a
given data set specified using the optional argument data.

[Stats,T] = validatemodel(sc,Name,Value) validates the quality of the creditscorecard
model using the optional name-value pair arguments, and returns Stats and T outputs.

[Stats,T,hf] = validatemodel(sc,Name,Value) validates the quality of the
creditscorecard model using the optional name-value pair arguments, and returns the figure
handle hf to the CAP, ROC, and KS plots.

Examples

Validate a Credit Scorecard Model

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData
sc = creditscorecard(data, 'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]
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Perform automatic binning using the default options. By default, autobinning uses the Monotone
algorithm.

sc = autobinning(sc);

Fit the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Format the unscaled points.

sc = formatpoints(sc, 'PointsOddsAndPDO',[500,2,50]);

Score the data.

scores = score(sc);

Validate the credit scorecard model by generating the CAP, ROC, and KS plots.

[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});

 validatemodel
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disp(Stats)

            Measure              Value 
    ________________________    _______

    {'Accuracy Ratio'      }    0.32258
    {'Area under ROC curve'}    0.66129
    {'KS statistic'        }     0.2246
    {'KS score'            }     499.62

disp(T(1:15,:))

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm      PctObs  
    ______    ___________    ________    _________    _________    __________    ___________    __________    __________

    369.54      0.75313          0           1           802          397                 0     0.0012453     0.00083333
    378.19      0.73016          1           1           802          396         0.0025189     0.0012453      0.0016667
    380.28      0.72444          2           1           802          395         0.0050378     0.0012453         0.0025
    391.49      0.69234          3           1           802          394         0.0075567     0.0012453      0.0033333
    395.57      0.68017          4           1           802          393          0.010076     0.0012453      0.0041667
    396.14      0.67846          4           2           801          393          0.010076     0.0024907          0.005
    396.45      0.67752          5           2           801          392          0.012594     0.0024907      0.0058333
    398.61      0.67094          6           2           801          391          0.015113     0.0024907      0.0066667
    398.68      0.67072          7           2           801          390          0.017632     0.0024907         0.0075
    401.33      0.66255          8           2           801          389          0.020151     0.0024907      0.0083333
    402.66      0.65842          8           3           800          389          0.020151      0.003736      0.0091667
    404.25      0.65346          9           3           800          388           0.02267      0.003736           0.01
    404.73      0.65193          9           4           799          388           0.02267     0.0049813       0.010833
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    405.53      0.64941         11           4           799          386          0.027708     0.0049813         0.0125
     405.7      0.64887         11           5           798          386          0.027708     0.0062267       0.013333

Validate a Credit Score Card Model With Weights

Use the CreditCardData.mat file to load the data (dataWeights) that contains a column
(RowWeights) for the weights (using a dataset from Refaat 2011).

load CreditCardData

Create a creditscorecard object using the optional name-value pair argument for 'WeightsVar'.

sc = creditscorecard(dataWeights,'IDVar','CustID','WeightsVar','RowWeights')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x12 table]

Perform automatic binning.

sc = autobinning(sc)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x12 table]

Fit the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 764.3187, Chi2Stat = 15.81927, PValue = 6.968927e-05
2. Adding TmWBank, Deviance = 751.0215, Chi2Stat = 13.29726, PValue = 0.0002657942
3. Adding AMBalance, Deviance = 743.7581, Chi2Stat = 7.263384, PValue = 0.007037455
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Generalized linear regression model:
    logit(status) ~ 1 + CustIncome + TmWBank + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70642     0.088702     7.964    1.6653e-15
    CustIncome      1.0268      0.25758    3.9862    6.7132e-05
    TmWBank         1.0973      0.31294    3.5063     0.0004543
    AMBalance       1.0039      0.37576    2.6717     0.0075464

1200 observations, 1196 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 36.4, p-value = 6.22e-08

Format the unscaled points.

sc = formatpoints(sc, 'PointsOddsAndPDO',[500,2,50]);

Score the data.

scores = score(sc);

Validate the credit scorecard model by generating the CAP, ROC, and KS plots. When the optional
name-value pair argument 'WeightsVar' is used to specify observation (sample) weights, the T
table uses statistics, sums, and cumulative sums that are weighted counts.

[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});
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Stats

Stats=4×2 table
            Measure              Value 
    ________________________    _______

    {'Accuracy Ratio'      }    0.28972
    {'Area under ROC curve'}    0.64486
    {'KS statistic'        }    0.23215
    {'KS score'            }     505.41

T(1:10,:)

ans=10×9 table
    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm     PctObs  
    ______    ___________    ________    _________    _________    __________    ___________    __________    _________

    401.34      0.66253       1.0788           0       411.95        201.95       0.0053135             0     0.0017542
    407.59      0.64289       4.8363      1.2768       410.67        198.19        0.023821     0.0030995     0.0099405
    413.79      0.62292       6.9469      4.6942       407.25        196.08        0.034216      0.011395      0.018929
    420.04      0.60236       18.459      9.3899       402.56        184.57        0.090918      0.022794      0.045285
    437.27        0.544       18.459      10.514       401.43        184.57        0.090918      0.025523      0.047113
    442.83      0.52481       18.973      12.794       399.15        184.06        0.093448      0.031057      0.051655
    446.19      0.51319       22.396       14.15        397.8        180.64         0.11031      0.034349      0.059426
    449.08      0.50317       24.325      14.405       397.54        178.71         0.11981      0.034968      0.062978
    449.73      0.50095       28.246      18.049        393.9        174.78         0.13912      0.043813      0.075279
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    452.44      0.49153       31.511      23.565       388.38        171.52          0.1552      0.057204      0.089557

Validate a Credit Score Card Model When Using the 'BinMissingData' Option

This example describes both the assignment of points for missing data when the 'BinMissingData'
option is set to true, and the corresponding computation of model validation statistics.

• Predictors that have missing data in the training set have an explicit bin for <missing> with
corresponding points in the final scorecard. These points are computed from the Weight-of-
Evidence (WOE) value for the <missing> bin and the logistic model coefficients. For scoring
purposes, these points are assigned to missing values and to out-of-range values, and the final
score is used to compute model validation statistics with validatemodel.

• Predictors with no missing data in the training set have no <missing> bin, therefore no WOE can
be estimated from the training data. By default, the points for missing and out-of-range values are
set to NaN, and this leads to a score of NaN when running score. For predictors that have no
explicit <missing> bin, use the name-value argument 'Missing' in formatpoints to indicate
how missing data should be treated for scoring purposes. The final score is used to compute model
validation statistics with validatemodel.

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
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                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Set a minimum value of zero for CustAge and CustIncome. With this, any negative age or income
information becomes invalid or "out-of-range". For scoring and probability of default computations,
out-of-range values are given the same points as missing values.

sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);

Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin
labelled <missing>.

bi = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[0,33)'   }     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

Display bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

bi = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

For the 'CustAge' and 'ResStatus' predictors, there is missing data (NaNs and <undefined>) in
the training data, and the binning process estimates a WOE value of -0.15787 and 0.026469
respectively for missing data in these predictors, as shown above.

For EmpStatus and CustIncome there is no explicit bin for missing values, because the training
data has no missing values for these predictors.

bi = bininfo(sc,'EmpStatus');
disp(bi)

        Bin         Good    Bad     Odds       WOE       InfoValue
    ____________    ____    ___    ______    ________    _________
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    {'Unknown' }    396     239    1.6569    -0.19947    0.021715 
    {'Employed'}    407     158    2.5759      0.2418    0.026323 
    {'Totals'  }    803     397    2.0227         NaN    0.048038 

bi = bininfo(sc,'CustIncome');
disp(bi)

           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[0,29000)'    }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default). For predictors that have missing data, there is an explicit <missing> bin, with a
corresponding WOE value computed from the data. When using fitmodel, the corresponding WOE
value for the <missing> bin is applied when performing the WOE transformation.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16
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Scale the scorecard points by the "points, odds, and points to double the odds (PDO)" method using
the 'PointsOddsAndPDO' argument of formatpoints. Suppose that you want a score of 500
points to have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50
points (so that 550 points would have odds of 4).

Display the scorecard showing the scaled points for predictors retained in the fitting model.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
     Predictors           Bin          Points
    _____________    ______________    ______

    {'CustAge'  }    {'[0,33)'    }    54.062
    {'CustAge'  }    {'[33,37)'   }    56.282
    {'CustAge'  }    {'[37,40)'   }    60.012
    {'CustAge'  }    {'[40,46)'   }    69.636
    {'CustAge'  }    {'[46,48)'   }    77.912
    {'CustAge'  }    {'[48,51)'   }     78.86
    {'CustAge'  }    {'[51,58)'   }     80.83
    {'CustAge'  }    {'[58,Inf]'  }     96.76
    {'CustAge'  }    {'<missing>' }    64.984
    {'ResStatus'}    {'Tenant'    }    62.138
    {'ResStatus'}    {'Home Owner'}    73.248
    {'ResStatus'}    {'Other'     }    90.828
    {'ResStatus'}    {'<missing>' }    74.125
    {'EmpStatus'}    {'Unknown'   }    58.807
    {'EmpStatus'}    {'Employed'  }    86.937
    {'EmpStatus'}    {'<missing>' }       NaN
      ⋮

Notice that points for the <missing> bin for CustAge and ResStatus are explicitly shown (as
64.9836 and 74.1250, respectively). These points are computed from the WOE value for the
<missing> bin, and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit <missing> bin. By
default the points are set to NaN for missing data, and they lead to a score of NaN when running
score. For predictors that have no explicit <missing> bin, use the name-value argument
'Missing' in formatpoints to indicate how missing data should be treated for scoring purposes.

For the purpose of illustration, take a few rows from the original data as test data and introduce some
missing data. Also introduce some invalid, or out-of-range, values. For numeric data, values below the
minimum (or above the maximum) allowed are considered invalid, such as a negative value for age
(recall 'MinValue' was earlier set to 0 for CustAge and CustIncome). For categorical data, invalid
values are categories not explicitly included in the scorecard, for example, a residential status not
previously mapped to scorecard categories, such as "House", or a meaningless string such as
"abc123".

This is a very small validation data set, only used to illustrate the scoring of rows with missing and
out-of-range values, and its relationship with model validation.

tdata = dataMissing(11:18,mdl.PredictorNames); % Keep only the predictors retained in the model
tdata.status = dataMissing.status(11:18); % Copy the response variable value, needed for validation purposes
% Set some missing values
tdata.CustAge(1) = NaN;
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tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
% Set some invalid values
tdata.CustAge(5) = -100;
tdata.ResStatus(6) = 'House';
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
disp(tdata)

    CustAge     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance    status
    _______    ___________    ___________    __________    _______    _______    _________    ______

      NaN      Tenant         Unknown          34000         44         Yes        119.8        1   
       48      <undefined>    Unknown          44000         14         Yes       403.62        0   
       65      Home Owner     <undefined>      48000          6         No        111.88        0   
       44      Other          Unknown            NaN         35         No        436.41        0   
     -100      Other          Employed         46000         16         Yes       162.21        0   
       33      House          Employed         36000         36         Yes       845.02        0   
       39      Tenant         Freelancer       34000         40         Yes       756.26        1   
       24      Home Owner     Employed            -1         19         Yes       449.61        0   

Score the new data and see how points are assigned for missing CustAge and ResStatus, because
we have an explicit bin with points for <missing>. However, for EmpStatus and CustIncome the
score function sets the points to NaN.

The validation results are unreliable, the scores with NaN values are kept (see the validation table
ValTable below), but it is unclear what impact these NaN values have in the validation statistics
(ValStats). This is a very small validation data set, but NaN scores could still influence the validation
results on a larger data set.

[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
       NaN
       NaN
  551.7922
  487.9588
       NaN
       NaN

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248          NaN        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807           NaN      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138          NaN        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937           NaN      61.061     75.622      89.922  

[ValStats,ValTable] = validatemodel(sc,tdata);
disp(ValStats)
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            Measure              Value 
    ________________________    _______

    {'Accuracy Ratio'      }    0.16667
    {'Area under ROC curve'}    0.58333
    {'KS statistic'        }        0.5
    {'KS score'            }     481.22

disp(ValTable)

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm    PctObs
    ______    ___________    ________    _________    _________    __________    ___________    __________    ______

       NaN          NaN         0            1            5            2               0         0.16667      0.125 
       NaN          NaN         0            2            4            2               0         0.33333       0.25 
       NaN          NaN         1            2            4            1             0.5         0.33333      0.375 
       NaN          NaN         1            3            3            1             0.5             0.5        0.5 
    481.22      0.39345         2            3            3            0               1             0.5      0.625 
    487.96       0.3714         2            4            2            0               1         0.66667       0.75 
    520.84       0.2725         2            5            1            0               1         0.83333      0.875 
    551.79      0.19605         2            6            0            0               1               1          1 

Use the name-value argument 'Missing' in formatpoints to choose how to assign points to
missing values for predictors that do not have an explicit <missing> bin. In this example, use the
'MinPoints' option for the 'Missing' argument. The minimum points for EmpStatus in the
scorecard displayed above are 58.8072 and for CustIncome the minimum points are 29.3753.

The validation results are no longer influenced by NaN values, since all rows now have a score.

sc = formatpoints(sc,'Missing','MinPoints');
[Scores,Points] = score(sc,tdata);
disp(Scores)

  481.2231
  520.8353
  517.7532
  451.3405
  551.7922
  487.9588
  449.3577
  470.2267

disp(Points)

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    64.984      62.138       58.807        67.893      61.858     75.622      89.922  
     78.86      74.125       58.807        82.439      61.061     75.622      89.922  
     96.76      73.248       58.807        96.969      51.132     50.914      89.922  
    69.636      90.828       58.807        29.375      61.858     50.914      89.922  
    64.984      90.828       86.937        82.439      61.061     75.622      89.922  
    56.282      74.125       86.937        70.107      61.858     75.622      63.028  
    60.012      62.138       58.807        67.893      61.858     75.622      63.028  
    54.062      73.248       86.937        29.375      61.061     75.622      89.922  

[ValStats,ValTable] = validatemodel(sc,tdata);
disp(ValStats)
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            Measure              Value 
    ________________________    _______

    {'Accuracy Ratio'      }    0.66667
    {'Area under ROC curve'}    0.83333
    {'KS statistic'        }    0.66667
    {'KS score'            }     481.22

disp(ValTable)

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm    PctObs
    ______    ___________    ________    _________    _________    __________    ___________    __________    ______

    449.36      0.50223         1            0            6            1             0.5               0      0.125 
    451.34      0.49535         1            1            5            1             0.5         0.16667       0.25 
    470.23      0.43036         1            2            4            1             0.5         0.33333      0.375 
    481.22      0.39345         2            2            4            0               1         0.33333        0.5 
    487.96       0.3714         2            3            3            0               1             0.5      0.625 
    517.75      0.28105         2            4            2            0               1         0.66667       0.75 
    520.84       0.2725         2            5            1            0               1         0.83333      0.875 
    551.79      0.19605         2            6            0            0               1               1          1 

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. To create this object, use
creditscorecard.

data — Validation data
table

(Optional) Validation data, specified as a MATLAB table, where each table row corresponds to
individual observations. The data must contain columns for each of the predictors in the credit
scorecard model. The columns of data can be any one of the following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical
• String
• String array

In addition, the table must contain a binary response variable.

Note When observation weights are defined using the optional WeightsVar name-value pair
argument when creating a creditscorecard object, the weights stored in the WeightsVar column
are used when validating the model on the training data. If a different validation data set is provided
using the optional data input, observation weights for the validation data must be included in a
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column whose name matches WeightsVar, otherwise unit weights are used for the validation data.
For more information, see “Using validatemodel with Weights” on page 19-1926.

Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: sc = validatemodel(sc,data,'AnalysisLevel','Deciles','Plot','CAP')

AnalysisLevel — Type of analysis level
'Scores' (default) | character vector with values 'Deciles', 'Scores'

Type of analysis level, specified as the comma-separated pair consisting of 'AnalysisLevel' and a
character vector with one of the following values:

• 'Scores' — Returns the statistics (Stats) at the observation level. Scores are sorted from
riskiest to safest, and duplicates are removed.

• 'Deciles' — Returns the statistics (Stats) at decile level. Scores are sorted from riskiest to
safest and binned with their corresponding statistics into 10 deciles (10%, 20%, ..., 100%).

Data Types: char

Plot — Type of plot
'None' (default) | character vector with values 'None', 'CAP', 'ROC','KS' | cell array of character
vectors with values 'None', 'CAP', 'ROC','KS'

Type of plot, specified as the comma-separated pair consisting of 'Plot' and a character vector with
one of the following values:

• 'None' — No plot is displayed.
• 'CAP' — Cumulative Accuracy Profile. Plots the fraction of borrowers up to score “s” versus the

fraction of defaulters up to score “s” ('PctObs' versus 'Sensitivity' columns of T optional
output argument). For more details, see “Cumulative Accuracy Profile (CAP)” on page 19-1925.

• 'ROC' — Receiver Operating Characteristic. Plots the fraction of non-defaulters up to score “s”
versus the fraction of defaulters up to score “s” ('FalseAlarm' versus 'Sensitivity' columns
of T optional output argument). For more details, see “Receiver Operating Characteristic (ROC)”
on page 19-1925.

• 'KS' — Kolmogorov-Smirnov. Plots each score “s” versus the fraction of defaulters up to score
“s,” and also versus the fraction of non-defaulters up to score “s” ('Scores' versus both
'Sensitivity' and 'FalseAlarm' columns of the optional output argument T). For more
details, see “Kolmogorov-Smirnov statistic (KS)” on page 19-1925.

Tip For the Kolmogorov-Smirnov statistic option, you can enter 'KS' or 'K-S'.

Data Types: char | cell
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Output Arguments
Stats — Validation measures
table

Validation measures, returned as a 4-by-2 table. The first column, 'Measure', contains the names of
the following measures:

• Accuracy ratio (AR)
• Area under the ROC curve (AUROC)
• The KS statistic
• KS score

The second column, 'Value', contains the values corresponding to these measures.

T — Validation statistics data
array

Validation statistics data, returned as an N-by-9 table of validation statistics data, sorted, by score,
from riskiest to safest. When AnalysisLevel is set to 'Deciles', N is equal to 10. Otherwise, N is
equal to the total number of unique scores, that is, scores without duplicates.

The table T contains the following nine columns, in this order:

• 'Scores' — Scores sorted from riskiest to safest. The data in this row corresponds to all
observations up to, and including the score in this row.

• 'ProbDefault' — Probability of default for observations in this row. For deciles, the average
probability of default for all observations in the given decile is reported.

• 'TrueBads' — Cumulative number of “bads” up to, and including, the corresponding score.
• 'FalseBads' — Cumulative number of “goods” up to, and including, the corresponding score.
• 'TrueGoods' — Cumulative number of “goods” above the corresponding score.
• 'FalseGoods' — Cumulative number of “bads” above the corresponding score.
• 'Sensitivity' — Fraction of defaulters (or the cumulative number of “bads” divided by total

number of “bads”). This is the distribution of “bads” up to and including the corresponding score.
• 'FalseAlarm' — Fraction of non-defaulters (or the cumulative number of “goods” divided by

total number of “goods”). This is the distribution of “goods” up to and including the corresponding
score.

• 'PctObs' — Fraction of borrowers, or the cumulative number of observations, divided by total
number of observations up to and including the corresponding score.

Note When creating the creditscorecard object with creditscorecard, if the optional name-
value pair argument WeightsVar was used to specify observation (sample) weights, then the T table
uses statistics, sums, and cumulative sums that are weighted counts.

hf — Handle to the plotted measures
figure handle

Figure handle to plotted measures, returned as a figure handle or array of handles. When Plot is set
to 'None', hf is an empty array.
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More About
Cumulative Accuracy Profile (CAP)

CAP is generally a concave curve and is also known as the Gini curve, Power curve, or Lorenz curve.

The scores of given observations are sorted from riskiest to safest. For a given fraction M (0% to
100%) of the total borrowers, the height of the CAP curve is the fraction of defaulters whose scores
are less than or equal to the maximum score of the fraction M, also known as “Sensitivity.”

The area under the CAP curve, known as the AUCAP, is then compared to that of the perfect or
“ideal” model, leading to the definition of a summary index known as the accuracy ratio (AR) or the
Gini coefficient:

AR =
AR
AP

where AR is the area between the CAP curve and the diagonal, and AP is the area between the perfect
model and the diagonal. This represents a “random” model, where scores are assigned randomly and
therefore the proportion of defaulters and non-defaulters is independent of the score. The perfect
model is the model for which all defaulters are assigned the lowest scores, and therefore, perfectly
discriminates between defaulters and nondefaulters. Thus, the closer to unity AR is, the better the
scoring model.

Receiver Operating Characteristic (ROC)

To find the receiver operating characteristic (ROC) curve, the proportion of defaulters up to a given
score “s,” or “Sensitivity,” is computed.

This proportion is known as the true positive rate (TPR). Additionally, the proportion of nondefaulters
up to score “s,“ or “False Alarm Rate,” is also computed. This proportion is also known as the false
positive rate (FPR). The ROC curve is the plot of the “Sensitivity” vs. the “False Alarm Rate.”
Computing the ROC curve is similar to computing the equivalent of a confusion matrix at each score
level.

Similar to the CAP, the ROC has a summary statistic known as the area under the ROC curve
(AUROC). The closer to unity, the better the scoring model. The accuracy ratio (AR) is related to the
area under the curve by the following formula:

AR = 2(AUROC)− 1

Kolmogorov-Smirnov statistic (KS)

The Kolmogorov-Smirnov (KS) plot, also known as the fish-eye graph, is a common statistic used to
measure the predictive power of scorecards.

The KS plot shows the distribution of defaulters and the distribution of non-defaulters on the same
plot. For the distribution of defaulters, each score “s” is plotted versus the proportion of defaulters up
to “s," or “Sensitivity." For the distribution of non-defaulters, each score “s” is plotted versus the
proportion of non-defaulters up to “s," or “False Alarm." The statistic of interest is called the KS
statistic and is the maximum difference between these two distributions (“Sensitivity” minus “False
Alarm”). The score at which this maximum is attained is also of interest.
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Using validatemodel with Weights

Model validation statistics incorporate observation weights when these are provided by the user.

Without weights, the validation statistics are based on how many good and bad observations fall
below a particular score. On the other hand, when observation weights are provided, the weight (not
the count) is accumulated for the good and the bad observations that fall below a particular score.

When observation weights are defined using the optional WeightsVar name-value pair argument
when creating a creditscorecard object, the weights stored in the WeightsVar column are used
when validating the model on the training data. When a different validation data set is provided using
the optional data input, observation weights for the validation data must be included in a column
whose name matches WeightsVar, otherwise unit weights are used for the validation data set.

Not only the validation statistics, but also the credit scorecard scores themselves depend on the
observation weights of the training data. For more information, see “Using fitmodel with Weights” on
page 19-1780 and “Credit Scorecard Modeling Using Observation Weights” on page 8-54.
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See Also
creditscorecard | bininfo | predictorinfo | modifypredictor | modifybins | bindata |
plotbins | fitmodel | displaypoints | formatpoints | score | setmodel | probdefault |
table

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47
“Credit Scorecard Modeling Using Observation Weights” on page 8-54

Introduced in R2015a
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fillmissing
Replace missing values for credit scorecard predictors

Syntax
sc = fillmissing(sc,PredictorNames,Statistics)
sc = fillmissing( ___ ,ConstantValue)

Description
sc = fillmissing(sc,PredictorNames,Statistics) replaces missing values of the predictor
PredictorNames with values defined by Statistics and returns an updated credit scorecard
object (sc). Standard missing data is defined as follows:

• NaN for numeric arrays
• <undefined> for categorical arrays

Note If you run fillmissing after binning a predictor, the existing cutpoints and bin edges are
preserved and the "Good" and "Bad" counts from the <missing> bin are added to the corresponding
bin.

sc = fillmissing( ___ ,ConstantValue) uses arguments from the previous syntax and a value
for a ConstantValue to replace missing values.

Examples

Fill Missing Data in a creditscorecard Object

This example shows how to use fillmissing to replace missing values in the CustAge and
ResStatus predictors with user-defined values. For additional information on alternative approaches
for "treating" missing data, see “Credit Scorecard Modeling with Missing Values” on page 8-56.

Load the credit scorecard data and use dataMissing for the training data.

load CreditCardData.mat
disp(head(dataMissing));

    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   
      6          65          13         Home Owner     Employed       48000         59         Yes       968.18        0.15        0   
      7          34          32         Home Owner     Unknown        32000         26         Yes       717.82        0.02        1   
      8          50          57         Other          Employed       51000         33         No        3041.2        0.13        0   
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Create a creditscorecard object with 'BinMissingData' set to true.

sc = creditscorecard(dataMissing,'BinMissingData',true);
sc = autobinning(sc);

Use bininfo and plotbins to display the CustAge and ResStatus predictors with missing data.

bininfo(sc,'CustAge')

ans=10×6 table
         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge');

bininfo(sc,'ResStatus')
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ans=5×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus');

Use fillmissing to replace NaN values in CustAge with the median value and to replace the
<missing> values in ResStatus with 'Tenant'. Use predictorinfo to verify the filled values.

sc = fillmissing(sc,{'CustAge'},'median');
sc = fillmissing(sc,{'ResStatus'},'constant','Tenant');
predictorinfo(sc,'CustAge')

ans=1×4 table
               PredictorType         LatestBinning          LatestFillMissingType    LatestFillMissingValue
               _____________    ________________________    _____________________    ______________________

    CustAge     {'Numeric'}     {'Automatic / Monotone'}         {'Median'}                  {[45]}        

predictorinfo(sc,'ResStatus')
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ans=1×5 table
                  PredictorType     Ordinal         LatestBinning          LatestFillMissingType    LatestFillMissingValue
                 _______________    _______    ________________________    _____________________    ______________________

    ResStatus    {'Categorical'}     false     {'Automatic / Monotone'}        {'Constant'}               {'Tenant'}      

Use bininfo and plotbins to display the CustAge and ResStatus predictors to verify that the
missing data has been replaced with the values defined by fillmissing.

bininfo(sc,'CustAge')

ans=9×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue
    _____________    ____    ___    ______    _________    _________

    {'[-Inf,33)'}     69      52    1.3269     -0.42156     0.018993
    {'[33,37)'  }     63      45       1.4     -0.36795     0.012839
    {'[37,40)'  }     72      47    1.5319      -0.2779    0.0079824
    {'[40,46)'  }    191     100      1.91    -0.057315    0.0008042
    {'[46,48)'  }     59      25      2.36      0.15424    0.0016199
    {'[48,51)'  }     99      41    2.4146      0.17713    0.0035449
    {'[51,58)'  }    157      62    2.5323      0.22469    0.0088407
    {'[58,Inf]' }     93      25      3.72      0.60931     0.032198
    {'Totals'   }    803     397    2.0227          NaN     0.086822

plotbins(sc,'CustAge');
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bininfo(sc,'ResStatus')

ans=4×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    323     174    1.8563    -0.085821     0.0030935
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'Totals'    }    803     397    2.0227          NaN     0.0088081

plotbins(sc,'ResStatus');

Use fitmodel and then run formatpoints, displaypoints, and score.

sc = fitmodel(sc,'Display','off');
sc = formatpoints(sc,'WorstAndBest',[300 800]);
t = displaypoints(sc)

t=31×3 table
      Predictors             Bin           Points
    ______________    _________________    ______

    {'CustAge'   }    {'[-Inf,33)'    }    72.565
    {'CustAge'   }    {'[33,37)'      }    76.588
    {'CustAge'   }    {'[37,40)'      }    83.346
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    {'CustAge'   }    {'[40,46)'      }    99.902
    {'CustAge'   }    {'[46,48)'      }    115.78
    {'CustAge'   }    {'[48,51)'      }     117.5
    {'CustAge'   }    {'[51,58)'      }    121.07
    {'CustAge'   }    {'[58,Inf]'     }    149.93
    {'CustAge'   }    {'<missing>'    }    99.902
    {'EmpStatus' }    {'Unknown'      }     79.64
    {'EmpStatus' }    {'Employed'     }    133.98
    {'EmpStatus' }    {'<missing>'    }       NaN
    {'CustIncome'}    {'[-Inf,29000)' }    21.926
    {'CustIncome'}    {'[29000,33000)'}    73.949
    {'CustIncome'}    {'[33000,35000)'}    97.117
    {'CustIncome'}    {'[35000,40000)'}    101.44
      ⋮

When a validation data set has missing values and you use fillmissing with the training dataset,
the missing values in the validation data set are assigned the same points as the corresponding bins
containing the filled values.

As the table shows, the '<missing>' bin for the CustAge predictor is assigned the same points as
the '[40,46)' bin because the missing data is filled with the median value 45.

The points assigned to the '<missing>' bin for the EmpStatus predictor are NaN because
fillmissing is not used for that predictor. The assigned points are decided by the default
'NoScore' for the 'Missing' name-value pair argument in formatpoints.

Create a test validation data set (tdata) and add missing values.

tdata = data(1:10,:);
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
[scr,pts] = score(sc,tdata)

scr = 10×1

  566.7335
  611.2547
  584.5130
  628.7876
  609.7148
  671.1048
  403.6413
  551.9461
  575.9874
  524.4789

pts=10×5 table
    CustAge    EmpStatus    CustIncome    TmWBank    AMBalance
    _______    _________    __________    _______    _________

    99.902       79.64        153.88      145.38      87.933  
    149.93      133.98        153.88      85.531      87.933  
    115.78      133.98        101.44      145.38      87.933  
     117.5      133.98        153.88      83.991      139.44  
    149.93      133.98        153.88      83.991      87.933  
    149.93      133.98        153.88      145.38      87.933  
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    76.588       79.64        73.949      85.531      87.933  
     117.5      133.98        153.88      85.531       61.06  
     117.5       79.64        153.88      85.531      139.44  
     117.5       79.64        153.88      85.531      87.933  

Handling of Missing Values in Validation Data Sets

This example shows different possibilities for handling missing data in validation data.

When scoring data from a validation data set, you have several options. If you choose to do nothing,
the points assigned to the missing data are NaN, which comes from the default 'NoScore' for the
'Missing' name-value pair argument in formatpoints.

If you want to score missing values of all the predictors with one consistent metric, you can use the
options 'ZeroWOE', 'MinPoints', or 'MaxPoints' for the 'Missing' name-value pair argument
in formatpoints.

load CreditCardData.mat
sc = creditscorecard(data);
predictorinfo(sc,'CustAge')

ans=1×4 table
               PredictorType      LatestBinning      LatestFillMissingType    LatestFillMissingValue
               _____________    _________________    _____________________    ______________________

    CustAge     {'Numeric'}     {'Original Data'}        {'Original'}              {0x0 double}     

predictorinfo(sc,'ResStatus')

ans=1×5 table
                  PredictorType     Ordinal      LatestBinning      LatestFillMissingType    LatestFillMissingValue
                 _______________    _______    _________________    _____________________    ______________________

    ResStatus    {'Categorical'}     false     {'Original Data'}        {'Original'}              {0x0 double}     

sc = autobinning(sc);
sc = fitmodel(sc,'display','off');

displaypoints(sc)

ans=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252

 fillmissing
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    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

sc = formatpoints(sc,'Missing','minpoints','WorstAndBestScores',[300 850]);
displaypoints(sc)

ans=37×3 table
      Predictors            Bin           Points
    ______________    ________________    ______

    {'CustAge'   }    {'[-Inf,33)'   }    46.396
    {'CustAge'   }    {'[33,37)'     }    48.727
    {'CustAge'   }    {'[37,40)'     }    58.772
    {'CustAge'   }    {'[40,46)'     }    72.167
    {'CustAge'   }    {'[46,48)'     }    93.256
    {'CustAge'   }    {'[48,58)'     }    95.256
    {'CustAge'   }    {'[58,Inf]'    }    126.46
    {'CustAge'   }    {'<missing>'   }    46.396
    {'ResStatus' }    {'Tenant'      }    62.421
    {'ResStatus' }    {'Home Owner'  }    82.276
    {'ResStatus' }    {'Other'       }    113.58
    {'ResStatus' }    {'<missing>'   }    62.421
    {'EmpStatus' }    {'Unknown'     }    56.765
    {'EmpStatus' }    {'Employed'    }    105.81
    {'EmpStatus' }    {'<missing>'   }    56.765
    {'CustIncome'}    {'[-Inf,29000)'}    8.9706
      ⋮

The value of -32.5389 for the <missing> bin of 'CustAge' comes from the 'minPoints'
argument for formatpoints.

[scr,pts] = score(sc,dataMissing(1:5,:))

scr = 5×1

  602.0394
  648.1988
  560.5569
  613.5595
  646.8109

pts=5×7 table
    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    95.256      62.421       56.765        121.18      116.05     86.224       64.15  
    126.46      82.276       105.81        121.18      62.107     86.224       64.15  
    93.256      62.421       105.81        76.585      116.05     42.287       64.15  
    46.396      82.276       105.81        121.18      60.719     86.224      110.96  
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    126.46      82.276       105.81        121.18      60.719     86.224       64.15  

Alternatively, you can score missing data for each individual predictor with a different statistic based
on that predictor's information. To do so, use fillmissing for a creditscorecard object.

load CreditCardData.mat
sc = creditscorecard(data);
sc = fillmissing(sc,'CustAge','constant',35);
predictorinfo(sc,'CustAge')

ans=1×4 table
               PredictorType      LatestBinning      LatestFillMissingType    LatestFillMissingValue
               _____________    _________________    _____________________    ______________________

    CustAge     {'Numeric'}     {'Original Data'}        {'Constant'}                 {[35]}        

sc = fillmissing(sc,'ResStatus','Mode');
predictorinfo(sc,'ResStatus')

ans=1×5 table
                  PredictorType     Ordinal      LatestBinning      LatestFillMissingType    LatestFillMissingValue
                 _______________    _______    _________________    _____________________    ______________________

    ResStatus    {'Categorical'}     false     {'Original Data'}          {'Mode'}               {'Home Owner'}    

sc = autobinning(sc);
sc = fitmodel(sc,'display','off');
sc = formatpoints(sc,'Missing','minpoints','WorstAndBestScores',[300 850]);
 
displaypoints(sc)

ans=37×3 table
      Predictors            Bin           Points
    ______________    ________________    ______

    {'CustAge'   }    {'[-Inf,33)'   }    46.396
    {'CustAge'   }    {'[33,37)'     }    48.727
    {'CustAge'   }    {'[37,40)'     }    58.772
    {'CustAge'   }    {'[40,46)'     }    72.167
    {'CustAge'   }    {'[46,48)'     }    93.256
    {'CustAge'   }    {'[48,58)'     }    95.256
    {'CustAge'   }    {'[58,Inf]'    }    126.46
    {'CustAge'   }    {'<missing>'   }    48.727
    {'ResStatus' }    {'Tenant'      }    62.421
    {'ResStatus' }    {'Home Owner'  }    82.276
    {'ResStatus' }    {'Other'       }    113.58
    {'ResStatus' }    {'<missing>'   }    82.276
    {'EmpStatus' }    {'Unknown'     }    56.765
    {'EmpStatus' }    {'Employed'    }    105.81
    {'EmpStatus' }    {'<missing>'   }    56.765
    {'CustIncome'}    {'[-Inf,29000)'}    8.9706
      ⋮

The value of <missing> for 'CustAge' comes from the fill value of 35 even though the training data
has no missing values.
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disp(dataMissing(1:5,:));

    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

[scr,pts] = score(sc,dataMissing(1:5,:))

scr = 5×1

  621.8943
  648.1988
  560.5569
  615.8904
  646.8109

pts=5×7 table
    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    95.256      82.276       56.765        121.18      116.05     86.224       64.15  
    126.46      82.276       105.81        121.18      62.107     86.224       64.15  
    93.256      62.421       105.81        76.585      116.05     42.287       64.15  
    48.727      82.276       105.81        121.18      60.719     86.224      110.96  
    126.46      82.276       105.81        121.18      60.719     86.224       64.15  

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object.

PredictorNames — Name of creditscorecard predictor whose missing data is filled
character vector | string | cell array of character vectors | string array

Name of creditscorecard predictor to fill missing data for, specified as a scalar character vector,
scalar string, cell array of character vectors, or string array.
Data Types: char | string | cell

Statistics — Statistic to use to fill missing data for predictors
character vector with a value of 'mean', 'median', 'mode', 'original', or 'constant' | string
with a value of "mean", "median", "mode", "original", or "constant"

Statistic to use to fill missing data for the predictors, specified as a character vector or string with
one of the following values.

• 'mean' — Replace missing data with the average or mean value. The option is valid only for
numeric data. The 'mean' calculates the weighted mean of the predictor by referring to the
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predictor column and the Weights column from the creditscorecard object. For more
information, see “Weighted Mean” on page 19-1937.

• 'median' — Replace missing data with the median value. Valid for numeric and ordinal data. The
'median' calculates the weighted median of the predictor by referring to the predictor column
and the Weights column from the creditscorecard object. For more information, see
“Weighted Median” on page 19-1938.

• 'mode' — Replace missing data with the mode. Valid for numeric and both nominal and ordinal
categorical data. The 'mode' calculates the weighted mode of the predictor by referring to the
predictor column and the Weights column from the creditscorecard object. For more
information, see “Weighted Mode” on page 19-1938.

• 'original' — Set the missing data for numeric and categorical predictors back to its original
value: NaN if numeric, <undefined> or <missing> if categorical.

• 'constant' — Set the missing data for numeric and categorical predictors to a constant value
that you specify in the optional argument for ConstantValue.

Data Types: char | string

ConstantValue — Value to fill missing entries in predictors specified in PredictorNames
[ ] (default) | numeric | character vector | string | cell array of character vectors | string array

(Optional) Value to fill missing entries in predictors specified in PredictorNames, specified as a
numeric value, character vector, string, or cell array of character vectors.

Note You can use ConstantValue only if you set the Statistics argument to 'constant'.

Data Types: char | double | string | cell

Output Arguments
sc — Updated creditscorecard
creditscorecard object

Updated creditscorecard object, returned as an object.

More About
Weighted Mean

The weighted mean is similar to an ordinary mean except that instead of each of the data points
contributing equally to the final average, some data points contribute more than others.

The weighted mean for a nonempty finite multiset of data (x) with corresponding nonnegative weights
(w) is

x =
∑

i = 1

n
wixi

∑
i = 1

n
wi
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Weighted Median

The weighted median is the 50% weighted percentile, where the percentage in the total weight is
counted instead of the total number.

For n distinct ordered elements (x) positive weights (w) such that ∑
i = 1

n
wi = 1, the weighted median is

the element xk:

∑
i = 1

k− 1
wi ≤

1
2 and  ∑

i = k + 1

n
wi ≤

1
2

In the case where the respective weights of both elements border the midpoint of the set of weights
without encapsulating it, each element defines a partition equal to 1/2. These elements are referred
to as the lower weighted median and upper weighted median. The weighted median is chosen based
on which element keeps the partitions most equal. This median is always the weighted median with
the lowest weight. In the event that the upper and lower weighted medians are equal, the lower
weighted median is accepted.

Weighted Mode

The weighted mode of a set of weighted data values is the value that appears most often.

The mode of a sample is the element that occurs most often in the collection. For example, the mode
of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6.
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See Also
creditscorecard | bininfo | predictorinfo | modifypredictor | modifybins | bindata |
plotbins | fitmodel | displaypoints | formatpoints | score | setmodel | probdefault |
validatemodel | table

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Troubleshooting Credit Scorecard Results” on page 8-63
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47
“Credit Scorecard Modeling Using Observation Weights” on page 8-54

Introduced in R2020a
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creditscorecard
Create creditscorecard object to build credit scorecard model

Description
Build a credit scorecard model by creating a creditscorecard object and specify input data in a
table format.

After creating a creditscorecard object, you can use the associated object functions to bin the
data and perform logistic regression analysis to develop a credit scorecard model to guide credit
decisions. This workflow shows how to develop a credit scorecard model.

1 Use screenpredictors from Risk Management Toolbox to pare down a potentially large set of
predictors to a subset that is most predictive of the credit score card response variable. Use this
subset of predictors when creating the creditscorecard object.

2 Create a creditscorecard object (see “Create creditscorecard” on page 19-1939 and
“Properties” on page 19-1942).

3 Bin the data using autobinning.
4 Fit a logistic regression model using fitmodel or fitConstrainedModel.
5 Review and format the credit scorecard points using displaypoints and formatpoints. At

this point in the workflow, if you have a license for Risk Management Toolbox, you have the
option to create a compactCreditScorecard object (csc) using the compact function. You can
then use the following functions displaypoints, score, and probdefault from the Risk
Management Toolbox with the csc object.

6 Score the data using score.
7 Calculate the probabilities of default for the data using probdefault.
8 Validate the quality of the credit scorecard model using validatemodel.

For more detailed information on this workflow, see “Credit Scorecard Modeling Workflow” on page
8-51.

Creation
Syntax
sc = creditscorecard(data)
sc = creditscorecard( ___ ,Name,Value)

Description

sc = creditscorecard(data) creates a creditscorecard object by specifying data. The credit
scorecard model, returned as a creditscorecard object, contains the binning maps or rules (cut
points or category groupings) for one or more predictors.

sc = creditscorecard( ___ ,Name,Value) sets Properties on page 19-1942 using name-value
pairs and any of the arguments in the previous syntax. For example, sc =

 creditscorecard
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creditscorecard(data,'GoodLabel',0,'IDVar','CustID','ResponseVar','status','P
redictorVars',
{'CustAge','CustIncome'},'WeightsVar','RowWeights','BinMissingData',true). You
can specify multiple name-value pairs.

Note To use observation (sample) weights in the credit scorecard workflow, when creating a
creditscorecard object, you must use the optional name-value pair WeightsVar to define which
column in the data contains the weights.

Input Arguments

data — Data for creditscorecard object
table

Data for the creditscorecard object, specified as a MATLAB table, where each column of data can
be any one of the following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical
• String

In addition, the table must contain a binary response variable. Before creating a creditscorecard
object, perform a data preparation task to have appropriately structured data as input to a
creditscorecard object. The data input sets the Data on page 19-0  property.
Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: sc =
creditscorecard(data,'GoodLabel',0,'IDVar','CustAge','ResponseVar','status','
PredictorVars',
{'CustID','CustIncome'},'WeightsVar','RowWeights','BinMissingData',true)

GoodLabel — Indicator for which of two possible values in response variable correspond to
“Good” observations
set to the response value with the highest count (default) | character vector | numeric scalar | logical

Indicator for which of the two possible values in the response variable correspond to “Good”
observations, specified as the comma-separated pair consisting of 'GoodLabel' and a numeric
scalar, logical, or character vector. The GoodLabel name-value pair argument sets the GoodLabel on
page 19-0  property.

When specifying GoodLabel, follow these guidelines.
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If Response Variable is... GoodLabel Must be...
numeric numeric
logical logical or numeric
cell array of character vectors character vector
character array character vector
categorical character vector

If not specified, GoodLabel is set to the response value with the highest count. However, if the
optional WeightsVar argument is provided when creating the creditscorecard object, then
counts are replaced with weighted frequencies. For more information, see “Credit Scorecard
Modeling Using Observation Weights” on page 8-54.

GoodLabel can only be set when creating the creditscorecard object. This parameter cannot be
set using dot notation.
Data Types: char | double

IDVar — Variable name used as ID or tag for observations
empty character vector '' (default) | character vector

Variable name used as ID or tag for the observations, specified as the comma-separated pair
consisting of 'IDVar' and a character vector. The IDVar data could be an ordinal number (for
example, 1,2,3...), a Social Security number. This is provided as a convenience to remove this column
from the predictor variables. IDVar is case-sensitive. The IDVar name-value pair argument sets the
IDVar on page 19-0  property.

You can set this optional parameter using the creditscorecard function or by using dot notation at
the command line, as follows.
Example: sc.IDVar = 'CustID'
Data Types: char

ResponseVar — Response variable name for “Good” or “Bad” indicator
last column of the data input (default) | character vector

Response variable name for the “Good” or “Bad” indicator, specified as the comma-separated pair
consisting of 'ResponseVar' and a character vector. The response variable data must be binary. The
ResponseVar name-value pair argument sets the ResponseVar on page 19-0  property.

If not specified, ResponseVar is set to the last column of the data input. ResponseVar can only be
set when creating the creditscorecard object using the creditscorecard function.
ResponseVar is case-sensitive.
Data Types: char

WeightsVar — Weights variable name
empty character vector '' (default) | character vector

Weights variable name, specified as the comma-separated pair consisting of 'WeightsVar' and a
character vector to indicate which column name in the data table contains the row weights.
WeightsVar is case-sensitive. The WeightsVar name-value pair argument sets the WeightsVar on
page 19-0  property, and this property can only be set at the creation of a creditscorecard

 creditscorecard
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object. If the name-value pair argument WeightsVar is not specified when creating a
creditscorecard object, then observation weights are set to unit weights by default.

The WeightsVar values are used in the credit scorecard workflow by autobinning, bininfo,
fitmodel, and validatemodel. For more information, see “Credit Scorecard Modeling Using
Observation Weights” on page 8-54.
Data Types: char

BinMissingData — Indicates if missing data is removed or displayed in a separate bin
false (missing data removed) (default) | logical with value true or false

Indicates if missing data is removed or displayed in a separate bin, specified as the comma-separated
pair consisting of 'BinMissingdata' and a logical scalar with a value of true or false. If
BinMissingData is true, the missing data for a predictor is displayed in a separate bin labeled
<missing>.
Data Types: logical

Properties
Data — Data used to create the creditscorecard object
table

Data used to create the creditscorecard object, specified as a table when creating a
creditscorecard object. In the Data property, categorical predictors are stored as categorical
arrays.
Example: sc.Data(1:10,:)
Data Types: table

IDVar — Name of the variable used as ID or tag for the observations
empty character vector '' (default) | character vector

Name of the variable used as ID or tag for the observations, specified as a character vector. This
property can be set as an optional parameter when creating a creditscorecard object or by using
dot notation at the command line. IDVar is case-sensitive.
Example: sc.IDVar = 'CustID'
Data Types: char

VarNames — All variable names from the data input
VarNames come directly from data input to creditscorecard object (default)

This property is read-only.

VarNames is a cell array of character vectors containing the names of all variables in the data. The
VarNames come directly from the data input to the creditscorecard object. VarNames is case-
sensitive.
Data Types: cell

ResponseVar — Name of the response variable, “Good” or “Bad” indicator
last column of the data input (default) | character vector
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Name of the response variable, “Good” or “Bad” indicator, specified as a character vector. The
response variable data must be binary. If not specified, ResponseVar is set to the last column of the
data input. This property can only be set with an optional parameter when creating a
creditscorecard object. ResponseVar is case-sensitive.
Data Types: char

WeightsVar — Name of the variable used as ID or tag for weights
empty character vector '' (default) | character vector

Name of the variable used as ID or tag to indicate which column name in the data table contains the
row weights, specified as a character vector. This property can be set as an optional parameter
(WeightsVar) when creating a creditscorecard object. WeightsVar is case-sensitive.
Data Types: char

GoodLabel — Indicator for which of the two possible values in the response variable
correspond to “Good” observations
set to the response value with the highest count (default) | character vector | numeric scalar | logical

Indicator for which of the two possible values in the response variable correspond to “Good”
observations. When specifying GoodLabel, follow these guidelines:

If Response Variable is... GoodLabel must be:
numeric numeric
logical logical or numeric
cell array of character vectors character vector
character array character vector
categorical character vector

If not specified, GoodLabel is set to the response value with the highest count. This property can
only be set with an optional parameter when creating a creditscorecard object. This property
cannot be set using dot notation.
Data Types: char | double

PredictorVars — Predictor variable names
set difference between VarNames and {IDVar,ResponseVar} (default) | cell array of character
vectors containing names

Predictor variable names, specified using a cell array of character vectors containing names. By
default, when you create a creditscorecard object, all variables are predictors except for IDVar
and ResponseVar. This property can be modified using a name-value pair argument for the
fitmodel function or by using dot notation. PredictorVars is case-sensitive and the predictor
variable name cannot be the same as the IDVar or ResponseVar.
Example: sc.PredictorVars = {'CustID','CustIncome'}
Data Types: cell

NumericPredictors — Name of numeric predictors
empty character vector '' (default) | character vector

Name of numeric predictors, specified as a character vector. This property cannot be set by using dot
notation at the command line. It can only be modified using the modifypredictor function.
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Data Types: char

CategoricalPredictors — Name of categorical predictors
empty character vector '' (default) | character vector

Name of categorical predictors, specified as a character vector. This property cannot be set by using
dot notation at the command line. It can only be modified using the modifypredictor function.
Data Types: char

BinMissingData — Indicates if missing data is removed or displayed in a separate bin
false (missing data removed) (default) | logical with value true or false

Indicates if missing data is removed or displayed in a separate bin, specified as the comma-separated
pair consisting of 'BinMissingdata' and a logical scalar with a value of true or false. If
BinMissingData is true, the missing data for a predictor is displayed in a separate bin labeled
<missing>. For more information on working with missing data, see “Credit Scorecard Modeling
with Missing Values” on page 8-56.
Data Types: logical

creditscorecard
Property

Set/Modify Property
from Command Line
Using
creditscorecard
Function

Modify Property
Using Dot Notation

Property Not User-
Defined and Value Is
Defined Internally

Data No No Yes, copy of data input
IDVar Yes Yes No, but the user

specifies this
VarNames No No Yes
ResponseVar Yes No If not specified, set to

last column of data
input

WeightsVar No No Yes
GoodLabel Yes No If not specified, set to

response value with
highest count

PredictorVars Yes (also modifiable
using fitmodel
function)

Yes Yes, but the user can
modify this

NumericPredictors No (can only be
modified using
modifypredictor
function)

No Yes, but the user can
modify this

CategoricalPredict
ors

No (can only be
modified using
modifypredictor
function)

No Yes, but the user can
modify this
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creditscorecard
Property

Set/Modify Property
from Command Line
Using
creditscorecard
Function

Modify Property
Using Dot Notation

Property Not User-
Defined and Value Is
Defined Internally

BinMissingData Yes No False by default, but the
user can modify this

Object Functions
autobinning Perform automatic binning of given predictors
bininfo Return predictor’s bin information
predictorinfo Summary of credit scorecard predictor properties
modifypredictor Set properties of credit scorecard predictors
fillmissing Replace missing values for credit scorecard predictors
modifybins Modify predictor’s bins
bindata Binned predictor variables
plotbins Plot histogram counts for predictor variables
fitmodel Fit logistic regression model to Weight of Evidence (WOE) data
fitConstrainedModel Fit logistic regression model to Weight of Evidence (WOE) data subject to

constraints on model coefficients
setmodel Set model predictors and coefficients
displaypoints Return points per predictor per bin
formatpoints Format scorecard points and scaling
score Compute credit scores for given data
probdefault Likelihood of default for given data set
validatemodel Validate quality of credit scorecard model
compact Create compact credit scorecard

Examples

Create a creditscorecard Object

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]
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Create a creditscorecard Object Containing Weights

Use the CreditCardData.mat file to load the data (dataWeights) that contains a column
(RowWeights) for the weights (using a dataset from Refaat 2011).

load CreditCardData

Create a creditscorecard object using the optional name-value pair argument for 'WeightsVar'.

sc = creditscorecard(dataWeights,'WeightsVar','RowWeights')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x12 table]

Display creditscorecard Object Properties

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

To display the creditscorecard object properties, use dot notation.

sc.PredictorVars
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ans = 1x10 cell
  Columns 1 through 4

    {'CustID'}    {'CustAge'}    {'TmAtAddress'}    {'ResStatus'}

  Columns 5 through 8

    {'EmpStatus'}    {'CustIncome'}    {'TmWBank'}    {'OtherCC'}

  Columns 9 through 10

    {'AMBalance'}    {'UtilRate'}

sc.VarNames

ans = 1x11 cell
  Columns 1 through 4

    {'CustID'}    {'CustAge'}    {'TmAtAddress'}    {'ResStatus'}

  Columns 5 through 8

    {'EmpStatus'}    {'CustIncome'}    {'TmWBank'}    {'OtherCC'}

  Columns 9 through 11

    {'AMBalance'}    {'UtilRate'}    {'status'}

Change a Property Value for a creditscorecard Object

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

Since the IDVar property has public access, you can change its value at the command line.

sc.IDVar = 'CustID'
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sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Create a creditscorecard Object

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

In this example, the default values for the properties ResponseVar, PredictorVars and
GoodLabel are assigned when this object is created. By default, the property ResponseVar is set to
the variable name that is in the last column of the input data ('status' in this example). The
property PredictorVars contains the names of all the variables that are in VarNames, but excludes
IDVar and ResponseVar. Also, by default in the previous example, GoodLabel is set to 0, since it is
the value in the response variable (ResponseVar) with the highest count.

Display the creditscorecard object properties using dot notation.

sc.PredictorVars

ans = 1x10 cell
  Columns 1 through 4

    {'CustID'}    {'CustAge'}    {'TmAtAddress'}    {'ResStatus'}

  Columns 5 through 8
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    {'EmpStatus'}    {'CustIncome'}    {'TmWBank'}    {'OtherCC'}

  Columns 9 through 10

    {'AMBalance'}    {'UtilRate'}

sc.VarNames

ans = 1x11 cell
  Columns 1 through 4

    {'CustID'}    {'CustAge'}    {'TmAtAddress'}    {'ResStatus'}

  Columns 5 through 8

    {'EmpStatus'}    {'CustIncome'}    {'TmWBank'}    {'OtherCC'}

  Columns 9 through 11

    {'AMBalance'}    {'UtilRate'}    {'status'}

Since IDVar and PredictorVars have public access, you can change their values at the command
line.

sc.IDVar = 'CustID'

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

sc.PredictorVars = {'CustIncome','ResStatus','AMBalance'}

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {'CustIncome'  'AMBalance'}
    CategoricalPredictors: {'ResStatus'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {'ResStatus'  'CustIncome'  'AMBalance'}
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                     Data: [1200x11 table]

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {'CustIncome'  'AMBalance'}
    CategoricalPredictors: {'ResStatus'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {'ResStatus'  'CustIncome'  'AMBalance'}
                     Data: [1200x11 table]

Create a creditscorecard Object and Set GoodLabel and ResponseVar

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011). Then use name-value pair arguments for creditscorecard to define
GoodLabel and ResponseVar.

load CreditCardData 
sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0,'ResponseVar','status')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

GoodLabel and ResponseVar can only be set (enforced) when creating a creditscorecard object
using creditscorecard.

Create a creditscorecard Object and Set the 'BinMissingData' Property

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing
with missing values.

load CreditCardData 
head(dataMissing,5)
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ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

fprintf('Number of rows: %d\n',height(dataMissing))

Number of rows: 1200

fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))

Number of missing values CustAge: 30

fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))

Number of missing values ResStatus: 40

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing data in a separate bin.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);
disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin
labelled <missing>.

bi = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[-Inf,33)'}     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407

 creditscorecard

19-1951



    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

plotbins(sc,'CustAge')

Display bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

bi = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

plotbins(sc,'ResStatus')
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See Also
Functions
screenpredictors | autobinning | modifybins | bindata | bininfo | fillmissing |
predictorinfo | modifypredictor | plotbins | fitmodel | fitConstrainedModel |
displaypoints | formatpoints | score | setmodel | validatemodel | probdefault | table

Apps
Binning Explorer

Topics
“Case Study for a Credit Scorecard Analysis” on page 8-70
“Credit Scorecards with Constrained Logistic Regression Coefficients” on page 8-88
“Credit Scorecard Modeling with Missing Values” on page 8-56
“Comparison of Credit Scoring Using Logistic Regression and Decision Trees” (Risk Management
Toolbox)
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“Use Reject Inference Techniques with Credit Scorecards” (Risk Management Toolbox)
“compactCreditScorecard Object Workflow” (Risk Management Toolbox)
“Troubleshooting Credit Scorecard Results” on page 8-63
“Binning Explorer Case Study Example” (Risk Management Toolbox)
“Credit Scorecard Modeling Workflow” on page 8-51
“About Credit Scorecards” on page 8-47
“Credit Scorecard Modeling Using Observation Weights” on page 8-54
“Overview of Binning Explorer” (Risk Management Toolbox)

External Websites
Credit Risk Modeling with MATLAB (53 min 10 sec)

Introduced in R2014b
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addBusinessCalendar
Add business calendar awareness to timetables

Syntax
TT = addBusinessCalendar(TT)
TT = addBusinessCalendar( ___ ,Name,Value)

Description
TT = addBusinessCalendar(TT) adds business calendar awareness to an input timetable TT by
setting a custom property for the output timetable TT.

TT = addBusinessCalendar( ___ ,Name,Value) specifies options using one or more optional
name-value pair arguments in addition to the input arguments in the previous syntax. For example,
TT = addBusinessCalendar(TT,'Holidays',H) specifies a list of holidays specified as a
datetime vector that replaces the default holidays found in holidays.m. You can specify more than
one name-value pair argument.

Examples

Add Business Calendar for Calculating Period-Over-Period Rolling Returns

This example shows how to add a business calendar when you calculate period-over-period (PoP)
rolling differences for 5 years of simulated daily prices. For each date in timetable TT, the difference
represents the PoP difference of the corresponding price compared to the price one period earlier.

Use holidays to indicate the holidays in holidays.m for the simulation period.

H = holidays(datetime(2014,1,1),datetime(2018,12,31));

Simulate daily prices for three assets.

t = (datetime(2014,1,1):caldays:datetime(2018,12,31))';
rng(200,'twister')
Price = 100 + 0.1*(0:numel(t) - 1)'.*cumsum(randn(numel(t),1)/100); 
Price = round(Price*100)/100;       
Price2 = round(Price*94)/100; 
Price3 = round(Price*88)/100;

TT    = timetable(Price,Price2,Price3,'RowTimes',t);
head(TT,15)

ans=15×3 timetable
       Time        Price     Price2    Price3
    ___________    ______    ______    ______

    01-Jan-2014       100       94        88 
    02-Jan-2014       100       94        88 
    03-Jan-2014       100       94        88 
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    04-Jan-2014       100       94        88 
    05-Jan-2014    100.01    94.01     88.01 
    06-Jan-2014    100.01    94.01     88.01 
    07-Jan-2014    100.02    94.02     88.02 
    08-Jan-2014    100.02    94.02     88.02 
    09-Jan-2014    100.04    94.04     88.04 
    10-Jan-2014    100.06    94.06     88.05 
    11-Jan-2014    100.08    94.08     88.07 
    12-Jan-2014    100.11     94.1      88.1 
    13-Jan-2014    100.11     94.1      88.1 
    14-Jan-2014    100.12    94.11     88.11 
    15-Jan-2014    100.12    94.11     88.11 

Use addBusinessCalendar to indicate the holidays for the simulation period in the timetable TT.

TT = addBusinessCalendar(TT,'Holidays',H);

Use rollingreturns with the 'Method' name-value pair argument set to 'difference' to
compute the differences, that is, the period-over-period changes.

deltas = rollingreturns(TT,'Period',calweeks(1),'Method','difference');
head(deltas,15)

ans=15×3 timetable
       Time        Price_Difference_1w    Price2_Difference_1w    Price3_Difference_1w
    ___________    ___________________    ____________________    ____________________

    01-Jan-2014            NaN                     NaN                     NaN        
    02-Jan-2014            NaN                     NaN                     NaN        
    03-Jan-2014            NaN                     NaN                     NaN        
    04-Jan-2014            NaN                     NaN                     NaN        
    05-Jan-2014            NaN                     NaN                     NaN        
    06-Jan-2014            NaN                     NaN                     NaN        
    07-Jan-2014            NaN                     NaN                     NaN        
    08-Jan-2014            NaN                     NaN                     NaN        
    09-Jan-2014           0.04                    0.04                    0.04        
    10-Jan-2014           0.06                    0.06                    0.05        
    11-Jan-2014           0.08                    0.08                    0.07        
    12-Jan-2014           0.11                     0.1                     0.1        
    13-Jan-2014            0.1                    0.09                    0.09        
    14-Jan-2014            0.1                    0.09                    0.09        
    15-Jan-2014            0.1                    0.09                    0.09        

Input Arguments
TT — Input timetable to update with business calendar awareness
timetable

Input timetable to update with business calendar awareness, specified as a timetable.
Data Types: timetable
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: TT = addBusinessCalendar(TT,'Holidays',H)

Holidays — Alternate holidays and market closure dates
New York Stock Exchange (NYSE) holidays and market closures in holidays.m (default) | vector of
datetimes

Alternate holidays and market closure dates, specified as the comma-separated pair consisting of
'Holidays' and a vector of datetimes. The dates in Holidays must be whole dates, without any
HH:MM:SS components. No business is conducted on the dates in Holidays. For more information,
see holidays and isbusday.

You can generate alternate holiday schedules by using the createholidays function. To do so,
perform the following steps:

1 Generate a new holidays function using createholidays.
2 Call the new holidays function to get the list of holidays.
3 Pass the alternate holidays to addBusinessCalendar using the 'Holidays' name-value pair

argument.

Data Types: char | double

Weekends — Alternate weekend days on which no business is conducted
[1 0 0 0 0 0 1] which is equivalent to ["Sunday" "Saturday"] (default) | logical vector with 7
elements | string vector with the value ["Sunday" "Saturday"]

Alternate weekend days on which no business is conducted, specified as the comma-separated pair
consisting of 'Weekends' and a logical vector with seven elements in which true (1) indicates a
weekend day and false (0) indicates a weekday. The elements of 'Weekends' are encoded as Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday. You can also specify 'Weekends' as a
string vector whose elements explicitly list the weekend days. If business is conducted seven days per
week, then specify 'Weekends' as [0 0 0 0 0 0 0].
Data Types: logical

Output Arguments
TT — Updated timetable TT with added business calendar awareness by a custom property
timetable

Updated timetable TT with added business calendar awareness by a custom property
BusinessCalendar, returned as a timetable.

The custom property BusinessCalendar contains a data structure that contains a field
IsBusinessDay that stores a callable function (F). The function F accepts a datetime matrix (D) and
returns a logical indicator matrix (I) of the same size: I = F(D). True (1) elements of I indicate that
the corresponding element of D occurs on a business day; false (0) elements of I indicate otherwise.
Access the callable function F by using F =
TT.Properties.CustomProperties.BusinessCalendar.IsBusinessDay.
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See Also
rollingreturns | timetable

Introduced in R2020b
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rollingreturns
Period-over-period rolling returns or differences from prices

Syntax
returns = rollingreturns(TT)
returns = rollingreturns( ___ ,Name,Value)

Description
returns = rollingreturns(TT) calculates period-over-period (PoP) returns or differences from
corresponding prices. For each date in timetable TT, the return represents the PoP return of the
corresponding price compared to the price one Period earlier.

returns = rollingreturns( ___ ,Name,Value) specifies options using one or more optional
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Year-over-Year Returns from Daily Prices with Business Calendar Awareness

This example shows how to compute year-over-year rolling returns for five years of simulated daily
prices and also includes business calendar awareness.

Simulate five years of daily prices and store the result in the timetable TT. Then, use isbusday to
retain only data for New York Stock Exchange (NYSE) business dates.

rng(200,'twister')
time = (datetime(2014,1,1):caldays:datetime(2018,12,31))';
price = 100 + 0.1*(0:numel(time) - 1)'.*cumsum(randn(numel(time),1)/100); 
price = round(price*100)/100;                 % Round prices to the nearest penny
TT = timetable(price,'RowTimes',time,'VariableNames',{'Prices'});
TT = TT(isbusday(TT.Properties.RowTimes),:);  % Retain only NYSE business days
head(TT,10)

ans=10×1 timetable
       Time        Prices
    ___________    ______

    02-Jan-2014       100
    03-Jan-2014       100
    06-Jan-2014    100.01
    07-Jan-2014    100.02
    08-Jan-2014    100.02
    09-Jan-2014    100.04
    10-Jan-2014    100.06
    13-Jan-2014    100.11
    14-Jan-2014    100.12
    15-Jan-2014    100.12
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Use addBusinessCalendar to add NYSE business calendar awareness. The business calendar logic
determines if the date of the previous period is a business date, and if it is not, then the most recent
business day preceding that date is found. For example, since 21-May-2016 is a Saturday and 22-
May-2016 is a Sunday, year-over-year prices for Monday 22-May-2017 are compared to Friday 20-
May-2016.

TT = addBusinessCalendar(TT);  % Add NYSE business calendar

Compute the year-over-year returns and display the last few prices and corresponding returns.

returns = rollingreturns(TT, 'Period', calyears);
tail([TT returns])

ans=8×2 timetable
       Time        Prices    Prices_Return_1y
    ___________    ______    ________________

    19-Dec-2018    212.68        0.16941     
    20-Dec-2018    215.54        0.19024     
    21-Dec-2018    217.66        0.18648     
    24-Dec-2018    221.42        0.20882     
    26-Dec-2018    224.81        0.21473     
    27-Dec-2018    222.17        0.19897     
    28-Dec-2018    224.63        0.19142     
    31-Dec-2018    224.37        0.19206     

Year-over-Year Returns from Monthly Prices with End-of-Month Dates

Economic data is often reported on the last day of each month or quarter. So end-of-month
ambiguities can arise when computing period-over-period returns for periods that exceed the
periodicity at which data is reported.

Simulate five years of daily prices and store the result in the timetable TT.

rng(200,'twister')
time = (datetime(2014,1,1):caldays:datetime(2018,12,31))';
price = 100 + 0.1*(0:numel(time) - 1)'.*cumsum(randn(numel(time),1)/100); 
price = round(price*100)/100;         % Round prices to the nearest penny
TT = timetable(price,'RowTimes',time,'VariableNames',{'Prices'});
head(TT,10)

ans=10×1 timetable
       Time        Prices
    ___________    ______

    01-Jan-2014       100
    02-Jan-2014       100
    03-Jan-2014       100
    04-Jan-2014       100
    05-Jan-2014    100.01
    06-Jan-2014    100.01
    07-Jan-2014    100.02
    08-Jan-2014    100.02
    09-Jan-2014    100.04
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    10-Jan-2014    100.06

Create a new timetable by sampling TT on the last day of each month to mimic monthly reporting.

monthEndDates = dateshift(TT.Time(1):calmonths:TT.Time(end),'end','month'); 
TT = TT(monthEndDates,:);   % Sample TT at end-of-month dates
head(TT,10)

ans=10×1 timetable
       Time        Prices
    ___________    ______

    31-Jan-2014    100.47
    28-Feb-2014    100.93
    31-Mar-2014       102
    30-Apr-2014    102.28
    31-May-2014    103.22
    30-Jun-2014    103.92
    31-Jul-2014     102.2
    31-Aug-2014    104.79
    30-Sep-2014    103.11
    31-Oct-2014    105.29

Display a subset of the dates and compare a direct calculation of the dates in previous months to
those shifted to the end of the month in which the previous period occurs.

dates = timerange(datetime(2016,2,29),datetime(2017,2,28),'month');
[TT.Time(dates) (TT.Time(dates) - calyears) dateshift(TT.Time(dates) - calyears,'end','month')]

ans = 13x3 datetime
   29-Feb-2016   28-Feb-2015   28-Feb-2015
   31-Mar-2016   31-Mar-2015   31-Mar-2015
   30-Apr-2016   30-Apr-2015   30-Apr-2015
   31-May-2016   31-May-2015   31-May-2015
   30-Jun-2016   30-Jun-2015   30-Jun-2015
   31-Jul-2016   31-Jul-2015   31-Jul-2015
   31-Aug-2016   31-Aug-2015   31-Aug-2015
   30-Sep-2016   30-Sep-2015   30-Sep-2015
   31-Oct-2016   31-Oct-2015   31-Oct-2015
   30-Nov-2016   30-Nov-2015   30-Nov-2015
   31-Dec-2016   31-Dec-2015   31-Dec-2015
   31-Jan-2017   31-Jan-2016   31-Jan-2016
   28-Feb-2017   28-Feb-2016   29-Feb-2016

Examine these results and notice that the dates in the second and third columns of the last row differ.
Specifically, when the current date in the first column is 28-Feb-2017 the dates in the second and
third columns differ because 2016 is a leap year. More generally, the dates differ whenever the month
of the previous period has more days than the current month for which returns are computed. In this
example, end-of-months dates present the following ambiguity. When the current date of interest is
28-Feb-2017, should subtracting one calendar year produce 28-Feb-2016 or 29-Feb-2016?

The correct answer depends on the application, and both approaches are valid use cases. This
problem is exacerbated, for example, when working with end-of-monthly price data and computing
month-over-month returns. To address the end-of-month ambiguity, the rollingreturns function
supports an EndOfMonth flag.
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returns = rollingreturns(TT, 'Period', calyears, 'EndOfMonth', true);

The EndOfMonth flag ensures that the rollingreturns function uses the correct end-of-month
date of each calendar month. In this example, the return on 28-Feb-2017 is correctly computed
from the price reported 29-Feb-2016 rather than 28-Feb-2016.

[TT(dates,:) returns(dates,:)]

ans=13×2 timetable
       Time        Prices    Prices_Return_1y
    ___________    ______    ________________

    29-Feb-2016    135.59         0.21671    
    31-Mar-2016    138.47         0.25052    
    30-Apr-2016    131.44         0.11598    
    31-May-2016    129.34        0.083068    
    30-Jun-2016    133.86        0.077865    
    31-Jul-2016    132.78        0.046253    
    31-Aug-2016    140.32         0.11871    
    30-Sep-2016    136.52        0.087549    
    31-Oct-2016    141.27         0.10652    
    30-Nov-2016    140.76          0.1053    
    31-Dec-2016    135.96        0.057643    
    31-Jan-2017    129.52       0.0099025    
    28-Feb-2017    136.36       0.0056789    

Input Arguments
TT — Input timetable of prices
timetable

Input timetable of prices, specified as a timetable. The timetable TT must satisfy the following
conditions:

• All observations in TT must be associated with whole dates specified as datetimes with no
HH:MM:SS time component (no time-of-day component).

• TT dates must be sorted in ascending order.
• TT must have no duplicate dates.
• Each variable in TT must contain either a single numeric vector or a numeric matrix of prices. For

example, suppose TT contains three variables of daily prices.

         Time        Price1    Price2         Prices     
      ___________    ______    ______    ________________
      24-Dec-2018    221.42    442.84    221.42    442.84
      25-Dec-2018    220.62    441.24    220.62    441.24
      26-Dec-2018    224.81    449.62    224.81    449.62
      27-Dec-2018    222.17    444.34    222.17    444.34
      28-Dec-2018    224.63    449.26    224.63    449.26
      29-Dec-2018    225.36    450.72    225.36    450.72
      30-Dec-2018    226.73    453.46    226.73    453.46
      31-Dec-2018    224.37    448.74    224.37    448.74

The corresponding daily returns are formatted as three returns for the three price variables.
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        Time        Price1_Return    Price2_Return       Prices_Return    
      ___________    _____________    _____________   _____________________
      24-Dec-2018           NaN              NaN            NaN         NaN
      25-Dec-2018     -0.003613        -0.003613      -0.003613   -0.003613
      26-Dec-2018      0.018992         0.018992       0.018992    0.018992
      27-Dec-2018     -0.011743        -0.011743      -0.011743   -0.011743
      28-Dec-2018      0.011073         0.011073       0.011073    0.011073
      29-Dec-2018      0.003249         0.003249       0.003249    0.003249
      30-Dec-2018      0.006079         0.006079       0.006079    0.006079
      31-Dec-2018     -0.010409        -0.010409      -0.010409   -0.010409

Note To include business-calendar-awareness and account for nonbusiness days (for example,
weekends, holidays, market closures), you must first use the addBusinessCalendar function to
populate a custom property for the input TT. For example, to add business calendar logic to include
only NYSE business days, you can use TT = addBusinessCalendar(TT).

Data Types: timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: returns =
rollingreturns(TT,'Period',calweeks(1),'EndOfMonth',true,'Method','continuous
')

Period — Period to compute period-over-period returns
TT.Properties.TimeStep (default) | scalar calendar duration

Period to compute period-over-period returns, specified as the comma-separated pair consisting of
'EndMonthRule' and a scalar calendar duration (for example, caldays, calweeks, or
calmonths).

The default is the time step defined in TT (TT.Properties.TimeStep), but only when
TT.Properties.TimeStep is not NaN. If TT.Properties.TimeStep is NaN, then Period is
required.
Data Types: double

EndOfMonth — End-of-month flag indicates whether prices at current date are compared to
last date of month for previous Period
false (default) | value of true or false

End-of-month flag indicates whether the prices at the current date are compared to last date of
month for the previous Period, specified as the comma-separated pair consisting of 'EndOfMonth'
and a scalar logical value of true or false.

• If you set EndOfMonth to true (logical 1), meaning that the current prices are compared to end-
of-month prices of the previous Period.

• If you set EndOfMonth to false (logical 0), meaning that the current prices are compared to
prices recorded on the actual date of the previous Period.
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Note The EndOfMonth flag is intended to address end-of-month date calculations when computing
the dates of a previous Period one or more months in the past.

For example, suppose you have monthly prices reported at the end of each month and want to
compute year-over-year returns (that is, Period = calyears(1)). When the current date of interest
is 28-Feb-2017, setting EndOfMonth = true (logical 1) ensures that returns computed for 28-
Feb-2017 compare the prices on 28-Feb-2017 to those on 29-Feb-2016 rather than 28-
Feb-2016.

Similarly, suppose you have monthly prices reported at the end of each month and want to compute
month-over-month returns (that is, Period = calmonths(1)). When the current date of interest is
30-Apr-2020, setting EndOfMonth = true (logical 1) ensures that returns computed for 30-
Apr-2020 compare the prices on 30-Apr-2020 to those on 31-Mar-2020 rather than 30-
Mar-2020.

Data Types: logical

Method — Method for computing returns from prices
'simple' (default) | character vector with value 'simple', 'continuous', or 'difference'

Method for computing returns from prices, specified as the comma-separated pair consisting of
'Method' and a scalar character vector.

• 'simple' — Compute simple (proportional) returns: R(t) = P(t)/P(t-period) - 1.
• 'continuous' — Compute continuous (logarithmic) returns: R(t) = log(P(t)/P(t-

period)).
• 'difference' — Compute differences (period-over-period changes): R(t) = P(t) - P(t-

period)

Data Types: char

Output Arguments
returns — Period-over-period decimal returns or differences
timetable

Period-over-period decimal returns or differences, returned as a timetable of the same size and
format as the input argument TT. The returns or differences in row t are associated with the tth date
in TT and represent the return or difference of the tth price P(t) relative to the price in the previous
period P(t-period). If the date in the previous period is not found in TT, then the result is NaN to
indicate a missing value.

Variable names in the output append _Return or _Difference to the variable names in TT for
returns and differences, respectively, followed by the period used in the period-over-period results.
For example, if TT has a variable named ABC and week-over-week returns are computed for a Period
of calweeks(1), the corresponding output variable is named ABC_Returns_1w.

rollingreturns is an aggregation function in which the frequency at which prices are recorded
must equal or exceed that at which returns or differences are computed. For example, daily prices
can be used to compute daily, weekly, or monthly returns, but computing daily returns from
weekly or monthly prices generally makes no sense.
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Algorithms
Period-over-period results are computed for every date in TT as follows:

1 For each date t in TT, the date t-period is computed.

• If date t-period is a business date, then this date is the date "one period ago"
• If date t-period is not a business date, then each calendar day preceding t-period is examined

repeatedly until a business date is found, at which point this date is the date "one period ago,"
or the preceding date occurs prior to the first date in TT, at which point no previous business
date exists in TT.

2 If the date "one period ago" is found in TT, then the corresponding price P(t-period) is recorded
and the return R(t) is computed. However, if the date "one period ago" is not found in TT, then
the previous price P(t-period) is assumed missing (that is, an implicit NaN), and the return R(t) =
NaN.

3 The previous steps are repeated until the date t-period precedes the first date found in TT, at
which point the algorithm terminates.

See Also
addBusinessCalendar | periodicreturns | timetable

Introduced in R2020b
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simByTransition
Simulate Bates sample paths with transition density

Syntax
[Paths,Times] = simByTransition(MDL,NPeriods)
[Paths,Times] = simByTransition( ___ ,Name,Value)

Description
[Paths,Times] = simByTransition(MDL,NPeriods) simulates NTrials of Bates bivariate
models driven by two Brownian motion sources of risk and one compound Poisson process
representing the arrivals of important events over NPeriods consecutive observation periods.
simByTransition approximates continuous-time stochastic processes by the transition density.

[Paths,Times] = simByTransition( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Use simByTransition with bates Object

Simulate Bates sample paths with transition density.

Define the parameters for the bates object.

AssetPrice = 80;
Return = 0.03;
JumpMean = 0.02;
JumpVol = 0.08;
JumpFreq = 0.1;
V0 = 0.04;
Level = 0.05;
Speed = 1.0;
Volatility = 0.2;
Rho = -0.7;
StartState = [AssetPrice;V0]; 
Correlation = [1 Rho;Rho 1];

Create a bates object.

batesObj = bates(Return, Speed, Level, Volatility,...
                JumpFreq, JumpMean, JumpVol,'startstate',StartState,...
                'correlation',Correlation)

batesObj = 
   Class BATES: Bates Bivariate Stochastic Volatility
   --------------------------------------------------
     Dimensions: State = 2, Brownian = 2
   --------------------------------------------------
      StartTime: 0
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     StartState: 2x1 double array 
    Correlation: 2x2 double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
         Return: 0.03
          Speed: 1
          Level: 0.05
     Volatility: 0.2
       JumpFreq: 0.1
       JumpMean: 0.02
        JumpVol: 0.08

Define the simulation parameters.

nPeriods = 5;   % Simulate sample paths over the next five years
Paths = simByTransition(batesObj,nPeriods);
Paths

Paths = 6×2

   80.0000    0.0400
   66.0422    0.1012
   73.8079    0.1243
   48.9742    0.0571
   49.9649    0.0638
   58.9553    0.0467

Input Arguments
MDL — Stochastic differential equation model
bates object

Stochastic differential equation model, specified as a bates object. For more information on creating
a bates object, see bates.
Data Types: object

NPeriods — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times] = simByTransition(Bates,NPeriods,'DeltaTimes',dt)

NTrials — Simulated trials (sample paths)
1 (single path of correlated state variables) (default) | positive integer
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Simulated trials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or NPeriods-by-1 column vector.

DeltaTime represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps
1 (indicating no intermediate evaluation) (default) | positive integer

Number of intermediate time steps within each time increment dt (defined as DeltaTimes), specified
as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simByTransition function partitions each time increment dt into NSteps subintervals of
length dt/NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
intermediate points. Although simByTransition does not report the output state vector at these
intermediate points, the refinement improves accuracy by enabling the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

StorePaths — Flag for storage and return method
True (default) | logical with values True or False

Flag for storage and return method that indicates how the output array Paths is stored and
returned, specified as the comma-separated pair consisting of 'StorePaths' and a scalar logical
flag with a value of True or False.

• If StorePaths is True (the default value) or is unspecified, then simByTransition returns
Paths as a three-dimensional time series array.

• If StorePaths is False (logical 0), then simByTransition returns the Paths output array as
an empty matrix.

Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments
simByTransition makes no adjustments and performs no processing (default) | function | cell array
of functions

Sequence of end-of-period processes or state vector adjustments, specified as the comma-separated
pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

simByTransition applies processing functions at the end of each observation period. The
processing functions accept the current observation time t and the current state vector Xt, and return
a state vector that might adjust the input state.
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If you specify more than one processing function, simByTransition invokes the functions in the
order in which they appear in the cell array.
Data Types: cell | function

Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as an (NPeriods + 1)-by-NVars-by-
NTrials three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When the input
flag StorePaths = False, simByTransition returns Paths as an empty matrix.

Times — Observation times associated with the simulated paths
column vector

Observation times associated with the simulated paths, returned as an (NPeriods + 1)-by-1
column vector. Each element of Times is associated with the corresponding row of Paths.

More About
Transition Density Simulation

The CIR SDE has no solution such that r(t) = f(r(0),⋯).

In other words, the equation is not explicitly solvable. However, the transition density for the process
is known.

The exact simulation for the distribution of r(t_1 ),⋯,r(t_n) is that of the process at times t_1,⋯,t_n for
the same value of r(0). The transition density for this process is known and is expressed as

r(t) = σ2(1− e−α(t − u)

4α xd
2 4αe−α(t − u)

σ2(1− e−α(t − u))
r(u) , t > u

where

d ≡ 4bα
σ2

Bates Model

Bates models are bivariate composite models.

Each Bates model consists of two coupled univariate models:

• A geometric Brownian motion (gbm) model with a stochastic volatility function and jumps.

dX1t = B(t)X1tdt + X2tX1tdW1t + Y(t)X1tdNt

This model usually corresponds to a price process whose volatility (variance rate) is governed by
the second univariate model.
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• A Cox-Ingersoll-Ross (cir) square root diffusion model.

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

This model describes the evolution of the variance rate of the coupled Bates price process.

References
[1] Glasserman, Paul Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag,

2004.

[2] Van Haastrecht, Alexander, and Antoon Pelsser. "Efficient, Almost Exact Simulation of the Heston
Stochastic Volatility Model." International Journal of Theoretical and Applied Finance. 13, no.
01 (2010): 1–43.

See Also
bates | simByEuler | simByQuadExp

Topics
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5

Introduced in R2020b
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simByTransition
Simulate Heston sample paths with transition density

Syntax
[Paths,Times] = simByTransition(MDL,NPeriods)
[Paths,Times] = simByTransition( ___ ,Name,Value)

Description
[Paths,Times] = simByTransition(MDL,NPeriods) simulates NTrials sample paths of
Heston bivariate models driven by two Brownian motion sources of risk. simByTransition
approximates continuous-time stochastic processes by the transition density.

[Paths,Times] = simByTransition( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Use simByTransition with heston Object

Simulate Heston sample paths with transition density.

Define the parameters for the heston object.

Return = 0.03;
Level = 0.05;
Speed = 1.0;
Volatility = 0.2;

AssetPrice = 80;
V0 = 0.04;
Rho = -0.7;
StartState = [AssetPrice;V0];
Correlation = [1 Rho;Rho 1];

Create a heston object.

hestonObj = heston(Return,Speed,Level,Volatility,'startstate',StartState,'correlation',Correlation)

hestonObj = 
   Class HESTON: Heston Bivariate Stochastic Volatility
   ----------------------------------------------------
     Dimensions: State = 2, Brownian = 2
   ----------------------------------------------------
      StartTime: 0
     StartState: 2x1 double array 
    Correlation: 2x2 double array 
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
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         Return: 0.03
          Speed: 1
          Level: 0.05
     Volatility: 0.2

Define the simulation parameters.

nPeriods = 5;   % Simulate sample paths over the next five years
Paths = simByTransition(hestonObj,nPeriods);
Paths

Paths = 6×2

   80.0000    0.0400
   92.9915    0.0343
  108.6211    0.0737
   52.9617    0.1012
   46.9805    0.1243
   54.3704    0.0571

Input Arguments
MDL — Stochastic differential equation model
heston object

Stochastic differential equation model, specified as a heston object. For more information on
creating a heston object, see heston.
Data Types: object

NPeriods — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of NPeriods
determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [Paths,Times] = simByTransition(Heston,NPeriods,'DeltaTimes',dt)

NTrials — Simulated trials (sample paths)
1 (single path of correlated state variables) (default) | positive integer

Simulated trials (sample paths) of NPeriods observations each, specified as the comma-separated
pair consisting of 'NTrials' and a positive scalar integer.
Data Types: double

DeltaTimes — Positive time increments between observations
1 (default) | scalar | column vector

19 Functions

19-1972



Positive time increments between observations, specified as the comma-separated pair consisting of
'DeltaTimes' and a scalar or NPeriods-by-1 column vector.

DeltaTime represents the familiar dt found in stochastic differential equations, and determines the
times at which the simulated paths of the output state variables are reported.
Data Types: double

NSteps — Number of intermediate time steps
1 (indicating no intermediate evaluation) (default) | positive integer

Number of intermediate time steps within each time increment dt (defined as DeltaTimes), specified
as the comma-separated pair consisting of 'NSteps' and a positive scalar integer.

The simByTransition function partitions each time increment dt into NSteps subintervals of
length dt/NSteps, and refines the simulation by evaluating the simulated state vector at NSteps − 1
intermediate points. Although simByTransition does not report the output state vector at these
intermediate points, the refinement improves accuracy by enabling the simulation to more closely
approximate the underlying continuous-time process.
Data Types: double

StorePaths — Flag for storage and return method
True (default) | logical with True or False

Flag for storage and return method that indicates how the output array Paths is stored and
returned, specified as the comma-separated pair consisting of 'StorePaths' and a scalar logical
flag with a value of True or False.

• If StorePaths is True (the default value) or is unspecified, then simByTransition returns
Paths as a three-dimensional time series array.

• If StorePaths is False (logical 0), then simByTransition returns the Paths output array as
an empty matrix.

Data Types: logical

Processes — Sequence of end-of-period processes or state vector adjustments
simByTransition makes no adjustments and performs no processing (default) | function | cell array
of functions

Sequence of end-of-period processes or state vector adjustments, specified as the comma-separated
pair consisting of 'Processes' and a function or cell array of functions of the form

Xt = P(t, Xt)

simByTransition applies processing functions at the end of each observation period. The
processing functions accept the current observation time t and the current state vector Xt, and return
a state vector that might adjust the input state.

If you specify more than one processing function, simByTransition invokes the functions in the
order in which they appear in the cell array.
Data Types: cell | function
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Output Arguments
Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as an (NPeriods + 1)-by-NVars-by-
NTrials three-dimensional time series array.

For a given trial, each row of Paths is the transpose of the state vector Xt at time t. When the input
flag StorePaths = False, simByTransition returns Paths as an empty matrix.

Times — Observation times associated with simulated paths
column vector

Observation times associated with the simulated paths, returned as an (NPeriods + 1)-by-1
column vector. Each element of Times is associated with the corresponding row of Paths.

More About
Transition Density Simulation

The CIR SDE has no solution such that r(t) = f(r(0),⋯).

In other words, the equation is not explicitly solvable. However, the transition density for the process
is known.

The exact simulation for the distribution of r(t_1 ),⋯,r(t_n) is that of the process at times t_1,⋯,t_n for
the same value of r(0). The transition density for this process is known and is expressed as

r(t) = σ2(1− e−α(t − u)

4α xd
2 4αe−α(t − u)

σ2(1− e−α(t − u))
r(u) , t > u

where

d ≡ 4bα
σ2

Heston Model

Heston models are bivariate composite models.

Each Heston model consists of two coupled univariate models:

• A geometric Brownian motion (gbm) model with a stochastic volatility function.

dX1t = B(t)X1tdt + X2tX1tdW1t

This model usually corresponds to a price process whose volatility (variance rate) is governed by
the second univariate model.

• A Cox-Ingersoll-Ross (cir) square root diffusion model.

dX2t = S(t)[L(t)− X2t]dt + V(t) X2tdW2t

This model describes the evolution of the variance rate of the coupled GBM price process.
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References
[1] Glasserman, Paul Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag,

2004.

[2] Van Haastrecht, Alexander, and Antoon Pelsser. "Efficient, Almost Exact Simulation of the Heston
Stochastic Volatility Model." International Journal of Theoretical and Applied Finance. 13, no.
01 (2010): 1–43.

See Also
simByEuler | simByQuadExp | heston

Topics
“SDEs” on page 18-2
“SDE Models” on page 18-7
“SDE Class Hierarchy” on page 18-5

Introduced in R2020b
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“Bond Pricing and Yields” on page A-2
“Term Structure of Interest Rates” on page A-2
“Derivatives Pricing and Yields” on page A-3
“Portfolio Analysis” on page A-3
“Investment Performance Metrics” on page A-3
“Financial Statistics” on page A-4
“Standard References” on page A-4
“Credit Risk Analysis” on page A-5
“Portfolio Optimization” on page A-5
“Stochastic Differential Equations” on page A-6
“Life Tables” on page A-6

Note For the well-known algorithms and formulas used in Financial Toolbox software (such as how to
compute a loan payment given principal, interest rate, and length of the loan), no references are
given here. The references here pertain to less common formulas.

Bond Pricing and Yields
The pricing and yield formulas for fixed-income securities come from:

[1] Golub, B.W. and L.M. Tilman. Risk Management: Approaches for Fixed Income Markets. Wiley,
2000.

[2] Martellini, L., P. Priaulet, and S. Priaulet. Fixed Income Securities. Wiley, 2003.

[3] Mayle, Jan. Standard Securities Calculation Methods. New York: Securities Industry Association,
Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

[4] Tuckman, B. Fixed Income Securities: Tools for Today's Markets. Wiley, 2002.

In many cases these formulas compute the price of a security given yield, dates, rates, and other
data. These formulas are nonlinear, however; so when solving for an independent variable within a
formula, Financial Toolbox software uses Newton's method. See any elementary numerical methods
textbook for the mathematics underlying Newton's method.

Term Structure of Interest Rates
The formulas and methodology for term structure functions come from:

[5] Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi,
eds. The Handbook of Fixed Income Securities. 4th ed. New York, Irwin Professional Publishing,
1995, ISBN 0-7863-0001-9.

[6] McEnally, Richard W. and James V. Jordan. “The Term Structure of Interest Rates.” Ch. 37 in
Fabozzi and Fabozzi, ibid.

[7] Das, Satyajit. “Calculating Zero Coupon Rates.” Swap and Derivative Financing. Appendix to Ch.
8, pp. 219–225, New York, Irwin Professional Publishing., 1994, ISBN 1-55738-542-4.
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Derivatives Pricing and Yields
The pricing and yield formulas for derivative securities come from:

[8] Chriss, Neil A. Black-Scholes and Beyond: Option Pricing Models. Chicago, Irwin Professional
Publishing, 1997, ISBN 0-7863-1025-1.

[9] Cox, J., S. Ross, and M. Rubenstein. “Option Pricing: A Simplified Approach.” Journal of Financial
Economics. Vol. 7, Sept. 1979, pp. 229–263.

[10] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, 2003, ISBN
0-13-009056-5.

Portfolio Analysis
The Markowitz model is used for portfolio analysis computations. For a discussion of this model see
Chapter 7 of:

[11] Bodie, Zvi, Alex Kane, and Alan J. Marcus. Investments. 2nd. Edition. Burr Ridge, IL, Irwin
Professional Publishing, 1993, ISBN 0-256-08342-8.

Investment Performance Metrics
The risk and ratio formulas for investment performance metrics come from:

[12] Daniel Bernoulli. "Exposition of a New Theory on the Measurement of Risk." Econometrica. Vol.
22, No 1, January 1954, pp. 23–36 (English translation of "Specimen Theoriae Novae de Mensura
Sortis." Commentarii Academiae Scientiarum Imperialis Petropolitanae. Tomus V, 1738, pp. 175–192).
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